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Most commonly used models for turbulent mixing in the ocean rely on a background
stratification against which turbulence must work to stir the fluid. While this
background stratification is typically well defined in idealized numerical models,
it is more difficult to capture in observations. Here, a potential discrepancy in ocean
mixing estimates due to the chosen calculation of the background stratification is
explored using direct numerical simulation data of breaking internal waves on slopes.
Two different methods for computing the buoyancy frequency N, one based on a
three-dimensionally sorted density field (often used in numerical models) and the
other based on locally sorted vertical density profiles (often used in the field), are
used to quantify the effect of N on turbulence quantities. It is shown that how N is
calculated changes not only the flux Richardson number R;, which is often used to
parameterize turbulent mixing, but also the turbulence activity number or the Gibson
number Gi, leading to potential errors in estimates of the mixing efficiency using
Gi-based parameterizations.
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1. Introduction

Diapycnal mixing, or the molecular diffusion of density across isopycnal surfaces,
is a primary control on the ocean stratification (Munk & Wunsch 1998; Wunsch
& Ferrari 2004). Turbulent stirring enhances this mixing by deforming isopycnal
surfaces, creating both sharper density gradients and a greater surface area over
which molecular diffusion can occur. Turbulent stirring is reversible, and represents an
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exchange between turbulent kinetic energy and available potential energy. Diapycnal
mixing, however, is irreversible; it represents a sink of turbulent kinetic energy into
the background potential energy of the fluid. Due to difficulties associated with
measuring the turbulent fluxes that lead to diapycnal mixing in the ocean (see, e.g.,
Ivey, Winters & Koseff 2008; Venayagamoorthy & Koseff 2016), a great deal of work
has gone into estimating mixing using indirect methods. Such methods typically rely
on directly measured quantities such as the turbulent kinetic energy dissipation rate
€ or the temperature variance dissipation rate x.

As outlined by Ivey et al. (2008), there are two common approaches for indirectly
estimating turbulent mixing in the ocean. The first is the model of Osborn (1980),
which is based on measurements of €, and approximates the turbulent diffusivity of

density with
K=(-R )€ _pre (1.1)
77 \1-R )N = NY '

where N is the buoyancy frequency. The model also depends on the flux Richardson
number Ry = B/P, where B is the turbulent buoyancy flux and P is the rate of
production of turbulent kinetic energy. Following Ivey & Imberger (1991), the flux
Richardson number is sometimes defined more generally as Ry = B/(B +¢€). The term
I' =Ry/(1 — Ry) is referred to as the mixing efficiency and represents the ratio of
the turbulent buoyancy flux to the turbulent dissipation. The second commonly used
mixing model is that of Osborn & Cox (1972), which is based on measurements
of x = 2«y|VO’|?, where 6’ is the temperature fluctuation from the background
temperature 6 and ky is the molecular diffusivity of heat. Using this model, the
turbulent diffusivity of heat is given by

()
Ky =3k Lz,
00
(&)
where n is normal to isothermal surfaces, but in the field is always assumed to be the
vertical direction z (Ivey et al. 2008).

Based on their derivations from the turbulent kinetic energy equation and the
temperature variance equation respectively, both the Osborn & Cox (1972) model and
the Osborn (1980) model rely on a fundamental assumption that the flow is steady
and homogeneous. However, this assumption is often violated in the ocean due to the
intermittent (unsteady) and patchy (inhomogeneous) nature of ocean turbulence (Ivey
et al. 2008). Many studies have therefore related mixing to certain non-dimensional
numbers, such as the turbulent Froude number and turbulent Reynolds number, that
describe the state of the turbulence that leads to mixing (e.g. Ivey & Imberger 1991;
Mater & Venayagamoorthy 2014a).

Additionally, both the Osborn & Cox (1972) model and the Osborn (1980) model
rely on a more implicit assumption which has received less attention in the literature:
the stratification (N in Osborn 1980; 85/ on in Osborn & Cox 1972) is assumed to
represent the background gradient against which turbulence must work to stir the
fluid. The background stratification is typically well defined in idealized numerical

models, which have been used extensively to study turbulent mixing. For example,
it can be held constant (e.g., Shih er al. 2005) or it can be obtained through an
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adiabatic rearrangement of the full three-dimensional density field (Winters et al.
1995; Scotti & White 2014). However, the appropriate background stratification is
much less obvious in the ocean, and even to some extent in the laboratory (e.g. Hult,
Troy & Koseff 2011).

Due to practical limitations in the ocean, turbulence data are almost always gathered
using vertical-profiling instruments. Thus, when the Osborn & Cox (1972) and Osborn
(1980) models are used in the field, the background stratification is estimated through
adiabatic rearrangement, or sorting, of one-dimensional vertical density profiles.
This practice began with the study of Thorpe (1977), continued with Dillon (1982),
and is still very common today (see, e.g., Thorpe 2005; Ivey et al. 2008). Due
to the intermittent patchy nature of turbulence in the ocean, it is unclear how
well this estimated background stratification represents the true stratification against
which turbulence is working. Any differences between the background stratification
calculated using this methodology and the true background stratification will translate
to errors in estimates of turbulent mixing.

In this study, the discrepancy in estimates of turbulent mixing that arises from
the chosen calculation of the background stratification is quantified in the context of
breaking internal waves on slopes. Particular attention is paid to the flux Richardson
number Ry, which must be determined in order to estimate mixing from measurements
of € and N using the Osborn (1980) model. While Osborn (1980) originally assumed
a constant R; ~ 0.17, many parameterizations have been developed to estimate Ry
based on the state of the turbulence (e.g. Ivey & Imberger 1991; Shih er al. 2005;
Bouffard & Boegman 2013). Due to the difficulties in calculating R; in unsteady
inhomogeneous turbulence in the field, these parameterizations are generally based
on the results of idealized laboratory experiments and direct numerical simulations
(DNS). Several field studies that have measured the turbulent buoyancy flux directly
(e.g. Davis & Monismith 2011; Walter et al. 2014) have shown good agreement with
existing parameterizations. The study of Mater & Venayagamoorthy (2014b) provides
a thorough summary of the current state of R, parameterizations in the literature.
However, the existence of a ‘universal’ parameterization for R; remains an open
question.

The effect of the background stratification on the resulting mixing calculation
is quantified using the DNS dataset of Arthur, Koseff & Fringer (2017). As
highlighted in figure 1, breaking internal waves on slopes are an inherently unsteady
inhomogeneous flow, and are thus a useful case study for calculating and interpreting
R;. By varying the calculation of N, it is shown that the chosen method can affect
not only Ry, but also the values of the non-dimensional parameters upon which Ry
depends.

2. Methods

The DNS dataset of Arthur et al. (2017) includes results from eight breaking
wave cases with varying interface thickness (and thus varying stratification), but
with similar incoming wave properties. From these data, turbulent dissipation and
irreversible mixing quantities are calculated as follows. Turbulent dissipation is
defined as

€. =2vS]S], 2.1)

where v is the kinematic viscosity and ng = ((0u;/0x;) + (8uj’./ 0x;))/2 is the turbulent
rate-of-strain tensor. Irreversible turbulent mixing is defined generally as

. |V b/|2

€,=kK N (2.2)
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FIGURE 1. A three-dimensional view of the turbulent flow field during breaking for
an internal wave with intermediate interface thickness (case 5 in Arthur et al. 2017).
Isosurfaces of the reference density p = py (red), positive streamwise vorticity £2,/w =37
(blue) and negative streamwise vorticity §2,/w = —37 (green) are shown, where w is the
frequency of the incoming wave.

where b= g(p — po)/po is the buoyancy and « is the molecular diffusivity of density.
In (2.1) and (2.2), the overbar denotes a lateral average (in the x, direction), while the
prime denotes a departure from that average. Calculations of € and €, are therefore
functions of x;, x5 and ¢.

The buoyancy frequency N is calculated in two ways in order to study its effect
on quantifying turbulent energetics. First, following Scotti & White (2014), N = N*,
where N* is the buoyancy frequency of the background density profile p*. The
background density profile represents the lowest possible potential energy state of
the system if it were to be adiabatically rearranged (Winters et al. 1995), and is
obtained numerically by sorting the full three-dimensional density field p into a one-
dimensional vertical density profile p* at each time step. The sorting algorithm may be
thought of as a ‘filling up’ of the domain with the fluid from each individual grid cell
without any mixing in order to create a density field that varies only in the vertical,
making p* and N* functions of x; and 7 only. Changes in the background density
profile (and, thus, the background potential energy) can only occur due to molecular
diffusion, and are therefore irreversible. When irreversible mixing is calculated
using N =N* in (2.2), it is denoted €,". When calculating €,*, since the term |V5'|?
is laterally averaged, the numerator is a function of x; and x;. The buoyancy frequency
in the denominator, N*, is therefore computed by interpolating the value of x} such
that p*(x3) = p(x1, x3), and then using the value of N* at that value of xj.

The ability to calculate the background buoyancy frequency N* using the
three-dimensionally sorted density field represents an advantage of DNS that is not
possible using observational data. Instead, N is often determined by sorting a vertical
density profile through a turbulent patch. As in Smyth, Moum & Caldwell (2001)
and Mater, Schaad & Venayagamoorthy (2013), virtual profiles can be taken through
a DNS domain in order to mimic calculations that would be made with observational

data. An alternative definition is therefore N = N*, where N*:\/ —(g/ /00)85k /0x3 and

ﬁ* represents an adiabatic rearrangement of the laterally averaged vertical density
profile at each x; grid point in the DNS domain at each time step. Thus, ﬁ* and N*

are functions of x;, x3 and . When irreversible mixing is calculated using N =N* in
(2.2), it is denoted €.
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Using the definitions in (2.1) and (2.2), an irreversible flux Richardson number can
be calculated generally as (e.g. Scotti & White 2014)

Ri=¢€,/(e, +€). (2.3)

This is a preferable measure of R, to the previous definition in § 1, which can
include reversible turbulent buoyancy fluxes and is therefore not fully irreversible
(Venayagamoorthy & Koseff 2016). Here, the irreversible flux Richardson number
calculated with e;* (using N = N* in (2.2)) is denoted R}, and that calculated with
& (using N=N* in (2.2)) is denoted RY.

In order to examine the effect of stratification on the irreversible flux Richardson
number, and how this changes for different methods of calculating N, turbulence data
are examined as a function of the Gibson number (Monismith et al. 2017),

Gi=¢€./VN". (2.4)

Also known as the buoyancy Reynolds number Re, or the turbulence activity number,
Gi quantifies the scale separation between the smallest turbulent eddies that feel
stratification and the Kolmogorov scale. The functional relationship between R
and Gi has been calculated in the field (e.g. Davis & Monismith 2011; Walter et al.
2014), in the laboratory (e.g. Barry 2002) and in DNS (e.g. Shih et al. 2005). In what
follows, Gi values calculated with N = N* are denoted Gi*, while those calculated

with N = N* are denoted éi*.

3. Results

Due to lateral averaging in (2.1) and (2.2), the turbulence dataset derived from the
three-dimensional DNS data of Arthur et al. (2017) is two-dimensional (i.e. a function
of x;, x3 and ). In the analysis that follows, the area-weighted frequency of occurrence
f is calculated relative to several turbulence quantities. Because the computational grid
used in Arthur et al. (2017) is non-uniform, area weighting is based on the (x, x3)
area of each grid cell. The frequency f can be thought of as the probability of finding
a data point within a given bin of the chosen turbulence quantity.

3.1. How turbulence quantities depend on the computation of N

Since Gi is itself a function of the buoyancy frequency A, it is first instructive to see
how it varies with the method of computing N. A direct comparison may be made

using a two-dimensional histogram of f(Gi*, éi*) (figure 2a), which shows that Gi is
generally greater than Gi*, especially for turbulent regions where Gi > 1. Because the
calculation of ¢ is independent of the method used to compute N, this indicates that
N* is generally less than N*. The two-dimensional histogram of f(e,", A;,*) (figure 2b)
provides further evidence that N* underestimates N*. The term e’* is generally larger
than €, especially for larger mixing values (e, greater than roughly 1 x1077 m? s73
in ﬁgure 2b). The observed differences in €, lead to differences in the flux Richardson
number R, (figure 2c¢): R is, overall, shghtly larger than R}, as expected from the
trend in €’. Most notably, for Ry less than roughly 0.1, a region of increased R*
extends up to roughly 0.6, 1nd1cat1ng large overestimates when lateral averaging and
vertical sorting are used. It should be noted that R, quantities in figure 2 are limited
to turbulent regions where Gi > 1.

831 R2-5
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FIGURE 2. (a) Two-dimensional histogram of f(Gi*, éi*). (b) Two-dimensional histogram
of f(e™, él’,*). Here, e;, is shown in units of m? s~. (¢) Two-dimensional histogram of
f(RE, IA?}‘). The R, calculations are limited to turbulent regions where Gi> 1. (d) Histogram
of the error E in calculations of N, e;, Gi and Ry.

If the N value calculated from the three-dimensionally sorted density field is taken
to be the true value, then the error caused by calculating N using lateral averaging
and vertical sorting can be defined as

l¢* — ¢*|
E =) 3.1
(®) e 3.1)
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FIGURE 3. Histogram of the effective mixing rate k. due to lateral averaging and vertical
sorting. The vertical dotted line shows the true value of Kk =1 x 107¢ m? s~! (Arthur et al.
(2017) use a Prandtl number Pr=v/k =1). The vertical solid line shows the mean value
of kp/k =3.6.

where ¢ is a turbulence quantity. The histogram in figure 2(d) shows that E(N) is
often O(107'), and can be as large as O(1). It should be noted that, as discussed
above, N* is generally less than N*; thus, generally, N* — N* < 0. However, the
absolute value in (3.1) guarantees that E > 0, allowing it to be plotted on a log scale
in figure 2(d). The error in N translates to errors in €, Gi and R, as large as O(10).
The terms E(e,) and E(Gi) are nearly identical, as they are both proportional to
1/N2.

For the breaking wave scenarios considered here, lateral averaging and vertical
sorting of density profiles unphysically smooth out variability in N, leading to mixing
estimates that are larger than the true mixing values. The variability in N is better
captured by full three-dimensional sorting, resulting in a more accurate measure of
mixing. The additional (artificial) mixing that results from the use of N* instead of
N* can be quantified using an effective mixing coefficient «.y, defined with

o VDR Vo2 (3.2)
€ =K—— =Keff = .
p (N*)2 ff (N*)2
which implies
N*\?
Kp=Kk | — | . (3.3)

The effective mixing rate «.; is clearly skewed towards values larger than the true
mixing rate «, and is, on average, 3.6 times larger than « (figure 3).

3.2. The flux Richardson number R, as a function of Gi

The method of computing N has a strong effect on the functional relationship between
Ry and Gi, which is often used to parameterize mixing in the ocean. Here, Ry is
calculated as a weighted mean in bins of Gi (figure 4a). As in the calculation of f
(described at the beginning of this section), area weighting is used to account for the
non-uniform grid in the simulations of Arthur et al. (2017). Thus, larger (smaller) grid
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FIGURE 4. (a) Comparison of mean R} as a function of Gi* with mean k; as a function
of Gi'. The f?}f calculation of Mater & Venayagamoorthy (2014b) using the data of Shih
et al. (2005) is included as well. (b) Histograms of Gi* and Gi.

cells, which take up a larger (smaller) portion of the computational domain, contribute
more (less) to the mean value of R;. To show the spread of the data in terms of the
Gibson number, f is also calculated in each Gi bin (figure 4b). Due to computational
restrictions on Gi associated with the DNS, many of the data have relatively low
(non-turbulent) values of Gi < 1. Since these values imply laminar flow, they are
omitted in figure 4. It should be noted that calculations of R, for larger values of Gi
are based on a small subset of the data (figure 4b), probably explaining the wiggles
in the IAQ}‘ curve.

The term IAQ;, which reaches a peak of nearly 0.6 for Gi ~ 10%, is generally larger
than R}", which has maximum values between 0.2 and 0.3 for Gi* < 10. For Gi* > 102,
a sharp drop in the mixing efficiency occurs and R} approaches 0. A similar result was
found for Ry by Shih et al. (2005), Walter et al. (2014) and others; see figure 12 in
Walter et al. (2014). Because Gi is generally larger than Gi*, the decline of f?}‘ for

large values of Gi* occurs at a larger value of Gi' (approximately Gi' = 10°).

The large discrepancies that arise in Ry when lateral averaging and vertical sorting
are used on unsteady inhomogeneous breaking wave data emphasize the potential
effect of N on mixing estimates in the ocean. If Gi = 107, local vertical sorting
causes R; to be overestimated by roughly a factor of 2. This increases to a factor

of roughly 10 when Gi > 10°. In contrast, the R}"(éi*) calculations of Mater &
Venayagamoorthy (2014b) using the stratified shear flow data of Shih er al. (2005)
generally follow the present R;(Gi*) curve, but depart substantially from the present

R;(Gi*) curve. This is probably due to the homogeneous nature of the turbulence

831 R2-8
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studied by Shih et al. (2005), which could allow local vertical sorting to achieve a
more accurate measure of the true background stratification. In the inhomogeneous

flow studied here, N* varies spatially, and may therefore be a less appropriate measure
of N.

4. Conclusion

Two different methods of computing the buoyancy frequency N, one based on a
three-dimensionally sorted density field and the other based on laterally averaged and
vertically sorted density profiles, were used to calculate turbulent mixing quantities.
For the breaking internal wave events considered here, the method of lateral averaging
and vertical sorting (N*) generally leads to a smaller value of the buoyancy frequency
relative to full three-dimensional sorting (N*). Because N represents the background
stratification against which turbulence must work to stir the fluid, reduced values of
N* lead to overestimates of mixing relative to those calculated with N*. This, in turn,
changes the functional relationship between the flux Richardson number R, and the
turbulence activity number Gi, which is commonly used to estimate mixing. These
results have implications for how existing parameterizations of mixing in the ocean are
used: the method of calculating N not only affects Ry, but also adds some uncertainty
to its estimation using parameters, such as Gi, that also depend on N.
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