
`C and tcc: A Language and Compiler for Dynamic

Code Generation

Massimiliano Poletto

Laboratory for Computer Science, Massachusetts Institute of Technology

and

Wilson C. Hsieh

Department of Computer Science, University of Utah

and

Dawson R. Engler

Laboratory for Computer Science, Massachusetts Institute of Technology

and

M. Frans Kaashoek

Laboratory for Computer Science, Massachusetts Institute of Technology

Dynamic code generation allows programmers to use run-time information in order to achieve
performance and expressiveness superior to those of static code. The `C (Tick C) language is
a superset of ANSI C that supports e�cient and high-level use of dynamic code generation. `C
provides dynamic code generation at the level of C expressions and statements, and supports the
composition of dynamic code at run time. These features enable programmers to add dynamic
code generation to existing C code incrementally, and to write important applications (such as
\just-in-time" compilers) easily. The paper presents many examples of how `C can be used to
solve practical problems.

The tcc compiler is an e�cient, portable, and freely available implementation of `C. tcc allows
programmers to trade dynamic compilation speed for dynamic code quality: in some applications,
it is most important to generate code quickly, while in others code quality matters more than
compilation speed. The overhead of dynamic compilation is on the order of 100 to 600 cycles per
generated instruction, depending on the level of dynamic optimization. Measurements show that
the use of dynamic code generation can improve performance by almost an order of magnitude;
two- to four-fold speedups are common. In most cases, the overhead of dynamic compilation is
recovered in under 100 uses of the dynamic code; sometimes it can be recovered within one use.

Categories and Subject Descriptors: D.3.2 [Programming Languages]: Language Classi�ca-
tions|specialized application languages; D.3.3 [Programming Languages]: Language Con-
structs and Features; D.3.4 [Programming Languages]: Processors|compilers; code genera-
tion; run-time environments

General Terms: Algorithms, Languages, Performance

Additional Key Words and Phrases: compilers, dynamic code generation, dynamic code optimiza-
tion, ANSI C

Email: maxp@lcs.mit.edu, wilson@cs.utah.edu, engler@lcs.mit.edu, kaashoek@lcs.mit.edu. Labo-
ratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139. The
second author can be reached at: University of Utah, Computer Science, 50 S Central Campus
Drive, Room 3190, Salt Lake City, UT 84112-9205.
This research was supported in part by the Advanced Research Projects Agency under contracts
N00014-94-1-0985 and N66001-96-C-8522, and by a NSF National Young Investigator Award.

2 � Poletto, Hsieh, Engler, Kaashoek

1. INTRODUCTION

Dynamic code generation | the generation of executable code at run time | en-
ables the use of run-time information to improve code quality. Information about
run-time invariants provides new opportunities for classical optimizations such as
strength reduction, dead code elimination, and inlining. In addition, dynamic code
generation is the key technology behind just-in-time compilers, compiling inter-
preters, and other components of modern mobile code and other adaptive systems.
`C is a superset of ANSI C that supports the high-level and e�cient use of

dynamic code generation. It extends ANSI C with a small number of constructs
that allow the programmer to express dynamic code at the level of C expressions
and statements, and to compose arbitrary dynamic code at run time. These features
enable programmers to write complex imperative code manipulation programs in a
style similar to Lisp [Steele Jr. 1990], and make it relatively easy to write powerful
and portable dynamic code. Furthermore, since `C is a superset of ANSI C, it is
not di�cult to improve performance of code incrementally by adding dynamic code
generation to existing C programs.
`C's extensions to C | two type constructors, three unary operators, and a few

special forms | allow dynamic code to be type-checked statically. Much of the
overhead of dynamic compilation can therefore be incurred statically, which im-
proves the e�ciency of dynamic compilation. While these constructs were designed
for ANSI C, it should be straightforward to add analogous constructs to other
statically typed languages.
tcc is an e�cient and freely available implementation of `C, consisting of a front

end, back ends that compile to C and to MIPS and SPARC assembly, and two
runtime systems. tcc allows the user to trade dynamic code quality for dynamic
code generation speed. If compilation speed must be maximized, dynamic code
generation and register allocation can be performed in one pass; if code quality
is most important, the system can construct and optimize an intermediate repre-
sentation prior to code generation. The overhead of dynamic code generation is
approximately 100 cycles per generated instruction when tcc only performs simple
dynamic code optimization, and approximately 600 cycles per generated instruction
when all of tcc's dynamic optimizations are turned on.
This paper makes the following contributions:

|It describes the `C language, and motivates the design of the language.

|It describes tcc, with special emphasis on its two runtime systems, one tuned for
code quality and the other for fast dynamic code generation.

|It presents an extensive set of `C examples, which illustrate the utility of dynamic
code generation and the ease of use of `C in a variety of contexts.

|It analyzes the performance of tcc and tcc-generated dynamic code on several
benchmarks. Measurements show that use of dynamic compilation can improve
performance by almost an order of magnitude in some cases, and generally results
in two- to four-fold speedups. The overhead of dynamic compilation is usually
recovered in under 100 uses of the dynamic code; sometimes it can be recovered
within one use.

The rest of this paper is organized as follows. Section 2 describes `C, and Sec-

`C and tcc: A Language and Compiler for Dynamic Code Generation � 3

tion 3 describes tcc. Section 4 illustrates several sample applications of `C. Section 5
presents performance measurements. Finally, we discuss related work in Section 6,
and summarize our conclusions in Section 7. Appendix A describes the `C exten-
sions to the ANSI C grammar.

2. THE `C LANGUAGE

The `C language was designed to support easy-to-use dynamic code generation in a
systems and applications programming environment. This requirement motivated
some of the key features of the language:

|`C is a small extension of ANSI C: it adds very few constructs | two type
constructors, three unary operators, and a few special forms { and leaves the rest
of the language intact. As a result, it is possible to convert existing C code to `C
incrementally.

|Dynamic code in `C is statically typed. This is consistent with C, and improves
the performance of dynamic compilation by eliminating the need for dynamic
type-checking. The same constructs used to extend C with dynamic code gener-
ation should be applicable to other statically typed languages.

|The dynamic compilation process is imperative: the `C programmer directs the
creation and composition of dynamic code. This approach distinguishes `C from
several recent declarative dynamic compilation systems [Auslander et al. 1996;
Grant et al. 1997; Consel and Noel 1996]. We believe that the imperative ap-
proach is better suited to a systems environment, where the programmer wants
tight control over dynamically generated code.

In `C, a programmer creates code speci�cations, which are static descriptions of
dynamic code. Code speci�cations can capture the values of run-time constants,
and they may be composed at run time to build larger speci�cations. They are
compiled at run time to produce executable code. The process works as follows:

(1) At static compile time, a `C compiler processes the written program. For each
code speci�cation, the compiler generates code to capture its run-time environ-
ment, as well as code to generate dynamic code.

(2) At run time, code speci�cations are evaluated. The speci�cation captures its
run-time environment at this time, which we call environment binding time.

(3) At run time, code speci�cations are passed to the `C compile special form. com-
pile invokes the speci�cation's code generator, and returns a function pointer.
We call this point in time dynamic code generation time.

For example, the following code fragment implements \Hello World" in `C:

void make hello(void) f
void (�f)() = compile(`f printf(\hello, worldnn"); g, void);
(�f)();

g

The code within the backquote and braces is a code speci�cation for a call to
printf that should be generated at run time. The code speci�cation is evaluated (en-
vironment binding time), and the resulting object is then passed to compile, which

4 � Poletto, Hsieh, Engler, Kaashoek

generates executable code for the printf and returns a function pointer (dynamic
code generation time). The function pointer can then be invoked directly.
The rest of this section describes in detail the dynamic code generation extensions

introduced in `C. Section 2.1 describes the ` operator. Section 2.2 describes the
type constructors in `C. Section 2.3 describes the unquoting operators, @ and $.
Section 2.4 describes the `C special forms.

2.1 The ` Operator

The ` (backquote, or \tick") operator is used to create dynamic code speci�cations
in `C. ` can be applied to an expression or compound statement, and indicates that
code corresponding to that expression or statement should be generated at run time.
`C disallows the dynamic generation of code-generating code, so ` does not nest. In
other words, a code speci�cation cannot contain a nested code speci�cation. Some
simple usages of backquote are as follows:

/� Speci�cation of dynamic code for the expression ``4'': results

in dynamic generation of code that produces 4 as a value �/
`4

/� Speci�cation of dynamic code for a call to printf;

j must be declared in an enclosing scope �/
`printf(\%d", j)

/� Speci�cation of dynamic code for a compound statement �/
`f int i; for (i = 0; i < 10; i++) printf(\%dnn", i); g

Dynamic code is lexically scoped: variables in static code can be referenced in
dynamic code. Lexical scoping and static typing allow type-checking and some
instruction selection to occur at static compile time, decreasing dynamic code gen-
eration overhead.
The value of a variable after its scope has been exited is unde�ned, just as in

ANSI C. In contrast to ANSI C, however, not all uses of variables outside their scope
can be detected statically. For example, one may use a local variable declared in
static code from within a backquote expression, and then return the value of the
code speci�cation. When the code speci�cation is compiled, the resulting code
references a memory location that no longer contains the local variable, because the
original function's activation record has gone away. The compiler could perform a
data-
ow analysis to conservatively warn the user of a potential error; however, in
our experience this situation arises very rarely, and is easy to avoid.
The use of several C constructs is restricted within backquote expressions. In

particular, a break, continue, case, or goto statement cannot be used to transfer
control outside the enclosing backquote expression. For instance, the destination
label of a goto statement must be contained in the same backquote expression
that contains the goto. `C provides other means for transferring control between
backquote expressions; we discuss these methods in Section 2.4. The limitation
on goto and other control-transfer statements enables a `C compiler to statically
determine whether a control-
ow change is legal. The use of return is not restricted,

`C and tcc: A Language and Compiler for Dynamic Code Generation � 5

because dynamic code is always implicitly inside a function.
A backquote expression can be dynamically compiled using the compile special

form, which is described in Section 2.4. compile returns a function pointer, which
can then be invoked like any other function pointer.

2.2 Type Constructors

`C introduces two new type constructors, cspec and vspec. cspecs are static types
for dynamic code; their presence allows dynamic code to be type-checked statically.
vspecs are statics types for dynamic lvalues (expressions that may be used on the
left hand side of an assignment); their presence allows dynamic code to allocate
lvalues as needed.
A cspec or vspec has an associated evaluation type, which is the type of the

dynamic value of the speci�cation. The evaluation type is analogous to the type to
which a pointer points.

2.2.1 cspec Types. cspec (short for code speci�cation) is the type of a dynamic
code speci�cation; the evaluation type of the cspec is the type of the dynamic value
of the code. For example, the type of the expression `4 is int cspec. The type void
cspec is the type of a generic cspec type (analogous to the use of void * as a generic
pointer).
Applying ` to a statement or compound statement yields an expression of type

void cspec. In particular, if the dynamic statement or compound statement contains
a return statement, the type of the return value does not a�ect the type of the
backquote expression. Since all type-checking is performed statically, it is possible
to compose backquote expressions to create a function at run time with multiple
(possibly incompatible) return types. This de�ciency in the type system is a design
choice: such errors are rare in practice, and checking for them would involve more
overhead at dynamic compile time or additional linguistic extensions.
The code generated by ` may include implicit casts used to reconcile the result

type of ` with its use; the standard conversion rules of ANSI C apply.
Some simple uses of cspec follow:

int cspec expr1 = `4; /� Code speci�cation for expression ``4'' �/

oat x;

oat cspec expr2 = `(x + 4.); /� Capture free variable x: its value will be

bound when the dynamic code is executed �/

/� All dynamic compound statements have type void cspec, regardless of

whether the resulting code will return a value �/
void cspec stmt = `f printf(\hello, worldnn"); return 0; g;

2.2.2 vspec Types. vspec (variable speci�cation) is the type of a dynamically gen-
erated lvalue, a variable whose storage class (whether it should reside in a register
or on the stack, and in what location exactly) is determined dynamically. The
evaluation type of the vspec is the type of the lvalue. void vspec is used as a generic
vspec type. Objects of type vspec may be created by invoking the special forms
param and local. param is used to create a parameter for the function currently un-

6 � Poletto, Hsieh, Engler, Kaashoek

der construction; local is used to reserve space in its activation record (or allocate
a register if possible). See Section 2.4 for more details on these special forms.
In general, an object of type vspec is automatically treated as a variable of the

vspec's evaluation type when it appears inside a cspec. A vspec inside a backquote
expression can thus be used like a traditional C variable, both as an lvalue and
an rvalue. For example, the following function creates a cspec that takes a single
integer argument, adds one to it, and returns the result:

void cspec plus1(void) f
/� Param takes the type and position of the argument to be generated �/
int vspec i = param(int, 0);
return `f return i + 1; g;

g

vspecs allow us to construct functions that take a run-time-determined number
of arguments; this functionality is necessary in applications such as the compiling
interpreter described in Section 4.4.2.

2.2.3 Discussion. Within a quoted expression, vspecs and cspecs can be passed
to functions that expect their evaluation types. The following code is legal:

int f(int j);
void main() f

int vspec v;
/� ... initialize v to a dynamic lvalue using local or param ... �/
void cspec c1 = `f f(v); g;

g

Within the quoted expression, f expects an integer. Since this function call is
evaluated during the execution of the dynamic code, the integer lvalue to which v
refers will already have been created. As a result, v can be passed to f like any
other integer.

2.3 Unquoting Operators

The ` operator allows a programmer to create code at run time. In this section we
describe two operators, @ and $, that are used within backquote expressions. @
is used to compose cspecs dynamically. $ is used to instantiate values as run-time
constants in dynamic code. These two operators \unquote" their operands: their
operands are evaluated at environment binding time.

2.3.1 The @ Operator. The @ operator allows code speci�cations to be composed
into larger speci�cations. @ can only be applied inside a backquote expression, and
its operand must be a cspec or vspec. @ \dereferences" its operand at environment
binding time: it returns an object whose type is the evaluation type of @'s operand.
The returned object is incorporated into the cspec in which the @ occurs. For
example, in the following fragment, c is the additive composition of two cspecs:

/� Compose c1 and c2. Evaluation of c yields ``9''. �/

`C and tcc: A Language and Compiler for Dynamic Code Generation � 7

int cspec c1 = `4, cspec c2 = `5;
int cspec c = `(@c1 + @c2);

Statements can be composed through concatenation:

/� Concatenate two null statements. �/
void cspec s1 = `fg, cspec s2 = `fg;
void cspec s = `f @s1; @s2; g;

Applying @ inside a backquote expression to a function (which must return a
cspec or a vspec) causes the function to be called at environment binding time. Its
result is incorporated into the backquote expression.
In order to improve the readability of code composition, `C provides some implicit

coercions of vspecs and cspecs, so that the @ operator may be omitted in several
situations. An expression of type vspec or cspec that appears inside a quoted ex-
pression is coerced (with an implicit @) to an object of its corresponding evaluation
type under the following conditions:

(1) the expression is not inside an unquoted expression.

(2) the expression is not being used as a statement.

The �rst restriction also includes implicitly unquoted expressions: that is, expres-
sions that occur within an implicitly coerced expression are not implicitly coerced.
For example, the arguments in a call to a function returning type cspec or vspec
are not coerced, because the function call itself already is.
These coercions do not limit the expressiveness of `C, because `C supports only

one \level" of dynamic code: it does not support dynamic code that generates more
dynamic code. Therefore, the ability to manipulate vspecs and cspecs in dynamic
code is not useful.
These implicit coercions simplify the syntax of cspec composition. Consider the

following example:

int cspec a = `4; int cspec b = `5;
int cspec sum = `(a+b);
int cspec sumofsum = `(sum+sum);

This code is equivalent to the following code, due to the implicit coercion of a,
b, and sum.

int cspec a = `4; int cspec b = `5;
int cspec sum = `(@a+@b);
int cspec sumofsum = `(@sum+@sum);

Compiling sumofsum results in dynamic code equivalent to (4+5)+(4+5).
Statements (and compound statements) are considered to have type void; an

object of type void cspec inside a backquote expression cannot be used inside an
expression, but can be composed as an expression statement:

8 � Poletto, Hsieh, Engler, Kaashoek

void cspec mkscale(int ��m, int n, int s) f

return `f
int i, j;
for (i = 0; i < $n; i++) f /� Loop can be dynamically unrolled �/

int �v = ($m)[i];
for (j = 0; j < $n; j++)

v[j] = v[j] � $s; /� Multiplication can be strength�reduced �/
g g;

g

Fig. 1. `C code to specialize multiplication of a matrix by an integer.

void cspec hello = `f printf(\hello "); g;
void cspec world = `f printf(\worldnn"); g;
void cspec greeting = `f @hello; @world; g;

2.3.2 The $ Operator. The $ operator allows run-time values to be incorporated
as run-time constants in dynamic code. $ evaluates its operand at environment
binding time; the resulting value is used as a run-time constant in the containing
cspec. $ may only appear inside a backquote expression, and it may not be un-
quoted. It may be applied to any object not of type cspec or vspec. The use of $ is
illustrated in the code fragment below.

int x = 1;
void cspec c = `f printf(\$x = %d, x = %dnn", $x, x); g;
x = 14;
(�compile(c, void))(); /� Compile and run: will print ``$x = 1, x = 14''. �/

Use of $ enables specialization of code based on run-time constants. An example of
this is the program in Figure 1, which specializes multiplication of a matrix by an
integer. The pointer to the matrix, the size of the matrix, and the scale factor are
all run-time constants, which enables optimizations such as dynamic loop unrolling
and strength reduction of multiplication.

2.3.3 Discussion. Within an unquoted expression, vspecs and cspecs cannot be
passed to functions that expect their evaluation types. The following code is illegal:

void cspec f(int j);
int g(int j);
void main() f

int vspec v;
void cspec c1 = `f @f(v); g; /� error: v is the wrong type �/
void cspec c2 = `f $g(v); g; /� error: v is the wrong type �/

g

The storage class of a variable declared within the scope of dynamic code is de-
termined dynamically. Therefore, a variable of type T that is local to a backquote

`C and tcc: A Language and Compiler for Dynamic Code Generation � 9

Category Name Synopsis

Management of dynamic code compile T (*compile(void cspec code, T))()
free code void free code(T)

Dynamic variables local T vspec local(T)

Dynamic function arguments param T vspec param(T, int param-num)
push init void cspec push init(void)
push void push(void cspec args, T cspec next-arg)

Dynamic control
ow label void cspec label()
jump void cspec jump(void cspec target)
self T self(T, other-args...)

Table I. The `C special forms. T denotes a type.

expression must be treated as type T vspec when used in an unquoted expression.
The example below illustrates this behavior.

void cspec f(int vspec j); /� f must take an int vspec ... �/
void main() f

void cspec c = `f int v; @f(v); g; /� because v is a dynamic local �/
g

2.4 Special Forms

`C extends ANSI C with several special forms. Most of these special forms take
types as arguments, and their result types sometimes depend on their input types.
The special forms can be broken into four categories, as shown in Table I.

2.4.1 Management of Dynamic Code. The compile and free code special forms
are used to create executable code from code speci�cations and to deallocate the
storage associated with a dynamic function, respectively. compile generates machine
code from code, and returns a pointer to a function returning type T. It also
automatically reclaims the storage for all existing vspecs and cspecs: as described
in Section 3, vspecs and cspecs are objects that track necessary pieces of program
state at environment binding and dynamic code generation time, so they are no
longer needed and can be reclaimed after the dynamic code has been generated.
Some other dynamic compilation systems [Leone and Lee 1996; Consel and Noel
1996] memoize dynamic code fragments: in the case of `C, the low overhead required
to create code speci�cations, their generally small size, and their susceptibility
to changes in the run-time environment make memoization of cspecs and vspecs
unattractive.
free code takes as argument a function pointer to a dynamic function previously

created by compile, and reclaims the memory for that function. In this way, it
is possible to reclaim the memory consumed by dynamic code when the code is
no longer necessary. The programmer can use compile and free code to explicitly
manage memory used for dynamic code, similarly to how one normally uses malloc
and free.

10 � Poletto, Hsieh, Engler, Kaashoek

/� Construct cspec to sum n integer arguments. �/

void cspec construct sum(int n) f
int i, cspec c = `0;
for (i = 0; i < n; i++) f

int vspec v = param(int, i); /� Create a parameter �/
c = `(c + v); /� Add param 'v' to current sum �/

g
return `f return c; g;

g
int cspec construct call(int nargs, int �arg vec) f

int (�sum)() = compile(construct sum(5), int);
void cspec args = push init(); /� Initialize argument list �/
int i;
for (i = 0; i < nargs; i++) /� For each arg in arg vec... �/

push(args, `$arg vec[i]); /� push it onto the args stack �/
return `sum(args);

g

Fig. 2. `C allows programmers to construct functions with dynamic numbers of arguments. con-
struct sum creates a function that takes n arguments and adds them. construct call creates a cspec
that invokes a dynamic function: it initializes an argument stack by invoking push init, and dy-
namically adds arguments to this list by calling push. `C allows an argument list (an object of
type void cspec) to be used as a single argument in a call: `sum(args) calls sum using the argument
list denoted by args.

2.4.2 Dynamic Variables. The local special form is a mechanism for creating local
variables in dynamic code. The objects it creates are analogous to local variables
declared in the body of a backquote expression, but they can be used across back-
quote expressions, rather than being restricted to the scope of one expression. In
addition, local enables dynamic code to have an arbitrary number of local variables.
local returns an object of type T vspec that denotes a dynamic local variable of type
T in the current dynamic function. In `C, the type T may include one of two C
storage class speci�ers, auto and register: the former indicates that the variable
should be allocated on the stack, while the latter is a hint to the compiler that the
variable should be placed in a register, if possible.

2.4.3 Dynamic Function Arguments. The param special form is used to create
parameters of dynamic functions. param returns an object of type T vspec that
denotes a formal parameter of the current dynamic function. param-num is the pa-
rameter's position in the function's parameter list, whereas T denotes its evaluation
type. As illustrated in Figure 2, param can be used to create a function that has
the number of its parameters determined at run time. Figure 3 shows how param
can be used to curry functions.
Whereas param serves to create the formal parameters of a dynamic function,

push init and push are used together to dynamically build argument lists for function
calls. push init returns a cspec that corresponds to a new (initially empty) dynamic
argument list. push adds the code speci�cation for the next argument, next-arg, to
the dynamically generated list of arguments args. (T, the evaluation type of next-
arg , may not be void.) These two special forms allow the programmer to create
function calls which pass a dynamically determined number of arguments to the

`C and tcc: A Language and Compiler for Dynamic Code Generation � 11

typedef int (�write ptr)(char �, int);

/� Create a function that calls "write" with "tcb" hardwired as its �rst argument. �/
write ptr mkwrite(struct tcb �tcb) f

char � vspec msg = param(char �, 0);
int vspec nbytes = param(int, 1);
return compile(`f return write($tcb, msg, nbytes); g, int);

g

Fig. 3. `C can be used to curry functions by creating function parameters dynamically. In this
example, this functionality allows a network connection control block to be hidden from clients,
but still enables operations on the connection (write, in this case) to be parameterized with per-
connection data.

invoked function. Figure 2 illustrates their use.

2.4.4 Dynamic Control Flow. For error-checking purposes, `C forbids goto state-
ments from transfering control outside the enclosing backquote expression. Two
special forms, label and jump, are used for inter-cspec control
ow: jump returns
the cspec of a jump to its argument, target. Target may be any object of type void
cspec. label simply returns a void cspec that may be used as the destination of a
jump. Syntactic sugar allows jump(target) to be written as jump target. Section 4.1.5
presents example `C code that uses label and jump to implement specialized �nite-
state machines.
Lastly, self allows recursive calls in dynamic code without incurring the overhead

of dereferencing a function pointer. T denotes the return type of the function
that is being dynamically generated. Invoking self results in a call to the function
that contains the invocation, with other-args passed as the arguments. self is just
like any other function call, except that the return type of the dynamic function is
unknown at environment binding time, so it must be provided as the �rst argument.

3. THE tcc COMPILER

The implementation of tcc was driven by two goals: high-quality dynamic code, and
low dynamic compilation overhead. `C allows the user to compose arbitrary pieces
of code dynamically, which reduces the e�ectiveness of static analysis. As a result,
many optimizations on dynamic code in `C can only be performed at run time:
improvements in code quality require more dynamic code generation time. The
rest of this section discusses how tcc handles this tradeo�. Section 3.1 describes the
structure of tcc, Section 3.2 gives an overview of the dynamic compilation process,
and Section 3.3 discusses in detail some of the machinery that tcc uses to generate
code at run time.

3.1 Architecture

The tcc compiler is based on lcc [Fraser and Hanson 1995; 1990], a portable compiler
for ANSI C. lcc performs common subexpression elimination within extended basic
blocks, and uses lburg [Fraser et al. 1992] to �nd the lowest-cost implementation of
a given IR-level construct. Otherwise, it performs few optimizations.
Figure 4 illustrates the interaction of static and dynamic compilation in tcc. All

parsing and semantic checking of dynamic expressions occurs at static compile time.

12 � Poletto, Hsieh, Engler, Kaashoek

tcc static

back end

tcc dynamic

back end

executable

static code
dynamic code

to create

executable codeexecutable code

to bind environments

of dynamic code

C preprocessor

tcc front end

code specifications

are evaluated

closures for

code specifications

compile()

is invoked

S
ta

ti
c

co
m

p
ile

 t
im

e

‘C source

static code

R
u

n
 t

im
e

executable dynamic code

answer
E

n
vi

ro
n

m
en

t
b

in
d

in
g

code specifications

D
yn

am
ic

 c
o

d
e

g
en

er
at

io
n

Fig. 4. Overview of the tcc compilation process.

Semantic checks are performed at the level of dynamically generated expressions.
For each cspec, tcc performs internal type checking. It also tracks goto statements
and labels to ensure that a goto does not transfer control outside the body of the
containing cspec.
Unlike traditional static compilers, tcc uses two types of back ends to generate

code. One is the static back end, which compiles the non-dynamic parts of `C
programs, and emits either native assembly code or C code suitable for compilation
by an optimizing compiler. The other, referred to as the dynamic back end, emits
C code to generate dynamic code. Once produced by the dynamic back end, this
C code is in turn compiled by the static back end.
tcc provides two dynamic code generation runtime systems so as to trade o� code

generation speed for dynamic code quality. The �rst of these runtime systems is
vcode [Engler 1996]. vcode provides an interface resembling that of an idealized
load/store RISC architecture; each instruction in this interface is a C macro which
emits the corresponding instruction (or series of instructions) for the target archi-
tecture. vcode's key feature is that it generates code with low run-time overhead:
as few as ten instructions per generated instruction in the best case. While vcode
generates code quickly, it only has access to local information about backquote
expressions: the quality of its code could often be improved. The second runtime
system, icode, makes a di�erent tradeo�, and produces better code at the expense

`C and tcc: A Language and Compiler for Dynamic Code Generation � 13

of additional dynamic compilation overhead. Rather than emit code in one pass, it
builds and optimizes an intermediate representation prior to code generation.
lcc is not an optimizing compiler. The assembly code emitted by its traditional

static back ends is usually signi�cantly slower (even three or more times slower)
than that emitted by optimizing compilers such as gcc or vendor C compilers. To
improve the quality of static code emitted by tcc, we have implemented a static
back end that generates ANSI C from `C source; this code can then be compiled by
any optimizing compiler. lcc's traditional back ends can thus be used when static
compilation must be fast (i.e., during development), and the C back end can be
used when the performance of the code is critical.

3.2 The Dynamic Compilation Process

As described in Section 2, the creation of dynamic code can be divided into three
phases: static compilation, environment binding, and dynamic code generation.
This section describes how tcc implements these three phases.

3.2.1 Static Compile Time. During static compilation, tcc compiles the static
parts of a `C program just like a traditional C compiler. It compiles each dynamic
part { each backquote expression { to a code-generating function (CGF), which is
invoked at run time to generate code for dynamic expressions.
In order to minimize the overhead of dynamic compilation, tcc performs as much

instruction selection as possible statically. When using vcode, both instruction
selection based on operand types and cspec-local register allocation are done stati-
cally. Additionally, the intermediate representation of each backquote expression is
processed by the common subexpression elimination and other local optimizations
performed by the lcc front end. tcc also uses copt [Fraser 1980] to perform static
peephole optimizations on the code-generating macros used by CGFs.
Not all register allocation and instruction selection can occur statically when

using vcode. For instance, it is not possible to determine statically what vspecs or
cspecs will be incorporated into other cspecs when the program is executed. Hence,
allocation of dynamic lvalues (vspecs) and of results of composed cspecs must be
performed dynamically. The same is true of variables or temporaries that live
across references to other cspecs. Each read or write to one of these dynamically
determined lvalues is enclosed in a conditional in the CGF: di�erent code is emitted
at run time, depending on whether the object is dynamically allocated to a register
or to memory. Since the process of instruction selection is encoded in the body of
the code-generating function, it is inexpensive.
When using icode, tcc does not precompute as much information about dynamic

code generation. Rather than emitting code directly, the icode macros �rst build
up a simple intermediate representation; the icode runtime system then analyzes
this representation to allocate registers and perform other optimizations before
emitting code.
State for dynamic code generation is maintained in CGFs and in dynamically

allocated closures. Closures are data structures that store �ve kinds of necessary
information about the run-time environment of a backquote expression: (1) a func-
tion pointer to the corresponding statically generated CGF; (2) information about
inter-cspec control
ow (i.e., whether the backquote expression is the destination

14 � Poletto, Hsieh, Engler, Kaashoek

cspec t i = ((closure0 = (closure0 t)alloc closure(4)),

(closure0!cgf = cgf0), /� code gen func �/
(cspec t)closure0);

cspec t c = ((closure1 = (closure1 t)alloc closure(16)),
(closure1!cgf = cgf1), /� code gen func �/
(closure1!cs i = i), /� nested cspec �/
(closure1!rc j = j), /� run�time const �/
(closure1!fv k = &k),/� free variable �/
(cspec t)closure1);

Fig. 5. Sample closure assignments.

of a jump), (3) the values of run-time constants bound via the $ operator; (4) the
addresses of free variables; (5) pointers to the run-time representations of the cspecs
and vspecs used inside the backquote expression. Closures are necessary to reason
about composition and out-of-order speci�cation of dynamic code.
For each backquote expression, tcc statically generates both its code-generating

function and the code to allocate and initialize closures. A new closure is initialized
each time a backquote expression is evaluated. Cspecs are represented by pointers
to closures.
For example, consider the following code:

int j, k;
int cspec i = `5;
void cspec c = `f return i+$j�k; g;

tcc implements the assignments to these cspecs by assignments to pointers to
closures, as illustrated in Figure 5. i's closure contains only a pointer to its code-
generating function. c has more dependencies on its environment, so its closure
also stores other information.
Simpli�ed code-generating functions for these cspecs appear in Figure 6. cgf0

allocates a temporary storage location, generates code to store the value 5 into
it, and returns the location. cgf1 must do a little more work: the code that it
generates loads the value stored at the address of free variable k into a register,
multiplies it by the value of the run-time constant j, adds this to the dynamic value
of i, and returns the result. Since i is a cspec, the code for \the dynamic value of i"
is generated by calling i's code generating function.

3.2.2 Run Time. At run time, the code that initializes closures and the code-
generating functions run to create dynamic code. As illustrated in Figure 4, this
process consists of two parts: environment binding and dynamic code generation.

3.2.2.1 Environment Binding. During environment binding, code such as that in
Figure 5 builds a closure that captures the environment of the corresponding back-
quote expression. Closures are heap-allocated, but their allocation cost is greatly
reduced (down to a pointer increment, in the normal case) by using arenas [Forsythe
1977].

`C and tcc: A Language and Compiler for Dynamic Code Generation � 15

unsigned int cgf0 (closure0 t c) f

vspec t itmp0 = tc local (INT); /� int temporary �/
seti (itmp0, 5); /� set it to 5 �/
return itmp0; /� return the location �/
g

void cgf1 (closure1 t �c) f
vspec t itmp0 = tc local (INT); /� some temporaries �/
vspec t itmp1 = tc local (INT);
ldii (itmp1,zero,c!fv k); /� addr of k �/
mulii (itmp1,itmp1,c!rc j); /� run�time const j �/
/� now apply i's CGF to i's closure: cspec composition! �/
itmp0 = (�c!cs i!cgf)(c!cs i);
addi (itmp1,itmp0,itmp1);
reti (itmp1); /� emit a return (not return a value) �/
g

Fig. 6. Sample code generating functions.

3.2.2.2 Dynamic Code Generation. During dynamic code generation, the `C run-
time processes the code-generating functions. The CGFs use the information in the
closures to generate code, and they perform various dynamic optimizations.
Dynamic code generation begins when the compile special form is invoked on

a cspec. Compile calls the code-generating function for the cspec on the cspec's
closure, and the CGF performs most of the actual code generation. In terms of our
running example, the code int (*f)() = compile(j, int); causes the run-time system
to invoke closure1!cgf(closure1).
When the CGF returns, compile links the resulting code, resets the information

regarding dynamically generated locals and parameters, and returns a pointer to
the generated code. We attempt to minimize poor cache behavior by laying out the
code in memory at a random o�set modulo the i-cache size. It would be possible to
track the placement of di�erent dynamic functions to improve cache performance,
but we do not do so currently.
Cspec composition | the inlining of code corresponding to one cspec, b, into that

corresponding to another cspec, a, as described in Section 2.3.1 | occurs during
dynamic code generation. This composition is implemented simply by invoking b's
CGF from within a's CGF. If b returns a value, the value's location is returned by
its CGF, and can then be used by operations within a's CGF.
The special forms for inter-cspec control
ow, jump and label, are implemented

e�ciently. Each closure, including that of the empty void cspec `fg, contains a �eld
that marks whether the corresponding cspec is the destination of a jump. The code-
generating function checks this �eld, and if necessary, invokes a vcode or icode
macro to generate a label, which is eventually resolved when the runtime system
links the code. As a result, label can simply return an empty cspec. jump marks
the closure of the destination cspec appropriately, and then returns a closure that
contains a pointer to the destination cspec and to a CGF that contains an icode

or vcode unconditional branch macro.
Generating e�cient code from composed cspecs requires optimization analogous

to function inlining and inter-procedural optimization. Performing some optimiza-

16 � Poletto, Hsieh, Engler, Kaashoek

tions on the dynamic code after the order of composition of cspecs has been deter-
mined can signi�cantly improve code quality. tcc's icode runtime system builds
up an intermediate representation and performs some analyses before it generates
executable code. The vcode runtime system, by contrast, optimizes for code gen-
eration speed: it generates code in just one pass, but can make poor spill decisions
when there is register pressure.
Some dynamic optimizations performed by tcc do not depend on the runtime

system employed, but are encoded directly in the code-generating functions. These
optimizations do not require global analysis or other expensive computation, and
they can considerably improve the quality of dynamic code.
First, tcc does constant folding on run-time constants. The code-generating func-

tions contain code to evaluate any parts of an expression that consist of static and
run-time constants. The dynamically emitted instructions can then encode these
values as immediates. Similarly, tcc performs simple local strength reduction based
on run-time knowledge. For example, the code-generating functions can replace
multiplication by a run-time constant integer with a series of shifts and adds, as
described in [Briggs and Harvey 1994].
In addition, the code-generating functions automatically perform some dynamic

loop unrolling and dead code elimination based on run-time constants. If the test
of a loop or conditional is invariant at run time, or if a loop is bounded by run-time
constants, then control
ow can be determined at dynamic code generation time.
In addition, run-time constant information propagates down loop nesting levels: for
example, if a loop induction variable is bounded by run-time constants, and it is in
turn used to bound a nested loop, then the induction variable of the nested loop is
considered run-time constant too, within each unrolled iteration of the nested loop.
This style of optimization, which is hard-coded at static compile time and per-

formed dynamically, produces good code without high dynamic compilation over-
head. The code transformations are encoded in the CGF, and do not depend on
run-time data structures. Furthermore, dynamic code that becomes unreachable at
run time does not need to be generated, which can lead to faster code generation.

3.3 Runtime Systems

tcc provides two runtime systems for generating code. vcode emits code locally,
with no global analysis or optimization. icode builds up an intermediate repre-
sentation in order to support more optimizations: in particular, better register
allocation.
These two runtime systems allow programmers to choose the appropriate level of

run-time optimization. The choice is application-speci�c: it depends on the number
of times the code will be used and on the code's size and structure. Programmers
can select which runtime system to use when they compile a `C program.

3.3.1 vcode. When code generation speed is more important, the user can have
tcc generate CGFs that use vcode macros, which emit code in one pass. Register
allocation with vcode is fast and simple. vcode provides getreg and putreg op-
erations: the former allocates a machine register, the latter frees it. If there are
no unallocated registers when getreg is invoked, it returns a spilled location desig-
nated by a negative number; vcode macros recognize this number as a stack o�set,

`C and tcc: A Language and Compiler for Dynamic Code Generation � 17

and emit the necessary loads and stores. Clients that �nd these per-instruction if
statements too expensive can disable them: getreg is then guaranteed to return only
physical register names and, if it cannot satisfy a request, it terminates the program
with a run-time error. This methodology is quite workable in situations where reg-
ister usage is not data-dependent, and the improvement in code generation speed
(roughly a factor of two) can make it worthwhile.

tcc statically emits getreg and putreg operations together with other vcode

macros in the code-generating functions: this ensures that the register assignments
of one cspec do not con
ict with those of another cspec dynamically composed with
it. However, e�cient inter-cspec register allocation is hard, and the placement of
these register management operations can greatly a�ect code quality. For example,
if a register is reserved (getreg'd) across a cspec composition point, it becomes un-
available for allocation in the nested cspec and in all cspecs nested within it. As a
result, vcode could run out of registers and resort to spills after only a few levels
of cspec nesting. To help improve code quality, tcc follows some simple heuristics.
First, expression trees are rearranged so that cspec operands of instructions are
evaluated before non-cspec operands. This minimizes the number of temporaries
that span cspec references, and hence the number of registers allocated by the CGF
of one cspec during the execution of the code-generating function of a nested cspec.
Secondly, no registers are allocated for the return value of non-void cspecs: the
code-generating function for a cspec allocates the register for storing its result, and
simply returns this register name to the CGF of the enclosing cspec.

To further reduce the overhead of vcode register allocation, tcc reserves a limited
number of physical registers. These registers are not allocated by getreg, but instead
are managed at static compile time by tcc's dynamic back end. They can only be
used for values whose live ranges do not span composition with a cspec and are
typically employed for expression temporaries.

As a result of these optimizations, vcode register allocation is quite fast. How-
ever, if the dynamic code contains large basic blocks with high register pressure, or
if cspecs are dynamically combined in a way that forces many spills, code quality
su�ers.

3.3.2 icode. When code quality is more important, the user can have tcc gen-
erate CGFs that use icode macros, which generate an intermediate representation
on which optimizations can be performed. For example, icode can perform global
register allocation on dynamic code more e�ectively than vcode in the presence of
cspec composition.

icode provides an interface similar to that of vcode, with two main extensions:
(1) an in�nite number of registers, and (2) primitives to express changes in esti-
mated usage frequency of code. The �rst extension allows icode clients to emit
code that assumes no spills, leaving the work of global, inter-cspec register allo-
cation to icode. The second allows icode to obtain estimates of code execution
frequency at low cost. For instance, prior to invoking icode macros that corre-
spond to a loop body, the icode client could invoke refmul(10): this tells icode
that all variable references occurring in the subsequent macros should be weighted
as occurring 10 times (an estimated average number of loop iterations) more than
the surrounding code. After emitting the loop body, the icode client should invoke

18 � Poletto, Hsieh, Engler, Kaashoek

a corresponding refdiv(10) macro to correctly weight code outside of the loop. The
estimates obtained in this way are useful for several optimizations; they currently
provide approximate variable usage counts that help to guide register allocation.
icode's intermediate representation is designed to be compact (two 4-byte ma-

chine words per icode instruction) and easy to parse in order to reduce the overhead
of subsequent passes. When compile is invoked in icode mode, icode builds a
ow
graph, performs register allocation, and �nally generates executable code. We have
attempted to minimize the cost of each of these operations. We brie
y discuss each
of them in turn.

3.3.2.1 Flow Graph Construction. icode builds a control-
ow graph in one pass
after all CGFs have been invoked. The
ow graph is a single array that uses pointers
for indexing. In order to allocate all required memory in a single allocation, icode
computes an upper bound on the number of basic blocks by summing the numbers
of labels and jumps emitted by icode macros. After allocating space for an an array
of this size, it traverses the bu�er of icode instructions and adds basic blocks to
the array in the same order in which they exist in the list of instructions. Forward
references are initially stored in an array of pairs of basic block addresses; when
all the basic blocks are built, the forward references are resolved by traversing this
array and linking the pairs of blocks listed in it. As it builds the
ow graph, icode
also collects a minimal amount of local data-
ow information (def and use sets
for each basic block). All memory management occurs through arenas [Forsythe
1977], which ensures low amortized cost for memory allocation and essentially free
deallocation.

3.3.2.2 Register Allocation. Good register allocation is the main bene�t that
icode provides over vcode. icode currently implements four di�erent register
allocation algorithms, which di�er in overhead and in the quality of the code that
they produce: graph coloring, linear scan, and a simple scheme based on estimated
usage counts.
The graph coloring allocator implements a simpli�ed version of Chaitin's algo-

rithm [Chaitin et al. 1981]: it does not do coalescing, but employs estimates of
usage counts to guide spilling. The live variable information used by this allocator
is obtained by an iterative data-
ow pass over the icode
ow graph. Both the
liveness analysis and the register allocation pass were carefully implemented for
speed, but their actual performance is inherently limited because the algorithms
were developed for static compilers, and prioritize code quality over compilation
speed. The graph coloring allocator therefore serves as a benchmark: it produces
the best code, but is relatively slow.
At the opposite end of the spectrum is icode's simple \usage count" allocator:

it makes no attempt to produce particularly good code, but is fast. This alloca-
tor ignores liveness information altogether: it simply sorts all variables in order
of decreasing estimated usage counts, allocates the n available registers to the n
variables with the highest usage counts, and places all other variables on the stack.
Most dynamic code created using `C is relatively small: as a result, despite its
simplicity, this allocation algorithm oftern performs just as well as graph coloring.
Lastly, icode implements linear scan register allocation [Poletto and Sarkar 1998].

This algorithm improves performance relative to graph coloring: it does not build

`C and tcc: A Language and Compiler for Dynamic Code Generation � 19

LinearScanRegisterAllocation
active fg
foreach live interval i, in order of increasing start point

ExpireOldIntervals(i)
if length(active) = R then

SpillAtInterval(i)

else
register[i] a register removed from pool of free registers
add i to active, sorted by increasing end point

ExpireOldIntervals(i)
foreach interval j in active, in order of increasing end point

if endpoint[j] � startpoint[i] then
return

remove j from active
add register[j] to pool of free registers

SpillAtInterval(i)
spill last interval in active
if endpoint[spill] > endpoint[i] then

register[i] register[spill]
location[spill] new stack location
remove spill from active
add i to active, sorted by increasing end point

else
location[i] new stack location

Fig. 7. Linear scan register allocation.

and color a graph, but rather assigns registers to variables in one pass over a sorted
list of live intervals. Given an ordering (for example, linear layout order, or depth-
�rst order) of the instructions in a
ow graph, a live interval of a variable v is the
interval [m;n] such that v is not live prior to instruction m or after instruction n.
Once the list of live intervals is computed, allocating R available registers so as to
minimize the number of spilled intervals requires removing the smallest number of
live intervals so that no more than R live intervals overlap. The algorithm skips for-
ward through the sorted list of live intervals from start point to start point, keeping
track of the set of overlapping intervals. When more than R intervals overlap, it
heuristically spills the interval that ends furthest away, and moves on to the next
start point. The algorithm appears in Figure 7, and is discussed in detail in [Poletto
and Sarkar 1998].

icode can obtain live interval information in two di�erent ways. The �rst method
is simply to compute live variable information by iterative analysis, as for graph
coloring, and to then coarsen this information to one live interval per variable. This
technique produces live intervals that are as accurate as possible, but is not fast.
The second method is considerably faster, but produces slightly more conservative
intervals. The algorithm �nds and topologically sorts the strongly connected com-
ponents (SCCs) of the
ow graph. If a variable is de�ned or used in an SCC, it is
assumed live throughout the whole SCC. The live interval of a variable therefore

20 � Poletto, Hsieh, Engler, Kaashoek

stretches from the (topologically) �rst SCC where it appears to the last. Like the
linear scan algorithm, this technique is analyzed in [Poletto and Sarkar 1998].
These di�erent algorithms allow icode to provide a variety of tradeo�s of compile-

time overhead versus quality of code. Graph coloring is most expensive and usually
produces the best code, linear scan is considerably faster but sometimes produces
worse code, and the usage count allocator is faster than linear scan but can pro-
duce considerably worse code. However, given the relatively small size of most `C
dynamic code, the algorithms perform similarly on the benchmarks presented in
this paper. As a result, Section 5 presents measurements only for a representative
case, the linear scan allocator using live intervals derived from full live variable
information.

3.3.2.3 Code Generation. The �nal phase of code generation with icode is the
translation of the intermediate representation into executable code. The code emit-
ter makes one pass through the icode intermediate representation: it invokes the
vcode macro that corresponds to each icode instruction, and prepends and ap-
pends spill code as necessary.
icode has several hundred instructions (the Cartesian product of operation kinds

and operand types), so a translator for the entire instruction set is quite large.
Most `C programs, however, use only a small subset of all icode instructions. tcc
therefore keeps track of the icode instructions used by an application. It encodes
this usage information for a given `C source �le in dummy symbol names in the
corresponding object �le. A pre-linking pass then scans all the �les about to be
linked and emits an additional object �le containing an icode-to-binary translator
tailored speci�cally to the icode macros present in the executable. This simple
trick signi�cantly reduces the size of the icode code generator; for example, for
the benchmarks presented in this paper it usually shrank the code generators by a
factor of 5 or 6.

3.3.2.4 Other Features. icode is designed to be a generic framework for dynamic
code optimization: it is possible to extend it with additional optimization passes,
such as copy propagation, common subexpression elimination, etc. However, pre-
liminary measurements indicate that much dynamic optimization beyond register
allocation is probably not practical: the increase in dynamic compile time is not
justi�ed by su�cient improvements in the speed of the resulting code.

4. APPLICATIONS

`C is valuable in a number of practical settings. The language can be employed
to increase performance through the use of dynamic code generation, as well as
to simplify the creation of programs that cannot easily be written in ANSI C. For
example, `C can be used to build e�cient searching and sorting routines, implement
dynamic integrated layer processing for high performance network subsystems, and
create compiling interpreters and \just-in-time" compilers. This section presents
several ways in which `C and dynamic code generation can help to solve practical
problems. We have divided the examples into four broad categories: specialization,
dynamic function call construction, dynamic inlining, and compilation. Many of
the applications described below are also used for the performance evaluation in
Section 5.

`C and tcc: A Language and Compiler for Dynamic Code Generation � 21

struct hte f /� Hash table entry structure �/

int val; /� Key that entry is associated with �/
struct hte �next; /� Pointer to next entry �/
/� ... �/

g;

struct ht f /� Hash table structure �/
int scatter; /� Value used to scatter keys �/
int norm; /� Value used to normalize �/
struct hte ��hte; /� Vector of pointers to hash table entries �/

g;

/� Hash returns a pointer to the hash table entry, if any, that matches val. �/
struct hte �hash(struct ht �ht, int val) f

struct hte �hte = ht!hte[(val � ht!scatter) / ht!norm];
while (hte && hte!val != val) hte = hte!next;
return hte;

g

Fig. 8. A hash function written in C.

4.1 Specialization

`C provides programmers with a general set of mechanisms to build code at run
time. Dynamic code generation can be used to hard-wire run-time values into the
instruction stream, which can enable code optimizations such as strength reduction
and dead code elimination. In addition, `C enables more unusual and complicated
operations, such as specializing a piece of code to a particular input data structure
(for example, a given array) or some class of data structures (for example, all arrays
with elements of a given length).

4.1.1 Hashing. A simple example of `C is the optimization of a generic hash
function, where the table size is determined at run time, and where the function
uses a run-time value to help its hash. Consider the C code in Figure 8. The
C function has three values that can be treated as run-time constants: ht!hte,
ht!scatter, and ht!norm. As illustrated in Figure 9, using `C to specialize the
function for these values requires only a few changes. The resulting code can be
considerably faster than the equivalent C version, because tcc hard-codes the run-
time constants hte, scatter, and norm in the instruction stream, and reduces the
multiplication and division operations in strength. The cost of using the resulting
dynamic function is an indirect jump on a function pointer.

4.1.2 Vector Dot Product. Matrix and vector manipulations such as dot product
provide many opportunities for dynamic code generation. They often involve a large
number of operations on values which change relatively infrequently. Matrices may
have run-time characteristics (i.e., large numbers of zeros and small integers) that
can improve performance of matrix operations, but cannot be exploited by static
compilation techniques. In addition, sparse matrix techniques are only e�cient for
matrices with a high degree of sparseness.
In the context of matrix multiplication, dynamic code generation can remove

multiplication by zeros, and strength-reduce multiplication by small integers. Be-

22 � Poletto, Hsieh, Engler, Kaashoek

/� Type of the function generated by mk hash: takes a value as input

and produces a (possibly null) pointer to a hash table entry �/
typedef struct hte �(�hptr)(int val);

/� Construct a hash function with the size, scatter, and hash table pointer hard�coded. �/
hptr mk hash(struct ht �ht) f

int vspec val = param(int, 0);
void cspec code = `f

struct hte �hte = ($ht!hte)[(val � $ht!scatter) / $ht!norm];
while (hte && hte!val != val) hte = hte!next;
return hte;

g;
return compile(code, struct hte �); /� Compile and return the result �/

g

Fig. 9. Specialized hash function written in `C.

void dot(int �a, int �b, int n) f
int sum, k;
for (sum = k = 0; k < n; k++) sum += a[k]�b[k];
return sum;

g

Fig. 10. A dot-product routine written in C.

cause code for each row is created once and then used once for each column, the
costs of code generation can be recovered easily. Consider the C code to compute
dot product in Figure 10. At run time several optimizations can be employed.
For example, the programmer can directly eliminate multiplication by zero. The
corresponding `C code appears in Figure 11.
The dot product written in `C can perform substantially better than its static C

counterpart. The `C code does not emit code for multiplications by zero. In addi-
tion, the `C compiler can encode values as immediates in arithmetic instructions,
and can reduce multiplications by the runtime constant $row[k] in strength.

4.1.3 Binary Search. Figure 12 illustrates a recursive implementation of binary
search. We present a recursive version here for clarity: the static code used for
measurements in Section 5 is a more e�cient, iterative version. Nonetheless, even
the iterative implementation incurs some overhead due to looping and because it
needs to reference into the input array.
When the input array will be searched several times, however, one can use `C to

write code like that in Figure 13. The structure of this code is very similar to that
of the recursive binary search. By adding a few dynamic code generation primitives
to the original algorithm, we have created a function that returns a cspec for binary
search that is tailored to a given input set. We can create a C function pointer
from this cspec:

typedef int (�ip)(int key);
ip mksearch(int n, int �x) f

`C and tcc: A Language and Compiler for Dynamic Code Generation � 23

void cspec mkdot(int row[], int n) f
int k;
int �vspec col = param(int �, 0); /� Input vector for dynamic function �/
int cspec sum = `0; /� Spec for sum of products; initally 0 �/
for (k = 0; k < n; k++) /� Only generate code for non�zero multiplications �/

if (row[k]) /� Specialize on index of col[k] and value of row[k] �/
sum = `(sum + col[$k] � $row[k]);

return `f return sum; g;
g

Fig. 11. `C code to build a specialized dot-product routine.

int bin(int �x, int key, int l, int u, int r) f
int p;
if (l > u) return �1;
p = u � r;
if (x[p] == key) return p;
else if (x[p] < key) return bin(x, key, p+1, u, r/2);
else return bin(x, key, l, p�1, r/2);

g

Fig. 12. A tail-recursive implementation of binary search.

void cspec gen(int �x, int vspec key, int l, int u, int r) f
int p;
if (l > u) return `f return �1; g;
p = u � r;
return ` f

if ($(x[p]) == key) return $p;
else if ($(x[p]) < key) @gen(x, key, p+1, u, r/2);
else @gen(x, key, l, p�1, r/2);

g;
g

Fig. 13. `C code to create a \self-searching" executable array.

24 � Poletto, Hsieh, Engler, Kaashoek

typedef double (�dptr)();

dptr mkpow(int exp) f
double vspec base = param(double, 0); /� Argument: the base �/
double vspec result = local(register double); /� Local: running product �/
void cspec squares;
int bit = 2;

/� Initialize the running product �/
if (1&exp) squares = `f result=base; g;
else squares = `f result=1.; g;

/� Multiply some more, if necessary �/
while (bit � exp) f

squares = `f @squares; base �= base; g;
if (bit & exp) squares = `f @squares; result �= base; g;
bit = bit � 1;

g
/� Compile a function which returns the result �/
return compile(`f @squares; return result; g, double);

g

Fig. 14. Code to create a specialized exponentiation function.

int vspec key = param(int, 0); /� One argument: the key to search for �/
return (ip)compile(gen(x, key, 0, n�1, n/2), int);

g

In the resulting code, the values from the input array are hard-wired into the
instruction stream, and the loop is unrolled into a binary tree of nested if statements
that compare the value to be found to constants. As a result, the search involves
neither loads from memory nor looping overhead, so the dynamically constructed
code is considerably more e�cient than its static counterpart. For small input
vectors (on the order of 30 elements), this results in lookup performance superior
even to that of a hash table.

4.1.4 Exponentiation. Another example of tailoring code to an input set comes
from computer graphics [Draves 1995], where it is sometimes necessary to apply
an exponentiation function to a large data set. Traditionally, exponentiation is
computed in a loop which performs repeated multiplication and squaring. Given a
�xed exponent, we can unroll this loop and obtain straight-line code that contains
the minimum number of multiplications. The `C code to perform this optimization
appears in Figure 14.

4.1.5 Finite State Machines. It is possible to use `C to specialize code for more
complex data than just arrays and primitive values. For example, tcc can compile a
DFA description into specialized code, as shown in Figure 15. The function mk dfa
accepts a data structure that describes a DFA with a unique start state and some
number of accept states: at each state, the DFA transitions to the next state
and produces one character of output based on the next character in its input.
mk dfa uses `C's inter-cspec control
ow primitives, jump and label (Section 2.4),

`C and tcc: A Language and Compiler for Dynamic Code Generation � 25

typedef struct f

int n; /� State number (start state has n=0) �/
int acceptp; /� Non�zero if this is an accept state �/
char �in; /� I/O and next state info: on input in[k] �/
char �out; /� produce output out[k] and go to state �/
int �next; /� number next[k] �/

g �state t;
typedef struct f

int size; /� Number of states �/
state t �states; /� Description of each state �/

g �dfa t;

int (�mk dfa(dfa t dfa))(char �in, char �out) f
char � vspec in = param(char �, 0); /� Input to dfa �/
char � vspec out = param(char �, 1); /� Output bu�er �/
char vspec t = local(char);
void cspec �labels = (void cspec �)malloc(dfa!size � sizeof(void cspec));
void cspec code = `fg; /� Initially dynamic code is empty �/
int i;
for (i = 0; i < dfa!n states; i++)

labels[i] = label(); /� Create labels to mark each state �/
for (i = 0; i < dfa!n states; i++) f /� For each state ... �/

state t cur = dfa!states[i];
int j = 0;
code = `f @code; /� ... prepend the code so far �/

@labels[i]; /� ... add the label to mark this state �/
t = �in; g; /� ... read current input �/

while (cur!in[j]) f /� ... add code to do the right thing if �/
code = `f @code; /� this is an input we expect �/

if (t == $cur!in[j]) f
in++; �out++ = $cur!out[j];
jump labels[cur!next[j]];

g g;
j++;

g
code = `f @code; /� ... add code to return 0 if we're at end �/

if (t == 0) f /� of input in an accept state, or �/
if ($cur!acceptp) return 0;
else return �2; /� �2 if we're in another state �/

g /� or �1 if no transition and not end of input �/
else return �1; g;

g
return compile(code, int);

g

Fig. 15. Code to create a hard-coded �nite state machine.

to create code that directly implements the given DFA: each state is implemented
by a separate piece of dynamic code, and state transitions are simply conditional
branches. The dynamic code contains no references into the original data structure
that describes the DFA.

4.1.6 Swap. The examples so far have illustrated specialization to speci�c val-
ues. Value specialization can improve performance, but it may be impractical if

26 � Poletto, Hsieh, Engler, Kaashoek

typedef void (�fp)(void �, void �);

fp mk swap(int size) f
long � vspec src = param(long �, 0); /� Arg 0: source �/
long � vspec dst = param(long �, 1); /� Arg 1: destination �/
long vspec tmp = local(long); /� Temporary for swaps �/
void cspec s = `fg; /� Code to be built up, initially empty �/
int i;

for (i = 0; i < size/sizeof(long); i++) /� Build swap code �/
s = `f @s; tmp = src[$i]; src[$i] = dst[$i]; dst[$i] = tmp; g;

return (fp)compile(s, void);
g

Fig. 16. `C code to generate a specialized swap routine.

the values change too frequently. A related approach that does not su�er from this
drawback is specialization based on properties, such as size, of data types. For in-
stance, it is often necessary to swap the contents of two regions of memory: in-place
sorting algorithms are one such example. As long as the data being manipulated is
no larger than a machine word, this process is quite e�cient. However, when ma-
nipulating larger regions (for example, C structs), the code is often ine�cient. One
way to copy the regions is to invoke the C library memory copy routine, memcpy,
repeatedly. Using memcpy incurs function call overhead, as well overhead within
memcpy itself. Another way is to iteratively swap one word at a time, but this
method incurs loop overhead.

`C allows us to create a swap routine that is specialized to the size of the region
being swapped. The code in Figure 16 is an example, simpli�ed to handle only the
case where the size of the region is a multiple of sizeof(long). This routine returns
a pointer to a function that contains only assignments, and swaps the region of
the given size without resorting to looping or multiple calls to memcpy. The size
of the generated code will usually be rather small, which makes this a pro�table
optimization. Section 5 evaluates a `C heapsort implementation in which the swap
routine is customized to the size of the objects being sorted and dynamically inlined
into the main sorting code.

4.1.7 Copy. Copying a memory region of arbitrary size is another common op-
eration. An important application of this is computer graphics [Pike et al. 1985].
Similar to the previous code for swapping regions of memory, the example code in
Figure 17 returns a function customized for copying a memory region of a given
size.

The procedure mk copy takes two arguments: the size of the regions to be copied,
and the number of times that the inner copying loop should be unrolled. It creates
a cspec for a function that takes two arguments, pointers to source and destination
regions. It then creates prologue code to copy regions which would not be copied
by the unrolled loop (if n mod unrollx 6= 0), and generates the body of the unrolled
loop. Finally, it composes these two cspecs, invokes compile, and returns a pointer
to the resulting customized copy routine.

`C and tcc: A Language and Compiler for Dynamic Code Generation � 27

typedef void (�fp)(void �, void �);
fp mk copy(int n, int unrollx) f

int i, j;
unsigned � vspec src = param(unsigned �, 0); /� Arg 0: source �/
unsigned � vspec dst = param(unsigned �, 1); /� Arg 1: destination �/
int vspec k = local(int); /� Local: loop counter �/
cspec void copy = `fg, unrollbody = `fg; /� Code to build, initially empty �/

for (i = 0; i < n % unrollx; i++) /� Unroll the remainder copy �/
copy = `f @copy; dst[$i] = src[$i]; g;

if (n � unrollx) /� Unroll copy loop unrollx times �/
for (j = 0; j < unrollx; j ++)

unrollbody = `f @unrollbody; dst[k+$j] = src[k+$j]; g;

copy = `f /� Compose remainder copy with the main unrolled loop �/
@copy;
for (k = $i; k < $n; k += $unrollx) @unrollbody;

g;
/� Compile and return a function pointer �/
return (fp)compile(copy, void);

g

Fig. 17. Generating specialized copy code in `C.

4.2 Dynamic Function Call Construction

`C allows programmers to generate functions (and calls to functions) that have
arguments whose number and types are not known at compile time. This func-
tionality distinguishes `C: neither ANSI C nor any of the dynamic compilation
systems discussed in Section 6 provides mechanisms for constructing function calls
dynamically.

A useful application of dynamic function call construction is the generation of
code to marshal and unmarshal arguments stored in a byte vector. These operations
are frequently performed to support remote procedure call [Birrell and Nelson 1984].
Generating specialized code for the most active functions results in substantial
performance bene�ts [Thekkath and Levy 1993].

We present two functions, marshal and unmarshal, that dynamically construct
marshaling and unmarshaling code, respectively, given a \format vector," types,
that speci�es the types of arguments. The sample code in Figure 18 generates a
marshaling function for arguments with a particular set of types (in this example,
int, void *, and double). First, it speci�es code to allocate storage for a byte vector
large enough to hold the arguments described by the type format vector. Then, for
every type in the type vector, it creates a vspec that refers to the corresponding
parameter, and constructs code to store the parameter's value into the byte vector at
a distinct run-time constant o�set. Finally, it speci�es code that returns a pointer
to the byte vector of marshaled arguments. After dynamic code generation, the
function that has been constructed will store all of its parameters at �xed, non-
overlapping o�sets in the result vector. Since all type and o�set computations

28 � Poletto, Hsieh, Engler, Kaashoek

typedef union f int i; double d; void �p; g type;

typedef enum f INTEGER, DOUBLE, POINTER g type t; /� Types we expect to marshal �/
extern void �alloc();
void cspec mk marshal(type t �types, int nargs) f

int i;
type �vspec m = local(type �); /� Spec of pointer to result vector �/
void cspec s = `f m = (type �)alloc(nargs � sizeof(type)); g;

for (i = 0; i < nargs; i++) f /� Add code to marshal each param �/
switch(types[i]) f
case INTEGER: s = `f @s; m[$i].i = param($i, int); g; break;
case DOUBLE: s = `f @s; m[$i].d = param($i, double); g; break;
case POINTER: s = `f @s; m[$i].p = param($i, void �); g; break;
g

g
/� Return code spec to marshal parameters and return result vector �/
return `f @s; return m; g;

g

Fig. 18. Sample marshaling code in `C.

typedef int (�fptr)(); /� Type of the function we will be calling �/
void cspec mk unmarshal(type t �types, int nargs) f

int i;
fptr vspec fp = param(fptr, 0); /� Arg 0: the function to invoke �/
type �vspec m = param(type �, 1); /� Arg 1: the vector to unmarshal �/
void cspec args = push init(); /� Initialize the dynamic argument list �/

for (i = 0; i < nargs; i++) f /� Build up the dynamic argument list �/
switch(types[i]) f
case INTEGER: push(args, `m[$i].i); break;
case DOUBLE: push(args, `m[$i].d); break;
case POINTER: push(args, `m[$i].p); break;
g

g
/� Return code spec to call the given function with unmarshaled args �/
return `f fp(args); g;

g

Fig. 19. Unmarshaling code in `C.

have been done during environment binding, the generated code will be e�cient.
Further performance gains could be achieved if the code were to manage details
such as endianness and alignment.
Dynamic generation of unmarshaling code is equally useful. The process relies

on `C's mechanism for constructing calls to arbitrary functions at run time. It not
only improves e�ciency, but also provides valuable functionality. For example, in
Tcl [Ousterhout 1994] the runtime system can make upcalls into an application.
However, because Tcl cannot dynamically create code to call an arbitrary function,
it marshals all of the upcall arguments into a single byte vector, and forces appli-
cations to explicitly unmarshal them. If systems such as Tcl used `C to construct

`C and tcc: A Language and Compiler for Dynamic Code Generation � 29

upcalls, clients would be able to write their code as normal C routines, which would
increase the ease of expression and decrease the chance for errors.
The code in Figure 19 generates an unmarshaling function that works with the

marshaling code in Figure 18. The generated code takes a function pointer as
its �rst argument and a byte vector of marshaled arguments as its second. It
unmarshals the values in the byte vector into their appropriate parameter positions,
and then invokes the function pointer. mk unmarshal works as follows: it creates the
speci�cations for the generated function's two incoming arguments, and initializes
the argument list. Then, for every type in the type vector, it creates a cspec to
index into the byte vector at a �xed o�set and pushes this cspec into its correct
parameter position. Finally, it creates the call to the function pointed to by the
�rst dynamic argument.

4.3 Dynamic Inlining

`C makes it easy to inline and compose functions dynamically. This feature is
analogous to dynamic inlining through indirect function calls. It improves perfor-
mance by eliminating function call overhead and by creating the opportunity for
optimization across function boundaries.

4.3.1 Parameterized Library Functions. Dynamic function composition is useful
when writing and using library functions that would normally be parameterized
with function pointers, such as many mathematical and standard C library rou-
tines. The `C code for Newton's method [Press et al. 1992] in Figure 20 illustrates
its use. The function newton takes as arguments the maximum allowed number of
iterations, a tolerance, an initial estimate, and two pointers to functions that return
cspecs to evaluate a function and its derivative. In the calls f(p0) and fprime(p0),
p0 is passed as a vspec argument. The cspecs returned by these functions are in-
corporated directly into the dynamically generated code. As a result, there is no
function call overhead, and inter-cspec optimization can occur during dynamic code
generation.

4.3.2 Network Protocol Layers. Another important application of dynamic inlin-
ing is the optimization of networking code. The modular composition of di�erent
protocol layers has long been a goal in the networking community [Clark and Ten-
nenhouse 1990]. Each protocol layer frequently involves data manipulation opera-
tions, such as checksumming and byte-swapping. Since performing multiple data
manipulation passes is expensive, it is desirable to compose the layers so that all
the data handling occurs in one phase [Clark and Tennenhouse 1990].
`C can be used to construct a network subsystem that dynamically integrates

protocol data operations into a single pass over memory (e.g., by incorporating
encryption and compression into a single copy operation). A simple design for
such a system divides each data-manipulation stage into pipes that each consume
a single input and produce a single output. These pipes can then be composed and
incorporated into a data-copying loop. The design includes the ability to specify
prologue and epilogue code that is executed before and after the data-copying loop,
respectively. As a result, pipes can manipulate state and make end-to-end checks,
such as ensuring that a checksum is valid after it has been computed.
The pipe in Figure 21 can be used to do byte-swapping. Since a byte swapper

30 � Poletto, Hsieh, Engler, Kaashoek

typedef double cspec (�dptr)(double vspec);

/� Dynamically create a Newton�Raphson routine. n: max number of iterations;
tol: maximum tolerance; p0: initial estimate; f: function to solve; fprime: derivative of f. �/

double newton(int n, double tol, double usr p0, dptr f, dptr fprime) f
void cspec cs = `f

int i; double p, p0 = usr p0;
for (i = 0; i < $n; i++) f

p = p0 � f(p0) / fprime(p0); /� Compose cspecs returned by f and fprime �/
if (abs(p � p0) < tol) return p; /� Return result if we've converged enough �/
p0 = p; /� Seed the next iteration �/

g
error(\method failed after %d iterationsnn", i);

g;
return (�compile(cs,double))(); /� Compile, call, and return the result. �/

g

/� Function that constructs a cspec to compute f(x) = (x+1)^2 �/
double cspec f(double vspec x) f return `((x + 1.0) � (x + 1.0)); g
/� Function that constructs a cspec to calculate f'(x) = 2(x+1) �/
double cspec fprime(double vspec x) f return `(2.0 � (x + 1.0)); g
/� Call newton to solve an equation �/
void use newton(void) f printf(\Root is %fnn", newton(100, .000001, 10., f, fprime)); g

Fig. 20. `C code to create and use routines to use Newton's method for solving polynomials. This
example computes the root of the function f(x) = (x+ 1)2.

unsigned cspec byteswap(unsigned vspec input) f
return `((input � 24) j ((input & 0x�00) � 8) j

((input � 8) & 0x�00) j ((input � 24) & 0x�));
g
/� ``Byteswap'' maintains no state and so needs no initial or �nal code �/
void cspec byteswap initial(void) f return `fg; g
void cspec byteswap �nal(void) f return `fg; g

Fig. 21. A sample pipe: byteswap returns a cspec for code that byte-swaps input.

does not need to maintain any state, there is no need to specify initial and �nal
code. The byte swapper simply consists of the \consumer" routine that manipulates
the data.

To construct the integrated data-copying routine, the initial, consumer, and �-
nal cspecs of each pipe are composed with the corresponding cspecs of the pipe's
neighbors. The composed initial code is placed at the beginning of the resulting
routine; the consumer code is inserted in a loop, and composed with code which
provides it with input and stores its output; and the �nal code is placed at the end
of the routine. A simpli�ed version would look like the code fragment in Figure 22.
In a mature implementation of this code, we could further improve performance by
unrolling the data-copying loop. Additionally, pipes would take inputs and outputs
of di�erent sizes that the composition function would reconcile.

`C and tcc: A Language and Compiler for Dynamic Code Generation � 31

typedef void cspec (�vptr)();

typedef unsigned cspec (�uptr)(unsigned cspec);
/� Pipe structure: contains pointers to functions that return cspecs
for the initialization, pipe, and �nalization code of each pipe �/

struct pipe f
vptr initial, �nal; /� initial and �nal code �/
uptr pipe; /� pipe �/

g;

/� Return cspec that results from composing the given vector of pipes �/
void cspec compose(struct pipe �plist, int n) f

struct pipe �p;
int vspec nwords = param(int, 0); /� Arg 0: input size �/
unsigned � vspec input = param(unsigned �, 1); /� Arg 1: pipe input �/
unsigned � vspec output = param(unsigned �, 2); /� Arg 2: pipe output �/
void cspec initial = `fg, cspec �nal = `fg; /� Prologue and epilogue code �/
unsigned cspec pipes = `input[i];/� Base pipe input �/

for (p = &plist[0]; p < &plist[n]; p++) f /� Compose all stages together �/
initial = `f @initial; @p!initial(); g; /� Compose initial statements �/
pipes =`p!pipe(pipes); /� Compose pipes: one pipe's output is the next one's input �/
�nal = `f @�nal; @p!�nal(); g; /� Compose �nal statements �/

g
/� Create a function with initial statements �rst, consumer statements
second, and �nal statements last. �/

return `f int i;
@initial;
for (i = 0; i < nwords; i++) output[i] = pipes;
@�nal;

g;
g

Fig. 22. `C code for composing data pipes.

4.4 Compilation

`C's imperative approach to dynamic code generation makes it well-suited for writ-
ing compilers and compiling interpreters. `C helps to make such programs both
e�cient and easy to write: the programmer can focus on parsing, and leave the
task of code generation to `C.

4.4.1 Domain-Speci�c Languages. Small, domain-speci�c languages can bene�t
from dynamic compilation. The small query languages used to search databases
are one class of such languages [Keppel et al. 1993]. Since databases are large,
dynamically compiled queries will usually be applied many times, which can easily
pay for the cost of dynamic code generation.
We provide a toy example in Figure 23. The function mk query takes a vector of

queries. Each query contains the following elements: a database record �eld (i.e.,
CHILDREN or INCOME); a value to compare this �eld to; and the operation to use
in the comparison (i.e., <;>; etc.). Given a query vector, mk query dynamically
creates a query function which takes a database record as an argument and checks
whether that record satis�es all of the constraints in the query vector. This check

32 � Poletto, Hsieh, Engler, Kaashoek

typedef enum f INCOME, CHILDREN /� ... �/ g query; /� Query type �/
typedef enum f LT, LE, GT, GE, NE, EQ g bool op; /� Comparison operation �/

struct query f
query record �eld; /� Field to use �/
unsigned val; /� Value to compare to �/
bool op bool op; /� Comparison operation �/

g;
struct record f int income; int children; /� ... �/ g; /� Simple database record �/

/� Function that takes a pointer to a database record and returns 0 or 1,
depending on whether the record matches the query �/

typedef int (�iptr)(struct record �r);

iptr mk query(struct query �q, int n) f
int i, cspec �eld, cspec expr = `1; /� Initialize the boolean expression �/
struct record � vspec r = param(struct record �, 0); /� Record to examine �/

for (i = 0; i < n; i++) f /� Build the rest of the boolean expression �/
switch (q[i].record �eld) f /� Load the appropriate �eld value �/
case INCOME: �eld = `(r!income); break;
case CHILDREN: �eld = `(r!children); break;
/� ... �/
g
switch (q[i].bool op) f /� Compare the �eld value to runtime constant q[i] �/
case LT: expr = `(expr && �eld < $q[i].val); break;
case EQ: expr = `(expr && �eld == $q[i].val); break;
case LE: expr = `(expr && �eld � $q[i].val); break;
/� ... �/
g

g
return (iptr)compile(`f return expr; g, int);

g

Fig. 23. Compilation of a small query language.

`C and tcc: A Language and Compiler for Dynamic Code Generation � 33

enum f WHILE, IF, ELSE, ID, CONST, LE, GE, NE, EQ g; /� Multi�character tokens �/
int expect(); /� Consume the given token from the input stream, or fail if not found �/
int cspec expr(); /� Parse unary expressions �/
int gettok(); /� Consume a token from the input stream �/
int look(); /� Peek at the next token without consuming it �/
int cur tok; /� Current token �/
int vspec lookup sym(); /� Given a token, return corresponding vspec �/

void cspec stmt() f
int cspec e = `0; void cspec s = `fg, s1 = `fg, s2 = `fg;
switch (gettok()) f
case WHILE: /� 'while' '(' expr ')' stmt �/

expect(`('); e = expr();
expect(`)'); s = stmt();
return `f while(e) @s; g;

case IF: /� 'if' '(' expr ')' stmt f 'else' stmt g �/
expect(`('); e = expr();
expect(`)'); s1 = stmt();
if (look(ELSE)) f

gettok(); s2 = stmt();
return `f if (e) @s1; else @s2; g;

g else return `f if (e) @s1; g;
case `f': /� `f' stmt� `g' �/

while (!look(`g')) s = `f @s; @stmt(); g;
return s;

case `;': return `fg;
case ID: f /� ID `=' expr `;' �/

int vspec lvalue = lookup sym(cur tok);
expect(`='); e = expr(); expect(`;');
return `f lvalue = e; g;

g
default: parse err(\expecting statement");
g

g

Fig. 24. A sample statement parser from a compiling interpreter written in `C.

is implemented simply as an expression which computes the conjunction of the
given constraints. The query function never references the query vector, since all
the values and comparison operations in the vector have been hard-coded into the
dynamic code's instruction stream.

The dynamically generated code expects one incoming argument, the database
record to be compared. It then \seeds" the boolean expression: since we are build-
ing a conjunction, the initial value is 1. The loop then traverses the query vector,
and builds up the dynamic code for the conjunction according to the �elds, values,
and comparison operations described in the vector. When the cspec for the boolean
expression is constructed, mk query compiles it and returns a function pointer. That
optimized function can be applied to database entries to determine whether they
match the given constraints.

34 � Poletto, Hsieh, Engler, Kaashoek

4.4.2 Compiling Interpreters. Compiling interpreters (also known as JIT com-
pilers) are important pieces of technology: they combine the
exibility of an in-
terpreted programming environment with the performance of compiled code. For
a given piece of code, the user of a compiling interpreter pays a one-time cost of
compilation, which can be roughly comparable to that of interpretation. Every sub-
sequent use of that code employs the compiled version, which can be much faster
than the interpreted version. Compiling interpreters are also useful in systems such
as Java, in which \just-in-time" compilers are commonly used.
Figure 24 contains a fragment of code for a simple compiling interpreter written

in `C. This interpreter translates a simple subset of C: as it parses the program, it
builds up a cspec that represents it.

5. EVALUATION

`C and tcc support e�cient dynamic code generation. In particular, the measure-
ments in this section demonstrate the following results:

|By using `C and tcc, we can achieve good speedups relative to static C. Speedups
by a factor of two to four are common for the programs that we have described.

|`C and tcc do not impose excessive overhead on performance. The cost of dynamic
compilation is usually recovered in under 100 runs of a benchmark; sometimes,
this cost can be recovered in one run of a benchmark.

|The tradeo� between dynamic code quality and dynamic code generation speed
must be made on a per-application basis. For some applications, it is better to
generate code faster; for others, it is better to generate better code.

|Dynamic code generation can result in large speedups when it enables large-
scale optimization: when interpretation can be eliminated, or when dynamic
inlining enables further optimization. It provides smaller speedups if only local
optimizations, such as strength reduction, are performed dynamically. In such
cases, the cost of dynamic code generation may outweigh its bene�ts.

5.1 Experimental Methodology

The benchmarks that we measure have been described in previous sections. Ta-
ble II brie
y summarizes each benchmark, and lists the section in which it appears.
The performance improvements of dynamic code generation hinge on customizing

code to data. As a result, the performance of all of the benchmarks in this section
is data-dependent to some degree. In particular, the amount of code generated by
the benchmarks is in some cases dependent on the input data. For example, since
dp generates code to compute the dot product of an input vector with a run-time
constant vector, the size of the dynamic code (and hence its i-cache performance) is
dependent on the size of the run-time constant vector. Its performance relative to
static code also depends on the density of 0s in the run-time constant vector, since
those elements are optimized out when generating the dynamic code. Similarly,
binary, and dfa generate more code for larger inputs, which generally improves their
performance relative to equivalent static code until negative i-cache e�ects come
into play.
Some other benchmarks { ntn, ilp, and query { involve dynamic function inlining

that is a�ected by input data. For example, the code inlined in ntn depends on the

`C and tcc: A Language and Compiler for Dynamic Code Generation � 35

Benchmark Description Section Page

ms Scale a 100x100 matrix by the integers in [10; 100] 2.3.2 8
hash Hash table, constant table size, scatter value, and 4.1.1 22

hash table pointer: one hit and one miss
dp Dot product with a run-time constant vector: 4.1.2 23

length 40, one-third zeroes
binary Binary search on a 16-element constant array; 4.1.3 23

one hit and one miss
pow Exponentiation of 2 by the integers in [10; 40] 4.1.4 24
dfa Finite state machine computation 4.1.5 25

6 states, 13 transitions, input length 16
heap Heapsort, parameterized with a specialized swap: 4.1.6 26

500-entry array of 12-byte structures
mshl Marshal �ve arguments into a byte vector 4.2 28
unmshl Unmarshal a byte vector, and call a function of 4.2 28

�ve arguments
ntn Root of f(x) = (x+ 1)2 to a tolerance of 10�9 4.3.1 30
ilp Integrated copy, checksum, byteswap of a 16KB bu�er 4.3.2 31
query Query 2000 records with seven binary comparisons 4.4.1 32

Table II. Descriptions of benchmarks.

function to be computed, that in ilp on the nature of the protocol stack, and that
in query on the type of query submitted by the user. The advantage of dynamic
code over static code increases with the opportunity for inlining and cross-function
optimization. For example, an ilp protocol stack composed from many small passes
will perform relatively better in dynamic code that one composed from a few larger
passes.
Lastly, a few benchmarks are relatively data-independent. pow, heap, mshl, and

unmshl generate varying amounts of code depending, respectively, on the exponent
used, or the type and size of the objects being sorted, marshaled or unmarshaled,
but the di�erences are small for most reasonable inputs. ms obtains performance
improvements by hard-wiring loop bounds and strength-reducing multiplication by
the scale factor. hash makes similar optimizations when computing a hash function.
The values of run-time constants may a�ect performance to some degree (for ex-
ample, excessively large constants are not useful for this sort of optimization), but
such e�ects are much smaller than those of more large-scale dynamic optimizations.
Each benchmark was written both in `C and in static C. The `C programs were

compiled with both the vcode and the icode-based tcc back ends. When measur-
ing the performance of the icode runtime system, we always employed linear scan
register allocation with live intervals derived from live variable information. The
static C programs were compiled both with the lcc compiler and with the GNU C
compiler, gcc. The code-generating functions used for dynamic code generation are
created from the lcc intermediate representation, using that compiler's code gener-
ation strategies. As a result, the performance of lcc-generated code should be used
as the baseline to measure the impact of dynamic code generation. Measurements
collected using gcc serve to compare tcc to an optimizing compiler of reasonable
quality.
The machine used for measurements is a Sun Ultra 2 Model 2170 workstation with

36 � Poletto, Hsieh, Engler, Kaashoek

384MB of main memory and two 168 MHz UltraSPARC-I CPUs. The UltraSPARC-
I can issue up to 2 integer and 2
oating point instructions per cycle, and has a
write-through, non-allocating, direct-mapped, on-chip 16KB cache. It implements
the SPARC version 9 architecture [SPARC International 1994]. tcc also generates
code for the MIPS family of processors; we report only SPARC measurements for
clarity, since results on the two architectures are similar.
Times were obtained by measuring a large number of trials | enough to provide

several seconds of granularity, with negligible standard deviations | using the Unix
getrusage system call. The number of trials varied from 100 to 100000, depending on
the benchmark. The resulting times were then divided by the number of iterations
to obtain the average overhead of a single run. This form of measurement ignores
the e�ects of cache re�ll misses, but is representative of how these applications
would likely be used (for example, in tight inner loops).

Section 5.2 discusses the performance e�ects of using dynamic code generation:
speci�cally, the speedup of dynamic code relative to static code, and the overhead of
dynamic code generation relative to speedup. Section 5.3 presents break downs of
the dynamic compilation overhead of both vcode and icode in units of processor
cycles per generated instruction.

5.2 Performance

This section shows that tcc provides low-overhead dynamic code generation, and
that it can be used to speed up a number of benchmarks. We describe results
for the benchmarks in Table II and for xv, a freely available image manipulation
package.

We compute the speedup due to dynamic code generation by dividing the time
required to run the static code by the time required to run the corresponding
dynamic code. We measure overhead by calculating each benchmark's \cross-over"
point, if one exists. This point is the number of times that dynamic code must be
used so that the overhead of dynamic code generation equals the time gained by
running the dynamic code.

The performance of dynamic code is up to an order of magnitude better than
that of unoptimized static code. In many cases, the performance improvement of
using dynamic code generation can be amortized over fewer than ten runs of the
dynamic code. The benchmarks that achieve the highest speedups are those in
which dynamic information allows the most e�ective restructuring of code relative
to the static version. The main classes of such benchmarks are numerical code
in which particular values allow large amounts of work to be optimized away (for
example, dp), code in which an expensive layer of data structure interpretation can
be removed at run time (for example, query), and code in which inlining can be
performed dynamically but not statically (for example, ilp).

vcode generates code approximately three to eight times more quickly than
icode. Nevertheless, the code generated by icode can be considerably faster than
that generated by vcode. A programmer can choose between the two systems
to trade code quality for code generation speed, depending on the needs of the
application.

`C and tcc: A Language and Compiler for Dynamic Code Generation � 37

ms hash dp binary pow dfa heap mshl unmshl ntn ilp query

Benchmark

0

5

10

S
pe

ed
up

 (
st

at
ic

 ti
m

e
/ d

yn
am

ic
 ti

m
e)

icode-lcc
vcode-lcc
icode-gcc
vcode-gcc

Fig. 25. Speedup of dynamic code over static code.

5.2.1 Speedup. Figure 25 shows that using `C and tcc improves the performance
of almost all of our benchmarks. Both in this �gure and in Figure 26, the legend
indicates which static and dynamic compilers are being compared. icode-lcc com-
pares dynamic code created with icode to static code compiled with lcc; vcode-lcc
compares dynamic code created with vcode to static code compiled with lcc. Sim-
ilarly, icode-gcc compares icode to static code compiled with gcc, and vcode-gcc
compares vcode to static code compiled with gcc.
In general, dynamic code is signi�cantly faster than static code: speedups by a

factor of two relative to the best code emitted by gcc are common. Unsurprisingly,
the code produced by icode is faster than that produced by vcode, by up to
50% in some cases. Also, the GNU compiler generates better code than lcc, so
the speedups relative to gcc are almost always smaller than those relative to lcc.
As mentioned earlier, however, the basis for comparison should be lcc, since the
code-generating functions are generated by an lcc-style back end, which does not
perform static optimizations.
Dynamic code generation does not pay o� in only one benchmark, unmshl. In

this benchmark, `C provides functionality that does not exist in C. The static code
used for comparison implements a special case of the general functionality provided
by the `C code, and it is very well tuned.

5.2.2 Cross-over. Figure 26 indicates that the cost of dynamic code generation
in tcc is reasonably low. The cross-over point on the vertical axis is the number
of times that the dynamic code must be used in order for the total overhead of its

38 � Poletto, Hsieh, Engler, Kaashoek

ms hash dp binary pow dfa heap mshl unmshl ntn ilp query

Benchmark

0.001

0.01

0.1

1

10

100

1000

10000
C

ro
ss

-o
ve

r
po

in
t (

nu
m

be
r

of
 r

un
s,

 lo
g

sc
al

e) icode-lcc

vcode-lcc

icode-gcc

vcode-gcc

Fig. 26. Cross-over points, in number of runs. If the cross-over point does not exist, the bar is
omitted.

compilation and uses to be equal to the overhead of the same number of uses of
static code. This number is a measure of how quickly dynamic code \pays for itself."
For all benchmarks except query, one use of dynamic code corresponds to one run
of the dynamically created function. In query, however, the dynamic code is used
as a small part of the overall algorithm: it is the test function used to determine
whether a record in the database matches a particular query. As a result, in that
case we de�ne one use of the dynamic code to be one run of the search algorithm,
which corresponds to many invocations (one per database entry) of the dynamic
code. This methodology realistically measures how specialization is used in these
cases.
In the case of unmshl, the dynamic code is slower than the static one, so the cross-

over point never occurs. Usually, however, the performance bene�t of dynamic
code generation occurs after a few hundred or fewer runs. In some cases (ms,
heap, ilp, and query), the dynamic code pays for itself after only one run of the
benchmark. In ms and heap, this occurs because a reasonable problem size is large
relative to the overhead of dynamic compilation, so even small improvements in run
time (from strength reduction, loop unrolling, and hard-wiring pointers) outweigh
the code generation overhead. In addition, ilp and query exemplify the types of
applications in which dynamic code generation can be most useful: ilp bene�ts
from extensive dynamic function inlining that cannot be performed statically, and
query dynamically removes a layer of interpretation inherent in a database query
language.
Figures 25 and 26 show how dynamic compilation speed can be exchanged for

`C and tcc: A Language and Compiler for Dynamic Code Generation � 39

Convolution mask (pixels) Times (seconds)
lcc gcc tcc (icode) DCG overhead

3� 3 5.79 2.44 1.91 2:5� 10�3

7� 7 17.57 6.86 5.78 3:5� 10�3

Table III. Performance of convolution on an 1152x900 image in xv.

dynamic code quality. vcode can be used to perform fast, one-pass dynamic code
generation when the dynamic code will not used very much. However, the code
generated by icode is often considerably faster than that generated by vcode:
hence, icode is useful when the dynamic code is run more times, so that the code's
performance is more important than the cost of generating it.

5.2.3 xv. To test the performance of tcc on a relatively large application, we
modi�ed xv to use `C. xv is a popular image manipulation package that consists
of approximately 60000 lines of code. We picked one of its image processing algo-
rithms and changed it to make use of dynamic code generation. One algorithm is
su�cient, since most of the algorithms are implemented similarly. The algorithm,
Blur, applies a convolution matrix of user-de�ned size that consists of all 1's to
the source image. The original algorithm was implemented e�ciently: the values
in the convolution matrix are known statically to be all 1's, so convolution at a
point is simply the average of the image values of neighboring points. Nonetheless,
the inner loop contains image-boundary checks based on run-time constants, and
is bounded by a run-time constant, the size of the convolution matrix.
Results from this experiment appear in Table III. For both a 3 � 3 and 7 � 7

convolution mask, the dynamic code obtained using tcc and icode is approximately
3 times as fast as the static code created by lcc, and approximately 20% faster than
the static code generated by gcc with all optimizations turned on. Importantly, the
overhead of dynamic code generation is almost 3 orders of magnitude less than the
performance bene�t it provides.
xv is an example of the usefulness of dynamic code generation in the context of a

well-known application program. Two factors make this result signi�cant. First, the
original static code was quite well-tuned. In addition, the tcc code generator that
emits the code-generating code is derived from an lcc code generator: as a result,
the default dynamic code, barring any dynamic optimizations, is considerably less
well-tuned than equivalent code generated by the GNU compiler. Despite all this,
the dynamic code is faster than even aggressively optimized static code, and the
cost of dynamic code generation is insigni�cant compared to the bene�t obtained.

5.3 Analysis

This section analyzes the code generation overhead of vcode and icode. vcode

generates code at a cost of approximately 100 cycles per generated instruction. Most
of this time is taken up by register management; just laying out the instructions
in memory requires much less overhead. icode generates code roughly three to
eight times more slowly than vcode. Again, much of this overhead is due to
register allocation: the choice of register allocator can signi�cantly in
uence icode
performance.

40 � Poletto, Hsieh, Engler, Kaashoek

ms hash dp binary pow dfa heap mshl unmshl ntn ilp query

Benchmark

0

50

100

150

200

250

C
yc

le
s/

ge
ne

ra
te

d
in

st
ru

ct
io

n
Code generation
Environment binding

Fig. 27. Dynamic code generation overhead using vcode.

5.3.1 vcode Overhead. Figure 27 breaks down the code generation overhead of
vcode for each of the benchmarks. The vcode back end generates code at approx-
imately 100 cycles per generated instruction: the geometric mean of the overheads
for the benchmarks in this paper is 119 cycles per instruction. The cost of environ-
ment binding is small | almost all the time is spent in code generation.
The code generation overhead has several components. The breakdown is di�cult

to measure precisely and varies slightly from benchmark to benchmark, but there
are some broad patterns:

|Laying instructions out in memory (bitwise operations to construct instructions,
and stores to write them to memory) accounts for roughly 15% of the overhead.

|Dynamically allocating memory for the code, linking, delay slot optimizations,
and prologue and epilogue code add approximately another 25%.

|Register management (vcode's putreg/getreg operations) accounts for about 50%
of the overhead.

|Approximately 10% of the overhead is due to other artifacts, such as checks on
the storage class of dynamic variables, the overhead of calling code generating
functions, etc.

These results indicate that dynamic register allocation, even in the minimal
vcode implementation, is a major source of overhead. This cost is unavoidable
in `C's dynamic code composition model; systems that can statically allocate reg-
isters for dynamic code should therefore have a considerable advantage over `C in
terms of dynamic compile-time performance.

5.3.2 icode Overhead. Figure 28 breaks down the code generation overhead of
icode for each of the benchmarks. For each benchmark we report two costs. The
columns labeled L represent the overhead of using icode with linear scan register

`C and tcc: A Language and Compiler for Dynamic Code Generation � 41

ms hash dp binary pow dfa heap mshl unmshl ntn ilp query

Benchmark

0

500

1000

C
yc

le
s/

ge
ne

ra
te

d
in

st
ru

ct
io

n

U
U

U

U

U

U U

U
U

U

U

U

L
L

L

L

L
L

L L

L

L

L

L

Code generation

Register allocation

Live interval construction

Live variable analysis

Setup/FG construction

IR layout

Environment binding

Fig. 28. Dynamic code generation overhead using icode. Columns labeled L denote icode with
linear scan register allocation; those labeled U denote icode with a simple allocator based on

usage counts.

allocation based on precise live variable information. The columns labeled U repre-
sent the overhead of using icode with the simple allocator that places the variables
with the highest usage counts in registers. Both algorithms are described in Sec-
tion 3.3.2.2. For each benchmark and type of register allocation, we report the
overhead due to environment binding, laying out the icode IR, creating the
ow
graph and doing some setup (allocating memory for the code, initializing vcode,
etc.), performing various phases of register allocation, and �nally generating code.

icode's code generation speed ranges from about 200 to 800 cycles per instruc-
tion, depending on the benchmark and the type of register allocation. The geomet-
ric mean of the overheads for the benchmarks in this paper, when using linear scan
register allocation, is 615 cycles per instruction.

The allocator based on usage counts is considerably faster than linear scan, be-
cause it does not have to compute live variables and live intervals, and does not
need to build a complete
ow graph. By contrast, the traditional graph coloring
register allocator (not shown in the �gure) is generally over twice as slow as the
linear scan allocator. Graph coloring is a useful reference algorithm, but it is not
practical for dynamic code generation: linear scan is faster and produces code that
is usually just as good. At the other extreme, the usage count allocator is faster
than linear scan and often makes good allocation decisions on small benchmarks;
however, it sometimes produces very poor code (for example, dfa and heap). As a
result, linear scan is the default allocator for icode, and the one for which we show
performance results in Figures 25 and 26.

42 � Poletto, Hsieh, Engler, Kaashoek

In addition to register allocation and related liveness analyses, the main sources of
overhead are
ow graph construction and code generation. The latter roughly cor-
responds to the vcode code generation overhead. Environment binding and laying
out the icode intermediate representation are relatively inexpensive operations.

6. RELATED WORK

Dynamic code generation has a long history [Keppel et al. 1991]. It has been used
to increase the performance of operating systems [Bershad et al. 1995; Engler et al.
1995; Pu et al. 1995; Pu et al. 1988], windowing operations [Pike et al. 1985], dy-
namically typed languages [Chambers and Ungar 1989; Deutsch and Schi�man
1984; H�olzle and Ungar 1994], and simulators [Witchel and Rosenblum 1996; Veen-
stra and Fowler 1994]. Research on `C and tcc grew out of work on DCG [Engler
and Proebsting 1994], a low-level dynamic code generation system. Earlier descrip-
tions of the `C language and tcc have been published elsewhere [Engler et al. 1995;
Poletto et al. 1997].
Other languages also provide the ability to create code at run time. For example,

most Lisp dialects [Kelsey et al. 1998; Steele Jr. 1990], Tcl [Ousterhout 1994], and
Perl [Wall et al. 1996], provide an \eval" operation that allows code to be generated
dynamically. This approach is extremely
exible but, unfortunately, comes at a high
price: since these languages are dynamically typed, little code generation cost can
be pushed to compile time.
Keppel addressed some of the issues in retargeting dynamic code generation [Kep-

pel 1991]. He developed a portable system for modifying instruction spaces on a
variety of machines. His system dealt with the di�culties presented by caches and
operating system restrictions, but it did not address how to select and emit actual
binary instructions. Keppel, Eggers, and Henry [Keppel et al. 1993] demonstrated
that dynamic code generation can be e�ective for several di�erent applications.
There has been much recent work on specialization and run-time compilation

in C. Unlike `C, which takes an imperative approach to expressing dynamic code
generation, and requires the programmer to explicitly manipulate dynamic code
objects, most of these systems adopt a declarative approach. In this model, the
programmer annotates the C source code with directives that identify run-time
constants and (possibly) specify various code generation policies, such as the ag-
gressiveness of specialization and the extent to which dynamic code is cached and
reused. Dynamic code generation happens automatically in such systems.
One such system has been developed at the University of Washington [Auslan-

der et al. 1996; Grant et al. 1997]. The �rst UW compiler [Auslander et al. 1996]
provided a limited set of annotations and exhibited relatively poor performance.
That system performs data-
ow analysis to discover all derived run-time constants,
given the run-time constants speci�ed by the programmer. The second system,
DyC [Grant et al. 1997], provides a more expressive annotation language and sup-
port for several features, including polyvariant division (which allows the same
program point to be analyzed for di�erent combinations of run-time invariants),
polyvariant specialization (which allows the same program point to be dynamically
compiled multiple times, each specialized to di�erent values of a set of run-time
invariants), lazy specialization, and interprocedural specialization. These features
allow the system to achieve levels of functionality similar to `C, but in a completely

`C and tcc: A Language and Compiler for Dynamic Code Generation � 43

di�erent style of programming. DyC does not provide mechanisms for creating
functions and function calls with dynamically determined numbers of arguments.
For simple forms of specialization, DyC sometimes generates code more quickly
than tcc using vcode. For more complex forms of specialization (such as generat-
ing a compiling interpreter from an interpreter), DyC is approximately as fast as
tcc using icode.
Another automatic dynamic code generation system driven by user annotations

is Tempo [Consel and Noel 1996]. Tempo is a template-based dynamic compiler
derived from GNU CC. It is similar to DyC, but provides support for only function-
level polyvariant division and specialization, and does not provide means of setting
policies for division, specialization, caching, and speculative specialization. In ad-
dition, it does not support specialization across separate source �les. Unlike DyC,
however, it performs conservative alias and side-e�ect analysis to identify partially
static data structures. The performance data indicates that Tempo's cross-over
points tend to be slightly worse than DyC, but the speedups are comparable, which
indicates that Tempo generates code of comparable quality, but more slowly. Since
Tempo does not support complex specialization mechanisms, though, its expres-
siveness is weaker than that of DyC and `C. The Tempo project has targeted `C as
a back end for its run-time specializer.
Fabius [Leone and Lee 1996] is a dynamic compilation system based on partial

evaluation that was developed in the context of a purely functional subset of ML.
It uses a syntactic form of currying to allow the programmer to express run-time
invariants. Given the hints regarding run-time invariants, Fabius performs dynamic
compilation and optimization automatically. Fabius achieves fast code generation
speeds, but `C is more
exible than Fabius. In Fabius, the user cannot directly
manipulate dynamic code, and unlike in Tempo and DyC, the user has no recourse
to additional annotations for controlling the code generation process. In essence,
Fabius uses dynamic compilation solely for its performance advantages, extending
to run time the applicability of traditional optimizations such as copy propagation
and dead code elimination.
The Dynamo project [Leone and Dybvig 1997] is a successor to Fabius. Leone and

Dybvig are designing a staged compiler architecture that supports di�erent levels
of dynamic optimization: emitting a high-level intermediate representation enables
\heavyweight" optimizations to be performed at run time, whereas emitting a low-
level intermediate representation enables only \lightweight" optimizations. The
eventual goal of the Dynamo project is to build a system that will automatically
perform dynamic optimization.
From a linguistic perspective, the declarative systems have the advantage that

most annotations preserve the semantics of the original code, so it is possible to
compile and debug a program without them. Knowing exactly where to insert the
annotations, however, can still be a challenge. Also, importantly, only DyC seems
to provide dynamic code generation
exibility comparable to that of `C. Further-
more, even with DyC, many common dynamic code programming tasks, such as the
various lightweight compiling interpreters presented in this paper, involve writing
interpreter functions no less complicated than those one would write for `C. In the
end, the choice of system is probably a matter of individual taste.
From a performance perspective, declarative systems can often allow better static

44 � Poletto, Hsieh, Engler, Kaashoek

optimization than `C, because the control
ow within dynamic code can be deter-
mined statically. Nonetheless, complicated control
ow, such as loops containing
conditionals, can limit this advantage. For example, in DyC, the full extent of
dynamic code cannot in general be determined statically unless one performs full
multi-way loop unrolling, which can cause prohibitive code growth. Finally, only
Leone and Lee [Leone and Lee 1996] consistently generate code signi�cantly more
quickly than tcc; as we described above, their system provides less functionality
and
exibility than `C.

7. CONCLUSION

This paper has described the design and implementation of `C, a high-level language
for dynamic code generation. `C is a superset of ANSI C that provides dynamic code
generation to programmers at the level of C expressions and statements. Not unlike
Lisp, `C allows programmers to create and compose pieces of code at run time. It
enables programmers to add dynamic code generation to existing C programs in a
simple, portable, and incremental manner. Finally, the mechanisms that it provides
for dynamic code generation can be mapped onto statically typed languages other
than ANSI C.
tcc is a portable and freely available implementation of `C. Implementing `C

demonstrated that there is an important trade-o� between the speed of dynamic
code generation and the quality of the generated code. As a result, tcc supports
two runtime systems for dynamic code generation. The �rst of these, vcode, emits
code in one pass and only performs local optimizations. The second, icode, builds
an intermediate representation at run time and performs other optimizations, such
as global register allocation, before it emits code.
We have presented several example programs that demonstrate the utility and ex-

pressiveness of `C in di�erent contexts. `C can be used to improve the performance
of database query languages, network data manipulation routines, math libraries,
and many other applications. It is also well-suited for writing compiling interpreters
and \just-in-time" compilers. For some applications, dynamic code generation can
improve performance by almost an order of magnitude over traditional C code;
speedups by a factor of two to four are not uncommon.
Dynamic code generation with tcc is quite fast. vcode dynamically generates

one instruction in approximately 100 cycles; icode dynamically generates one in-
struction in approximately 600 cycles. In most of our examples, the overhead of
dynamic code generation is recovered in under 100 uses of the dynamic code; some-
times it can be recovered within one run.
`C and tcc are practical tools for using dynamic code generation in day-to-day

programming. They also provide a framework for exploring the trade-o�s in the use
and implementation of dynamic compilation. A release of tcc, which currently runs
on MIPS and SPARC processors, is available at http://pdos.lcs.mit.edu/tickc.

ACKNOWLEDGMENTS

Vivek Sarkar was instrumental in the development of the linear scan register allo-
cation algorithm, which grew out of his work on spill-code minimization within a
single basic block. Eddie Kohler provided valuable feedback on the language and

`C and tcc: A Language and Compiler for Dynamic Code Generation � 45

on vcode register allocation. Jonathan Litt patiently rewrote parts of xv in `C
while tcc was still immature, and thus helped us �nd several bugs.

A. `C GRAMMAR

The grammar for `C consists of the C grammar given in Harbison and Steele's C
reference manual [Harbison and Steele Jr. 1991] with the additions listed below,
and the following restrictions:

|An unquoted-expression can only appear inside a backquote-expression, and can-
not appear within another unquoted-expression.

|A backquote-expression cannot appear within another backquote-expression.

|cspecs and vspecs cannot be declared within a backquote-expression.

unary-expression: backquote-expression j unquoted-expression
unquoted-expression: at-expression j dollar-expression
backquote-expression: ` unary-expression j ` compound-statement

at-expression: @ unary-expression

dollar-expression: $ unary-expression

pointer: cspec type-quali�er-listopt j vspec type-quali�er-listopt
j cspec type-quali�er-listopt pointer j vspec type-quali�er-listopt pointer

REFERENCES

Auslander, J., Philipose, M., Chambers, C., Eggers, S., and Bershad, B. 1996. Fast, e�ec-
tive dynamic compilation. In Proceedings of the SIGPLAN '96 Conference on Programming
Language Design and Implementation. Philadelphia, PA, 149{159.

Bershad, B. N., Savage, S., Pardyak, P., Sirer, E. G., Fiuczynski, M., Becker, D., Eggers,
S., and Chambers, C. 1995. Extensibility, safety and performance in the SPIN operating
system. In Proceedings of the Fifteenth ACM Symposium on Operating Systems Principles.
Copper Mountain, CO, 267{284.

Birrell, A. D. and Nelson, B. J. 1984. Implementing remote procedure calls. ACM Transac-
tions on Computer Systems 2, 1 (Feb.), 39{59.

Briggs, P. and Harvey, T. 1994. Multiplication by integer constants.
http://softlib.rice.edu/MSCP.

Chaitin, G. J., Auslander, M. A., Chandra, A. K., Cocke, J., Hopkins, M. E., and Mark-
stein, P. W. 1981. Register allocation via coloring. Computer Languages 6, 47{57.

Chambers, C. and Ungar, D. 1989. Customization: Optimizing compiler technology for SELF,
a dynamically-typed object-oriented programming language. In Proceedings of PLDI '89. Port-
land, OR, 146{160.

Clark, D. D. and Tennenhouse, D. L. 1990. Architectural considerations for a new generation
of protocols. In ACM Communication Architectures, Protocols, and Applications (SIGCOMM)
1990. Philadelphia, PA.

Consel, C. and Noel, F. 1996. A general approach for run-time specialization and its application
to C. In Proceedings of the 23th Annual Symposium on Principles of Programming Languages.
St. Petersburg, FL, 145{156.

Deutsch, P. and Schiffman, A. 1984. E�cient implementation of the Smalltalk-80 system. In
Proceedings of the 11th Annual Symposium on Principles of Programming Languages. Salt Lake
City, UT, 297{302.

Draves, S. 1995. Lightweight languages for interactive graphics. Technical Report CMU-CS-95-
148, Carnegie Mellon University. May.

Engler, D. and Proebsting, T. 1994. DCG: An e�cient, retargetable dynamic code genera-
tion system. Proceedings of the Sixth International Conference on Architectural Support for
Programming Languages and Operating Systems, 263{272.

46 � Poletto, Hsieh, Engler, Kaashoek

Engler, D. R. 1996. vcode: a retargetable, extensible, very fast dynamic code generation system.

In Proceedings of the SIGPLAN '96 Conference on Programming Language Design and Imple-
mentation. Philadelphia, PA, 160{170. http://www.pdos.lcs.mit.edu/~engler/ vcode.html.

Engler, D. R., Hsieh, W. C., and Kaashoek, M. F. 1995. `C: A language for high-level, e�-
cient, and machine-independent dynamic code generation. In Proceedings of the 23th Annual
Symposium on Principles of Programming Languages. St. Petersburg, FL, 131{144.

Engler, D. R., Kaashoek, M. F., and O'Toole Jr., J. 1995. Exokernel: an operating system

architecture for application-speci�c resource management. In Proceedings of the Fifteenth ACM
Symposium on Operating Systems Principles. Copper Mountain Resort, Colorado, 251{266.

Forsythe, G. E. 1977. Computer Methods for Mathematical Computations. Prentice-Hall, En-
glewood Cli�s, NJ.

Fraser, C. 1980. copt. ftp://ftp.cs.princeton.edu/pub/ lcc/contrib/copt.shar.

Fraser, C. W. and Hanson, D. R. 1990. A code generation interface for ANSI C. Technical
Report CS-TR-270-90, Department of Computer Science, Princeton University.

Fraser, C. W. and Hanson, D. R. 1995. A retargetable C compiler: design and implementation.
Benjamin/Cummings Publishing Co., Redwood City, CA.

Fraser, C. W., Henry, R. R., and Proebsting, T. A. 1992. BURG | fast optimal instruction
selection and tree parsing. SIGPLAN Notices 27, 4 (April), 68{76.

Grant, B., Mock, M., Philipose, M., Chambers, C., and Eggers, S. 1997. Annotation-
directed run-time specialization in C. In Symposium on Partial Evaluation and Semantics-
Based Program Manipulation. Amsterdam, The Netherlands.

Harbison, S. and Steele Jr., G. 1991. C, A Reference Manual , Third ed. Prentice Hall,
Englewood Cli�s, NJ.

H�olzle, U. and Ungar, D. 1994. Optimizing dynamically-dispatched calls with run-time type
feedback. In Proceedings of the SIGPLAN '94 Conference on Programming Language Design
and Implementation. Orlando, Florida, 326{335.

Kelsey, R., Clinger, W., Rees, J., (editors), et al. 1998. Revised5 Report on the Algorithmic
Language Scheme. http://www-swiss.ai.mit.edu/~jaffer/r5rs_toc.html.

Keppel, D. 1991. A portable interface for on-the-
y instruction space modi�cation. In Fourth
International Conference on Architectural Support for Programming Languages and Operating
Systems. Santa Clara, CA, 86{95.

Keppel, D., Eggers, S., and Henry, R. 1991. A case for runtime code generation. TR 91-11-04,
University of Washington.

Keppel, D., Eggers, S., and Henry, R. 1993. Evaluating runtime-compiled value-speci�c op-
timizations. TR 93-11-02, Department of Computer Science and Engineering, University of
Washington.

Leone, M. and Dybvig, R. K. 1997. Dynamo: A staged compiler architecture for dynamic
program optimization. Tech. Rep. 490, Indiana University Computer Science Department.
Sept.

Leone, M. and Lee, P. 1996. Optimizing ML with run-time code generation. In Proceedings of the
SIGPLAN '96 Conference on Programming Language Design and Implementation. Philadel-
phia, PA, 137{148.

Ousterhout, J. 1994. Tcl and the Tk Toolkit. Addison-Wesley Professional Computing Series.
Addison-Wesley, Reading, MA.

Pike, R., Locanthi, B., and Reiser, J. 1985. Hardware/software trade-o�s for bitmap graphics
on the Blit. Software|Practice and Experience 15, 2 (Feb.), 131{151.

Poletto, M., Engler, D. R., and Kaashoek, M. F. 1997. tcc: A system for fast,
exible, and
high-level dynamic code generation. In Proceedings of the ACM SIGPLAN '97 Conference on
Programming Language Design and Implementation. Las Vegas, NV, 109{121.

Poletto, M. and Sarkar, V. 1998. Linear scan register allocation. ACM Transactions on
Programming Languages and Systems. (To appear).

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. 1992. Numerical
Recipes in C , Second ed. Cambridge University Press, Cambridge, UK.

`C and tcc: A Language and Compiler for Dynamic Code Generation � 47

Pu, C., Autry, T., Black, A., Consel, C., Cowan, C., Inouye, J., Kethana, L., Walpole,

J., and Zhang, K. 1995. Optimistic incremental specialization: streamlining a commerical
operating system. In Proceedings of the Fifteenth ACM Symposium on Operating Systems
Principles. Copper Mountain, CO.

Pu, C., Massalin, H., and Ioannidis, J. 1988. The Synthesis kernel. Computing Systems 1, 1,
11{32.

SPARC International 1994. SPARC Architecture Manual Version 9. SPARC International, En-
glewood Cli�s, New Jersey.

Steele Jr., G. 1990. Common Lisp, Second ed. Digital Press, Burlington, MA.

Thekkath, C. A. and Levy, H. M. 1993. Limits to low-latency communication on high-speed
networks. ACM Transactions on Computer Systems 11, 2 (May), 179{203.

Veenstra, J. and Fowler, R. 1994. MINT: a front end for e�cient simulation of shared-memory
multiprocessors. In Modeling and Simulation of Computers and Telecommunications Systems.
Durham, NC.

Wall, L., Christiansen, T., and Schwartz, R. 1996. Programming Perl. O'Reilly & Associates,
Sebastopol, CA.

Witchel, E. and Rosenblum, M. 1996. Embra: Fast and
exible machine simulation. In Pro-
ceedings of ACM SIGMETRICS '96 Conference on Measurement and Modeling of Computer
Systems. Philadelphia, PA, 68{79.

Received October 1997, Revised May 1998, Accepted June 1998.

