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1. INTRODUCTION

This paper grew out of our experiences with software
model checking after several years of using static analysis
to find errors. We initially thought that the trade-off be-
tween the two was clear: static analysis was easy but would
mainly find shallow bugs, while model checking would re-
quire more work but would be strictly better — it would
find more errors, the errors would be deeper, and the ap-
proach would be more powerful. These expectations were
often wrong.

This paper documents some of the lessons learned over the
course of using software model checking for three years and
three projects. The first two projects used both static anal-
ysis and model checking, while the third used only model
checking but sharply re-enforced the trade-offs we had pre-
viously observed.

The first project, described in Section 2 and 3, checked
FLASH cache coherence protocol implementation code [24].
We first used static analysis to find violations of FLASH-
specific rules (e.g., that messages are sent in such a way
as to prevent deadlock) [7] and then, in a follow-on work,
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applied model checking [26]. One interesting feature of the
model checking work was to use static analysis to do au-
tomatic model extraction, which was more effective than a
prior manual verification effort [31]. One startling result (for
us) was that despite the depth of model checking, it found
many fewer errors than relatively shallow static analysis (8
errors versus 34).

The second project, described in Section 4, checked the
AODV network protocol [10]. We eliminated the need to
extract a model by building CMC [29], a model checker that
directly checks C implementations. We used CMC to check
three AODV implementations, and then statically analyzed
them. The results indicate a clear success for model check-
ing. The model checker found 42 errors (roughly 1 per 300
lines of code). About half of these errors involve protocol
properties that would be difficult to check statically. How-
ever, in the class of properties both methods could handle,
static analysis found more errors than model checking. Also,
static analysis involved considerably less effort: it took just
a couple of hours, while our model checking effort took ap-
proximately three weeks.

The final project, described in Section 5, used CMC on
the Linux TCP network stack implementation. This project
was clearly motivated by our desire to test the applicability
of model checking on large systems. This project exposed
several unexpected scalability issues with model checkers.
Initially, we thought that our only major hurdle would be
the state explosion problem. Instead, we spent many months
and multiple iterations in just getting our first working en-
vironment model for the TCP implementation. Even this
required us to take an extreme approach of running the en-
tire Linux Kernel along with the TCP implementation in
CMC. Once we had a working model, another challenge was
to decide on the right environment inputs to trigger various
protocol behaviors. Section 5 elaborates these problems and
our attempted solutions. Our model checking effort is still
in progress and CMC has till date found 4 errors in the TCP
implementation.

While this paper describes drawbacks of software model
checking compared to static analysis, it should not be taken
as a jeremiad against the approach. We reside very much
in the “model checking camp” and intend to continue pur-
sue research in the area. A main goal of the paper is to
recount what surprised us when using model checking for



reasonably large-scale checking of software implementations.
While more seasoned minds might not have made the same
misjudgments, our discussions with other researchers have
shown that our naivete was not entirely unreasonable.

This paper is a set of case studies, rather than a broad
study of static analysis and model checking. While this lim-
its the universality of our conclusions, we believe the general
trends we observe will hold, though the actual coefficients
observed in practice will differ.

1.1 The model checking approach

All of our case studies use traditional explicit state space
model checkers [13, 22]. We do no innovation in terms of the
actual model checking engine, and so the challenges we face
should roughly mirror those faced by others. We do believe
our conclusions optimistically estimate the effort needed to
model check code. A major drawback of most current model
checking approaches is the need to manually write a spec-
ification of the checked system. Both of our approaches
dispense with this step. The first automatically extracts a
slice of functionality that is translated to the model checking
language, similar to the automatic extraction work done by
prior work, notably Bandera [9] and Feaver [21]. Our second
approach eliminates extraction entirely by model checking
the implementation code directly.

1.2 The static analysis approach

At a high level, our static analysis checking is based
on compiler extensions (“checkers”) that are dynamically
linked into the compiler and applied down a control-flow
graph representation of source code [14]. Conceptually
these extensions examine one path at a time. I.e., they
are flow sensitive, rather than using a more traditional
dataflow framework that would conflate information at pro-
gram joint points. Extensions can perform either intra- or
inter-procedural analysis at the discretion of the checker
writer. In practice, the approach has been effective, finding
hundreds to thousands of errors in Linux, BSD, and various
commercial systems.

While we make claims about “static analysis” in general,
this paper focuses on our own static analysis approach, since
it is the one we have personal experience. The approach
has several idiosyncratic features compared to other static
approaches that should be kept in mind.

First, our approach is unsound: code with errors can pass
silently through a checker. We generally optimize checkers
to find bugs, rather than demonstrating their absence. In
particular, when checkers cannot determine a needed fact
they typically do not emit a warning. In contrast, a sound
approach would conservatively emit an error report when-
ever it cannot prove the error cannot occur. Unsoundness
allows us to aggressively check properties beyond the prac-
tical reach of sound tools, which would overwhelm the user
with false positives.

Second, we use relatively shallow data flow analysis rather
than a deeper simulation based approach such as in PRE-
fix [4]. While we perform a mild amount of path sensitive
analysis to prune infeasible paths [20], we do not model the
heap, do not track most variable values, and have limited
aliasing information. The flip side of this shallowness is
that we do not have to build an accurate, working models
of the environment or of code we do not have. In contrast,

while the PREfix tool can find deeper errors, it requires that
models of missing functions be supplied. ! If we relied more
heavily on simulation, then the trade-offs might look dif-
ferent as well. In a sense simulation brings static analysis
closer to classic model checking, and hence share some of its
weaknesses as well as strengths.

Third, the approach tries as much as possible to avoid
the need for annotations, in part by using statistical analy-
sis to infer properties to check [15] (such as which functions
must be paired, which functions can return null, etc.). The
need for annotations would dramatically increase the effort
necessary to use the tool, and to an extent diminish its ad-
vantages

There are many papers on the approach, so we elide a
thorough description here. The paper [14] gives a reason-
able, though dated overview. The paper [20] gives a more
up-to-date view of the system. The tutorial in [6] has a se-
ries of checker examples and references that the interested
reader can use for a more thorough introduction.

2. CASE STUDY: FLASH

This section gives a short summary of using both static
analysis and model checking to find bugs in FLASH cache
coherence protocol implementation code. The next section
focuses on the lessons learned from these efforts. Readers
familiar with Chou et al. [7] can skip Section 2.1 and 2.2.
Readers familiar with Lie et al. [26] can skip Section 2.1
and 2.3.

2.1 FLASH overview

The Stanford FLASH multiprocessor [24] is a scalable
cache-coherent DSM machine that implements its communi-
cation protocols in software that runs on an embedded pro-
cessor in its programmable node controller, MAGIC. While
implementing such protocols in software facilitates great
flexibility, it places a serious burden on the programmer.
The code executes on each cache miss, so it must be egre-
giously optimized. At the same time a single bug in the
controller can deadlock or livelock the entire machine.

We checked five protocols with static analysis and four
with model checking. These protocols range between 10K to
18K lines of code and have long control flow paths. The av-
erage control flow path ranges from 73 to 183 lines of code,
while the maximum is around 400 lines. Intra-procedural
paths that span 10-20 conditionals is not uncommon. For
our purposes, FLASH protocol implementation is a repre-
sentative of low-level code that exists on a variety of em-
bedded systems. It is highly optimized, difficult to read,
and thus difficult to get correct. For the purpose of find-
ing errors, FLASH was a hard test: by the time we checked
it had already undergone over five years of testing under
simulation, on a real machine, and via manual formal veri-
fication [31].

2.2 Checking FLASH with static analysis

While FLASH code was difficult to reason about, it had
the nice property that many of the rules it had to obey
mapped clearly to source code and thus were readily checked
with static analysis. The following rule is a representative

!Our approach has found errors in code checked by PREfix,
so the depth of checking is not entirely one-sided.



example. In the FLASH code, incoming message buffers
are read using the macro MISCBUS_READ_DB. All reads must
be preceded by a call to the macro WAIT_FOR_DB_FULL to
synchronize the buffer contents. To increase parallelism,
WAIT_FOR_DB_FULL is only called along paths that require ac-
cess to the buffer contents, and it is called as late as possible
along these paths. This rule can be checked statically by
traversing all program paths until we either (1) hit a call
to WAIT_FOR_DB_FULL (at which point we stop following that
path) or (2) hit a call to MISCBUS_READ_DB (at which point
we emit an error). A checker for this rule, written in metal
can be found in Appendix A. In general the static check-
ers roughly follow a similar pattern: they match on specific
source constructs and use a extensible state machine frame-
work to ensure that the matched constructs occur (or do not
occur) in specific orders.

Table 1 gives a representative listing of the FLASH rules
we checked. Since the primary job of a FLASH node is to
receive and respond to requests, most rules involve correct
message handling. Most errors were caused by failure to
deallocate message buffers (9 errors) and by mis-specifying
the length of a message (18 errors). The other rules were
not easier, but generally had less locations where they had
to be obeyed. There were 33 errors in total and 28 false
positives. We obtained these numbers three years ago. Us-
ing our current system would have reduced the false positive
rate, since most were due to simple infeasible paths, which
our current system would eliminate. (However, the severity
of the errors made the given rate perfectly acceptable.)

2.3 Model checking FLASH

Our model checking approach used static analysis to re-
duce the work required by automatically extract models
from source code. We started the project after noticing the
close correspondence between a hand-written specification
of FLASH (from [31]) with the implementation code itself.
FLASH code made heavy use of stylized macros and naming
conventions. These “latent specifications” [15] made it rel-
atively easy to pick out the code relevant to various impor-
tant operations (message sends, interactions with the I/O
subsystem, etc).

Model checking with our system involves the following
four steps. First, the user provides a metal extension that
when run by our extensible compiler marks specific source
constructs, such as all message buffer manipulations or
sends. These extensions are essentially abstraction func-
tions. Second, the system then automatically extracts a
backward slice of the marked code, as well as its dependen-
cies. Third, the system translates the sliced code to a Murep
model. Fourth, the Mury model checker checks the gener-
ated model along with a hand-written environment model.

Model checking allowed us to validate properties out of the
reach of static analysis. Table 2 lists a representative subset.
Surprisingly, there were relatively few errors in these prop-
erties as compared to the more shallow properties checked
with static analysis.

3. LESSONS FROM FLASH

Outside the model checking community, the general per-
ception is that since model checking is “deeper” than static
analysis then if you take the time to model check code, you

Invariants

The RealPtrs counter does not overflow (RealPtrs
maintains the number of sharers)

Only a single master copy of each cache line exists
(basic coherence)

A node can never put itself on the sharing list (sharing
list is only for remote nodes)

No outstanding requests on cache lines that are al-
ready in Exclusive state

Nodes do not send network messages to themselves

Nodes never overflow their network queues

Nodes never overflow their software queues (queue
used to suspend handlers)

The protocol never tries to invalidate an exclusive line

Protocol can only put data into the processor’s cache
in response to a request

Table 2: Description of a representative subset of
invariants checked in four FLASH protocols using
model checking. Checking these with static analysis
would be difficult.

will find more errors. We have not found this to be true. In
the FLASH case, static analysis found roughly four times as
many bugs as model checking, despite the fact that we spent
more time on the model checking effort. Further, this differ-
ential was after we aggressively tried to increase bug counts.
We were highly motivated to do so since we had already
published a paper that found 34 bugs (Chou et al [7]); pub-
lishing a follow-on paper for a technique that found fewer
was worrisome. In the end, six of the eight bugs found with
model checking had been found by static analysis. Only two
bugs were new — these were counter overflows that were
deeper in the sense that it required a deep execution trace
to find them. While they could potentially have been found
with static analysis, doing so would have required a special-
case checker.

The main underlying reason for the lower bug counts is
simple: model checking requires running code, static anal-
ysis does not. This fact has important implications. We
discuss several below.

First, model checking requires a working model of the
environment. Environments are often messy and hard to
specify. The formal model will simplify it. There were five
main simplifications that caused the model checker to miss
FLASH bugs found with static analysis:

1. We did not model cache line data, though we did model
the state that cache lines were in, and the actual mes-
sages that were sent. This omission both simplified
the model and shrank the state space. The main im-
plication in terms of finding errors was that there was
nothing in the model to ensure that the data buffers
used to send and receive cache lines were allocated,
deleted or synchronized correctly. As a result, model
checking missed 13 errors: all nine buffer allocation
errors and all four buffer race conditions.

2. We did not model the FLASH I/O subsystem, pri-
marily because it was so intricate. This caused the



Rule

“WAIT_FOR_DB_FULL must come before MISCBUS_READ DB”

“The has_data parameter for message sends must match
the specified message length (be one of LEN_NODATA,
LEN_WORD, or LEN_CACHELINE)”

“Message buffers must be: allocated before use, deallo-
cated after, and not used after deallocation.”
“Message handlers can only send on pre-specified ‘lanes”’

Total

| Intuition | LOC | Bugs | FP |

The synchronizing wait call is needed to | 12 4 1

ensure the all the data has arrived.

Message lengths and has_data are de- | 29 18 2

coupled to simplify hardware design.

Identical to memory semantics, except | 94 9 25

there are limited numbers of buffers.

Deadlock prevention. 220 2 0
355 33 28

Table 1: Representative FLASH rules, a simplistic intuitions for each, the number of lines of code for a MC
rule checker (LOC), the number of bugs the checker found (Bugs) as well as the number of false positives
(FP). We have elided other less useful checkers; in total, they found one more bug at a cost of about 30 false

positives.

model checker to miss some of the message-length er-
rors found by the static checker.

3. We did not model uncached reads or writes. The node
controllers support reads and writes that explicitly by-
pass the cache, going directly to memory. These were
used by rare paths in the operating system. Because
these paths were rare it appears that testing left a rel-
atively larger number of errors on them as compared
to more common paths. These errors were found with
static analysis but missed by the model checker be-
cause of this model simplification.

4. We did not model message “lanes.” To prevent dead-

lock, the real FLASH machine divides the network into
a number of virtual networks (“lanes”). Each different
message type has an associated lane it should use. For
simplicity, our model assumed no such restrictions. As
a result, we missed the two deadlock errors found with
static analysis.

5. FLASH code has many dual code paths — one used
to support simulation, the other used when running on
the actual FLASH hardware. Errors in the simulation
code were not detected since we only checked code that
would actually run on the hardware.

Taking a broader view, the main source of false negatives
is not incomplete models, but the need to create a model
at all. This must be done for each new system to check
and, given finite resources, the cost of doing so can preclude
checking new code or limit checking to just code or proper-
ties whose environment can be specified with a minimum of
fuss. In the case of FLASH, time limitations caused us to
skip checking the “sci” protocol, thereby missing five buffer
management errors (three serious, two minor).

Second, as with dynamic checking tools, model checking
can only find errors on executed code paths. It turns out
that in practice it is actually quite difficult to exercise large
amounts of code. In the case of the networking code we
describe in the next two sections, we execute around 50% of
all statements (not paths!), despite aggressive attempts to
raise this count higher. We do not have a good notion of
how many paths we miss in FLASH, but an uncontroversial
guess would put it in the range of substantial to enormous.

Unchecked code has the unpleasant feature that it is silent
— you receive no warning when code is not exercised with
the model checker. While we use path coverage tools (i.e.,
static analysis) to partially detect this problem, these tend
to work at a very coarse-level — whether the code was ever
executed, rather than whether it was explored on all pos-
sible paths or with all “interesting values.” Additionally,
detection is diagnostic rather than constructive. Knowing
that code is missed turns out to be a large step from know-
ing how to drive the model checker to hit it. In contrast,
static analysis can traverse all program paths, finding errors
on any of them. This is a crucial ability.

Static analysis: Push a button, check millions of
lines of code. The first order limit on how many bugs
you find is the number of properties you check times the
number of times each property must be obeyed by code. In
practice, this calculation degenerates to how much code you
check. In this respect, static analysis has a clear advantage:
it can check any code that you can compile. It does not
require executing code, thus does not require an accurate
model nor clever abstraction tricks. It can do all path cov-
erage automatically. It allows you to check the environment
itself, rather than abstracting it away. (Section 4 gives some
quantitative measurements of how much this matters.) Op-
erationally, one of the most important effects is that if code
calls unresolved functions, you do not need to build a model
or even understand what functions do to make progress —
simply skip them. As a result, in our experience, it can
easily be one to two orders of magnitude (in time, effort,
cleverness) to model check code.

A second feature is that since it is so easy to run over all
paths in large code bases, static analysis can gather large
amounts of statistical information used to automatically in-
fer which properties to check [15]. More checked properties
equals more bugs. In contrast, model checking tends to be
limited to a much smaller number of dynamic code paths
and hence a more limited window for inference.

3.1 Observed model checking advantages

Neither static analysis nor model checking are at the stage
where one dominates the other. We believe static analysis
will generally win in terms of finding as many bugs as pos-
sible. In this sense it is better, since less bugs gets users
closer to the desired goal of the absence of bugs (“total cor-



rectness”). However, model checking has two strengths that
seem difficult to match.

First, since model checking executes the code, it can check
properties not easily visible to static inspection, in particu-
lar invariants over the data structures and values produced
by code. Examples include the invariants that a routing ta-
ble does not have loops, that a tree is balanced, or (from
FLASH) that only a single master copy of each cache line
exists. In contrast, static analysis tends to work best at
checking properties directly mirrored in the source code it-
self, such as ensuring that function calls happen in specific
orders. In some sense, static analysis checks source code
well, but checks the implications of the source code rela-
tively poorly. On the other hand, model checking checks
implications relatively better, but because of the problems
with abstraction and coverage, can be less effective checking
the actual code itself.

Second, model checking checks for actual errors, rather
than having to reason about all the different ways the er-
ror could be caused. If it catches a particular error type it
will do so no matter the cause of the error. For example,
a model checker that runs the code directly will detect all
null pointer dereferences, deadlocks, or any operation that
causes a runtime exception since the code will crash or lock
up. Importantly, it will detect them without having to un-
derstand and anticipate all the ways that these errors could
arise. In contrast, static analysis cannot do such end-to-end-
checks, but must instead look for specific ways of causing a
given error. Errors caused by actions that the checker does
not know about or cannot analyze will not be flagged. In our
case, we check many properties that are undecidable, and so
minimize false positives by looking for errors only in specific
analyzable contexts. For example, most of our analysis can
detect errors that occur on a particular code path, but are
much weaker at finding errors that require heap analysis.
The robustness of model checking (or its depth) would be
the main ability we would like to take from it for our static
analysis work.

4. CASE STUDY: AODV

This section describes our experiences finding bugs in the
AODV routing protocol implementation using both model
checking and static analysis. We first describe CMC, the
custom model checker we built, give an overview of AODV,
and then compare the bugs found (and not found) by both
approaches.

41 CMC Overview

The approach we used on the FLASH protocol had two
problems. First, it required the user to select and auto-
matically mark stand-alone subparts of a system. Doing
so required an intimate understanding the checked system,
making it difficult to scale the approach to large systems.
Second, Muryp, like most modeling languages lacks many
C constructs such as pointers, dynamic allocation, and bit
operations. These omissions make translation difficult. Our
attempts in building a “generic” C to Mury translator failed.
Avoiding the problem by abstracting the C features not sup-
ported in Mury would severely restrict the class of bugs that
the model checker can find.

We countered these problems by building CMC, a model

checker that checks programs written in C [29]. CMC was
motivated by the observation that there is no fundamental
reason model checkers must use a weak input language. As
it executes the implementation code directly, it removes the
need to provide an abstract model, tremendously reducing
the effort require to model check a system. As the imple-
mentation captures all the behaviors of the system, CMC is
no longer restricted to behaviors that can be represented in
conventional modeling languages.

CMC is a Mure-like tool for programs written in C or
C++. It explores the state space of a given system explic-
itly by storing states. The state of a system is captured by
its entire context: the global variables, heap, stack and the
machine registers. Each process in the model checked sys-
tem can be emulated by one or more threads. CMC sched-
ules these threads to explore the state space of the system.
During model checking, CMC checks for a variety of safety
properties represented as boolean functions written in C.

As CMC deals with actual implementations and not their
abstract models, it has to deal with much larger states and
significantly larger state spaces. However, CMC is designed
to be a bug-finding tool rather than a tool to check for ab-
solute correctness. By using approximate reduction tech-
niques, CMC is able to alleviate the state space explosion
problem. CMC uses hashcompaction [36] to significantly
reduce the state space requirements at the cost of a small
risk of missing errors. Also, CMC employs various heuris-
tics [29] to automatically remove unnecessary variables from
the state.

4.2 AODV Overview

AODV (Ad-hoc On-demand Distance Vector) proto-
col [10] is a loop-free routing protocol for ad-hoc networks.
It is designed to work in an environment of mobile nodes,
withstanding a variety of network behaviors such as node
mobility, link failures and packet losses. AODV guarantees
that the network is free of routing loops at all instants. How-
ever, it is plausible that errors in the protocol specification
or its implementation can introduce loops in the network. If
any such routing loop appears in the network, the protocol
has no mechanisms to detect or recover from them. Thus,
the loops persist forever, completely breaking the function-
ing of the protocol. As a consequence, it is important that
both the AODV protocol specification and any AODV im-
plementation be tested for loop freeness as thoroughly as
possible.

AODV has a key property that greatly simplifies the envi-
ronment model. The only input it requires is a user request
for a route to a destination. This can be easily modeled as
a nondeterministic input that is enabled in all states. Apart
from this, an AODV node responds to two events, a timer
interrupt and a packet received from other AODV nodes in
the network. Both are straightforward to model.

4.3 Model Checking AODV with CMC

CMC checked three publicly available implementations of
AODV: mad-hoc (Version 1.0) [27], Kernel AODV (Ver-
sion 1.5) [23], and AODV-UU (Version 0.5) [16]. While it
is not clear how well these implementations are tested, they
have been used in different testbeds and network simulation
environments [28]. On average, the implementations contain
6000 lines of code.



Protocol Checked | Correctness Environment State
Code Specification | network | stubs | Canonicalization
mad-hoc 3336 301 400 100 165
Kernel AODV 4508 301 400 266 179
AODV-UU 5286 332 400 128 185

Table 3: Lines of implementation code vs. CMC modeling code.

Types of Checks
Generic Assertions
Routing Loop Invariant

Examples
Segmentation violations, memory leaks, dangling pointers.
The routing tables of all nodes do not form a routing loop.

Assertions on Routing Table Entries | At most one routing table entry per destination.

No route to self in the AODV-UU implementation.

The hop count of the route to self is 0, if present.

The hop count is either infinity or less than the number of nodes
in the network.

Assertions on Message Fields

All reserved fields are set to 0.
The hop count in the packet can not be infinity.

Table 4: Properties checked in AODV.

For each implementation, the model consists of a core set
of unmodified files. This model executes along with an en-
vironment which consists of a network model and simplified
implementations (or “stubs”) for the implementation func-
tions not included in the model. Table 3 describes the model
and environment for these implementations. All three mod-
els reuse the same network model. While performing this
case study, CMC did not have the functionality to automat-
ically extract and canonicalize system states. The AODV
models additionally include code to perform these functions.

As CMC was being developed during this case study, it
is difficult to gauge the time spent in building these models
as opposed to building the model checker itself. As a rough
estimation, it took us two weeks to build the first, mad-hoc
model. Building subsequent models was easier, and it took
us one more week to build both these models.

Table 4 describes the assertions CMC checked in the
AODV implementations. CMC automatically checks cer-
tain generic assertions such as segmentation violations. Ad-
ditionally, the model contains an invariant to check if the
routing tables are loop free at all instants. Also, the model
checks each message generated and routes inserted into the
routing table for specific assertions. Table 3 reflects the lines
of code required to add these correctness properties.

CMC found a total of 42 errors. Of these, 35 are unique
errors in the implementations and one is an error in the
underlying AODV specification. Table 5 summarizes the
set of bugs found. The Kernel AODV implementation has 5
bugs (shown in parentheses in the table) that are instances
of the same bug in mad-hoc. The AODYV specification bug
causes a routing loop in all three implementations.

4.4 Comparison with Static Analysis

We then used MC to check the AODV implementations
for errors. MC checked for generic errors such as memory
leaks and invalid pointer accesses. The entire process of
checking the three implementations and analyzing the out-
put for errors took two hours. MC found a total of 34 bugs.

We expect that if we invested more effort in writing AODV-
specific rules or in running additional checkers that we would
have found more errors.

Table 6 compares the bugs found by MC and CMC. It
classifies the bugs found into two broad classes depending
on the properties violated: generic and protocol specific.
In the class of generic errors, our results are similar to the
FLASH case study. MC found many more bugs than CMC.
Except for one, MC found all the bugs that CMC could find.

The underlying reason is that MC checks all paths in all
code that we can compile. It does not require us to abstract
away parts of the system, nor does it require coming up with
inputs to drive the system to execute a given code path.
In contrast, CMC can only execute code triggered by the
specific environment model. Of the 13 errors not found by
CMC, 6 are in parts of the code that are either not included
in the model or stubbed out during environment modeling.
For instance, MC found two cases of mishandled malloc
failures in multicast routing code. All our CMC models
omitted this code.

CMC missed more errors due to subtle mistakes in the
environment model. For example, the mad-hoc implementa-
tion uses a send_datagram() function to transmit a packet to
the network. A memory leak in the implementation is trig-
gered only when this function fails. In our environment how-
ever, we erroneously modeled the send_datagram() function
to always succeed. Thus, CMC never detected this memory
leak. CMC missed a total of 6 errors due to such errors in
the environment. MC found 1 more error in dead code that
can never be executed by any CMC model.?

The one error that MC missed requires reasoning about
the length of a linked list. One function in the mad-hoc
implementation assumes that the input argument points to a
linked list of a particular length. However, when this linked
list is allocated in another function, a malloc failure can
cause the list to be smaller than expected, leading to a null

2MC also found a null pointer violation in one of our models!
‘We obviously do not count this error.



mad-hoc | Kernel AODV | AODV-UU

Mishandling malloc failures 4 6 2
Memory Leaks 5 3 0

Use after free 1 1 0
Invalid Routing Table Entry 0 0 1
Unexpected Message 2 0 0
Generating Invalid Packets 3 2 (2) 2
Program Assertion Failures 1 1 1) 1
Routing Loops 2 3 (2 2 (1)
Total 18 16 (5) 8 (1)
LOC per bug 185 285 661

Table 5: Number of bugs of each type in the three implementations of AODV. The figures in parenthesis
show the number of bugs that are instances of the same bug in the mad-hoc implementation.

Bugs Found
by CMC & MC | by CMC alone | by MC alone

Mishandling malloc failures 11 1 8

Generic Properties: | Memory Leaks 8 - 5
Use after free 2 - -

Invalid Routing Table Entry - 1 -

Unexpected Message - 2 -

Protocol Specific: | Generating Invalid Packets - 7 -
Program Assertion Failures - 3 -

Routing Loops - 7 -

Total 21 21 13

Table 6: Comparing MC and CMC. Note that for the MC results we only ran a set of generic memory and
pointer checkers rather than writing AODV-specific checkers. Generating the MC results took less than two
hours, rather than the weeks required for the AODV results.

pointer violation. Present static analyzers have difficulty
detecting such invariants of heap objects.

In the class of protocol-specific errors, CMC found 21 er-
rors while MC found none. Partly this was because it did
not look for them. However, the bulk of these errors would
be difficult to catch using static analysis. Properties such
as routing loops involve invariants of objects across multiple
processes. Detecting such loops statically would require rea-
soning about the entire execution of the protocol, a difficult
task.

Many properties are local to a process, but still difficult
to detect statically without generating many false positives.
For instance, AODV-UU requires that the routing table of
a node does not contain a route to itself. This would imply
that the node has to route packets to a neighbor to reach
itself. This implementation inserts a route to the src-id field
in a received route response message. However, there are no
checks to ensure that the src-id received is not the same as
the current node identifier. While a static analyzer could
look for such unchecked routing table insertions, it cannot
determine which of these are harmless. On a first look it ap-
pears that src-id can never be the node identifier as no node
sends a route response to itself. However, CMC found a spe-
cific instance of the protocol (“gratuitous route response”)
in which such a packet can be generated.

The results from this case study support the use of model
checking techniques to find errors in systems. These results
also suggest that in order for model checkers to be effective

and to justify the additional effort, they should emphasize
on properties that cannot be checked statically.

5. CASE STUDY: TCP

After our success with AODV, we decided to model check
the Linux TCP implementation. The key motivation be-
hind this case study is to evaluate the effectiveness of model
checking large and well tested systems. The TCP proto-
col is mature and the particular implementation we used
(from the stable 2.4.19 release of the Linux kernel) is widely
used in the Internet today. This implementation contains
approximately 50, 000 lines of code.

During the course of our case study, we realized that mod-
eling the environment for a complex system is just hard.
Section 5.1 describes the problems we faced in modeling the
environment for the Linux TCP implementation in the con-
text of our initial failed attempt. After spending months,
we realized that the only meaningful way to build an en-
vironment is to run the entire Linux Kernel along with the
TCP implementation in CMC. Section 5.2 describes this ap-
proach.

A related problem is that a given environment model
might restrict the system behaviors explored by the model
checker. As seen in our previous case studies, these restric-
tions in the environment lead to missed errors. Section 5.3
describes two coverage metrics we used to evaluate a partic-
ular environment model, and Section 5.4 describes our effort
in using these metrics to refine the environment model. Fi-



nally, Section 5.5 presents our model checking results.

5.1 Difficulties in Environment Modeling

All model checkers require that an appropriate model of
the environment be provided along with the system. While
modeling the environment can be trivial for a relatively
small system, doing so for a large system like TCP is not
straightforward. Building an environment model requires
the following steps.

1. Defining the System Boundary: The system to be
model checked is typically embedded with other mod-
ules in a larger execution context. For instance, the
TCP implementation is executes in the Linux kernel.
The first step involves defining a boundary between
the system and its environment. The modules within
this boundary comprise the system.

2. Closing the System: The system is then closed by
providing stubs for all the interface functions in the
system boundary. Additionally, a user has to provide
models of entities such as a network that interact with
the system.

3. Providing Environment Triggers: Once the envi-
ronment is modeled, a user determines the set of in-
puts the environment provides to the system model.
For each input, the user has to provide an appropriate
guard condition that determines when the particular
input is enabled.

5.1.1 Failed Approach: The TCP Library Model

In our first attempt, we followed an approach similar to
the one that worked for AODV: include a core set of modules
in the system and abstract the remaining modules in the
environment. However, this approach failed to produce a
working model.

Defining the System Boundary: Following conven-
tional wisdom, we attempted to make the checked system as
small as possible. Including additional modules into the sys-
tem increases the system state, and can potentially increase
the state space. Starting from the core set of TCP mod-
ules, we conservatively added a few tightly coupled modules
(such as IP) to simplify the system boundary. Even then,
the system boundary consisted of as many as 150 interface
functions.

Closing the System: To close the system, we manually
provided stub implementations for all the interface functions
in the system boundary. Despite our efforts to implement
these stubs correctly, it was just impossible to get them
right.

Faulty stubs typically result in false behaviors that CMC
will (falsely) flag as errors in the checked code. These false
positives can be very hard to debug and fix. For instance,
after days of debugging we found that a memory leak of
a socket structure was caused by incorrect stub implemen-
tation in the timer model. The TCP implementation uses
a function mod_timer () to modify the expiration time of a
previously queued timer. This function’s returns value de-
pends on whether the timer is pending when the function is
called. Our initial stub implementation did not capture this
behavior. This incorrect stub confused the reference count-
ing mechanism of the socket structures leading to a memory

leak. (As TCP timers are members of the socket structure,
a queued timer amounts to an extra reference to the parent
socket.)

Providing Environment Inputs: We also had trouble
determining the right guard conditions for certain inputs in
the environment. For instance, a user process can never
get access to a partially connected TCP socket using the
standard system call interface. Modeling this required us to
carefully disable certain socket functions at different TCP
states.

5.1.2 Hard Learned Lessons

All of the problems mentioned above arise because of our
insufficient knowledge of the different interfaces within the
kernel. It is quite possible that after sufficient iterations
of fixing errors in the environment model, we would have
converged on a model that implemented all the interfaces
accurately. However, subsequent iterations involved bugs
that were more subtle and took longer to debug.

Thus it is essential that the system and the environment
be split across well-defined and documented boundaries.
This greatly simplifies the environment modeling. Also, as
these boundaries are less likely to change in future revisions,
the same environment model can be reused as the system
implementation evolves. While doing so might require the
model checker to handle larger states and state spaces, we
believe the benefits of a clean environment model outweigh
the increase in state sizes.

5.2 The Linux TCP Model

Expanding from the TCP module, the model can only be
bounded by the following two well-defined interfaces: the
system call interface that defines the interaction between
user processes and the kernel, and the “hardware abstraction
layer” that defines the interaction between the kernel and
the architecture. Bounding the TCP module at these two
interfaces includes the entire kernel in our model.

To run the entire kernel in CMC, we had to “port” the
kernel to CMC by providing a suitable hardware abstraction
layer. Our approach is very similar to User Mode Linux
(UML) [37].

Once the system boundary is clearly defined, defining the
inputs and their guard conditions became straightforward.
Two user processes, one behaving as a TCP server and the
other as a TCP client triggered the TCP model by making
standard socket calls. The TCP model accessed the CMC
network through an appropriate network device driver. The
environment nondeterministically fired the clock interrupt
to enable timers.

Apart from the generic errors that CMC automatically
checks, we added a few TCP specific assertions to our model.
For instance, the model checks if a packet generated by the
implementation has a valid checksum. To check the im-
plementation for protocol compliance, the model simulta-
neously runs a TCP reference model along with the imple-
mentation. The reference model performs the basic state
machine transitions described in [34]. The model provides
the same inputs to both the implementation and the refer-
ence model and checks if their states are consistent.CMC
reports any inconsistency as a protocol violation error.

5.3 Measuring the Search Effectiveness



Even after a working environment model is built, one
problem still remains: the environment at hand might not
trigger all the behaviors in the system. The TCP protocol
is complex and includes many functionalities that are en-
abled by various configuration variables and socket options.
While enabling more inputs can potentially trigger more be-
haviors in the system, doing so can drastically increase the
state space. This clearly indicates a need for search effective-
ness metrics by which different environment models can be
evaluated. As CMC almost never completes the state space
search, such an effectiveness measure can also indicate how
well a particular system is tested.

We used two ways to measure the effectiveness of the
search. The first measure is the line coverage achieved dur-
ing model checking. While this measure need not correspond
to how well the system has been tested, it is helpful in de-
tecting the parts that are not tested.

The second measure, which we call “protocol coverage,”
corresponds to the behaviors of the protocol tested by the
model checker. We calculate protocol coverage as the line
coverage achieved in the TCP reference model mentioned
above. This roughly represents the degree to which the pro-
tocol transitions have been explored.

5.4 lterative Environment Refinement

We used the metric discussed in the previous section to
iteratively refine the model to explore more system behav-
iors. In many instances, low coverage helped in pointing out
errors in our environment model.

Table 7 describes the coverage achieved during the model
refinement process. For a particular model, we mea-
sured coverage cumulatively using three search techniques:
breadth-first, depth-first, and random. In random search,
each generated state is given a random priority. Table 7 also
reports the branching factor of the state space as a measure
of its size. For the first three models the branching factor is
calculated from the number of states in the queue at depth
10 during a breadth first search. For the fourth model, CMC
ran out of resources at depth 8, and the branching factor is
calculated at this depth.

The first model consists of a TCP client communicating
with a TCP server. Once the connection is established, the
client and server exchange data in both directions before
closing the connection. This standard model discovered two
protocol compliance bugs in the TCP implementation.

Starting from this model, we iteratively refined the model
by manually inspecting the line coverage and protocol cover-
age to determine the behavior we wanted to include next. In
the second model, the server nondeterministically decides to
actively initiate a connection. This enables additional tran-
sitions in the protocol that handle simultaneous connection
of two peers. In the third model, both the client and the
server nondeterministically decide to close a connection dur-
ing data transfer. This improved the protocol coverage and
resulted in the discovery of two more errors.

Still, the environment did not allow enough “bad” be-
havior. As an attempt to generate “random” packets, we
nondeterministically toggled certain key control flags in the
TCP packet. These corrupted packets triggered a lot of error
recovery code in the implementation. But they also resulted
in an enormous increase in the state space.

Tweaking the environment the right way to achieve a

more effective search still remains an interesting but un-
solved problem. It is not clear how much of this refinement
process can be automated.

5.5 TCP Model Checking Results

We have detected four errors in the Linux TCP implemen-
tation. All are instances where the implementation fails to
meet the TCP specification. These errors are fairly complex
and require an intricate sequence of events to trigger the
error.

The following is a brief description of two of the bugs CMC
found. While a detailed understanding of the TCP proto-
col [34] is required to completely understand these bugs, the
purpose of the description below is to provide a general fla-
vor of errors CMC is able to find.

The first bug involves the processing of RST (reset) pack-
ets. A RST packet is used to indicate an abnormal close
of a connection. In response to a RST packet, a TCP im-
plementation is required to free any resources used by the
connection and gracefully inform the application. However,
in the SYN_RCVD state, the Linux TCP implementation
fails to process certain RST packets. Specifically, a RST
packet without the ACK bit set will be ignored. This re-
sults in unnecessary lockup of kernel resources.

The second bug involves an inappropriate handling of the
ACK field in a packet. An ACK acknowledges the reliable
transfer of a data segment to the sender. Also, specific ACKs
indicate an opportunity for the sender to increase its con-
gestion window and send more data. However, using wrong
ACKs for this purpose can result in a decrease in the data
transfer performance. CMC found an instance where the
implementation used a duplicate ACK packet to increase
its congestion window. The specification requires that such
duplicate packets be ignored.

5.6 Lessons from Model Checking TCP

This section summarizes some key lessons we learned dur-
ing our TCP model checking effort.

1. No model is as good as the implementation itself. Any
modification, translation, approximation done is a po-
tential for producing false positives, danger of checking
far less system behaviors, and of course missing critical
€errors.

2. Any manual work required in the model checking pro-
cess becomes immensely difficult as the scale of the sys-
tem increases. In order to scale, model checker should
require as little user input, annotations and guidance
as possible.

3. If an unit-test framework is not available, then define
the system boundary only along well-known, public
interfaces.

4. Try to cover as much as possible: the more code you
trigger, the more bugs you find, and more useful model
checking is.

Model checking currently requires spending a lot of effort
on designing the environment. Table 8 gives crude mea-
surements of the environment modeling effort for TCP and
AODV. Most of this effort can be eliminated if the system
is designed for unit testing, as much of the work needed to



Description Line Coverage | Protocol Coverage | Branching Factor | Additional Bugs
1 | Standard server and client 474 % 64.7 % 2.91 2
2 | Model 1 + simultaneous connect 51.0 % 66.7 % 3.67 0
3 | Model 2 + partial close 52.7 % 79.5 % 3.89 2
4 | Model 3 + message corruption 50.6 % 84.3 % 7.01 0
Combined Coverage 55.4 % 92.1 %

Table 7: Coverage achieved during model refinement. The branching factor is a measure of the state space

size.
Model Closing the System Environment Triggers || Correctness Specifications
lines of code time lines of code time lines of code time
AODV 568 1 week 400 1 week 311 1 day
TCP library 3406 1.5 months 806 2 days 50 1 day
TCP with UML Linux 6583 3 weeks 1415 2 weeks 718 3 days

Table 8: Effort required for modeling the environment, in terms of the lines of code required and the time
taken. The time reported here is approximate and is only intended to show the relative effort required. Also
for the TCP with UML Linux model, we closed the system by modifying the UML code. We counted the
number of lines in all the files in which at least one modification was made.

unit test code is identical to that needed to build an en-
vironment model. Unfortunately, this is not the case with
most systems we encounter.

One way to mitigate the environment modeling effort is
to provide model checking compatible standard libraries. As
many software systems use the same libraries, the effort in-
volved can be amortized over many model checking projects.
Providing tools to automate the environment modeling pro-
cess is an interesting area of future research.

6. GENERAL LESSONS

6.1 Myth: model checking = no false positives

A common claim, at least among static analysis re-
searchers is that model checkers do not suffer from false posi-
tives. They most certainly do. In several of our projects, the
majority of the errors found during development were false
positives, primarily due to under-constrained or misspecified
environments and “harness” code. In a real system, there
will be huge numbers of interfaces with typically non-obvious
or at least rich semantics. At some point a line has to be
drawn and these interfaces faked so that the model checker
can work on a subset of the system. However, it is easy to
get such functions slightly wrong. Since the point of model
checking is to find corner cases, it will persistently root out
misunderstandings in environmental interfaces. These mis-
takes can take several days to track down, since they often
just lead to the model-checked code crashing. The answer
to the question “is it a bug in the code or in our model?”
comes down on the latter irritatingly often. It is hard to
overestimate the difficulty in correctly modeling the parts
of the system you attempt to cut out.

6.2 Ease-of-inspection really matters

A surprise for us from our static analysis work was just
how important ease-of-inspection is. Errors that are too
hard to inspect might as well not be flagged since the user
will ignore them (and, for good measure, may ignore other

errors on general principle). For example, the commercial
PREfix tool explicitly avoided finding race conditions and
deadlocks simply because the errors were too difficult to
inspect [33]. Our initial commercial efforts have similarly
scaled back on analysis sophistication to focus on errors that
were easy to reason about. Given two bugs, one easy to
examine and one hard, then in the absence of additional
discriminatory information (severity, likelihood) the first is
better.

6.3 Myth: more analysis is always better

We, like many others in the field, initially believed that
more analysis was always better then less, whether it came
in the form of model checking, simulation, or deeper static
analysis. This view was simplistic: adding more analysis
does not always improve results and can even make them
worse. The ideal error is easy to diagnosis, is a true error,
and is easy to fix. Generally speaking, the more analysis
required to find an error the worse it is on all three of these
metrics:

1. Typically, the more analysis used to find an error, the
harder the error is to reason about. During inspec-
tion, the user must mentally emulate each analysis step
(how aliases were determined, whether an interproce-
dural call path is feasible, etc) to determine how plau-
sible they are and how they can be countered. The
more steps the more work this emulation becomes.

2. As the number of analysis steps increases, so does the
chance that one of them went wrong. If there is no
analysis, then there can be no approximation mistakes.
The more analysis there is, the more widespread the
effects of a mistake.

3. Hard errors to find are often hard errors to fix.

As an example, our initial static checkers were almost syn-
tactic [14]. As a result, the errors they found were almost
certainly errors and were trivial to inspect. As we added



more interprocedural support, errors became more difficult
to inspect. In fact, we often deliberately reverted to much
weaker analysis to find errors than our system supports, sim-
ply because specializing to these error classes cherry picks
easy-to-diagnose bugs. The most common case is that we
often design checkers explicitly to use intraprocedural anal-
ysis despite the fact that our system supports transparent
interprocedural analysis: Local bugs are much easier to di-
agnose than interprocedural ones. Even if we do use strong
analysis, we almost always rank error reports based on the
number of analysis steps required. For example, bugs involv-
ing aliasing or spanning procedure calls are demoted below
those that do not.

6.4 Myth: all bugs matter

We initially thought that all bugs matter and all bugs will
be fixed. This is not true. If you find a small number of bugs,
people will fix them all. If you find thousands, they will
not. We have observed this both with open source projects
and with commercial systems — many of the bugs we have
detected are still open. Prior to our work, the PREfix group
observed a similar dynamic: giving someone a stack of 1,000
defects is an effective way to elicit a blank stare and then
the question “that’s great, but which ones matter?”

Its not enough to find a lot of bugs. As tools become more
effective, this will become more obvious. What users really
want is to find the 5-10 bugs that “really matter” — e.g., the
ones that will hurt a large number of customers, absorb the
bulk of debugging time, etc. A general, not-unreasonable
belief is that bugs will follow a 90-10 distribution. Thus,
out of 1000 errors, 100 will account for most of the pain and
900 will be a waste of resources to fix. In fact, fixing these
900 errors may worsen system quality by introducing addi-
tional errors or draining resources from other efforts (testing,
code reviews). Unfortunately, while current tools can easily
segregate errors into different types that can be inspected
by priority (security holes before storage leaks before null
pointer dereferences) they lack effective methods for identi-
fying the “most important” errors. Identifying these would
be a good area of future research.

7. RELATED WORK

This paper discusses our experiences in using two ap-
proaches to find errors in systems: static analysis and model
checking. While the benefits and difficulties of these two ap-
proaches are individually well understood, to our knowledge
this is the first paper to compare the two approaches and
evaluate them with respect to the effort involved and the
results produced on different sets of properties.

The area of using static analysis for bug finding has
become extremely active. Some of the more well-known
tools include include PREfix (mentioned above), ESP [11],
ESC [17, 25], the Warlock race detector [35], and Wag-
ner’s security work [39, 38]. Others have gone towards more
language-based approach, such as Vault [12] and Foster et
al [18]. Or CCured [30], a hybrid static-dynamic tool for de-
tecting memory errors that uses a type inference algorithm
to eliminate the need for many dynamic checks. Finally, the
SLAM project combines aspects of both static analysis and
model checking [1, 2].

Many verification tools statically extract an abstract

model for a given system. Bandera [9] is a sophisticated
model extractor for Java programs. It uses a given temporal
property as a slicing criteria to extract relevant parts of the
system. Also, Bandera accepts user provided annotations to
abstract data values to specific subranges. FeaVer [21] uses
a set of user defined mappings to extract abstract models
from C code. These models are checked using the SPIN
model checker.

Two prior verification tools have used the idea of directly
model checking the implementation. Verisoft [19] executes
C programs and has been successfully used to check com-
munication protocols [5]. Java PathFinder [3] consists of
a modified Java virtual machine that can check concurrent
Java programs. The difficulties of environment modeling
have been discussed before both in the context of Verisoft [8]
and Java PathFinder [32].

8. CONCLUSION

This paper has described tradeoffs between both static
analysis and model checking, as well as some of the surprises
we encountered while applying model checking to large soft-
ware systems.
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APPENDIX
A. CHECKER EXAMPLE

Figure 1 provides an example of a metal checker. This
checker checks for the rule “WAIT_FOR_DB_FULL must come
before MISCBUS_READ_DB.” Checkers are built of variable dec-
larations, states, patterns that can match in the state, and
arbitrary actions written in C code that perform operations
when their transition occurs (allowing them to check more
than finite state properties). The checker declares two vari-
ables, addr and buf as wildcard variables that will pattern
match any C expression (any_expr). The remainder of the
checker defines a simple state machine with a single state,
start. SMs start execution in the first state they define (in
this case start). From its start state, the SM uses two pat-
terns to search for all uses of the macros WAIT_FOR_DB_FULL
and MISCBUS_READ DB. When either matches, the scalar ex-
pression passed as their arguments will be placed in addr
and, for MISCBUS_READ DB, buf. The matching rule will then
cause the SM to transition to the (optional) state (the to-
ken after the ==> operator) and then execute the (optional)
action. If a rule’s state is omitted, the SM remains in the
current state. The start state has two rules. If the first
rule’s pattern for WAIT_FOR_DB_FULL matches, then the han-
dler has correctly waited for its data buffer to fill, and any
subsequent read on this execution path will be valid. Thus,
the checker transitions to the stop state, which causes it
to stop running on the current path. If the second rule’s
pattern matches, then the execution path being checked did
not wait for its buffer to fill and it had a buffer race condi-
tion error. This rule’s associated action will then print out
an error message. Since the rule does not give a transition
state, the checker will remain in the start state to catch
further violations along the path.



sm wait_for_db {

// Declare two variables ’addr’ and ’buf’ that can
// match any expression. */

decl any_expr addr, buf;

// The checker begins in the first state (here ’start’).
// This state searches for two patterns conjoined

// with the ’|’ operator. */

start:

// The handler is allowed to read the data buffer
// after calling ’WAIT_FOR_DB_FULL’ --- once the

// pattern below matches, we transition to the
// ’stop’ state, which stops checking on this
// path.

{ WAIT_FOR_DB_FULL(addr); } ==> stop

// 1f we hit a read of the data buffer in this
// state, the handler did not do a WAIT_FOR_DB_FULL
// first so emit an error and continue checking. */
| { MISCBUS_READ_DB(addr, buf); } ==

{ err("Buffer not synchronized"); }

Figure 1: A simplified metal checker to find vio-
lations of the rule “WAIT_FOR_DB_FULL must come be-
fore MISCBUS_READ_DB.” It searches FLASH code look-
ing for any data buffer read (using MISCBUS_READ_DB)
not preceded by a synchronizing wait call (using
WAIT_FOR_DB_FULL).



