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ABSTRACT

A comparison of three common formulations for calculating the available potential energy

(APE) in internal wave fields is presented, namely the perturbation APE, APE1, the exact

local APE, APE2, and its approximation for linear stratification, APE3. The relationship

among these formulations is illustrated through a graphical interpretation and a derivation of

the energy conservation laws. Numerical simulations are carried out to quantitatively assess

the performance of each APE under the influence of different nonlinear and nonhydrostatic

effects. The results show that APE2 is the most attractive in evaluating the local APE,

especially for nonlinear internal waves, since use of APE2 introduces the smallest errors when

computing the energy conservation laws. Larger errors arise when using APE1 because of

the large disparity in magnitude between the kinetic energy and APE1. We show that the

disparity in the tendency of APE1 is compensated by a large flux arising from the reference

pressure and density fields. Because the tendency of the kinetic energy is close to that

of APE3, computational errors arise when using APE3 only in the presence of nonlinear

stratification, and these errors increase for stronger flow nonlinearity.
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1. Introduction

Not all potential energy can be converted into kinetic energy, which ultimately con-

tributes to mixing. The small active portion of the potential energy that is available for

this conversion is referred to as the available potential energy (APE). The concept of APE

has been widely used to study the energetics of internal waves (Klymak and Moum 2003;

Venayagamoorthy and Fringer 2005; Klymak et al. 2006; Scotti et al. 2006; Lamb 2007;

Moum et al. 2007; Carter et al. 2008; Lamb and Nguyen 2009) and other mixing processes

in stratified fluids (Winters et al. 1995; Huang 1998; Molemaker and McWilliams 2010).

The domain-integrated APE for an incompressible fluid is defined as the difference in

the potential energy between the perturbed state and the reference state, which is the mini-

mum potential energy state obtained through adiabatic processes (Lorenz 1955). Following

this definition, different formulations of the APE density have been employed. A clas-

sic definition is the perturbation potential energy density APE1 = ρ′gz, where ρ′ is the

perturbation density, which has been widely used to calculate the depth-integrated (Ve-

nayagamoorthy and Fringer 2005; Moum et al. 2007) or domain-integrated APE (Klymak

and Moum 2003; Klymak et al. 2006) in analyzing internal wave energetics. Another well-

known expression for the APE density is APE3 = ρ0N
2ζ2/2=g2ρ′2/2ρ0N

2, where ρ0 is the

constant reference density associated with the Boussinesq approximation, ζ is the vertical

displacement of a fluid particle and N is the buoyancy frequency (Gill 1982; Kundu 1990).

Although APE3 is derived from linear theory, it is commonly used for internal wave calcu-

lations in which the stratification is slowly-varying (Carter et al. 2008). A positive-definite

expression for arbitrary stratifications was proposed by Holliday and McIntyre (1981) as
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APE2 =
∫ z

z−ζ
g[ρ(z) − ρr(z

′)]dz′, where ρr is the reference density. More recently, this for-

mulation was employed in analyzing the energetics of nonlinear internal waves (Scotti et al.

2006; Lamb 2007; Lamb and Nguyen 2009). Lamb (2008) compared the calculation of APE1

and APE2 for an isolated perturbation and pointed out that their integrals over a finite

domain are identical.

Typically, when assessing the energy flux budget for a linear, hydrostatic wave, only the

dominant kinetic energy flux term up′ is calculated, where p′ is the perturbation hydrostatic

pressure (Kunze et al. 2002; Merrifield and Holloway 2002; Nash et al. 2005). However,

in the presence of strong nonlinear and nonhydrostatic effects, it is important to include

the nonlinear and nonhydrostatic terms in the kinetic energy flux as well as the APE flux

term (Venayagamoorthy and Fringer 2005; Lamb 2007; Moum et al. 2007). Therefore, an

appropriate evaluation of the APE has important ramifications for analyses of internal wave

energetics. In this paper, we provide a comparison of these three formulations for calculating

the APE in internal wave fields. Both theoretical analysis and numerical simulations are

employed to highlight their differences. In particular, we compare their performance in the

numerical simulations under different nonlinear and nonhydrostatic conditions. Advantages

and limitations of each formulation in analyzing the energetics of internal waves are discussed.

2. Interpretation of APE

We consider a stratified incompressible fluid with a stable reference stratification ρr(z).

The buoyancy frequency is defined by N2(z) = − g
ρ0

dρr
dz
. Figure 1 shows the vertical distribu-

tion of the reference density ρr(z) and the perturbed density ρ(x, y, z, t) = ρr(z)+ρ′(x, y, z, t)
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for a horizontal location (x, y) and time t. When perturbed, a fluid particle experiences a

vertical displacement ζ = z − z∗, moving from z∗(x, y, z, t) in the reference state to z in the

perturbed state. As a result, the density of the fluid parcel must satisfy ρ(x, y, z, t) = ρr(z∗).

The APE densities at point D(x, y, z, t) in Figure 1 can be interpreted graphically in terms

of areas as

APE1 = ρ′gz = g × Area(AEFD) , (1)

APE2 =

∫ z

z∗

g [ρ(z)− ρr(z
′)] dz′ = g × Area(ACD) , (2)

where Area(ACD) is the lightly-shaded region in Figure 1. Because the portion of the

potential energy between the perturbed and the reference density profiles is the true active

potential energy, or the energy that is available for conversion to kinetic energy, APE2 is

an exact expression to evaluate the local APE (Holliday and McIntyre 1981; Shepherd 1993;

Lamb 2007, 2008). APE1 includes some area associated with the inactive portion of the

potential energy and thus is larger in magnitude than the kinetic energy. Furthermore, APE1

is coordinate dependent since its value depends on the height at which z = 0. Therefore,

APE1 is not a good choice to evaluate APE on a local basis. A coordinate-independent

formulation of APE1, given by ρgζ = g ×Area(GHCD), was used by Winters et al. (1995)

to obtain the volume-integrated APE.

Using the Taylor series expansion in powers of ρ′, APE2 can be expressed as

APE2 =
g2ρ′2

2ρ0N2
+

g3(N2)zρ
′3

6ρ20N
6

+O(ρ′4) . (3)

If the fluid is linearly stratified (with constant N), only the leading term on the right-hand
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side of equation (3) remains. In this limit we obtain

APE3 =
g2ρ′2

2ρ0N2
= APE2 + err3 . (4)

This expression is the well-known linear APE density (Gill 1982; Kundu 1990). For nonlinear

stratifications, APE3 is not an exact expression of the APE density and differs to leading

order by an amount that can be estimated by the second term on the right hand side of

equation (3). Graphically, APE3 can be interpreted as g times the area of triangle (ACD)

in Figure 1. The dark shaded region is err3, which vanishes for linear stratification.

3. Energy conservation laws

For an inviscid, non-diffusive, Boussinesq fluid, the evolution equations for the kinetic

energy density KE = ρ0u · u/2 and the potential energy density PE = ρgz are given by

∂KE

∂t
+∇ · [u (KE + pnh + p′ + ps + pr)]︸ ︷︷ ︸

Fk

= −ρgw , (5)

∂PE

∂t
+∇ · (uPE)︸ ︷︷ ︸

Fp

= ρgw , (6)

where the pressure is split into its hydrostatic and nonhydrostatic components with p = ph+

pnh. The hydrostatic pressure is further decomposed as ph = pr(z)+p′(x, y, z, t)+ps(x, y, t),

with ps the free-surface pressure. Using the rigid-lid approximation, the reference pressure

is pr = g
∫ 0

z
ρr dz

′ and the perturbation hydrostatic pressure is p′ = g
∫ 0

z
ρ′ dz′. Summing the

above two energy equations gives the total energy conservation law as

∂(KE + PE)

∂t
+∇ · [u (KE + PE + pnh + p′ + ps + pr)] = 0 . (7)
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These energy equations show that energy is transferred into and out of a particular control

volume via the kinetic energy flux Fk and the potential energy flux Fp, while within the

control volume energy is converted between PE and KE via the buoyancy flux −ρgw. This

energy budget is illustrated by the solid arrows in Figure 2.

We now consider the energy budget between the active energy components. Based on

the definition of each APE density, and along with the expression of pr, we obtain the KE

and PE equations with active energy fluxes as

∂KE

∂t
+∇ · [u (KE + pnh + p′ + ps)]︸ ︷︷ ︸

F′
k

= −ρ′gw , (8)

∂APE

∂t
+∇ · [u (APE + f)]︸ ︷︷ ︸

F′
p

= ρ′gw , (9)

where F′
k = Fk − upr is the active kinetic energy flux because it excludes work done by the

reference pressure from the total kinetic energy flux. The function f is defined as

f =


pr + ρrgz , for APE1

0 , for APE2

0 , for APE3 with linear ρr .

(10)

For APE2, the available potential energy flux F′
p is just uAPE2 which is the truly active

potential energy flux, while for APE1, a reference energy flux term uf is included, which

can be much larger than the active energy flux terms given ρr ≫ ρ′ (Venayagamoorthy and

Fringer 2005). For APE3 in nonlinear-stratified fluids, equation (9) does not hold due to the

error discussed in Section 2, which requires inclusion of the term ∂(err3)/∂t on the right-

hand side of equation (9) to ensure a balance. The energy conservation between the active

components is obtained by taking the sum of (8) and (9) to give

∂(KE + APEn)

∂t
+∇ · [u (KE + APEn + pnh + p′ + ps + f)] = 0 . (11)
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The dashed arrows in Figure 2 illustrate the energy transfer and conversion via the active

energy fluxes. Equations (8)-(11) show that the conservation laws for APE2 are independent

of the reference state and thus appropriately describe the energy transfer between the kinetic

energy and the available potential energy.

4. Energetics of progressive internal waves

a. Numerical setup

We study the evolution of a first-mode internal wave over flat, frictionless topography in

a two-dimensional (x−z) domain of length L = 2λ and depth D, where λ is the wavelength.

Periodic boundary conditions are imposed in the direction of wave propagation, which ef-

fectively extends the domain to an infinite length in the x-direction. Numerical simulations

are performed using the SUNTANS code of Fringer et al. (2006) to assess the influence of

the stratification, nonlinearity, and nonhydrostatic effects on different APE formulations.

Two different initial reference stratifications are considered, namely linear stratifica-

tion given by ρr(z) = ρ0 − ∆ρ1(z/D), and nonlinear stratification given by ρr(z) = ρ0 −

∆ρ2[tanh(5z/D + 1)− tanh(1)], where ρ0 = 1000 kg m−3. We assume a first-mode internal

wave phase speed c1 = 1 m s−1, a depth D = 500 m and a wavelength λ = 50 km, which

requires ∆ρ1 = 2.01 kg m−3 and ∆ρ2 = 1.01 kg m−3. To assess the influence of internal

wave nonlinearity, for each stratification we consider two different Froude numbers, namely

Fr = u0/c1 = 0.05 and Fr = 0.2, where u0 is the horizontal velocity amplitude. Nonhydro-

static effects are assessed by shortening the wavelength to λ = 2 km so that λ/D = 4, which
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is more nonhydrostatic than the longer wave case which has λ/D = 100. With λ/D = 4 we

set Fr = 0.2 and perform two additional simulations using the linear and nonlinear strat-

ifications. In total, there are six simulations, represented by the results in each column of

Table 1.

b. Evolution of first-mode internal waves

The upper three panels (a)-(c) in Figure 3 depict a time sequence of the evolution of

waves with a fixed Froude number Fr = 0.2 but with different stratifications and aspect

ratios λ/D. Despite having the same Froude number, the wave in the linear stratification

(Figure 3(a)) does not steepen into a train of rank-ordered solitary-like waves as it does in

the nonlinear stratification as shown in Figure 3(b). Although both waves travel at the same

linear phase speed, isopycnal displacements for the nonlinear stratification have a stronger

effect on the amplitude dispersion of the wave, thereby causing nonlinear steepening. This

effect can be reduced by increasing the relative importance of the nonhydrostatic pressure

(Figure 3(c)). Decreasing the value of λ/D increases the relative effect of the nonhydrostatic

pressure, thereby reducing the rate at which the waves steepen.

c. Energetics

In practice, the depth- and volume-integrated energy budgets are of primary interest,

particularly for internal waves. In what follows we focus on the depth-integrated budget,

and we note that a similar analysis was performed for the volume-integrated budget that

yielded identical results. The depth-integration of the left-hand side of equations (8) and
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(9) are represented by sumKE ′ and sumAPE, respectively. Here () represents the depth-

integration of a quantity, while sum stands for the summation of all terms on the left-hand

side of an equation. Using this notation, we must have

−sumKE ′(x, t) = sumAPE(x, t) = ρ′gw(x, t) , (12)

which holds for all APE formulations except for APE3 in the presence of nonlinear stratifica-

tion. The lower three panels (d)-(f) in Figure 3 illustrate this balance relation as a function

of time t/T at x = λ for APE2. On each panel, three curves representing normalized ρ′gw,

−sumKE ′, and sumAPE2 are indistinguishable, implying a precise balance given by (12).

A quantitative measure of the imbalance in computing equation (12) is given by

Imbn(x) =
std

[
sumAPEn(x, t)− ρ′gw(x, t)

]
std

[
ρ′gw(x, t)

] , (13)

where n = 1, 2, 3, and std() represents the standard deviation of a quantity over the first six

wave periods. The results at x = λ are presented in Table 1. Errors are incurred both due to

the theoretical imbalance when using APE3 and from computational errors when solving the

equations on discrete grid. In general, APE2 performs the best, although it yields a larger

imbalance than APE3 in linear stratification due to numerical errors in computing z∗ on a

discrete grid. As expected, in the presence of nonlinear stratification APE3 does not satisfy

equation (9) and thus shows significant imbalance. Although in theory APE1 should satisfy

the balance relation (12) well, it demonstrates relatively large imbalances, which cannot be

improved (in a relative sense) with more numerical accuracy. The numerical imbalance for

APE1 is larger than that for APE2 because small errors in computing ρ′ are magnified for

APE1 = ρ′gz relative to APE2 ∼ ρ′gζ since, in general, z >> ζ. A comparison of the energy
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balance (12) for different APE formulations is shown in Figure 4 for the case with nonlinear

ρr, λ/D = 100, and Fr = 0.2.

For the same case as in Figure 4, Figure 5 (a) compares the tendency terms of KE

and APE. ∂APE1/∂t is roughly one order of magnitude larger than ∂KE/∂t. While for

APE2 and APE3, the tendency terms of APE and KE are of the same order of magnitude.

Figure 5(b) presents the contributions from all terms in equation (9) for APE1. The reference

energy flux term ∇ · (uf), although having little physical significance, is roughly one order of

magnitude larger than the active energy flux term ∇ · (uAPE1). This large reference energy

flux compensates the large tendency of APE1 in the conservation law. These results show

how APE1 does not represent the exact local APE and highlight the role of the ∇ · (uf)

term in evaluating the true energy flux budget for APE1.

5. Conclusions

We have compared three different APE formulations and assessed their performance in

numerical simulations of a progressive internal wave under different nonlinear and nonhydro-

static conditions. A theoretical analysis and numerical simulations clearly show that APE2

(and APE3 in the presence of linear stratification) is more attractive in evaluating the local

APE because the size and tendency of APE2 are of the same order of magnitude as those

of KE, while the size and tendency of APE1 are much larger. The disparity in the tendency

is compensated by the presence of a large reference energy flux term uf in the conservation

law for APE1. In computing the conservation laws, the imbalance for APE1 is related to

its large tendency term and the large reference energy flux term which accentuate numerical
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errors. While the imbalance for APE3 is related to the nonlinearity of the stratification, and

the errors increase for stronger internal wave nonlinearity. Overall, APE2 shows the best

numerical performance in computing the conservation laws, particularly for nonlinear and

nonhydrostatic cases.
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Table 1. Comparison of the imbalance of equation (12) at x=λ for the three APE formu-
lations under different conditions.

linear ρb, λ/D=100 nonlinear ρb, λ/D=100 nonlinear ρb, λ/D=4
Fr=0.05 Fr=0.2 Fr=0.05 Fr=0.2 Fr=0.05 Fr=0.2

Imb1 0.0019 0.0025 0.0092 0.0529 0.0038 0.0065
Imb2 0.0016 0.0015 0.0052 0.0241 0.0036 0.0064
Imb3 0.0014 0.0014 0.0209 0.1220 0.0171 0.0377
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