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ABSTRACT

Ocean lee waves occur on length scales that are smaller than the grid scale of Global Circulation

Models (GCMs). Therefore, such models must parameterize the drag associated with launching

lee waves. This paper compares the lee wave drag predicted by existing parameterizations with

the drag measured in high-resolution nonhydrostatic numerical simulations of a lee wave over

periodic sinusoidal bathymetry. The simulations afford a time-varying glimpse at the nonlinear

and nonhydrostatic oceanic lee wave spin-up process and identify a characteristic timescale to

reach steady state. The maximum instantaneous lee wave drag observed during the spin-up period

is found to be well predicted by linear lee wave theory for all hill heights. In steady state, the

simulations demonstrate the applicability of parameterizing the drag based on applying linear

theory to the lowest over-topping streamline of the flow (LOTS), as is currently employed in

GCMs. However, because existing parameterizations are based only on the height of the LOTS,

they implicitly assume hydrostatic flow. For hills tall enough to trap water in their valleys, the

simulations identify a set of nonhydrostatic processes that can result in a reduction of the lee wave

drag from that given by hydrostatic parameterizations. The simulations suggest implementing a

time-dependent nonhydrostatic version of the LOTS-based parameterization of lee wave drag and

demonstrate the remarkable applicability of linear lee wave theory to oceanic lee waves.
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1. Introduction23

In the ocean, because lee waves occur on length scales smaller than the resolution of global ocean24

circulation models (GCMs), the lee wave drag must be parameterized. Existing parameterizations25

are based on steady-state solutions for the flow above “linear-height” hills, wherein the height of the26

hill is much smaller than the wavelength of the wave (Bell 1975b; Gill 1982). Most common among27

the unresolved bathymetric features of the deep ocean are the abyssal hills which are statistically28

homogeneous on a regional scale and thus submit well to a spectral model (Goff and Jordan 1988).29

This allows for calculation of the lee-wave drag with the spectral linear theory of Bell (1975b,a).30

However, because a significant portion of the abyssal hills have nonlinear heights (Nikurashin et al.31

2014), spectral linear theory is not formally valid in these regions.32

At the bottom of the ocean, where the background horizontal velocityU and buoyancy frequency33

N are nearly constant with height, lee wave dynamics can be described in terms of the lee wave34

Froude number J = Nh0/U and the nonhydrostatic parameter ε = Uk/N , where h0 and k are35

the hill height and wavenumber (Mayer and Fringer 2017). Using the lee wave Froude number,36

J, nonlinear lee waves can be separated into two regimes: subcritical, J = Nh0/U < Jc, and37

supercritical, J = Nh0/U ≥ Jc, where Jc = O(1) is the critical Froude number. The supercritical38

regime is characterized by dramatic deviations of the form drag from the predictions of linear39

theory. Above isolated bathymetry, the flow on the downslope side of the isolated hill displays a40

standing hydraulic jump-like feature called a “downslope windstorm,” with an associated pressure41

anomaly resulting in as much as an eight-fold amplification of the steady-state drag above the42

linear prediction (Peltier and Clark 1979; Pierrehumbert 1987). However, for supercritical lee43

waves above periodic bathymetry, such as the abyssal hills, the upslope of the next hill inhibits the44

formation of the downslope windstorm, and the flow instead displays a process called “blocking,”45
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wherein the lowest parcels ofwater become trapped in the valleys (e.g.Welch et al. 2001;Nikurashin46

and Ferrari 2010a; Winters 2016). In the presence of blocking, some water passes over the hills47

and generates lee wave energy. In steady state, this over-topping fluid travels along a streamline48

that is different from the bathymetry. The resulting wave is therefore identical to a subcritical49

lee wave generated by the lowest over-topping streamline, which we will refer to as the LOTS.50

High-resolution nonlinear numerical simulations of atmospheric lee waves demonstrate that the51

supercritical lee wave drag scales with the trough-to-crest height of the LOTS, which is observed to52

be O(U/N) (Stein 1992; Welch et al. 2001; Eckermann et al. 2010). Thus atmospheric wave drag53

parameterizations posit that the wave drag over supercritical height hills is given by substituting an54

effective Froude number Je f f ≈ 1 for J in linear theory (Palmer et al. 1986; Pierrehumbert 1987;55

Lott and Miller 1997; Garner 2005). We will refer to this approach as saturation theory.56

As a package, the spectral model of the abyssal hills combines with saturation theory to permit57

computationally cheap calculations of the lee wave drag over arbitrary height, subgrid-scale abyssal58

hills in ocean models. This is the approach employed in recent studies of GCMs (Nikurashin59

and Ferrari 2011; Scott et al. 2011; Naveira Garabato et al. 2013; Melet et al. 2014; Trossman60

et al. 2013, 2015, 2016; Wright et al. 2014; Yang et al. 2018, 2019). These studies conclude that61

globally, lee wave drag constitutes between 0.2 to 0.75 TWofwork on the ocean, meaning lee waves62

could be of principle importance for balancing the O(1) TW of wind work at the ocean surface63

(Ferrari andWunsch 2009). However, direct observations of lee waves in supercritical regions such64

as the Drake Passage (Cusack et al. 2017) and Kerguelen Plateau (Waterman et al. 2013) display65

dissipation rates one order ofmagnitude smaller than predicted by combining saturation theorywith66

an energy-dissipation parameterization (St. Laurent et al. 2002). To account for this discrepancy,67

recent papers have implicated the interaction of geostrophic and tidal currents (Shakespeare 2020)68

and the absorption of wave energy aloft via conservation of wave action in vertically sheared flow69
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(Kunze and Lien 2019). In their introduction, Kunze and Lien (2019) offer a handful of additional70

hypotheses, including measurement and instrument error, under sampling, wave-wave interaction,71

a narrow radiating bandwidth, and, finally, that lee wave saturation is incompletely parameterized.72

Saturation theory, as presented above, is based on lee waves of atmospheric scale, where the73

forcing is hydrostatic. Assuming hydrostatic forcing implies that the wave drag is only a function74

of hill height, or nondimensionally, of J, and not also a function of hill length (nondimensionally ε)75

(Pierrehumbert 1987). However, in the J − ε regime appropriate to lee waves over abyssal hills in76

the ocean, nonhydrostatic effects are important, even for subcritical height bathymetry (Mayer and77

Fringer 2020). Nikurashin and Ferrari (2010a) and Nikurashin et al. (2014) are an exception to the78

existing lee wave literature in that their simulations employ high-resolution nonhydrostatic models79

and capture a J − ε regime appropriate for abyssal hill lee waves. However, both studies derive80

their prediction for Je f f without varying the horizontal component of the generating bathymetry.81

Thus, although their simulations incorporate nonhydrostatic processes, using their result for Je f f82

to parameterize the lee wave drag above arbitrary bathymetry is still implicitly hydrostatic because83

it assumes that the drag is independent of hill length.84

Additionally, existing saturation based parameterizations assume both that the lee wave has85

reached a steady state and that the momentum radiating through the wave is deposited within the86

first wavelength above the bathymetry. However, for a linear lee wave in regions with negligible87

rotational effects, the drag is an intrinsically unsteady feature that propagates vertically with the88

lee wave front, such that the drag only acts on the bottom currents during the earliest period of89

lee wave generation (Pedlosky 2003). This vertically propagating lee wave drag should also exist90

in the supercritical regime because supercritical hills still launch subcritical lee waves. Although91

rotation complicates this by permitting lee wave/inertial oscillation interaction (Nikurashin and92
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Ferrari 2010a), the assumption of steady-state lee waves depositing their momentum within the93

first wavelength above the bathymetry is likely not justified everywhere in the ocean.94

This paper offers a process study of an idealized lee wave to illuminate the consequence of95

ignoring nonhydrostatic and unsteady effects when parameterizing oceanic lee wave drag. The96

results are based on high-resolution, nonhydrostatic simulations of lee waves above sinusoidal hills97

spanning the J − ε range of oceanic flow over abyssal hills. The paper is organized as follows: in98

Section 2 we review the linear theory. In Section 3 we describe the numerical model and discuss99

methods for measuring the lee wave drag. In Section 4 we analyze the temporal evolution of a100

subset of subcritical and supercritical simulations. In Section 5 we evaluate the steady-state drag101

and LOTSmeasured in all of the simulations. And in Section 6 we conclude with recommendations102

for nonhydrostatic and time-dependent corrections to saturation theory.103

2. Linear theory and parameter space104

As in Mayer and Fringer (2017), we assume a non-rotating ocean with a free-slip bottom105

boundary condition and an infinite depth. Although rotation is important at the scale of abyssal106

hills (O(1− 10) km) in much of the ocean, where its primary contribution is to enforce a lower107

bound on the radiating bandwidth of lee waves according to f < Uk < N , the following theory108

and simulations are greatly simplified by omitting it. We discuss the ramifications of ignoring109

rotation in the Conclusion. With the above assumptions, the lee wave is uniquely characterized110

by J = Nh0/U and ε =Uk/N . Mayer and Fringer (2017) demonstrate that J = Nh0/U is the lee111

wave Froude number formed by the ratio of perturbation advection within the lee wave to the group112

velocity of the lee wave. The second dimensionless number, ε =Uk/N , can be cast as a ratio of113

the wavelength of the lee wave in the direction of the wave-vector, λlee = 2πU/N , to the horizontal114

wavelength of the bathymetry, Lhill = 2π/k. In terms of ε , the vertical wavenumber of the lee wave115
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is given by116

m =
N
U
(1− ε2)1/2. (1)

With increasing ε (increasing nonhydrostasy), the lee wave wavenumber vector points increasingly117

downstream. When ε > 1, the wavenumber of the hill is larger than the lee wave wavenumber,118

implying an imaginary vertical wavenumber and thus a decaying, or evanescent, lee wave.119

Abyssal hills are periodic and quasi-anisotropic in nature, with horizontal aspect ratios of between120

1:3 and 1:8 (Goff and Arbic 2010, Fig. 1), such that they appear as ridge-like corrugations on the121

ocean floor. As an idealization, we consider the simple sinusoidal bathymetry122

h(x) =
1
2

h0 sin(k x). (2)

The factor of 1/2 is used so that h0 is the trough to crest height of the hill. This convention follows123

Lilly and Klemp (1979) and Welch et al. (2001), but differs from Nikurashin and Ferrari (2010a),124

where the authors omit the factor of 1/2. Hence the height scale in Nikurashin and Ferrari (2010a)125

relates to h0 as hNF = h0/2. Using Eq. (2), Mayer and Fringer (2020) show that the dimensionless126

steady-state nonhydrostatic linear form drag per wavelength is given by127

Flin

ρ0U3N−1 =


π
4 J2 (

1− ε2)1/2
ε < 1,

0 ε ≥ 1.
(3)

Eq. (3) indicates that the nondimensional drag on the background current associatedwith generating128

lee waves grows in proportion to J2, but decreases with decreasing hill length (increasing ε) until129

the evanescent boundary Lhill = λlee, beyond which the steady-state drag vanishes.130

Eq. (3) affords a number of important limits and extrapolations. The hydrostatic limit of Eq. (3)131

is given by setting ε = 0,132

Fhs

ρ0U3N−1 =
π

4
J2, (4)
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and represents the largest magnitude drag that can result from a lee wave over a hill with crest to133

trough height h0. From this expression, a scale for the computed drag in what follows is given by134

Fsat = ρ0U3N−1 . (5)

Finally, the prediction for drag offered by saturation theory can also be stated using Eq. (3), as in135

Yang et al. (2018),136

FYang = Flin L2, (6)

where137

L =


1, J < Jc,

Je f f /J, J ≥ Jc,

(7)

Jc = O(1) is an empirically determined critical Froude number above which the drag saturates,138

and Je f f is the Froude number of the resulting effective bathymetry. It is generally assumed that139

Je f f = Jc . As a canonical example, in their nonhydrostatic simulations of lee waves above ε = 0.31140

sinusoidal hills, Nikurashin and Ferrari (2010a) find that saturation occurs when NhNF/U = 0.7.141

Recalling that hNF = h0/2, this implies a critical Froude number JNF = 1.4.142

All existing parameterizations assume a steady process in which the lee wave extracts momentum143

continuously from the currents within one lee wave wavelength (≈ 500 m) of the bottom. However,144

irrotational linear theory (e.g. Pedlosky 2003) suggests that the lee wave drag only acts on the145

background current in the vicinity of the wave front, which propagates with vertical group velocity146

Cz = εU(1− ε2)1/2. (8)

This picture is complicated by rotation, where the more hydrostatic hills, for which Uk→ f , result147

in an infinite vertical wavenumber, a vanishing vertical group velocity, and thus an evanescent148

response (Klymak 2018; Kunze and Lien 2019). Nevertheless, the general observation that the lee149
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wave drag is felt only within the vicinity of the vertically propagating wave front remains valid.150

Presumably, the same temporal effect is present in nonlinear lee waves because, as posited by151

saturation theory, there is still a subcritical lee wave generated by the LOTS, and thus still a wave152

front where the lee wave drag acts.153

The theory presented in this section suggests that lee waves above nonlinear and nonhydrostatic154

bathymetry should exhibit nonlinear, nonhydrostatic, and time-dependent behavior. However, at155

present, saturation theory offers an hydrostatic and steady-state parameterization for the lee wave156

drag. To quantify significance of omitting nonhydrostatic and time-dependent effects, we turn to157

numerical simulations of the idealized oceanic lee wave.158

3. Numerical model159

a. Model set-up160

Our simulations employ the nonhydrostatic Navier Stokes solver SUNTANS (Fringer et al. 2006).161

The set-up, sketched in Fig. 1, is identical to that in Mayer and Fringer (2020), with a uniform162

buoyancy frequency N = 0.002 s−1 and constant volume-averaged horizontal velocityU = 0.2m s−1
163

such that the lee wave wavelength is λlee = 2πU/N = 628 m. Because we are primarily interested164

in lee waves in the deep ocean, where the free surface plays a negligible role, the domain in all165

simulations is 7 km deep and employs a sponge layer throughout the upper 5 km. The vertical166

grid-spacing is a constant ∆z = 5 m beneath the sponge layer (the bottom 2 km of the domain),167

and stretches linearly within the sponge layer until ∆z = 300 m at the surface. This is identical168

to the vertical grid used in Nikurashin and Ferrari (2010a). The simulations begin at rest and are169

spun-up with a forcing scheme that ensures a constant volume-averaged streamwise velocity U170

(Nelson and Fringer 2017). As described in Mayer and Fringer (2020), the kinematic viscosity is a171
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constant ν = 0.01 m2 s−1, and no explicit turbulence model is employed. Shakespeare and Hogg172

(2017) suggest that this value for ν is small enough to produce an effectively inviscid linear lee173

wave simulation (see their Fig. 3.c) . Tests of our model set-up with smaller viscosity (not shown)174

display little dependence on the Reynolds number, defined by Re =U/(ν k).175

Whereas in Mayer and Fringer (2020), we only varied the length of the sinusoidal hill (Eq. 2),176

in this paper we now vary both the height and length over the set h0 = [2 m to 200 m] and177

Lhill = [4 km to 800 m]. This samples the parameter space J = [0.02 to 2] and ε = [0.16 to178

0.8], which is characteristic of lee waves over abyssal hills (Goff and Arbic 2010; Nikurashin179

and Ferrari 2011). Anticipating that nonlinear-height lee waves might take longer to reach steady180

state, each simulation in this paper is run for 20 excitation periods, Tex = Lhill/U. Additionally,181

all simulations are nonhydrostatic with a constant horizontal resolution of ∆x = 10 m. This avoids182

both the unphysical over-prediction of the wave drag caused by using a hydrostatic model with183

nonhydrostatic-length bathymetry as well as the under-prediction in wave drag caused by poorly184

resolving the bathymetry (Mayer and Fringer 2020).185

b. Computing the lee wave drag186

This study employs two methods to compute the simulated lee wave drag. The first uses the187

simulated pressure p at the bottom (z = h(x)) and the analytical bathymetry h(x) to directly compute188

the form drag as189

Ff orm =

∫ Lhill

0
p(x,z = h(x))

∂h
∂x

dx. (9)

A second measurement of the lee wave drag is provided by integrating the vertical momentum flux190

through an horizontal plane above the bathymetry. Unless otherwise noted in what follows, we191
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choose this plane to be a height zt = 15 m above the crest of the hill, and define192

Ff lux =

∫ Lhill

0
ρ0 u(x,zt)w(x,zt)dx. (10)

For a steady inviscid lee wave over a linear hill, Ff orm = −Ff lux analytically. Viscous effects are193

negligible in the ocean, and still small for zt � λlee even with the relatively large viscosity in our194

model (Shakespeare and Hogg 2017).195

The relationship between the form drag and momentum flux is demonstrated by the governing196

area-integrated horizontal momentum equation, which is given by197

dM
dt
= −Ff lux −Ff orm , (11)

where198

M = ρ0

∫
A

u dA (12)

is the area-integrated momentum per unit span. In equilibrium dM/dt = 0, implying Ff lux =199

−Ff orm. However, the time-integratedmomentumequation produces nonzero M whenunsteadiness200

and nonlinearities lead to imbalances between Ff lux and −Ff orm, as discussed in what follows.201

4. Unsteady behavior of lee waves202

a. Subcritical, weakly-nonlinear case (J =O(0.1))203

Before interrogating the supercritical simulations, in this section we consider a simulation over a204

weakly nonlinear but still subcritical height hill. For this purpose, the 4 km long and 60 m tall hill205

(ε = 0.16, J = 0.6) is a good example. Snapshots of the nondimensional vorticity (ω∗ = ω/(JN))206

and streamlines every half Tex are shown in Fig. 2. Note that the wave front travels upward with207

group velocity, Cz = εU(1− ε2)1/2 (Eq. 8). For this hydrostatic hill, the nonhydrostatic effect is208

negligible since (1− ε2)1/2 = 0.987. Hence, Cz ≈ εU = λlee/Tex such that after one excitation209
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period, the wave front has traveled approximately one wavelength into the water column. After210

two excitation periods, the wave is fully established within the domain shown, and little changes211

over the following half Tex .212

The lowest parcel of water in this weakly nonlinear simulation struggles to flow over the hill213

during spin up, such that at t = Tex/2, in Fig. 2, there is a small jump in vorticity halfway up the214

hill. By the next snapshot, at t = Tex , this bottom water has traveled over the hill and no longer215

presents an obstacle. Nevertheless, the sharp gradients in vorticity lead to mixing and a reduction216

of the buoyancy frequency near the bottom. Fig. 3 shows the horizontally-averaged instantaneous217

buoyancy frequency 〈N〉 for this simulation at times corresponding to those in Fig. 2, as well as218

later times, where we define 〈N〉 as219

〈N〉 =
1

Lhill

∫ Lhill

0

(
−
g

ρ0

∂ρ

∂z

)1/2
dx. (13)

In Fig. 3, the decay of the buoyancy frequency near the bottom is significant. By t = Tex , 〈N〉220

at the bottom of the valley is roughly 25% smaller than the background N , and it continues to221

decay throughout the simulation. However, the decay remains confined to a region δ =U/N above222

the hill (indicated by the dashed horizontal line in Fig. 3). A similar bottom-confined decay of223

buoyancy frequency was observed in the lee wave simulations of Klymak (2018), where it was224

likewise attributed to the spin up of the system from rest. There is reason to believe that the225

phenomenon exists in nature. For example, observations in locations ripe for lee waves such as226

the Antarctic Circumpolar Current north of the Kerguelen plateau (Waterman et al. 2013) and the227

Hoyt Hills region of the Gulf current (Zheng et al. 2012) indicate bottom layers with thickness228

approximately equal to U/N . Note that this decay of near-bottom buoyancy frequency is only an229

issue for periodic bathymetry. For an isolated hill, the mixing during spin up would momentarily230

reduce the stratification above the hill, but not that of upstream fluid that flows over the hill at later231

12
10.1175/JPO-D-20-0070.1.

D
ow

nloaded from
 http://journals.am

etsoc.org/jpo/article-pdf/doi/10.1175/JPO
-D

-20-0070.1/4964255/jpod200070.pdf by guest on 10 July 2020



Accepted for publication in Journal of Physical Oceanography. DOI 

times. Hence the steady-state dynamics of a lee wave above a given hill are only sensitive to the232

local decay of buoyancy frequency during spin up when there are other hills upstream to do the233

initial mixing.234

To approximate the effect of a decayed bottom buoyancy frequency on the lee wave above periodic235

bathymetry, we define an adjusted bottom-layer buoyancy frequency by averaging 〈N〉 from z = 0236

to z = h0+U/N with237

Nadj =
1

h0+U/N

∫ h0+U/N

0
〈N〉 dz, (14)

where z = 0 is taken at the bottom of the valley. Inspection of Eq. (4) shows that the hydrostatic238

wave drag is proportional to the buoyancy frequency, Flin ∝ N . Thus a reduction in the buoyancy239

frequency over a layer δ above the bathymetry should result in smaller form drag, which we can240

approximate by substitution of Nadj for N in Eq. (3), giving241

Fadj =
Nadj

N
Flin. (15)

Note that this expression ignores the nonhydrostatic effect of Nadj on the vertical wavenumber242

(Eq. 1). We found that incorporating an adjusted vertical wavenumber madj produced unphysical243

predictions, especially above the more nonhydrostatic hills. Above these narrow hills, Nadj implies244

imaginary madj and evanescent waves (since Uk > Nadj), even though the disturbance generates245

a propagating wave in the region above the decayed buoyancy. In Fig. 4, we compare Fadj to the246

computed form drag (Eq. 9) and vertical momentum flux (Eq. 10) in the subcritical simulation247

shown in Fig. 2. The adjusted linear theory accurately predicts the general evolution of the computed248

drag over the course of the simulation. As demonstrated in the following section, the adjusted249

linear theory works equally well during steady state (see Fig. 10 and 11). Hence, for subcritical250

simulations, we should expect a smaller drag than predicted by linear theory, Flin (Eq. 3), due to251

the decay of buoyancy in the lowest layers. Additionally, in regions where rotation is important,252
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the decay in buoyancy frequency narrows the N − f frequency band for propagating lee waves. For253

a field of abyssal hills with varying wavenumber, the decay of near-bottom buoyancy frequency254

thus has the consequence of further reducing the total lee wave drag (Kunze and Lien 2019).255

The subcritical example also affords an opportunity to study the progression of the wave front as256

it propagates away from the hill. In Fig. 5, we display Ff lux (Eq. 10) as a function of height above257

the bottom at different points in time. Note that the wave front has a vertical extent of roughly258

one lee wave wavelength, λ f ront ≈ λlee, and propagates vertically at a rate of approximately one259

λlee for each Tex , as predicted by hydrostatic linear theory. Also note that after the wave front has260

reached the sponge layer, the momentum flux is nearly constant with height, with a slight decay261

with distance from the bottom as predicted by viscous effects (Shakespeare and Hogg 2017). The262

non-divergent momentum flux confirms the hypothesis of Pedlosky (2003) that in the subcritical263

regime after spin up, the lee wave drag is not felt by the lowest water, where the momentum flux264

is non-divergent, but aloft in the vicinity of the propagating wave front. From the perspective of a265

GCM, this supports the notion that lee wave drag parameterizations could account for unsteadiness266

by appropriately positioning the drag in the vertical rather than always assigning it to the bottom267

layer.268

b. Supercritical cases (J > 1)269

In this section we report on the temporal evolution of three supercritical simulations with hills of270

constant height, h0 = 160m (J = 1.6), but different length, Lhill = [4,2,1] km (ε = [0.16,0.32,0.63]).271

This subset illuminates both similarities across supercritical lee waves with different values of ε and272

important quantitative discrepancies in the form drag, especially for the narrowest hill (ε = 0.63).273

The temporal evolution of vorticity and streamlines over the first 2.5Tex for the three supercritical274

hills (Fig. 6) demonstrates a remarkable qualitative similarity between lee waves over supercritical275
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hills of dramatically different widths. In all three simulations, the lowest parcels of water become276

blocked and induce separation on the downslope face within the first half excitation period. Within277

another excitation period, the shear between the over-topping flow and the blocked layer evolves278

into a train of vortices that populate the valley. Thereafter, these qualitative features of the blocked279

layer change little. Thus, the excitation period Tex again offers a reasonable time scale for the lee280

wave to reach steady state.281

More quantitatively, Fig. 7 shows the form drag, Ff orm (Eq. 9), and the vertical momentum282

flux through a horizontal plane 15 m above the hill, Ff lux (Eq. 10), for 0 ≤ t ≤ 6 Tex . All283

three simulations exhibit large discrepancies between the two measures of drag during t < Tex ,284

indicating significant momentum deposition during this period. After the first Tex , however, the285

simulations display nearly balanced form drags and momentum fluxes, implying that, just as in the286

subcritical example, the momentum within the control volume is only altered during the first Tex287

of the simulation (Eq.11). For the two longer hills (ε = [0.16,0.31]), Ff orm and Ff lux stabilize at288

around 0.4 Fsat (Eq. 5), in accordance with saturation theory. However, the narrowest hill (ε = 0.63)289

stabilizes at a much smaller magnitude. Above such a narrow hill, the blocked layer quickly fills290

enough of the valley to render the entire over-topping streamline evanescent, a point to which we291

return below.292

The large discrepancies between the maximum Ff orm and Ff lux during the first Tex is unique293

to the supercritical simulations and results in a significant change to the momentum of the fluid294

within the control volume (Eq.12). Comparison with the flow for t < 2 Tex displayed in the top295

panels of Fig. 6 encourages the interpretation that the local momentum deposition serves to arrest296

the valley water and establish the blocked layer, as expected for supercritical periodic bathymetry297

(Welch et al. 2001). We can estimate the horizontal momentum change M′b required to block the298

valley water as a product of the volume Vb contained within the blocked layer and the background299
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velocity U, viz.300

M′b = ρ0VbU. (16)

We compute this value at the time Tb, which we define as the first instance that Ff lux = Ff orm,301

and compare it to the change in momentum within the control volume during the time period,302

computed by integrating Eq. (12) from t = 0 to t = Tb. For these three hills (ε = [0.63,0.32,0.16]),303

the comparison gives the ratios M′b/M
′ = [1.23,0.92,0.92]. This close equivalence confirms that the304

imbalance in the form drag and the vertical momentum flux during the spin up of these supercritical305

lee waves indeed serves to establish the blocked layer.306

The observation that for the two longer hills (ε = [0.16,0.31]), the maximum value of the form307

drag is well approximated by the prediction of linear theory, Flin (Eq. 3), while the momentum308

flux instead peaks around the saturation value Fsat = ρ0U3N−1 (Eq. 5), as predicted by saturation309

theory, suggests that a scale for the local momentum deposition is given by M′b ∼ Tex(Flin−Fsat). To310

test this observation, Fig. 8 displays contour plots of the maximum computed vertical momentum311

flux and form drag for all simulations in this study, as well as the linear prediction (Eq. 3). The312

close correspondence between the maximum computed form drag and the prediction from linear313

theory is remarkably robust across most of the J − ε regime spanned by the simulations, especially314

for ε ≤ 0.5. Likewise, the vertical momentum flux displays ubiquitous saturation of O(Fsat).315

Conceptually, this supports the general conclusion that during the first excitation period the form316

drag reaches the linear value, but the background conditions imposed by U and N restrict the317

momentum flux to the saturation value Fsat . The extra form drag thus acts to decelerate the valley318

water and establish a blocked layer. However, because the momentum sink is restricted to the first319

excitation period of lee wave generation, it is dramatically different from the parameterizations for320

the non-propagating drag found in Pierrehumbert (1987) and Garner (2005), for which the local321

momentum sink is assumed to persist into steady state.322
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Finally, in Fig. 9 we show the evolution of the LOTS for the simulations in Fig. 6 for time323

t ≤ 16 Tex . We note that the separated portion of the LOTS in each simulation displays persistent324

undulations with length scales of approximately λlee. Furthermore, the LOTS evolves very slowly325

for t > 6 Tex , indicating that the simulations indeed approach a quasi-steady state. Thus, in what326

follows, quantities with the overbar (e.g. u) are time-averaged during 6 Tex ≤ t < 12 Tex .327

The time-variable LOTS in Fig. 9 can be used to explain the dramatic reduction in drag observed328

in the very nonhydrostatic ε = 0.63 hill after the establishment of the blocked layer. In all329

supercritical simulations, once the blocked layer is formed, the LOTS has two different sections,330

one that is defined by the unblocked portion of the bathymetry, and another that is separated from331

the bathymetry. For the simulation above the narrow ε = 0.63 hill, the separated section of the332

LOTS comprises more than half of the total LOTS. As discussed in more detail in the next section,333

the separated portion of the LOTS is evanescent and does not generate lee waves. However, for this334

narrow hill, the hill length is less than two leewavewavelengths, as indicated by ε = λlee/Lhill > 0.5.335

Therefore the unseparated portion of the LOTS, which comprises less than half of the total LOTS,336

is also evanescent to the flow, and thus exerts no drag after the establishment of the blocked layer.337

This process, which we will term “evanescent masking,” has dramatic effects on the steady-state338

drag for all hills in which the unseparated portion of the LOTS is evanescent, as discussed in the339

next section.340

5. Nonlinear, nonhydrostatic effects on time-averaged drag341

In this section, we analyze the steady-state lee wave drag in our simulations FSUN , obtained by342

averaging Ff lux (Eq. 10) over the period 6 Tex ≤ t < 12 Tex343

FSUN =
1

6Tex

∫ 12 Tex

6 Tex
Ff lux dt, (17)
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and compare the results with linear and saturation theory. Unless otherwise noted, we use the344

vertical momentum flux Ff lux computed just above the hill (Eq. 10) rather than the direct com-345

putation of the form drag Ff orm (Eq. 9). The time-averaged drag as a function of J is shown in346

Fig. 10. In the top panel, the drag is nondimensionalized by Fsat = ρ0U3N−1 (Eq. 5). This makes347

apparent that the drag grows with J up to a maximum of roughly 0.5 Fsat when J = 1. We identify348

blocking as occurring when the maximum vertical excursion of the time-averaged LOTS is less349

than 95% of the hill height. With this definition, blocking begins at J = 1 for the narrowest hills,350

and is present in all simulations for which J > 1, confirming the critical Froude number Jc = 1.351

In the middle panel of Fig. 10, the drags are instead nondimensionalized by the predictions from352

linear theory Flin (Eq. 3). The effect of blocking in the supercritical simulations is again apparent.353

However, with this scaling it is evident that the time-averaged drag is smaller than linear theory354

predicts, even for J < Jc. The discrepancy in the unblocked cases is a consequence of the reduction355

of the stratification near the bottom during lee wave spin up, as discussed in Section 4.a. Indeed,356

normalizing the drag by Fadj (Eq. 15) instead of Flin, as in the bottom panel of Fig. 10, removes357

this trend. It also introduces a new source of noise for the most nonhydrostatic hills, possibly due358

to the effect of the reduced buoyancy frequency on the vertical wavenumber, which we neglect in359

computing Fadj . Together, the three panels demonstrate the separation of the lee wave into three360

regimes based on hill height: the linear limit J � 1, where Flin (Eq. 3) is accurate, the subcritical361

regime J = O(0.1), where weak nonlinearities during spin up result in a decay of buoyancy near362

the bottom and the drag is better predicted by the buoyancy adjusted linear theory Fadj (Eq. 15),363

and the supercritical regime J ≥ Jc, in which the lowest parcels of water are trapped in the valleys364

and the drag is limited by the radiative capacity of the fluid, Fsat = ρ0U3N−1 (Eq. 5).365

To demonstrate the dependence of drag on the hill length, Fig. 11 displays the time-averaged366

drag as a function of ε . In general, there is a monotonic decrease in the drag with increasing ε ,367
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as predicted by linear theory (Eq. 3). At moderate values of ε = [0.57,0.48,0.42,0.35], however,368

the critical J = 1 and supercritical J = 1.2 height hills demonstrate interesting non-monotonic369

behavior (highlighted by squares in Fig. 11). When J = 1, there is a maximum drag at ε = 0.48, in370

contradiction to linear theory. This non-monotonic behavior can be explained as a consequence of371

harmonic resonance between the excitation frequency Uk and the responding buoyancy frequency372

N . When ε = 0.5, N = 2Uk, implying that the buoyancy frequency is a harmonic of the excitation373

frequency, amplifying the nonlinear response. On the other hand, when ε = 1/3 or 2/3, N = 3Uk374

and 3/2Uk, implying a dissonant buoyancy frequency and muted response.375

In Fig. 12 we show the correlation between the average computed drag and the drag predicted by376

buoyancy adjusted linear theory Fadj (Eq. 15). We use Fadj rather than Flin to remove the effect of377

the reduced buoyancy frequency near the bottom on the predicted drag. From Fig. 12, it is clear378

that using linear theory based on the length and height scales of the bathymetry is valid in the379

linear and weakly nonlinear regimes, but fails as predicted by saturation theory when J = O(1).380

Fig. 12 also suggests that the more nonhydrostatic runs (smaller circles) are more strongly affected381

by saturation.382

As a measure of the strength of the correlation between simulations and parameterizations or383

theory, we use the coefficient of determination, defined as384

R2 = 1−
SSres

SStot
, (18)

where385

SStot =
∑
(yi − y)

2 (19)

is the sum of squared errors between the simulated values yi and their mean y, and386

SSres =
∑
(yi − fi)2 (20)
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is the sum of squared differences between the simulated values yi and the parameterized values387

fi. A parameterization that perfectly predicts the simulated value will give R2 = 1, while a388

negative value of R2 indicates that the observed values are better predicted by their mean than389

by the parameterization. The coefficients of determination for all steady-state parameterizations390

considered in this section are shown in Table 1. For linear theory using the adjusted buoyancy391

frequency (Fig. 12), the coefficient of determination is R2 = −53.1. The poor performance results392

from using the bathymetric height to scale the drag in supercritical lee waves.393

Fig. 13 shows the time-averaged LOTS for the simulations in Fig. 9. As posited by saturation394

theory, the LOTS is the effective bathymetry that generates lee waves, which can be used to compute395

the effective bathymetric power spectrum and thus predict the drag with the Fourier synthesis of Flin396

(Eq. 3), as in Bell (1975b). Because this method employs all of the horizontal information in the397

LOTS, this operation represents a fully nonhydrostatic form of saturation theory. We perform this398

analysis on each run that exhibits blocking and plot the correlation between the average computed399

drag FSUN (Eq. 17) and the drag predicted by FBell in the upper-left panel of Fig. 15. With400

R2 = 0.901, this combination of spectral linear theory with the LOTS is significantly better than401

the linear theory that uses the bathymetric height and length, Fadj , for which R2 = −53.1 (Fig. 12).402

This demonstrates the strength of viewing the average LOTS as the effective wave-generating403

bathymetry.404

In practice, the power spectrum of the LOTS above abyssal hills is not known a priori. Indeed,405

the usefulness of hydrostatic saturation theory is its prediction that, for supercritical bathymetry,406

there exists some average effective hill height of O(U/N) such that the effective wave generating407

Froude number is Je f f = O(1). To this end, we compute the average effective heights of each408

LOTS, he f f , as indicated in Fig. 14, and define an effective Froude number, Je f f = Nhe f f /U to409
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form a simple prediction of the drag based on hydrostatic saturation theory410

Fe f f =

(
Je f f

J

)2
Fadj . (21)

We perform this analysis on each run that exhibits blocking and compare the computed drag to the411

drag predicted by Fe f f in the upper-right panel of Fig. 15. Although using hydrostatic saturation412

theory to compute Fe f f gives a better prediction than linear theory (which has R2 = −53.1; see413

Table 1), with R2 = −0.331, Fe f f is still less predictive than the mean of the observations. It also414

uniformly over predicts the lee wave drag.415

The discrepancy between the performance of spectral saturation theory FBell and hydrostatic416

saturation theory Fe f f suggest that there is a characteristic component of the supercritical LOTS417

that the latter neglects. We hypothesize that one important feature of the LOTS are the undulations418

downstreamof the separation pointswithwavelengths roughly equal to λlee. If these undulations are419

treated as independent periodic bathymetry, they represent hills with ε ≈ 1 and are thus evanescent420

and should not contribute to the drag. The total effective height of the LOTS can therefore be421

partitioned into a propagating hprop and a non-propagating hnon−prop component, as illustrated in422

Fig. 14. Note that we define hnon−prop as the maximum height of the undulations above the blocked423

layer rather than as the height of the jump-like feature at beginning of the blocked layer because424

only the former of these features can be treated as independent periodic bathymetry. In this sense,425

the separation of he f f into hprop and hnon−prop represents an approximation of the power spectrum426

of the LOTS by two primary components. Only the propagating component contributes to the427

drag, suggesting that428

Fprop =

(
Jprop

J

)2
Fadj, (22)

where429

Jprop =
N
U

(
he f f − hnon−prop

)
. (23)
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The lower-left panel of Fig. 15 compares the computed drag to Fprop. It performs much better430

than hydrostatic saturation theory with R2 = 0.718, indicating that the evanescent undulations are431

indeed dynamically relevant. However, Fprop is not as skilled as spectral saturation theory, and still432

tends to overestimate the drag.433

The signal of an evanescent lee wave decays with height above the ocean floor at a rate determined434

by the vertical wavenumber (Eq. 1). Hence, a streamline sufficiently far from the bathymetry should435

contain contributions from only the propagating component of the lee wave. This observation436

leads to a final parameterization for the effective bathymetry, with an effective height halo f t based437

on the maximum vertical displacement of a streamline originating at z = h0 + λlee/2 above the438

crest of the hill (red-dotted lines in Fig. 13). The height halo f t implies a new Froude number,439

Jalo f t = Nhalo f t/U, and a new parameterization for the drag440

Falo f t =

(
Jalo f t

J

)2
Flin. (24)

As shown in Fig. 15, this drag prediction agrees remarkably well with the computed drag, with a441

coefficient of determination of R2 = 0.956. Similarly excellent performance (not shown) results442

from selecting a streamline twice as far from the bottom. This parameterization has the added443

advantage that it is insensitive to the decay of buoyancy near the bottom, since the streamline upon444

which Jalo f t is based is at a height above the observed decay. Furthermore, parameterizing the445

drag with the aloft streamline does not require the spectrum of the streamline, as in the calculation446

of FBell , only its maximum vertical excursion, halo f t . The combination of simplicity and accuracy447

in this parameterization suggests that a good estimate of the lee wave drag in the ocean may be448

obtained simply by measuring the vertical excursion of a streamline at a height zalo f t = πU/N449

above the bathymetry.450

22
10.1175/JPO-D-20-0070.1.

D
ow

nloaded from
 http://journals.am

etsoc.org/jpo/article-pdf/doi/10.1175/JPO
-D

-20-0070.1/4964255/jpod200070.pdf by guest on 10 July 2020



Accepted for publication in Journal of Physical Oceanography. DOI 

Upon averaging across all of the simulations that display blocking (indicated by a tilde), we451

observe an average effective Froude number of J̃e f f = 0.7 ± 0.07, an average propagating Froude452

number of J̃prop = 0.5 ± 0.06, and an average aloft Froude number of J̃alo f t = 0.4 ± 0.09. Unlike453

most versions of saturation theory, in which Je f f = Jc, here all values for the effective Froude454

number are smaller than the observed critical Froude number Jc = 1, indicating that a supercritical455

lee wave has a smaller drag than a critical lee wave. Our values of J̃e f f , J̃prop, and J̃alo f t are456

also significantly smaller than the the effective Froude number of Nikurashin and Ferrari (2010a),457

JNF=1.4 (this accounts for their definition of hill height, which is half of ours, i.e. h0 = 2 hNF2010).458

Thus, the nonhydrostatic corrections to simple saturation theory embodied by Fprop and Falo f t459

suggest that the lee wave drag over supercritical abyssal hills could be 50% smaller than currently460

thought. Furthermore, since Jalo f t < Jc/2, these simulations suggest the most intense abyssal lee461

waves occur instead over critical and nearly-critical abyssal hills, before the onset of blocking.462

To summarize this section, Fig. 16 shows contour plots in J − ε space of the two measures463

of time-averaged drag (F f lux and F f orm) and the four supercritical parameterizations for drag464

discussed in this section (Fe f f , FBell , Fprop, and Falo f t). Comparison of F f lux and F f orm show465

them to be identical (R2 = 0.97), indicating that just as in the linear regime of Pedlosky (2003),466

during the majority of the supercritical lee wave event over periodic bathymetry, the form drag and467

the vertical momentum flux are in balance, and there is no change in momentum near the ocean468

floor.469

Fig. 16 also highlights a curious ε-dependent feature that is not predicted by hydrostatic saturation470

theory, namely the precipitous decline in simulated drag when J > 1 and ε > 0.5. We hypothesize471

that this drop off is due to evanescent masking, wherein the blocked layer grows horizontally to472

the point in which the attached portion of the LOTS becomes evanescent in length. Defining the473

horizontal length of this unseparated portion as Llaunch (see Fig. 14), we thus expect evanescent474
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masking when475

Llaunch < λlee. (25)

The boundary predicted upon measuring Llaunch in every simulation is sketched in the top left476

panel of Fig. 16, and aligns remarkable well with the observed drop-off in drag. Evanescent477

masking thus represents a second nonhydrostatic process present in oceanic lee waves above478

periodic bathymetry which is also absent from current implementations of saturation theory. Like479

the evanescent undulations over the blocked layer, evanescent masking has the effect of reducing480

the lee wave drag above supercritical hills below that predicted by saturation theory. Indeed, for481

the most supercritical simulations in this study, evanescent masking renders even the hydrostatic482

hills practically evanescent.483

6. Conclusion484

In this paper, we used idealized simulations of lee waves over one-dimensional sinusoidal485

bathymetry to demonstrate that for oceanic flow over supercritical height bathymetry, the lowest486

layer of fluid becomes blocked and presents the over-topping flow with an effective bathymetry487

defined by the lowest over-topping streamline (LOTS) that is subcritical in height and poly-488

chromatic in wavelength. That the effective bathymetry reduces the apparent height of the hills is489

well known and currently employed in parameterizations of lee wave drag in global ocean models.490

However, both the development of evanescent undulations in the LOTS above the blocked layer491

and the process of evanescent masking, in which the unseparated portion of the LOTS becomes492

narrower than the lee wave wavelength, are novel results of nonhydrostatic lee wave processes in493

this paper. Recognizing their deleterious effect on the wave drag in regions of supercritical (J ≥ 1)494

bathymetry may help explain the discrepancy between predictions using existing parameterizations495

and observation of lee wave activity in the ocean discussed in Kunze and Lien (2019).496
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This study also offered an opportunity to observe the spin up of weakly nonlinear (J =O(0.1)) and497

supercritical (J ≥ 1) lee waves above periodic bathymetry. The excitation frequency, Tex = Lhill/U,498

emerged as the fundamental timescale of the lee wave for all simulations, regardless of hill height499

or length, informing both the time required for spin up and the vertical location of the drag on the500

background current. Furthermore, analysis of the horizontal momentum budget during spin up of501

supercritical lee waves permitted a characterization of time-dependent local drag associated with502

blocking.503

The results in this paper identify four notable deficiencies in existing parameterizations of the504

lee wave drag. 1) In supercritical regions (J ≥ Jc), the simulations suggest that the steady-state505

lee wave drag will be smaller than predictions with existing saturation parameterizations due to506

the omission of nonhydrostatic effects of evanescent undulations and evanescent masking. 2) We507

observe that the drag associated with blocking is constrained to the first excitation period when the508

blocked layer forms, whereas predictions of the ‘non-propagating’ drag given by Garner (2005)509

and used in Trossman et al. (2013, 2015, 2016) assume the blocking component of the drag is510

a steady process that continually removes momentum from the flow. 3) On the other hand, in511

regions with large but still subcritical height bathymetry (J < Jc), our parameterizations predict512

larger lee wave drag because we identify the critical Froude number Jc and the effective Froude513

number Jalo f t separately, whereas existing saturation theory assumes them to be identical. 4)514

Finally, our observations of upward propagating lee wave wave fronts in every simulation suggest515

that all existing parameterizations need to reconsider confining the drag to within one lee wave516

wavelength above the bathymetry.517

There are inevitably some limitations in applying our conclusions uniformly throughout the518

ocean. First, there is inherent uncertainty of approximately 30% in both the local height and length519

of abyssal hills in the Goff and Arbic (2010) abyssal hill bathymetry product. On a regional scale,520
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this uncertainty is mitigated by the statistical homogeneity of the abyssal hills. Nevertheless, such521

significant local uncertainty of abyssal hill length and width suggests that some of the details in522

our process study, such as that of resonant responses for the J = 1 simulations, are probably not523

worth including in a drag parameterization.524

Second, the predicted drags Fadj , FBell , Fe f f , Fprop, and Falo f t presented in Section 5 required525

running the simulations to find the effective Froude numbers and the adjusted buoyancy frequencies526

Nadj , meaning that these were not a priori parameterizations of the drag. With respect to the527

effective Froude numbers, the aloft Froude number Jalo f t gave the most accurate prediction of528

the lee wave drag. Upon averaging across all supercritical simulations, we found the average529

aloft Froude number of J̃alo f t = 0.4 ± 0.09. The variability in this average stems primarily from530

resonant responses rather than from nonhydrostatic effects. Hence our results support lee wave531

drag parameterizations replacing JNF = 1.4 with Jalo f t = 0.4 above all 2-dimensional abyssal532

hill bathymetry. Such a parameterization could also approximate the nonhydrostatic effect of533

evanescent masking (Eq. 25) with a low-pass filter on the abyssal hill power spectrum to include534

only hills for which ε < 0.5. Using our results to parameterize Nadj is more difficult. As discussed535

in Section 4, the decay of near-bottom buoyancy appears to depend on the progression of the valley536

water over the top of the hill during the first excitation period of the simulation. This suggests that537

Nadj is, at a minimum, a function of N , U, h0, and k. Additionally, it involves mixing, which for538

our simulations is a process driven by the elevated kinematic viscosity. In the real ocean, there539

are likely further complications such as effects of the bottom boundary layer and hysteresis from540

previous lee wave events. Hence the parameterization of Nadj requires further research.541

Third, our study focused on single wavelength bathymetry, while the abyssal hills are better542

described by a linear superposition of many wavelengths. As such, our study cannot account for543

nonlinear interactions imposed by poly-chromatic nonlinear bathymetry. One hypothesis is that544
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the flow will adjust by filling in all valleys with stretches of evanescent undulations as observed545

above, whereafter the remaining unblocked peaks will likely represent a subset of the original546

bathymetric wave numbers. However, the hypothesis has not yet been tested with simulations.547

This is a significant limitation when attempting to employ the Goff and Arbic (2010) abyssal hill548

product.549

Fourth, our study is of two-dimensional flow over one-dimensional bathymetry. In three-550

dimensional flow with two-dimensional bathymetry, fluid can travel around an obstacle rather551

than over it, and has been shown to reduce the saturation momentum flux by 40% (Nikurashin et al.552

2014). However, abyssal hills are generally anisotropic, presenting the flow with a corrugation of553

ridges rather than a field of seamounts, which suggests that there may be little opportunity for flow554

around rather than over them.555

Finally, our study ignores rotation. A primary consequence of rotation on lee waves is the556

lower bound on the bathymetric wavenumbers that produce propagating lee waves, based on the557

criterion f <Uk. AsUk→ f , the vertical wavenumber approaches infinity, whereupon the vertical558

group velocity and momentum flux vanish. Hence, our conclusions about the drag for an upward559

propagating lee wave require modification for longer wavelength hills in strongly rotational regions.560

A second rotational process that complicates our conclusions is that of lee wave frequency-band561

narrowing, resulting from the near-bottom decay of N during spin up of nonlinear leewaves (Eq. 14)562

such that the window of drag-producing bathymetry shrinks according to f < Uk < Nadj < N . If563

dramatic enough, or in regions of strong rotation, it could make all lee waves evanescent, snuffing564

out the lee wave drag (Kunze and Lien 2019). Finally, Nikurashin and Ferrari (2010a) demonstrate565

that in the Southern Ocean where rotation is strong, saturation-level velocities in the lee wave field566

are sufficient to excite inertial oscillations and elicit positive feedback that results in wave breaking567

within the first lee wave wavelength above the bathymetry and a local deposition of momentum.568
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Thus, in strongly rotational regions it may not be appropriate to deposit the momentum according569

to the vertical group velocity. However, even in this regime, the low-level breaking is a slowly-570

developing process. Nikurashin and Ferrari (2010a) observe the need for five or more days for571

inertial oscillations to grow over subcritical bathymetry even though the excitation period for572

their bathymetry was approximately just five hours. Therefore, there is ample time for the lee573

wave wavefront to propagate away from the bottom, depositing momentum as it travels before the574

development of instabilities related to the inertial oscillations.575

Despite the many simplifications, this paper demonstrates the remarkable applicability of linear576

lee wave theory to real ocean-scale flow. During spin up, Flin (Eq. 3) offered a good estimate for577

the peak value of the form drag in all simulations, and was especially accurate when ε < 0.5, where578

evanescent masking is less pronounced. After spin up, the observed quasi-steady wave drag was579

best predicted with the same linear theory but with the hill height replaced with the maximum580

vertical extent of a streamline aloft Falo f t (Eq. 24). The second best prediction came from inserting581

the power spectrum of the effective bathymetry into the spectral form of linear lee wave drag (Bell582

1975b). These should not be foregone conclusions, since linear theory is strictly valid only for583

J � 1, whereas the effective bathymetries in our simulations presented effective lee wave Froude584

numbers of Jalo f t ≈ 0.4. Granted, achieving such accurate predictions required simulating the full585

flow to compute the adjusted bottom buoyancy frequency and the effective bathymetry. Still, our586

results demonstrate that even in the supercritical regime, linear theory can explain the lee wave587

drag. In this sense, they represent a qualified triumph of linear lee wave theory.588

Data availability statement. Matlab data files for each simulation as well as Matlab scripts589

to generate all figures used in this paper are provided in the Stanford Digital Repository590

(https://purl.stanford.edu/jy494jz4178).591
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Table 1. Table of coefficient of determination R2 values for all steady-state parameterizations considered in

Section 5 using Nadj (Eq. 14), as well as the values obtained by using N instead. Since Falo f t only uses N , the

two values for Falo f t are identical.

699

700

701

Nad j N

Flin -53.1 -83.4

FBell 0.91 0.305

Fe f f -0.296 -1.55

Fprop 0.733 0.146

Falo f t 0.956 0.956
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Fig. 1. A lee wave generated over sinusoidal bathymetry of length Lhill and height h0 resulting from703

uniform background flow with horizontal velocity U and buoyancy frequency N2 =
g
ρ0

∂ρ
∂z ,704

where g is the gravitational acceleration, ρ is the background density of the fluid, and ρ0 is the705

reference density. The color contours and white lines are the instantaneous vertical velocity706

and simulated streamlines at time t = Tex = Lhill/U, taken from one of the simulations707

reported in this paper (J = 1.2 and ε = 0.16). The characteristic wavelength between lines708

of constant phase is λlee = 2πU/N , as sketched with dotted black lines. The colormap is709
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Fig. 2. Nondimensional vorticity (ω∗ = ω/(JN)) and streamlines at half Tex intervals for the sim-711
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Fig. 3. Horizontally-averaged local buoyancy frequency 〈N〉 (Eq. 13) as a function of height above714

the valley bottom for the simulation shown in Fig. 2. Each line corresponds to a moment715

in the simulation, as indicated in the legend. The horizontal dashed line is at a height716
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Fig. 4. Computed form drag (dot-dashed line, Eq. 9) and vertical momentum flux through a plane718

15 m above the crest of the hill (solid line, Eq. 10) as a function of time for the simulation719

in Fig. 2. Also shown are the predictions of linear theory using the background buoyancy720

frequency (dotted line, Eq. 3) and the adjusted buoyancy frequency (dashed line, Eq. 15). . . 40721
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valley bottom. . . . . . . . . . . . . . . . . . . . . . . 41725

Fig. 6. Snapshots in time of nondimensional vorticity (ω∗ = ω/(JN)) and streamlines at half Tex726

intervals for the simulations with J = 1.6 and ε = [0.63,0.32,0.16] (h0 = 160m, Lhill =727

[1,2,4] km). All panels employ real aspect ratios and have their axes nondimensionalized by728

the lee wave wavelength, λlee = 2πU/N . . . . . . . . . . . . . . . . 42729

Fig. 7. Comparison of vertical momentum flux through a horizontal plane 15 m above the crest of730

the hill, Ff lux (Eq. 10), to the form drag, Ff orm (Eq. 9). The values are nondimensionalized731

by the saturation drag, Fsat = ρ0U3N−1. Cross hatch pattern indicates local deposition of732

momentum during spin up (Eq. 12). . . . . . . . . . . . . . . . . 43733

Fig. 8. Maximum computed momentum flux (top), form drag (middle), and predicted drag from734

linear theory for all simulations. The values are nondimensionalized by the saturation drag,735

Fsat = ρ0U3N−1. . . . . . . . . . . . . . . . . . . . . . 44736

Fig. 9. Snapshots in time of LOTS (solid blue lines) at half Tex intervals for the simulation with737

J = 1.6 and ε = [0.63,0.32,0.16] (h0 = 160 m, Lhill = [1,2,4] km). Real bathymetry is shown738

as dashed black lines. . . . . . . . . . . . . . . . . . . . . 45739

Fig. 10. Time-averaged vertical momentum flux FSUN (Eq. 17) normalized by Fsat = ρ0U3N−1
740

(Eq. 5, top), Flin (Eq. 3, middle), and Fadj (Eq. 15, bottom) as a function of J for all741

simulations. Each simulation is represented by a circle. The size of the circle indicates the742
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Fig. 11. As in Fig. 10 but as a function of ε for all simulations. The simulations highlighted by744

squares in the top panel display non-monotonic behavior due to resonance. . . . . . . 47745

Fig. 12. Comparison of time-averaged vertical momentum flux FSUN (Eq. 17) to the prediction from746

buoyancy-adjusted linear theory Fadj (Eq. 15). For each simulation, J and ε are indicated747

by, respectively, the color and the size of the data point. The coefficient of determination is748

R2 = −53.1. . . . . . . . . . . . . . . . . . . . . . . . 48749

Fig. 13. Time-averaged LOTS (blue solid line) and streamlines starting at z = h0+0.5 λlee (red dotted750

lines) corresponding to the simulations shown in Fig. 6. The aspect ratio is 2:1 to accentuate751

vertical perturbations. . . . . . . . . . . . . . . . . . . . . 49752

Fig. 14. Sketch of the effective bathymetry (LOTS) and its characteristic height and length scales753

from the simulation with J = 1.6 and ε = 0.16. . . . . . . . . . . . . . 50754

Fig. 15. As in Fig. 12, but now comparing to FBell (top left), Fe f f (Eq. 21, top right), Fprop (Eq. 22,755

lower left), and Falo f t (Eq. 24, lower right). Only the simulations that exhibit blocking are756

displayed. The coefficients of determination (Eq. 18) are indicated in each panel. . . . . 51757

Fig. 16. Parameterized and time-averaged drags for all simulations. The black line plotted with F f lux758

(top left panel) shows the drag-free boundary predicted by evanescent masking (Eq. 25). . . . 52759
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Fig. 1. A lee wave generated over sinusoidal bathymetry of length Lhill and height h0 resulting from uniform

background flow with horizontal velocity U and buoyancy frequency N2 =
g
ρ0

∂ρ
∂z , where g is the gravitational

acceleration, ρ is the background density of the fluid, and ρ0 is the reference density. The color contours and

white lines are the instantaneous vertical velocity and simulated streamlines at time t =Tex = Lhill/U, taken from

one of the simulations reported in this paper (J = 1.2 and ε = 0.16). The characteristic wavelength between lines

of constant phase is λlee = 2πU/N , as sketched with dotted black lines. The colormap is ‘deep’ from Thyng

et al. (2016).
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Fig. 2. Nondimensional vorticity (ω∗ = ω/(JN)) and streamlines at half Tex intervals for the simulation with

J = 0.6 and ε = 0.16 (h0 = 60 m, Lhill = 4 km). The colormap is ‘curl’ from Thyng et al. (2016).
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Fig. 3. Horizontally-averaged local buoyancy frequency 〈N〉 (Eq. 13) as a function of height above the valley

bottom for the simulation shown in Fig. 2. Each line corresponds to a moment in the simulation, as indicated in

the legend. The horizontal dashed line is at a height z = h0+U/N (z/λlee = (J+1)/2π) above the valley bottom.
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Fig. 4. Computed form drag (dot-dashed line, Eq. 9) and vertical momentum flux through a plane 15 m

above the crest of the hill (solid line, Eq. 10) as a function of time for the simulation in Fig. 2. Also shown are

the predictions of linear theory using the background buoyancy frequency (dotted line, Eq. 3) and the adjusted

buoyancy frequency (dashed line, Eq. 15).
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Fig. 5. Horizontally averaged vertical momentum flux as a function of height above the valley bottom for the

simulation in Fig. 2 (Eq. 10). Each line corresponds to a moment in the simulation, as indicated in the legend.

The horizontal dashed line is at the height h0+15 m above the valley bottom.
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Fig. 6. Snapshots in time of nondimensional vorticity (ω∗ = ω/(JN)) and streamlines at half Tex intervals for

the simulations with J = 1.6 and ε = [0.63,0.32,0.16] (h0 = 160m, Lhill = [1,2,4] km). All panels employ real

aspect ratios and have their axes nondimensionalized by the lee wave wavelength, λlee = 2πU/N .
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Fig. 7. Comparison of vertical momentum flux through a horizontal plane 15 m above the crest of the hill,

Ff lux (Eq. 10), to the form drag, Ff orm (Eq. 9). The values are nondimensionalized by the saturation drag,

Fsat = ρ0U3N−1. Cross hatch pattern indicates local deposition of momentum during spin up (Eq. 12).
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Fig. 8. Maximum computed momentum flux (top), form drag (middle), and predicted drag from linear theory

for all simulations. The values are nondimensionalized by the saturation drag, Fsat = ρ0U3N−1.
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Fig. 9. Snapshots in time of LOTS (solid blue lines) at half Tex intervals for the simulation with J = 1.6 and

ε = [0.63,0.32,0.16] (h0 = 160 m, Lhill = [1,2,4] km). Real bathymetry is shown as dashed black lines.
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Fig. 10. Time-averaged vertical momentum flux FSUN (Eq. 17) normalized by Fsat = ρ0U3N−1 (Eq. 5, top),

Flin (Eq. 3, middle), and Fadj (Eq. 15, bottom) as a function of J for all simulations. Each simulation is

represented by a circle. The size of the circle indicates the relative length of the hill, while filled circles indicate

blocking.
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Fig. 11. As in Fig. 10 but as a function of ε for all simulations. The simulations highlighted by squares in the

top panel display non-monotonic behavior due to resonance.
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Fig. 12. Comparison of time-averaged verticalmomentumflux FSUN (Eq. 17) to the prediction frombuoyancy-

adjusted linear theory Fadj (Eq. 15). For each simulation, J and ε are indicated by, respectively, the color and

the size of the data point. The coefficient of determination is R2 = −53.1.
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Fig. 13. Time-averaged LOTS (blue solid line) and streamlines starting at z = h0+0.5 λlee (red dotted lines)

corresponding to the simulations shown in Fig. 6. The aspect ratio is 2:1 to accentuate vertical perturbations.
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Fig. 14. Sketch of the effective bathymetry (LOTS) and its characteristic height and length scales from the

simulation with J = 1.6 and ε = 0.16.
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Fig. 15. As in Fig. 12, but now comparing to FBell (top left), Fe f f (Eq. 21, top right), Fprop (Eq. 22, lower

left), and Falo f t (Eq. 24, lower right). Only the simulations that exhibit blocking are displayed. The coefficients

of determination (Eq. 18) are indicated in each panel.
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Fig. 16. Parameterized and time-averaged drags for all simulations. The black line plotted with F f lux (top left

panel) shows the drag-free boundary predicted by evanescent masking (Eq. 25).
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