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Moving grid method for numerical simulation of stratified flows
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SUMMARY

We develop a second-order accurate Navier—Stokes solver based on r-adaptivity of the underlying numerical
discretization. The motion of the mesh is based on the fluid velocity field; however, certain adjustments to
the Lagrangian velocities are introduced to maintain quality of the mesh. The adjustments are based on the
variational approach of energy minimization to redistribute grid points closer to the areas of rapid solution
variation. To quantify the numerical diffusion inherent to each method, we monitor changes in the
background potential energy, computation of which is based on the density field. We demonstrate on a
standing interfacial gravity wave simulation how using our method of grid evolution decreases the rate
of increase of the background potential energy compared with using the same advection scheme on the
stationary grid. To further highlight the benefit of the proposed moving grid method, we apply it to the
nonhydrostatic lock-exchange flow where the evolution of the interface is more complex than in the standing
wave test case. Naive grid evolution based on the fluid velocities in the lock-exchange flow leads to grid
tangling as Kelvin—Helmholtz billows develop at the interface. This is remedied by grid refinement using
the variational approach. Copyright © 2012 John Wiley & Sons, Ltd.

Received 12 March 2012; Revised 19 July 2012; Accepted 23 July 2012

KEY WORDS: moving grids; numerical viscosity; background potential energy; moving mesh PDE;
interfacial gravity wave; lock-exchange flow

1. INTRODUCTION

Moving grid systems become increasingly important in a variety of engineering applications
[1]. These systems are characterized by internal boundaries or interfaces separating regions with
different physico-chemical properties. Across the interfaces, material properties and flow features
can vary rapidly. These interfaces can undergo complex deformations making interface tracking very
challenging. Accurate solution of transport equations relies on well-resolved internal and external
moving boundaries. Finally, flow field discontinuities across interfaces suffer from limitations of
inadequate grid resolution. This makes Eulerian description of fluid motion inadequate, because of
the changing location and shape of interfaces. Ideally, one would like to have grid points travel with
the flow, in the Lagrangian fashion, to keep interfaces well-resolved. However, this leads to poor
grid quality when grid points overrun one another in regions of rapid flow variability. Some middle
ground is clearly desired.

There are many adaptive grid methods in the literature [2, 3]. Most of them can be grouped
into two distinctive sets: h-adaptive and r-adaptive methods. The first class of methods is based
on adaptive mesh refinement type of strategy that dynamically adds points during the simulation in
areas where an increased resolution is necessary and coarsens the mesh in the areas that fade out
of interest. This is a viable strategy, although with its own complications. One problem is to find
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exactly which cells to modify, that is, tracking precise location of the interface and the other is on
the implementation side of efficient maintenance of variable-size data structures [4].

Another way to approach the problem of adaptive resolution is to employ r-adaptivity, in which
the number of computational nodes is unchanged, but the grid points are dynamically moved during
the simulation based on some strategy that concentrates the nodes in areas where they are most
needed. Because the computational grid size is kept fixed, this method is easier to implement than
the refinement method. Also, because the nodes are normally relocated to align mesh elements with
the solution, the moving mesh method improves the simulation accuracy [5]. This is precisely the
approach we take in this paper.

There are two distinct classes of moving mesh methods. In the first class, mesh movement is
coupled with the physical differential equations. The moving finite element method of
Miller et al. [6] and the moving finite difference method of Dorfi et al. [7] belong to this category.
In the second class of methods, the mesh equations are decoupled from the original differential
equations, requiring some form of conservative interpolation scheme to propagate the solution
from the old to the new mesh [8]. In this paper, we explore the first approach, partly because
adding r-adaptivity to an existing curvilinear grid solver can be straightforward and this allows
researchers with static codes to swiftly gain the advantages of r-adaptivity by leveraging their
existing infrastructures.

Deciding on an optimal moving grid strategy is a challenging task due to its non-uniqueness.
The simplest approach is to move the grid based on fluid velocities in the Lagrangian fashion.
Although this method might neutralize numerical diffusion associated with the nonlinear advection
term, resulting computational grids typically suffer large distortions and possible tangling. One
widely used approach to deal with mesh tangling is the arbitrary Lagrangian—Eulerian (ALE)
technique [3], which relies on continuous rezoning and remapping between Lagrangian and Eulerian
grids. Unfortunately, this process requires interpolation of geometry and flow variables [2].
Alternatively, the variational approach of Tang et al. [9, 10] provides an intuitive framework of
moving grid nodes based on the so-called monitor function that can be constructed to resolve a
certain physical quantity (e.g., density). To obtain the node distribution at each time step, an elliptic
PDE that concentrates computational nodes in the areas of interest needs to be solved. Even though
solving a 3D elliptic PDE is expensive, we will describe strategies to speed up the solution process
while maintaining the benefits of adaptive mesh refinement.

Moving the grid during a simulation is not without its difficulties. Quite often, if not performed
properly, the algorithm may violate mass conservation, an essential requirement for the pres-
sure solver convergence and ultimate stability of the simulation. This problem is addressed by
Chou et al. [11], where they describe the condition of consistency with continuity (CWC) as
it applies to moving generalized curvilinear coordinates. We adopt their approach to defining
grid velocities and contravariant fluxes used in the discretization of scalar and geometric
conservation laws (GCL). Via this GCL, the grid motion is incorporated into the original system
of conservation laws.

In addition to increased accuracy, adaptive treatment of interfaces yields lower amounts of
numerical diffusion that is an imperative if realistic resolution of interfacial gravity wave dynamics is
desired [11]. We measure numerical artifacts with the help of the background potential energy [12],
growth of which implies numerical diffusion and decay implies either anti-diffusion or the
development of non-monotonicity.

The importance of grid adaptivity is highlighted in [13] on the example of classic laboratory-
scale lock-exchange problem, which is one of test cases in this paper. The gravity current front
speed is highly dependent on the amount of numerical diffusion added by the solution method, thus
minimizing that it is of high importance in accurate simulations of complex physical processes.
Results obtained with the moving grid method compare favorably with the published results in
[14,15]. The main contribution of this paper is the synthesis of existing grid adaptation methods for
optimal simulation of stratified flows.

The next section describes the hydrodynamics of the problem we are solving and its numerical
discretization. Section 3 is dedicated to the background potential energy and its connection to
numerical properties of scalar advection schemes. In Section 4, we discuss the added complexity
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of preserving mass conservation in the moving grid case. Section 5 introduces two strategies of
moving the computational grid as well as the hybrid approach that combines them; it also describes
the variational approach to grid adaptivity. Finally, in Section 6, the moving grid method is applied
to two test cases: the interfacial gravity wave and the non-hydrostatic lock exchange.

2. GOVERNING EQUATIONS AND NUMERICAL METHOD

2.1. Governing equations

We discretize the Navier—Stokes equations with the Boussinesq approximation along with the scalar
transport equation for density p,

u; a
8—;4—@(%“1):&, (D
dp
a —(pu j) = 2
subject to the continuity equation
Buj
— =0, 3
Ry 3)

where the Einstein summation convention is assumed, j = 1,2, 3, and u; is the jth-component of
the Cartesian velocity. S; represents effects of pressure, viscous stresses, and body forces, as in

1 dp 0%u;
Si = —— v
Lo 0X; 0xj0x;

- E(,0 — po)di3, 4)
Po

where v is the constant kinematic viscosity, pg is the reference density, and g is gravitational
acceleration. Equation (2) assumes no molecular diffusivity for density, which is a good
approximation when the Schmidt number is large, such as that in a salt-stratified flow.

In the case of moving grid simulation, we have a transformation from the fixed Cartesian
coordinate system (xi,X3,x3) into the moving curvilinear coordinate system (&;(xy, X2, x3,1),
& (x1, X2, x3,1), E3(x1, X2, X3,1)). The transformed system of equations, corresponding to (1-3), in
strong-conservation-law form is given by

T TN P _ .
E(J u;) + e (i Un) 9 (u; Ug,m) =3, 5)
(J o) + E(pUm) s —(pUgm) = (6)
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where J is the Jacobian of transformation, and U, and Ug, are contravariant volume fluxes
corresponding to fluid and grid node velocities, respectively, viz.
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and where the Cartesian velocity is given by u, j = dxg ;/dt. The right-hand side of (5) is given by

19 _1%m 0 mn OUi 18 0Em 0x3
S = o B (" o, p) TV, (G asn) L o T
where
_ x; _10&m 084
1 _ mn _ 1 . 1
J det (_Bffm)’ G J Ix; 9x, (10)

When there is no density variation, Equation (6) reduces to
aJ ! n Uy, 0Ugm
ot &m  m

Substituting the continuity equation in generalized curvilinear coordinates (7) into (11), we obtain
the GCL for updating the Jacobian of transformation on the basis of the grid velocity [11].

=0. (11)

0Ug m

T (12)

D
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2.2. Numerical discretization

Following [16], we discretize our Equations (5—7) on a non-staggered grid, with Cartesian velocities
and pressure defined at cell centers, whereas contravariant volume fluxes are defined at the faces. The
momentum equations are integrated with second-order time accuracy, with the Adams—Bashforth
method for the explicit terms and the Crank—Nicolson for the implicit terms. Convective and
off-diagonal viscous terms are treated explicitly, whereas the diagonal viscous terms are treated
implicitly to eliminate the viscous stability limit. The convective terms in (5) and (6) are discretized
with the QUICK [17] and SHARP [18] schemes, respectively. The fractional step method is
employed following [16], and the pressure Poisson equation is solved with the multigrid method.
The simulation code was written in the C++ programming language and parallelized with the
message passing interface similar to [19].

3. ADVECTION AND NUMERICAL DIFFUSION ON ADAPTIVE AND FIXED GRIDS

3.1. Advection schemes

Selecting the right advection scheme becomes critical in discretization of the transport Equation (2).
The discrete version of (2) after the application of the finite-volume method is

At At At
P:lj_llc = P?,j,k =+ A_x(”wpw —UePe) + A_y(vsps — Unpn) + A_z(wfpf — WpPp), (13)

where p; ; x is density averaged over cell (i, j, k) and the subscripts denote faces (East(i + 1/2),
West(i — 1/2), North(j + 1/2), South(j — 1/2), Front(k + 1/2), and Back(k — 1/2)), over which
the fluxes are averaged in space and time [20]. By setting py ) = Pe(i—1)» Ps(j) = Pn(j—1)s
Pfk) = pPbk-1) and computing just three flux-face values per cell, conservation of mass is
automatically guaranteed.

The simplest approach to advection is the first-order upwinding, for which, assuming u, > 0,
v, > 0, and wp > 0, density values at faces are given by

Pe = Pn = Pb = Pi,j k- (14)

This method is highly diffusive [21] and is first-order accurate but guarantees monotonicity and is
simple to implement. In Fringer et al. [22], 12 standard and two novel advection schemes were
studied in terms of their diffusive or anti-diffusive effects. First-order upwind was found to be
the most diffusive, and the SHARP scheme [18] was shown to produce the best results overall.
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Originally designed to guarantee monotonicity for steady flows, the SHARP scheme is also capable
of handing highly unsteady flows when coupled with the second-order Adams—Bashforth scheme
[16], causing slight overshoot behavior in the presence of sharp fronts.

Assuming u, > 0, the density face value p, using SHARP is given by

1 -
Pe = E(Pi,j,k + pit1,jk) — CF (Pij i) (i—1,jk — 2Pi jk + Pit1,j k) (15)

where CF (p; ; k) takes on one of the seven algebraic forms depending on the value of f; ; &, which
is the normalized adjacent upstream density value based on its two adjacent neighbors and the
direction of upwinding.

These two advection schemes, being the extreme cases in terms of numerical diffusion, will be
extensively studied in combination with the stationary and moving grid methods applied to the
interfacial sloshing wave test case in this paper.

3.2. Background potential energy

The numerical diffusion or anti-diffusion of the density field resulting from the numerical solution
method can be quantified with the evolution of the background potential energy. According to [12],
the total potential energy can be split into its available and background components

E, = E, + Ep, (16)

where E, is the energy available to be converted into motion, and E} is the potential energy in its
background state. The latter is defined as a volume integral over the domain, viz.

Ep = g/ pz* (X,1)dV, (17)
v

where z* ()?, t) is the height of the fluid parcel with density p in its background state. An increase
in background potential energy implies numerical diffusion in the absence of molecular diffusion of
density, whereas a decrease is an indication of either numerical anti-diffusion or the development of
non-monotonicity.

A convenient way to demonstrate the relative increase in the background potential energy is to
plot the relative change in the background potential energy

Ep(t) — Ep(0)

E.0) (1%

AE;(t) =

where the superscript * signifies nondimensional quantity, Ej(0) is the initial background potential
energy, and E,(0) is the initial available potential energy, as defined in Equation (16).

3.3. Computation of background potential energy

In a two-dimensional domain (the analysis is easily extended to three dimensions) with a discrete
density distribution given by p; x and a cell volume distribution §V; x; the total potential energy of
the domain E, can be discretely evaluated as

N; ,Ng
Ey=g ) pixzikdVik, (19)
ik=1

where N; and Nj are the total number of grid points used to discretize the domain in each of two
dimensions. The height of the centroid of cell (i, k) is denoted by z; .
A discrete equivalent of the background potential energy is given by

Ni XNk
Ey=g Y  pizssVy, (20)
n=1
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where p;; is the sorted equivalent of the two-dimensional density field p; x that was arranged in a
descending order. §V, corresponds to the volume of the cell with density p;;. The height of the
sorted density field is computed with

sV

Z* — Z* + n+1 21
n+1 n A (Z;) ( )
forn=1,...,N; x N;.. A (ZZ ), the planform area of the cell, equals to §x; in the two-dimensional
case is described here. For n = 1, the height of the lowest cell is given by
SV
* 1
21 =20+ 22
1 0 24 (Zo) ( )

which corresponds to the vertical center of the cell. z¢ is the vertical coordinate of the bottom of
the domain.

Computation of the background potential energy requires implementation of a sorting algorithm
to obtain the sorted density field p;. In the serial version, we employ the standard Quicksort
algorithm. However, on a parallel system, this standard sorting strategy is not applicable because
of the distributed nature of the density array. In order to minimize communication and keep the
local density arrays balanced, we employ parallel sorting by regular sampling (PSRS), developed
by Li et al. [23]. Another advantage of PSRS over Hyperquicksort, a parallel analog of Quicksort,
is that it does not require the number of processors to be a power of 2.

The basic idea behind the PSRS algorithm that sorts n elements on p processors consists of four
phases. In the first phase, each process performs a sequential quick sort of its share of the elements.
In the second phase, one process gathers data items from counterpart processes with local indices
0,n/p%,2n/p?,...,(p —1)(n/p?) and sorts the combined list of samples. From the sorted list, it
picks p — 1 items with indices p + | p/2] —1,2p+ | p/2] —1,...,(p—1)p+ | p/2] to be used as
pivots and broadcasts them to the counterpart processes. In the third phase, each process i uses the
pivots to dissect its list into p partitions. Then it keeps the i th partition and sends the jth partition
to process j, for all j 5 i. In the forth and final phase of PSRS, each process merges its p partitions
into a single list. At this point, the elements are sorted and are distributed in increasing order among
all processes in a disjoint manner.

Li et al. [23] proved that the largest number of elements any process might have to merge is less
than twice its share of the elements, that is, 2n/p. In practice though, the largest partition size
normally deviates by only a few percent from the average partition size. The computational
complexity of the PSRS algorithm is O((n/p)(logn +1log p)). Because n > p, the communication
time is dominated by sublist exchange among processes in phase 3.

4. CONSISTENCY WITH CONTINUITY

The concept of CWC has been discussed by various authors [20, 21, 24, 25] and is an essential
requirement for mass and momentum conservation. A convenient definition of CWC is given in
[25]: a discretization of the advection equation is consistent with continuity if given a spatially
uniform scalar field as an initial datum and a general flow field, the discretized scalar advection
equation reduces to the discretized continuity equation. For stationary grids, CWC implies that the
same discrete divergence operator must be used for both the continuity and the scalar transport
equations. Thus, it is straightforward to ensure CWC for stationary grids. However, in the case of
moving grids, special care must be taken, namely, an additional conservation equation must be
solved simultaneously with the mass, momentum, and energy conservation equations. This
additional Equation (12), preventing the formation of artificial mass sources, is referred to as the
GCL by [26] or space conservation law by [27].

4.1. Geometric conservation law
To guarantee geometric conservation in the discrete sense, Equation (12) must be appropriately
discretized. A naive discretization will most likely lead to excessive mass creation induced by the
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non-conservative property of the moving grid, as discussed in [11]. Also, there is an additional
complexity of moving the grid in multiple dimensions because of unaccounted parts of swept
volume by the cell faces that arises when each dimension is treated independently. Alternatively,
if coordinate directions are coupled by the operator splitting scheme, the CWC condition is not
satisfied, as demonstrated by Leonard et al. [20]. Fortunately, in the case when grid node positions
are known before and after the time step, it is possible to construct the finite-volume discretization
of Equation (12) that ensures CWC, viz.

n 1 1 1 1
1 -1 n+s.n n+5.n n+s.n n+x5.n
ntl _ g ( AV R A AN A
2 i.j.k gi+5.7, gl—7.], gl.j+75., gl.J—7,

(23)

1 1
n+s.n n+x.n
+” 2 1 ” . 2 1 s
gi.jk+ts g.i.jk—>5

where the superscript n + 1/2 on the contravariant volume fluxes refers to the intermediate values

. .y . .- n+in
of the metric quantities that are used to evaluate them from grid velocities. For example, Ug ; izl ik
AL,
is given by
1 1 1
. dxp  dxp "T2 a3 dxs "t2 ax dx "tz
ntayn 05 083 n 95 083 n & 083 n
gitdjk || dx3 9x3 ug + dxp dxyp Vg Ixp  9xp Ve
&2 083 &2 0&3 & 083 L1
it5.j.k
(24)

For details on why Equation (23) ensures geometric conservation both locally and globally, see [11].

4.2. Consistent discretization of scalar transport and grid node velocities

Now that we have the appropriate spatial discretization of the GCL, it is important to apply the
same temporal discretization technique to both the geometric (12) and scalar mass (6) conservation
laws to satisfy the CWC condition. Failure to do so will induce significant errors, because of the
excessive mass creation, that grow proportionally with the time step size [28].

Another caveat is the definition of the grid node velocities that are based on the known positions
of grid nodes at each time step. Generally speaking, grid node velocities, constrained only by the
node locations and the CWC condition, are not unique. For example, Demirdzi¢ et al. [28]
provides an alternative definition of grid node velocities and contravariant volume fluxes that ensures
geometric conservation.

The second subtlety with grid velocities is their influence on the overall temporal time accuracy.
Assume that the grid velocities are discretized with the first-order differences, on the basis of just
two sets of node locations, but the scalar transport and GCL equations are discretized to a higher
order in time. The overall time accuracy of the scheme will then be limited by the first-order
discretization of the grid velocities [11]. Therefore, to maintain the second-order temporal accuracy
of our moving grid method, we use a second-order accurate approximation for the grid velocity

o xITL _xn 1
wl! g = 3wl 0 (25)

on the basis of the AB2 method.
5. MOVING GRIDS

In order to reduce numerical diffusion generated by the advection scheme, we propose moving the
computational mesh dynamically in a way that will minimize the significance of the advection term.
From Equations (5) and (6), one can see that when U, = Uy ., the equations are effectively written
in a coordinate system that eliminates advection. One option is to move the mesh with the fluid
flow in a Lagrangian way. Although a viable option, this unfortunately leads to grid tangling as
described in Section 5.1. To deal with those issues, we propose adjusting the computational grid
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with the variational moving mesh approach during the course of the simulation, as will be described
Section 5.2. Another extreme case is to move the grid based on the variational approach alone.
This way, the interface is profusely enveloped by the grid points, and the errors associated with the
advection term should also decrease. Unfortunately, this particular moving mesh strategy also has
its flaws as described in the following.

5.1. Arbitrary Lagrangian—Eulerian computational mesh based on fluid flow

Moving the computational mesh with the fluid flow alone, what is generally referred to as the
Lagrangian moving mesh, is an attractive strategy for several reasons. For once, it completely
eliminates the advection term in the momentum and scalar equations, if Ugrig = Uguiq. Discretization
of this term is well-known for its contribution to the numerical diffusion of the solution method.
Thus, eliminating it should address the problem. On the negative side lies the effect of wave
overturning in the short run that can deteriorate or sometimes completely destroy the quality of
the underlying computational grid. Figure 1(a) depicts a computational grid moving with the fluid
flow in the Lagrangian fashion. The grid nodes of cells located at the interface are pushed in different
directions by the fluid flow promptly destroying the mesh. Another disadvantage of the Lagrangian
moving mesh approach is the negative effect of the time-averaged mean flow that corrupts the
computational grid in the long run, as demonstrated in Figure 2(b). Initially, the fluid interface was
uniformly resolved by the mesh at ¢t = 7'/4, as depicted in Figure 2(a). However, as the simulation
progresses, after two periods, the middle part of the interface loses its original resolution, whereas
the left and right interfacial boundaries attract more nodes as a result of the time-averaged flow
(the Stokes’ drift).

One way to drive the mesh with the fluid flow without destroying mesh quality is to constrain
grid motion to only the vertical component. This way, each vertical column will stay unchanged
throughout the simulation; however, the cells belonging to it will adjust vertically, resolving the
interface that happens to lie across the column. In some cases, this strategy may be what is needed
to resolve the interface and minimize the numerical diffusion associated with the advection term.
One example where pure vertical mesh motion could be sufficient are ocean flows, where the relative
displacement of the interface is negligible compared with the lateral dimensions of the problem. On
the contrary, resolving the breaking wave on the ocean shoal will be problematic with this method
due to the overturning nature of the flow. Constraining the mesh motion to the vertical will not break
the grid nor will it accurately resolve the interface that will be stacking on itself. In that case, an
alternative grid moving strategy is in order.
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Figure 1. Instantaneous grid deterioration as a result of the Lagrangian moving mesh strategy for the
sloshing gravity wave: (a) computational grid; (b) velocity vectors.
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Figure 2. Long-term grid deterioration with the time-averaged mean fluid flow for the sloshing gravity
wave. Computational grid at: (a) t = T/4; (b) t = 9T /4. Arrows indicate the direction of the time-averaged
mean flow.

5.2. Variational moving mesh approach

Using the variational approach to mesh generation, in the spirit of Tang et al. [9] for 1D/2D and
[10] for 3D, we can redistribute grid points from any initial configuration to concentrate them in
regions of large solution variation. Once the new grid node positions are known and Jacobians of
transformation are recalculated with (12), we proceed to solving our system of hydrodynamic PDEs
(5-7) on the updated grid. The following outlines the procedure of grid redistribution based on the
latest available density profile.

In the conventional variational approach, the desired grid node distribution is achieved by
minimizing the functional of the following form:

=~ 1 ax; T 0x;
EH:—/ omp ) gq, 26
172 g(asn " e 20
where M is referred to as the monitor function and is a 3 x 3 positive definite matrix. The

Euler-Lagrange equation corresponding to functional (26) determines the new distribution of
the mesh

0 axX
— M, — ) =0. 27
e, (Mo, ) er
Following [9] to circumvent computational difficulties involved in interchanging the dependent and
independent variables, we replace Equation (27) by

Ly Py o =0 (28)
8)6]' Ji 8x,~ o

Equation (28) is much simpler to solve in order to obtain the desirable grid node distribution.
To better resolve areas of high density variation, we base the monitor function M on the density
gradient, viz.

ap \?

M=/14a|—) I, (29)
8x,~

where « is a tunable parameter, p is the density field, and [ is the identity matrix. This monitor

function allows clustering of grid points close to the fluid interface, where density experiences a
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large gradient. Because p is defined on the computational grid, its derivatives after application of
the chain rule are given by

Op _ Op 0Em

30
ax, 8Em axl (30)

In order to ensure convergence of (28) with respect to mesh refinement, we discretize the gradients
in the computational domain (3 . ) with fourth-order accuracy using the standard five-point stencil

finite difference approximation of the first derivative. Because we use a scalar-type monitor function
(29) for simplicity, Equation (28) becomes

0y, (09:,E) =0, (31)

/ 2
where v = /14« ( ) Equation (31) is a nonlinear elliptic PDE, which is solved with a

Gauss—Seidel iteration procedure to obtain solution at iteration v + 1 from iteration v,

_ Zlv+1] [v+1]
O_ai-i-%,j,k (El-'rljk éz]k )_ai—ljkV El]k
2[v+1 +1]
thi ik (St]-i-lk ik )_ itk Vi g,vjk (32)

[v+1] , Zlv+1]
+Cl]k+l<gljk+l El]k)_cl]k 1vgljk ’
where V;, ;. denotes the backward difference operator in the subscript direction, and

1 1
ixljk =7 Z 1 Did jtpk+qr Dijele = 1 Z 1 Diypj+tlk+q>
pg==3 pq==*3%
1 (33)
Cijkxy =g Z Oitpjt+qktd:
pa=%%

Fortunately, the physical PDE solutions do not change drastically at consecutive time steps and
thus (32) to converges in a few iterations if the initial guess is the grid at the old time step. After
the iteration scheme (32) converges, the monitor function is recalculated from the new density field

,ol[v;r,: ], which is interpolated from the old to the new grid after each iteration. The iteration scheme

(32) is then repeated with the updated monitor function several times, whereas the incremental

motion of computational nodes is exceeding a pre-specified threshold (i.e., ||§ 1] g ] [l2 > €).
In our experience, only a few (i.e., 3-5) outer iterations were sufficient to stabilize computational
nodes to within 5% length of the corresponding grid edge.

In a parallel implementation, in which the number of nodes per processor remains constant,
it is necessary to interpolate the density field at grid nodes near inter-processor boundaries. This
requires large enough halo regions so that interpolating density at the new grid node locations does
not require inter-processor communication. The width of this halo region depends on the distance
traveled by grid nodes in one time step. From our experience, keeping the halo region covering
the adjacent processors was sufficient as in each time step the interface was staying safely within
domain bounds of adjacent processors. Also, it is advisable to use some temporal or spatial
smoothing on the monitor function to obtain smoother meshes. One of the reasons for using smooth-
ing is to avoid very singular meshes and/or large approximation error around the stiff solution areas.
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We apply the standard low pass filter, sometimes multiple times as will be indicated in Section 6,
after we update the monitor function with the new density field at each outer iteration, viz.

(34)
Boundary nodes have to be distributed separately with a similar, although lower dimensional,
elliptic PDE. In many flow situations, discontinuities may start at the boundaries (e.g, vertical
boundaries in the sloshing wave example or horizontal in the lock exchange) or move towards them
at a later time (e.g., vertical boundaries in the lock-exchange example), thus, it is important to
have a boundary distribution strategy in place to improve solution quality in the boundary regions.
A reasonable strategy is to move the boundary nodes with the same speed as the tangential
component of the speed for the internal points adjacent to those boundary nodes. In our case, because
the boundaries are planar, we update nodes of the western boundary with

Gt T = el +0.6.6)0 ) - 0.6.6), . (35)

where the superscript [v + 1] on the right-hand side refers to the new position of internal nodes
updated at each iteration of the discrete mesh Equation (32). The redistribution of nodes at the other
five boundaries can be carried out in a similar way.

5.3. Hybrid moving mesh method

Given deficiencies with the pure Lagrangian and variational approaches when moving the
computational mesh, we combine both methods with the following procedure. We use the first
method of evolving the computational mesh in a Lagrangian way as the default evolution approach.
At regular intervals (either fixed or based on some other metric), we apply the moving mesh PDE
method to ‘regularize’ the grid. This hybrid approach yields near-Lagrangian evolution of the grid
in terms of minimizing the advection terms. It also circumvents the main disadvantage of a purely
Lagrangian method which leads to eventual deterioration of the computational mesh.

5.4. Performance considerations

As will be demonstrated in Section 6, the moving grid method exhibits superior properties in
terms of numerical diffusion minimization as well as error reduction. However, as expected, these
advantages are achieved at a higher computational cost. Fortunately, there are parameters that can
greatly accelerate the method. For once, it is the convergence of the Gauss—Seidel iteration loop for
Equation (28) that can be controlled by the maximum iteration count or error tolerances. Both are
adjustable parameters due to the nature of diminishing returns at higher iteration counts. Another
parameter is « in the monitor function (29), which translates into the intensity of ‘pull’ towards the
areas of interest. Making this parameter too high may over concentrate the nodes at the interface
that tends to deteriorate grid quality. Another way of tuning the moving grid method is by spatially
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smoothing the monitor function. This raises the lower bound on interface curvature frequencies
resolvable by the computational grid. This sometimes is critical as sharp interface curvature attracts
more computational nodes than may be desired (see Figure 14). Finally, one does not have to adjust
the grid at every time step. Because of spatial smoothing, introduced by Equation (34), there is
a ‘halo’ region of fine grid resolution around the interface. Therefore, when the interface moves
only a few grid cells per time step (reasonable requirement for numerical stability) and the low
pass filter (34) is repeatedly applied to the monitor function, running the grid adjustment only every
few time steps produces similar results. We dynamically decide on the necessity of grid adjustment
by running one iteration of the Gauss—Seidel solver of discrete mesh Equation (32) at every
time step and assessing how much the nodes move in that iteration. If the motion is minimal

(i.e., ||§[”+1] — §lvl||2 < ¢€), we proceed with the stationary part of the code, saving us the cost
of solving the elliptic PDE (28) and the discrete GCL (23) to update Jacobians for the stationary
curvilinear solver. Optimal choices of these parameters, to minimize invocation of the grid evolution
component of the algorithm and yet stay within the desired limits of the numerical diffusion growth,
can reduce the overhead for some simulations to a negligible fraction of the total simulation time,
with the pressure solver constituting the performance bottleneck. On average, the moving grid
simulations we ran were roughly 20% slower as compared with the their fixed-grid counterparts
with the same number of computational cells.

6. SIMULATION RESULTS

6.1. Examplel: interfacial sloshing wave

We demonstrate the benefits of the ALE adaptive mesh strategy with the standing interfacial gravity
wave. We run this test case first with the static grid to acquire a baseline and then run it with a
mesh that moves with the vertical fluid velocity (i.e., ug3 = u3). All simulations were run for
two wave periods to provide enough time history for comparison and yet prevent the computational
grid in the moving mesh case to deteriorate significantly. In this example, we do not use the PDE
(28) because we want to eliminate the need to adjust @ and other parameters associated with the
variational approach to mesh adaptation.

The domain is initialized with a finite-amplitude deep-water standing wave in an inviscid fluid
with the initial shape of the interface ¢ approximated to second-order in steepness ka as (see [29])

(ka)z) (ka)*
coskx —
64 8

kt(x) =ka [(1 — cos 3kx:| , (36)

where k = 7 is the wavenumber, L is the domain length, and a is the amplitude. The initial density
distribution is given by

A 2tanh™!
p(x,z) = —Tp tanh [%(kz —kC+ kd/2)i| , (37)
where the density difference between two layers is Ap/py = 0.03, the interface thickness is

k& = 0.057, the initial interface steepness is ka = 0.1, « = 0.99, and d is the depth.

The evolution of the sloshing wave is computed in a 1.0 x 1.0 m tank on a 64 x 64 grid with the
initial grid node distribution based on the variational approach (described in Section 5.2) applied
to the analytical representation of the initial density distribution (37), as shown in Figure 3(b).
Boundary conditions are no-slip at the lower boundary and free-slip at all other boundaries. The
total simulation time is 27" and the time step is Az = 0.0037, yielding a maximum CFL number of
roughly 0.1. The governing equations for momentum, scalar transport, and the GCL are advanced
in time with the second-order Adams—Bashforth method. The normalized residual of the multigrid
pressure Poisson equation solver is 1078, As shown in Figure 4, the computational grid adapts to
provide increased resolution at the fluid interface during the simulation. To demonstrate the
superiority of the moving grid method, we compare the background potential energy growth
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Figure 3. Interfacial sloshing wave test case: (a) typical grid produced by the variational approach (« = .001,
three outer iterations of Equation (32) were used) based on the density field from (b). (b) Initial density field.
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Figure 4. Interfacial sloshing wave test case at: (a)t =T/2; (b)t =T.

1

rates with and without the moving grid. We then compare error magnitudes and rates of spatial
convergence for the two methods.

According to [22], the best overall performance (out of standard advection schemes) in terms of
minimizing numerical diffusion on a fixed grid was demonstrated by the SHARP scheme [18]. The
most diffusive was first-order upwinding. We run four grid scenarios for both upwind and SHARP
advection schemes and use the same number of grid cells for the moving and static grid cases. The
two moving grid scenarios are the variational approach and grid evolution based on the vertical
fluid velocity. The static grid scenarios include a uniform Cartesian grid and a grid that was adapted
to resolve the initial location of the fluid interface, as depicted in Figure 3(a). As Figures 5 and 6
demonstrate, adapting the grid allows to decrease the background potential energy growth rate by
several orders of magnitude. The second static grid scenario was included to provide an equivalent
starting point for the moving and static grid methods. In that scenario, once the fluid starts moving,
this grid remains stationary. However, because of the nature of the example after an oscillation
period, the fluid interface returns to its original position, at which point in time numerical diffusion
is smaller. Using the initial node distribution shown in Figure 3(a) reduces the rate of growth of
background potential energy at the beginning of simulation. However, once the density interface
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Figure 5. Evolution of the background potential energy for the interfacial sloshing wave test case on a static
and moving grid using first-order upwind scheme for scalar advection. The ‘x’ for the bottom graph repre-
sents early termination of simulation due to the grid deterioration as described in Section 5.1. The log scale
for the ordinate was used due to several orders of magnitude difference between results for uniform and

adaptive grids.
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Figure 6. Evolution of the background potential energy for the interfacial sloshing wave test case on a static
and moving grid using the SHARP scheme for scalar advection. The log scale for the ordinate was used due
to several orders of magnitude difference between results for uniform and adaptive grids.

leaves the initially refined area of the mesh, the rate of growth increases, as demonstrated in
Figures 5 and 6, where the curves for the initially adapted static and moving grid cases diverge
roughly after t+ = 0.27. It is possible to refine the larger area of the mesh that would fully cover
the oscillating interface at all times and obtain similar results for both the moving and fixed-grid
approaches. Seemingly, an attractive alternative to moving the grid, this modified fixed-grid strategy
is not applicable in every situation as will be demonstrated by the test case in Section 6.2, where no
initial grid node distribution can benefit the lock-exchange evolution at every time step of simulation
and the only feasible moving grid strategy is based on the variational approach. As demonstrated
in Figures 5 and 6, moving the grid based on the vertical velocity preserves the background potential
energy at a higher rate as compared with the variational grid approach. This happens due to the
targeted annihilation of advection terms in equations (5) and (6) with the ALE grid and only
approximate reduction of numerical diffusion when grid nodes are drawn closer to the interface
in the variational framework. However, moving the grid based on the fluid velocity is problematic in
the long run due to grid tangling as a result of the mean flow net effect, as shown in Figure 2. This
inadvertent grid deterioration may lead to a premature termination of a simulation that otherwise
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accurately preserves the background potential energy. Our moving grid simulation based on the
vertical velocity terminated shortly after ¢+ = T using the first-order upwind advection scheme, as
demonstrated in Figure 5 and around ¢ = 2.257 using the SHARP advection scheme (beyond the
axes limits in Figure 5). To avoid this problem, we introduce periodic grid regularization based
on the variational moving mesh approach as discussed in Section 5.3. The regularization procedure
can be initiated at regular intervals (roughly every 7'/2 in our example with « = .001 and 10
smoothing iterations with Equation (34)) or can be based on some grid quality measure (e.g, ratio
of smallest and largest cell volumes in the grid). Grid regularization leads to a small discontinuity
in the background potential energy as shown in Figure 7. The solid line in the figure refers to the
hybrid moving grid approach with the variational regularization procedure applied twice and using
first-order upwind.

By examining Figure 7, we can see that the hybrid moving grid method with first-order upwind
advection preserves the background potential energy more efficiently than the SHARP advection
scheme with both the initially adjusted and the uniform static grid approaches. As expected, the
static grid strategy based on the adjusted initial profile preserves the background potential energy
better than the uniform initial grid approach. Finally, when the SHARP advection scheme is
combined with the variational grid adaptation, it preserves the background potential energy more
efficiently than the first-order upwind hybrid moving mesh approach. The hybrid approach is not
used for the SHARP scheme because the grid deterioration is slower for it as compared with the
first-order upwind case, and for comparison purposes, all schemes were simulated for two wave
periods only. Another reason for not applying the variational regularization procedure to the SHARP
scheme is due to its minimal effect on the rate of change of the background potential energy. Thus,
the real reason to regularize the mesh is to prolong the simulation by balancing the effect of the
time-averaged mean flow. As in the upwind case, moving the grid based on the vertical velocity
for the SHARP advection scheme conserves the background potential energy more efficiently
compared with the variational approach. The periodic variation, especially noticeable in the uniform
grid cases, occurs due to lower numerical diffusion, when the interface comes to rest at every
half cycle.

To study the spatial convergence, a series of simulations was performed (i.e., x — y grid
dimensions: 32 x 32, 48 x 48, 64 x 64, 80 x 80) both for moving with vertical fluid velocity and static
grids with the same time step of Az = 0.0037 for a total time of 7' /4. The error was calculated with

B 2
\/Zi,j,k (pr(i,j,k)—p%(i,j,k)) TG, jk)

e(Ax) =
ik ik

. (38)
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Figure 7. Effect of the moving grid scheme on evolution of the background potential energy for different
advection and grid adaptation schemes. Circles on the bottom graph indicate application of the regularization
procedure as described in Section 5.3.
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Figure 8. Spatial convergence of the moving and static grid approaches for the interfacial sloshing wave test
caseatt = T/4.

where the summation is across all cells in the A x-sized grid with Jacobians, J(i, j, k), representing
their corresponding volumes. Here, p Ax is the density interpolated onto the coarse grid solution.
The convergence results in Figure 8§ demonstrate that both methods converge to second-order in
grid size with the error being smaller for the moving grid method. It is worth noting that spatial
convergence slightly deteriorates with time, thus the errors were calculated relatively close to the
start of simulation, at t = T'/4.

6.2. Example 2: nonhydrostatic lock exchange

Because of simplicity of interface motion, simulations of the internal gravity wave can be performed
with the Lagrangian approach to mesh evolution. Though, undoubtedly, regular applications of the
variational approach to mesh adaptation allowed to prevent mesh deterioration with the mean flow
in the long run. In order to fully appreciate the benefits of the hybrid approach, we need to apply it to
a fluid interface that moves more irregularly. The nonhydrostatic lock-exchange test case, following
[15], presents an opportunity to test our moving mesh methodology on a more complex problem.
The lock-exchange flow is generated in a plane channel filled with two fluids of different density,
initially separated by a vertical gate, as depicted in Figure 9(a). The density difference between
separated fluids is Ap/po = 0.001. When the gate is withdrawn, a mutual intrusion flow drives two
fronts in opposite directions, generating Kelvin—Helmholtz billows at the fluid interface. The
simulation corresponding to Figure 9 is performed in a 0.8 x 0.1 x 0.1 m domain on a 128 x 32 x §
grid with a no-slip condition at the lower boundary and free-slip at all other boundaries. This
configuration makes possible the investigation of fluid behavior with a no-slip condition at the
bottom and a free-slip condition at the top in one simulation. The molecular viscosity is set to v
=107% m? s7!, and there is no physical scalar diffusivity. For this simulation, the total time is 157,
capturing both gravity currents reaching their corresponding walls, and the time step is Az = 0.017,
yielding a maximum CFL number of roughly 0.25. Here, T = /D/2g’, where g’ = gAp/po =0.01
m s~2 is the reduced gravity. Starting with a uniform grid at ¢ = 0, the moving grid adaptation was
applied at each iteration with @ = 2.5 x 1076, € = 3 x 10™* tolerance for the Gauss—Seidel solver,
and ngme0rn = 4 smoothing iterations for the monitor function. Qualitative differences between
the static and moving grid methods are well-demonstrated by comparing Figures 10 and 11. In the
moving grid case, with the same number of computational nodes, the interface is sharper and the
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Figure 9. Lock-exchange test case and the moving grid at /T = 0.1(a), 4(b), 7.5(c), 10(d), 12.5(e),
and 15(f). This vertical slice is taken at z/ W = 0.5.
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Figure 10. Computational grid, velocity vectors, and density field of the lock-exchange test case on a fixed
grid at ¢ = 7T. Vertical slice is taken at z/ W = 0.5.

Kelvin—Helmholtz billows are larger and more resolved. Better interface resolution with the moving
grid leads to the formation of five billows in Figure 11 as opposed to three in Figure 10. For a more
quantitative comparison, we compare the methods based on three quantities: background potential
energy evolution, spatial convergence, and propagation speed of gravity currents.

As in the internal wave test case, we calculate evolution of the background potential energy with
Equation (18). Scalar advection is computed with the SHARP scheme for the static and moving
grid cases. As shown in Figure 12, the moving grid preserves the background potential energy
roughly by a factor of 2. Once the billows at the lock-exchange interface start forming, the fixed-
grid method starts producing increasingly more numerical diffusion than the moving grid approach
as demonstrated by the diverging background potential energy curves for both methods aftert = 5T
in Figure 12.

Unlike in the standing wave problem in which the reduction in the growth of background potential
energy was roughly one order of magnitude, the improvement in the lock-exchange case is much
less significant. This difference can be explained by the fact that the movement of the interface
in the sloshing wave example was essentially one dimensional. Yet, in the lock-exchange case,
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Figure 11. Computational grid, velocity vectors, and density field of the lock-exchange test case with the
moving grid at t = 7T Vertical slice is taken at z/ W = 0.5.
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Figure 12. Evolution of the background potential energy for the lock-exchange test case on a static and
moving grid using SHARP advection discretization scheme.

the interface evolution was much more complex and three dimensional. A close examination of
Figure 12 reveals that the background potential energy curves for the uniform and moving grid
methods diverge at the time when K—H billows form. Although the variational approach helps refine
these instability regions, the grid does not move in a Lagrangian way that would most closely con-
serve the background potential energy. In the lock-exchange case, Lagrangian grid evolution would
lead to tangling. However, in the sloshing way case, because of the regular behavior of the fluid
interface, the variational mesh evolution closely mimics the Lagrangian moving mesh in terms of
background potential energy conservation. There is also an issue of over resolving specific areas
of interest at the interface that leads to poor grid conditioning. Thus, in the lock-exchange case,
we must restrain the variational method from concentrating grid nodes in the areas of rapid density
change. This was not as important a consideration in the sloshing wave case due to the smooth shape
of the interface that was free of K—H billows. There is a balance to be achieved between infusing
the interface with grid points as profusely as possible and maintaining convergence properties of
the multigrid pressure solver affected within tolerable limits. Perhaps, in combination with more
effective grid evolution strategies, the issue of slowing multigrid convergence could be addressed
by enhancing the existing multigrid method (i.e., ‘semicoarsening’ strategies with plane relaxation
or multiple semicoarse grid correction schemes [30]).
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To study the spatial convergence, a series of simulations was performed with 64 x 16, 128 x 32,
256 x 64, and 512 x 128 grid points both for static and moving grids with the same time step of
At = 0.01T for a total time of 27 . The variational moving grid method was applied to the lowest
resolution case with « = 5 x 107%, € = 6 x 107*, and N mp0rn = 2, but then o and € were
halved and ng,,,0¢n doubled with each consecutive grid refinement. The spatial convergence for
this example was evaluated with Equation (38). Figure 13 demonstrates the second-order spatial
convergence for both methods, with the moving grid approach being more accurate, roughly by
a factor of 2. Table I compares Froude numbers calculated from our simulations with the direct
numerical simulation (DNS) results in [15]. The Froude number is the ratio of the speed of
the gravity current to the buoyancy velocity up = \/m, and the Grashof number for these
simulations is given by Gr = (up D/2v)? = 1.25 x 10°. In our lock-exchange simulations, the top
front propagates to the left and is faster because of the free-slip boundary condition at the top of the
domain, and the bottom front is slower because of the no-slip boundary condition at the bottom of
the domain. The front speeds were computed by first finding the minimum and maximum locations
of the density discontinuity in each simulation frame and then approximating the front velocities
with the first-order time difference scheme. At the beginning of simulation, both fronts start moving
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Figure 13. Spatial convergence of the moving and static grid approaches for the lock-exchange test case
att =2T.

Table I. Comparison of the Froude number computations for the lock-exchange test case at different grid

resolutions for the static and moving grid methods with those of Hartel et al. [15]. The no-slip boundary con-

dition row represents the speed of the rightward-propagating front at the bottom, and the free-slip boundary

condition row represents the speed of the leftward-propagating front at the top. For each type of boundary
condition, the discrepancy with the result of Hartel [15] is also presented.

128 x 32 256 x 64 512 x 128
Boundary condition static moving static moving static moving Hartel [15]
No-slip 0.5332 0.5499 0.5547 0.5642 0.5650 0.5700 0.5740
Hartel [15] - No-slip 0.0408 0.0241 0.0193 0.0098 0.0088 0.0040 0
Free-slip 0.6495 0.6547 0.6571 0.6583 0.6598 0.6602 0.6750
Hartel [15] - Free-slip 0.0255 0.0203 0.0179 0.0167 0.0152 0.0148 0
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Figure 14. Over-concentration of computational nodes under the right-propagating gravity head of a lock-

exchange simulation at = 47 due to the formation of the statically unstable head. Vertical 512 x 128 grid

point slice is taken at z/H = 0.5. Figure (b) is a zoomed view of the white rectangular box in Figure (a) that
displays only odd grid lines for clarity.

in opposite directions and after some time reach a steady velocity, the value of which we present
in Table I. As the grid resolution is refined, both static and moving grid methods converge to the
values obtained in [15] with the static grid results slightly lagging behind. In light of numerical
diffusion, which slows down an interface, this result is not surprising and seems to correspond well
with Figure 12 that shows numerical diffusion evolution for both methods. Ultimately, this means
that the moving grid method does a better job of approximating the correct front speed, both for the
no-slip and free-slip boundary condition cases, whereas the static grid method underpredicts both
speeds for simulations with an equivalent number of grid points.

It is noteworthy that the effect of the moving grid method is more pronounced for the no-slip
front than it is for the free-slip front. This discrepancy is due to shape dissimilarities of the fronts.
In the no-slip case, the front is convexing forward trapping some lighter fluid underneath, as shown
in Figure 14, thus attracting more grid points to resolve this complexity and consequently reduc-
ing numerical diffusion at a higher rate. This discrepancy in refinement between two fronts could
be better resolved by adapting the grid based on vorticity instead of density in Equation (29) or
alternatively using anisotropic monitor function M, that is,

I +a (g_;;)2 0 0
M= 0 e () 0 . (39)
0 0 1 +a (3—5)2

This is the subject of the ongoing work and beyond the scope of this manuscript.
7. CONCLUSIONS

In this paper, we showed the advantages of r-adaptivity for minimizing numerical diffusion of
advection schemes used for discretization of Navier—Stokes equations with the Boussinesq approx-
imation. Using the same number of grid points with the hybrid moving approach, it was possible
to achieve lower numerical diffusion with the first-order upwind advection discretization scheme
than with the more accurate but expensive SHARP scheme on a static grid. In the interfacial gravity
wave example, moving the mesh with the vertical component of fluid velocity yields a reduction by
several orders of magnitude in the numerical diffusion compared with the static grid simulation on
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a uniform grid. For an objective comparison, an additional static grid scenario of initially adapting
the grid with the variational approach and then keeping it unchanged during the simulation was also
considered. Initial grid adaptation leads to a significant reduction of the background potential energy
due to the oscillating nature of the interface in the sloshing wave test case. Moving the grid for the
initially adapted interfacial sloshing wave example caused additional reduction of the numerical
diffusion. The strategy of moving the grid based on the vertical fluid velocity yields lower growth
rate of the background potential energy compared with the variational grid adaptation approach.
However, in terms of robustness, the variational approach prevails at the cost of slightly higher rate
of background potential energy growth. This suggested an alternative hybrid grid moving strategy
of using the variational approach as a regular grid regularization scheme that was alleviating the
negative long-term effect of the mean flow for the grid adaptation strategy based on the vertical
fluid velocity. In the lock-exchange test case, the only feasible approach to grid motion due to its
complexity is based on the variational approach.

Although qualitative advantages of the moving grid method over its static counterpart can be
assessed from results of simulations with the equivalent number of cells, the static and moving grid
methods are quantitatively compared, for both test cases in the paper, based on the background
potential energy evolution and spatial convergence. The benefit of reduced numerical diffusion as a
consequence of moving the grid in the lock-exchange test case results in more accurate capture of
the gravity currents with both no-slip and free-slip boundary conditions. This is the third metric of
comparison used in the lock-exchange test case. On the basis of this metric, the moving grid front
speeds more closely match those of [15]. The computational overhead of the moving grid method is
adjustable based on the desired quality of interface tracking and in our experience does not exceed
20% of the overall computation time.

Although this paper demonstrates the advantages of using the moving grid approach for simula-
tions involving stratified flows, it is important to note that deciding on a grid node moving strategy
can be quite challenging. Simple evolution of the grid based on the density field gradient is effective
as a lower-order approximation of the fluid interface. The higher-order effects are more illusive and
require a special treatment to move grid nodes more precisely to follow complex interfaces. This
limitation of the simple interface tracking strategy is manifested by the less significant reduction
of the background potential energy for the lock-exchange case compared with the sloshing wave
example. Therefore, in the future, we plan to experiment with different monitor functions that con-
trol mesh evolution in the variational framework. One such approach is keeping track of the fluid
interface with the level set function [31] and subsequently using it to construct a more accurate
monitor function (29). This could be attractive in the presence of complex interfaces that level set
methods resolve very well. There, of course, is the added burden of properly solving the level set
PDE and more importantly, evaluating the benefits of more accurate interface representation relative
to added computational cost. These are among topics of future research in dynamic meshes.
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