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There is a long-standing debate in the literature of stratified flows over topography
concerning the correct dimensionless number to refer to as a Froude number. Common
definitions using external quantities of the flow include U/(ND), U/(Nh0), and Uk/N,
where U and N are, respectively, scales for the background velocity and buoyancy
frequency, D is the depth, and h0 and k−1 are, respectively, height and width scales of
the topography. It is also possible to define an internal Froude number Frδ = u0/

√
g′δ,

where u0, g′, and δ are, respectively, the characteristic velocity, reduced gravity,
and vertical length scale of the perturbation above the topography. For the case of
hydrostatic lee waves in a deep ocean, both U/(ND) and Uk/N are insignificantly
small, rendering the dimensionless number Nh0/U the only relevant dynamical
parameter. However, although it appears to be an inverse Froude number, such an
interpretation is incorrect. By non-dimensionalizing the stratified Euler equations
describing the flow of an infinitely deep fluid over topography, we show that Nh0/U
is in fact the square of the internal Froude number because it can identically be
written in terms of the inner variables, Fr2

δ = Nh0/U = u2
0/(g

′δ). Our scaling also
identifies Nh0/U as the ratio of the vertical velocity scale within the lee wave
to the group velocity of the lee wave, which we term the vertical Froude number,
Frvert=Nh0/U=w0/cg. To encapsulate such behaviour, we suggest referring to Nh0/U
as the lee-wave Froude number, Frlee.

Key words: internal waves, stratified flows, topographic effects

1. Introduction

In its most generally accepted use, the Froude number Fr represents a ratio of
the speed with which two processes, namely advection and wave propagation, carry
information of a disturbance throughout a system. Locally, the Froude number also
represents the partitioning between kinetic and potential energy of the flow and
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U

Streamlines

FIGURE 1. Stratified flow over a two-dimensional hill with height h0, width 2π/k, and
upstream flow U and stratification N. Streamlines represent a solution of Long’s equation
over a Witch of Agnesi with ε = Uk/N = 0.01 and J = Nh0/U = 0.5 obtained with the
iterative method of Laprise & Peltier (1989b).

identifies the flow as sub- or supercritical. For flow over an isolated sill, the critical
value of Fr = 1 can only occur at the sill crest and indicates that the flow here is
under hydraulic control, meaning that the energetics of the flow are equally partitioned
and cannot support any greater volume flux above the obstacle (Armi 1986; Farmer
& Armi 1986). In the simple case of inviscid open channel flow in water much
shallower than the horizontal scale of the topography, the Froude number is given
by Fr = v/

√
gd, where v is the local depth-averaged velocity, d is the local depth,

and g is the acceleration due to gravity. Upon extension to two flowing layers with
different densities, Armi (1986) defines a Froude number for each of i= 1, 2 layers
as Fri = ui/

√
g′δi, where ui and δi are, respectively, the flow speed and thickness

of layer i, g′ = g(1ρ/ρ0) is the reduced gravity, and 1ρ is the density difference
between the two layers. Armi uses these layer Froude numbers to characterize the
criticality of the flow by computing the composite Froude number, G, which, along
with the Boussinesq approximation and subcritical bulk flow (v/

√
gd � 1, with

v = (u1δ1 + u2δ2)/d and d= δ1 + δ2), is defined as G2
= Fr2

1 + Fr2
2.

In the case of continuously stratified flow over an isolated ridge, the relevant
parameters are the ridge height h0, its width 2π/k, the depth D, and velocity and
stratification scales for the unperturbed flow, U and N2

= −(g/ρ0)ρ̄z (see figure 1).
Using these parameters, one can form three independent dimensionless numbers that
resemble a Froude number, namely U/(ND), U/(Nh0), and Uk/N. However, not all
of these numbers represent a ratio of advection to wave propagation speed or relate
to the criticality of the flow, and thus referring to all of them as Froude numbers robs
the concept of its intuitive dynamical significance. In his seminal text on stratified
flow over topography, Baines (1995) proposed that, as a solution to this ‘Froude for
everything syndrome,’ one should only refer to the most obvious extension of open
channel flow as a Froude number. That is, Fr = U/(ND), where ND is a scale for
the first-mode (fastest) internal gravity wave speed (which is given exactly by ND/π
from linear theory with uniform N).

For relatively shallow flows over topography, such as tidal flows over a sill in an
inlet (Farmer & Smith 1980), U/(ND) is indeed a dynamically significant Froude
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number. However, for lee waves generated by abyssal hills at the bottom of the
ocean, Fr=U/(ND) is very small and offers little information about the system. For
example, in the Drake Passage region of the Antarctic Circumpolar Current (ACC),
where abyssal lee waves are predicted to be dynamically important, U ≈ 0.1 m s−1,
N ≈ 10−3 rad s−1, and D ≈ 4000 m, giving U/(ND) ≈ 0.025 (Nikurashin & Ferrari
2010). In these systems, the dynamics are captured elegantly by considering the case
of an infinitely deep ocean, implying U/(ND) = 0, for which solutions describe a
stationary wave above the topography with energy propagating upwards at an angle
downstream to infinity (Long 1953).

In such deep systems, the relevant dimensionless number is Nh0/U, which has
various names in the literature. Miles (1969) refers to it as the Russell number, Ru,
after the fluid mechanician John Scott Russell, who described the reduction in drag
on shipping vessels when propelled faster than the shallow water wave speed

√
gd.

Aguilar & Sutherland (2006) refer to it as the Long number, Lo, in honour of Robert
Long’s pioneering work on the lee-wave problem (Long 1953). Nikurashin & Ferrari
(2010) refer to it as a steepness parameter, ε, after showing that, in the hydrostatic
limit, Nh0/U is identical to the ratio of the topographic slope to the slope of the
internal wave phase lines, a parameter that the internal tide literature commonly refers
to as ε (Garrett & Kunze 2007). Finally, in much of the literature, Nh0/U is simply
referred to either as an inverse Froude number, Fr−1 (Drazin 1961; Kitabayashi 1977;
Durran 1986; Kimura & Manins 1988; Smolarkiewicz & Rotunno 1989; Crook, Clark
& Moncrieff 1990; Scinocca & Peltier 1994; Legg & Klymak 2008; Eckermann et al.
2010; Winters & Armi 2012), or a vertical Froude number, Frz (Peltier & Clark
1983; Clark & Peltier 1984; Laprise & Peltier 1989a,c; Afanasyev & Peltier 1998;
Welch et al. 2001; Klymak, Legg & Pinkel 2010). However, none of these papers
offer either mathematical or physical justification for their association of Nh0/U with
the Froude number.

Winters & Armi (2012) consider a continuous extension of the layer Froude number,
Frδ = u0/

√
g′δ, where u0, g′, and δ are, respectively, the perturbation velocity over

the topography, the reduced gravity arising from the perturbation density, and the
characteristic vertical scale of the perturbation, and find that Frδ is held at a constant
critical state for flows in which Nh0/U>O(1). Note, however, that the internal Froude
number defined by Frδ does not represent a ratio of advection to wave speed, since√

g′δ is not the speed of propagation of an internal gravity wave.
By non-dimensionalizing the equations describing infinitely deep stratified flow over

topography, the purpose of this paper is to show that, regardless of its name, Nh0/U
is in fact identical to both the square of the internal Froude number Frδ and a ratio of
the vertical velocity within the lee wave to the group speed of the wave itself, w0/cg,
which we refer to as Frvert. The results suggest that it is indeed appropriate to define
the lee-wave Froude number as Frlee =Nh0/U.

Additionally, we discuss how our scaling breaks down as Nh0/U approaches 1,
in which case the height of the topography approaches the vertical scale of the
lee wave, U/N, and the flow becomes hydraulically controlled, or blocked, with
the internal Froude number held constant at Frδ = 1, indicating a saturation of the
internal wave field energetics (Winters & Armi 2012). Thereafter, Nh0/U informs
instead the magnitude of nonlinear dynamics such as upstream blocking (Smith 1989)
or downslope windstorms (Laprise & Peltier 1989a).

2. Non-dimensional equations

In this section we develop a scaling for internal (perturbation) quantities of the
flow field in a lee wave based on the characteristic external (background) quantities.
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As discussed in the Introduction, the steady, two-dimensional (in the horizontal x, and
vertical z directions) lee wave formed by the flow of a stratified, inviscid fluid over an
isolated hill of height h0 and width 2π/k with an infinite depth is characterized by the
external dimensional quantities U, k, N, and h0 (See figure 1). Rotation is neglected
for simplicity, and it is assumed that the depth of the domain, D, is irrelevant, i.e.
U/(ND)� 1.

Following Winters & Armi (2012), we separate the flow into its external and
internal quantities such that utotal = Uex + u′, ρtotal = ρ(z∗) + ρ ′, and ptotal =

ρ0p(z∗) + ρ0p′, where it is assumed that physical quantities are dimensional,
dimensional coordinates are indicated with the ∗, and ex is a unit vector in the
x direction. Under these definitions, the governing dimensional equations after
employing the Boussinesq approximation are given by

U
∂u′

∂x∗
+ u′ · ∇∗u′ = −

∂p′

∂x∗
, (2.1)

U
∂w′

∂x∗
+ u′ · ∇∗w′ = −

∂p′

∂z∗
−
ρ ′

ρ0
g, (2.2)

U
∂ρ ′

∂x∗
+ u′ · ∇∗ρ ′ =

ρ0N2

g
w′, (2.3)

where ∇∗ = ex∂/∂x∗ + ez∂/∂z∗, N2
=−g/ρ0 ∂ρ/∂z∗, subject to continuity ∇∗ · u′ = 0

and the dimensional kinematic boundary condition at z∗ = h′(x∗)

U
∂h′

∂x∗
+ u′

∂h′

∂x∗
=w′, (2.4)

where h′ is the topography as a deviation from a flat bottom.
The equations are non-dimensionalized using the inner variable scales defined by

u′ = u0u, (2.5)
w′ =w0w, (2.6)
ρ ′ = Rρ, (2.7)
p′ = Pp, (2.8)

x∗ = k−1x, (2.9)
z∗ = δz, (2.10)

where non-primed inner variables and x and z are assumed to be dimensionless. Using
these scales, non-dimensionalizing the kinematic bottom boundary condition (2.4), and
requiring a balance between the linear terms to leading order implies w0 = kh0U,
which gives the non-dimensional kinematic bottom boundary condition

∂h
∂x
+

(u0

U

)
u
∂h
∂x
=w. (2.11)

The vertical scale of the flow as indicated by δ is not the same as the hill height h0,
since δ must be finite as h0→ 0 (the linear limit). The vertical scale is thus dictated
by continuity, which requires ku0=w0/δ. Combined with the scaling for the kinematic
bottom boundary condition, this implies δ =w0/(ku0)= kh0U/(ku0)=Uh0/u0.
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Non-dimensionalizing the x-momentum equation (2.1) gives

ku0U
∂u
∂x
+ ku2

0u · ∇u=−kP
∂p
∂x
. (2.12)

If we require a leading-order balance between the pressure gradient and the linear
momentum advection term, we must have P= u0U, which gives

∂u
∂x
+

(u0

U

)
u · ∇u=−

∂p
∂x
. (2.13)

In a similar manner, the non-dimensional density transport equation (2.3) is given by

kUR
∂ρ

∂x
+ ku0Ru · ∇ρ =

kρ0h0N2U
g

w, (2.14)

which implies

R=
ρ0N2h0

g
(2.15)

for the linear terms to balance. The non-dimensional density transport equation is then
given by

∂ρ

∂x
+

(u0

U

)
u · ∇ρ =w. (2.16)

Finally, the non-dimensional vertical momentum equation is given by

k2h0U2 ∂w
∂x
+ k2h0Uu0u · ∇w=−

P
δ

∂p
∂z
−

gR
ρ0
ρ. (2.17)

If we require a vertical hydrostatic balance to leading order, then we must have

P
δ
=

gR
ρ0
=N2h0, (2.18)

and

P= δN2h0 =
N2h2

0U
u0

, (2.19)

which gives

ε2

[
∂w
∂x
+

(u0

U

)
u · ∇w

]
=−

∂p
∂z
− ρ, (2.20)

where
ε =

Uk
N

(2.21)

is the non-hydrostatic parameter and represents a ratio of the frequency with which
the flow over the hill excites a wave, Uk, to the frequency of the buoyant response,
N. A propagating wave is only possible if the excitation frequency is smaller than
the buoyancy frequency (ε < 1). Otherwise, the perturbation by the flow over a hill
occurs faster than the buoyancy time scale, giving evanescent behaviour. Within the
propagating regime, one can also think of ε as a ratio of the vertical wavelength of
the wave (U/N) to the width of the hill (k−1). For wavelengths much smaller than

831 R3-5

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 S

ta
nf

or
d 

Li
br

ar
ie

s,
 o

n 
30

 O
ct

 2
01

7 
at

 2
3:

09
:2

9,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

70
1

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.701


F. T. Mayer and O. B. Fringer

the hill length (ε� 1), the wave is approximately hydrostatic and its group velocity
is vertically oriented with magnitude cg = εU (Gill 1982).

Returning to the pressure, since the non-dimensional vertical momentum equation
(2.20) requires P = N2h2

0U/u0 and the non-dimensional horizontal momentum
equation (2.13) requires P= u0U, this implies that u0 =Nh0 and thus

u0

U
=

Nh0

U
≡ J, (2.22)

as deduced in Baines (1995), equation (5.2.2). In terms of J, the governing
non-dimensional equations are given by

∂u
∂x
+ Ju · ∇u=−

∂p
∂x
, (2.23)

ε2

(
∂w
∂x
+ Ju · ∇w

)
=−

∂p
∂z
− ρ, (2.24)

∂ρ

∂x
+ Ju · ∇ρ =w, (2.25)

subject to ∇ · u= 0 and the kinematic bottom boundary condition

(1+ Ju)
∂h
∂x
=w. (2.26)

These non-dimensional equations imply that the problem is uniquely characterized by
ε and J, and the relevant inner scales (non-dimensionalized by N and U) are given
by

u0

U
= J, (2.27)

w0

U
= εJ, (2.28)

gR
ρ0UN

= J, (2.29)

P
U2
= J, (2.30)

δN
U
= 1. (2.31)

An interesting property of this scaling is that the vertical scale δ, which defines the
vertical wavelength of the lee wave 2πδ, is determined exclusively from the upstream
quantities of the flow, U and N, as we expect from linear theory. To test this scaling,
we plot the horizontal perturbation velocity normalized by JU for the case shown
in figure 1 in figure 2. This figure shows that the maximum perturbation horizontal
velocity is O(JU) and that the vertical wavelength of the lee wave is λ= 2πδ.

If we now borrow from Winters & Armi (2012) and use the inner scales to define
the internal Froude number as Frδ = u0/

√
g′δ, where g′δ= g(R/ρ0)δ= JU2, this gives

Frδ = J1/2. Therefore, although it appears to represent an inverse Froude number when
expressed in terms of external variables, this scaling shows that it is in fact appropriate
to refer to J = Nh0/U as the square of an internal Froude number because of the
relationship between the internal and external variables.
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FIGURE 2. Dimensionless horizontal perturbation velocity, u∗/(JU)= u/J, corresponding
to the streamlines plotted in figure 1. The aspect ratio is greatly exaggerated to display
vertical structure. Contours of u = 0 are indicated to identify the ‘layers’ of the
perturbation and to emphasize that they have a characteristic thickness of πδ.

3. Discussion

Our scaling has shown that J = Nh0/U can be interpreted as the square of the
internal Froude number, Frδ, as defined by Winters & Armi (2012). However, this
interpretation alone is not sufficient to unambiguously define J as a Froude number
because it is not readily apparent that Frδ is a ratio of advection to wave speed.
Nonetheless, for the special case of the hydrostatic lee wave, our scaling identifies
J as just such a ratio. Recall that in the hydrostatic limit the group velocity of the
wave is oriented vertically with magnitude cg= εU (Gill 1982). Comparing this wave
speed to the scale for the vertical perturbation velocity, w0 = εJU, we form the ratio
w0/cg= J. Thus, with our scaling J emerges as a Froude number in its most generally
accepted sense, that is, as a ratio of an advection speed to a wave speed. In this case,
it is the ratio of vertical advection speed within the lee wave to the nearly vertical
propagation speed of the lee wave. Such an interpretation justifies reference of J as
the ‘vertical’ Froude number, Frz or Frvert, following Laprise & Peltier (1989a,c).

This identification of J as a Froude number derives from a balance of the linear
terms in the Euler equations, and is therefore mathematically unjustifiable for lee
waves with significant perturbation velocities. Indeed, from the literature it is clear
that the character of the lee wave changes as J approaches O(1). A precondition
on the wave solution to the flow is that it remains stable to both convective and
shear instabilities (Long 1953; Miles 1961). Asymptotic and fully nonlinear solutions
for the streamlines of the flow using Long’s model (Long 1953) show both vertical
streamlines (convective instability) and Richardson numbers smaller than 0.25 (shear
instability) developing when J = O(1) for flow over various ridge shapes (e.g. Miles
1969; Laprise & Peltier 1989b). Furthermore, laboratory experiments and numerical
simulations demonstrate that in the J > 1 regime, the wave field saturates and J
reflects instead the strength of non-wave dynamics such as upstream blocking and
downslope windstorms (Laprise & Peltier 1989a,c; Baines 1995). For this reason, J
is often interpreted as a nonlinearity parameter rather than a Froude number (Miles
1969; Baines 1995; Aguilar & Sutherland 2006; Eckermann et al. 2010; Klymak
et al. 2010; Nikurashin & Ferrari 2010).
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The upper limit on the valid identification of J as a Froude number is evident when
using Frδ to devise a physical interpretation of J. As discussed in the Introduction, Frδ
is the continuous extension of the layer Froude number as defined by Armi (1986),
and represents the partitioning of energy within the lee wave between perturbation
kinetic energy, u2

0, and perturbation potential energy, g′δ. The scaling u2
0 = JU=N2h2

0
indicates that the perturbation kinetic energy results from the conversion of the
potential energy of a displaced isopycnal in the wave, N2h2

0 = g(R/ρ0)h0 = g′h0, into
kinetic energy. This conversion takes place within the vertical scale of the lee wave,
δ =U/N, and thus sets a limit on the maximum possible isopycnal displacement. In
this sense, we can think of δ as a maximum wave-making capacity; the largest that
u0 can become is when h0 = δ, at which point umax = Nδ = U and the perturbation
energetics are equally partitioned between kinetic and potential energy. As h0 grows
beyond this height, the wave component of the flow will no longer change, as it
has saturated its energetic capacity. Indeed, in their recent study for flow past a
half-cylinder when J > 1, Winters & Armi (2012) show that in this regime, Frδ is
held constant at unity, the energetics of the wave are equally partitioned, and, in
analogy to hydraulic control of a two-layer exchange flow over a sill, the flow of
the lowest unblocked layer exhibits a transition from subcritical flow upstream to a
supercritical jet downstream followed by a dissipative hydraulic jump. Note that this
scaling argument for saturation also confirms that it is inaccurate to identify J as
Frvert when J > O(1) because we can no longer expect w0 to scale with J in this
supercritical regime.

It is thus clear that the relationships we have identified between J, Frvert, and
Frδ hold only up to J = Nh0/U = O(1). Below this limit, waves accommodate the
disturbance of the hill adiabatically, and carry it away from the site of generation. As
J approaches O(1), the kinetic component of the wave energetics grows to the same
magnitude as the potential component. All of this is consistent with the dynamical
significance of a Froude number, and our scaling thus unambiguously identifies J
with the Froude number for lee waves in the deep ocean. It is therefore appropriate
to simply refer to J as the lee-wave Froude number, Frlee = Nh0/U, noting that Frlee
informs the degree of blocking or other nonlinear processes once Frlee =O(1).
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