
Z-Ranking: Using Statistical Analysis to Counter

the Impact of Static Analysis Approximations

Ted Kremenek1 and Dawson Engler1

Computer Systems Laboratory
Stanford University

Stanford, CA 94305, U.S.A.
{kremenek,engler}@cs.stanford.edu

Abstract. This paper explores z-ranking, a technique to rank error re-
ports emitted by static program checking analysis tools. Such tools often
use approximate analysis schemes, leading to false error reports. These
reports can easily render the error checker useless by hiding real errors
amidst the false, and by potentially causing the tool to be discarded
as irrelevant. Empirically, all tools that effectively find errors have false
positive rates that can easily reach 30–100%. Z-ranking employs a simple
statistical model to rank those error messages most likely to be true errors
over those that are least likely. This paper demonstrates that z-ranking
applies to a range of program checking problems and that it performs
up to an order of magnitude better than randomized ranking. Further, it
has transformed previously unusable analysis tools into effective program
error finders.

1 Introduction

Most compiler analysis has been built for optimization. In this context, analysis
must be conservative in order to preserve program correctness after optimization.
If analysis lacks the power to guarantee a decision is correct in a given context,
then it is not acted on. Recently there has been a surge of interest in static
program checking [1–7]. Here, the rules are somewhat different. First, sound
tools must emit an error unless the tool can guarantee that code cannot violate
the check. Insufficiently powerful analyses are no longer silent; instead they fail
to suppress erroneous messages. Second, even unsound tools that miss errors
make mistakes since practicality limits their (and their sound cousin’s) analysis
sophistication. These false reports can easily render both types of tools useless
by hiding real errors amidst the false, and by potentially causing the tool to
be discarded as irrelevant. Empirically, all tools that effectively find errors have
false positive rates that can easily reach 30–100% [8, 4, 6, 7].

This paper examines how to use statistical techniques to manage the im-
pact of these (inevitable) analysis mistakes. Program checking takes on different
forms, but generally analysis results can be conceived as reports emitted by the
analysis tool that take on two forms: (1) locations in the program that satisfied
a checked property and (2) locations that violated the checked property. In this

paper the former will be referred to as successful checks and the latter as failed

checks (i.e., error reports). The underlying observation of this paper is that the
most reliable error reports are based on analysis decisions that (1) flagged few
errors (or failed checks) in total and (2) led to many successful checks. There are
two reasons for this. First, code has relatively few errors — typical aggregate
error rates are less than 5% [9]. We expect valid analysis facts to generate few
error reports. Second, in our experience, analysis approximations that interact
badly with code will often lead to explosions of (invalid) error reports. In con-
trast, the code containing a real error tends to have many successful attempts
at obeying a checked property and a small number of errors.

This paper develops and evaluates z-ranking, a technique to rank errors from
most to least probable based on the observations above. It works by (1) counting
the number of successful checks versus unsuccessful checks; (2) computing a
numeric value based on these frequency counts using the z-test statistic [10];
and (3) sorting error reports based on this number. Z-ranking works well in
practice: on our measurements it performed better than randomized ranking
98.5% of the time. Moreover, within the first 10% of reports inspected, z-ranking
found 3-7 times more real bugs on average than found by randomized ranking.
It has transformed checkers we formerly gave up on into effective error finders.
Z-ranking appears to be especially helpful for “safe” software checking analysis,
where conservative analysis approximations often interact in unfortunate ways
with source code.

In our experience, ranking of error reports is useful in several ways:

1. When a tool is first applied to code, the initial few error reports should be
those most likely to be real errors so that the user can easily see if the rest
of the errors are worth inspecting. In our experience, and from discussions
with other practitioners, users tend to immediately discard a tool if the first
two or three error reports are false positives, giving these first few slots an
enormous importance. Empirically, z-ranking almost never propagates even
a single false positive into these locations.

2. Even if the initial reports are good, in many cases a run of (say) 10-20 invalid
errors will cause a user to stop inspecting the tool’s output; therefore it is
crucial to rank as many true errors at the top.

3. Often rules are only approximately true in that they only apply to certain
contexts. For example, shared variables often do not need to be protected
by locks in initialization code. Fortunately, when the checker hits a context
where the rule does not hold there will be no (or few) successful checks
and many error reports, allowing z-ranking to push the invalid errors to the
bottom.

4. A tool may deliberately introduce approximations for scalability or speed or
to check richer properties than is generally possible. If invalid errors follow
the patterns that we hypothesize, then such steps can be taken with some
assurance that when the gamble goes bad, the resulting invalid errors can
be relegated below true errors.

We provided a cursory sketch of z-ranking in previous work [11], but did not
explore it thoroughly and provided no experimental validation; this paper does
both. More explicitly, this paper explores the following three hypotheses:

weak hypothesis: error reports coupled with many successes are probable er-
rors (“success breeds confidence”).

strong hypothesis: error reports coupled with many other error reports are
improbable errors (“failure begets failure”).

no-success hypothesis: error reports with no coupled successful checks are
exceptionally unlikely errors. This is a useful special case of the strong hy-
pothesis.

In our experiments, the weak hypothesis seems to always hold — its effect is
that highly ranked errors tend to be true errors. The strong hypothesis often
holds, but can be violated when errors cluster (see Section 6). Its effect is that
low ranked error reports tend to be invalid errors.

We measure how well these hold up on data for three program property
checkers. Our experimental evaluation uses a mixture of reports from both the
Linux operating system and a commercial (anonymous) code base (referred to as
“Company X”). Linux is a particularly good test since it is a large, widely-used
source code base (we check roughly 2.0 million lines of it). As such, it serves
as a known experimental base. Also, because it has been written by so many
people, it is representative of many different coding styles and abilities. This
helps guard against biasing our conclusions based on the idiosyncrasies of a few
programmers. The commercial code base, which also is extensive in size, further
facilitates studying the generality of our results.

The paper is organized as follows. Section 2 describes z-ranking. Section 3
describes our experimental setup and Sections 4–6 give the results of three check-
ers. Section 7 provides a quantitative analysis of z-ranking’s performance and
how it compares to other schemes. Finally, Section 8 discusses other issues and
Section 9 concludes.

2 Z-Ranking

Abstractly, this paper reduces to solving a simple classification problem: given an
error report, decide whether it is a true error or a false positive. More formally,
let P be the population of all reports, both successful checks and failed checks,
emitted by a program checker analysis tool. P consists of two subpopulations: S,
the subpopulation of successful checks and E , the subpopulation of failed checks
(or error reports). The set of error reports E can be further broken down into two
subpopulations: B, the population of true errors or bugs and F , the population
of false positives. Our classification problem can then be restated as follows:
given an error report x ∈ E , decide which of the two populations B and F it
belongs to. The ideal classification system would make this decision perfectly. A
realistic classification system will not be perfect, since this would imply the static
analysis itself could be perfect, and typically each classification decision will have

differing degrees of certainty. Ranking simply sorts error messages based on the
confidence in the classification.

In general, classification can use many sources of information that seem rele-
vant — the competence of the programmers involved, historical bug reports, and
many others. In this paper, rather than using a priori knowledge of the particu-
lar system being inspected, we use the fact that the populations B and F have
different statistical characteristics. From a statistical point of view, our problem
becomes the following. First, determine measurable differences between B and
F . Second, use these measurements to classify error reports and compute the
certainty associated with each classification. Third, sort the error reports based
on this measurement.

There are many statistical techniques for determining differences between
B and F . In this paper we employ a simple one. Our underlying intuition is
that error reports most likely to be bugs are based on analysis decisions that
(1) generated few failed checks in total and (2) had many successful checks.
Furthermore, error reports based on analysis decisions that (1) generated many
failed checks in total and (2) had few successful checks are likely to be false
positives. These intuitions rely not only on the fraction of checks that were
successes, but also on the number of checks associated with an analysis decision
as well. In simple terms, an explosion of failed checks is a likely indicator that
something is going wrong with the analysis. Moreover, if we only observe a
few failed checks associated with an analysis decision, even if a low number of
successful checks occurred as well, we are less inclined to think that the error
reports must be false positives.

We pursue these intuitions further for the purpose of ranking error reports
first with an explorative example. We then formalize our intuitions using statis-
tical tools and specify the complete z-ranking algorithm.

Lock Example Consider a simple intraprocedural lock program checker that
checks that every call to lock must be eventually paired with a call to unlock.
The program checker will likely conduct a flow-sensitive analysis of the proce-
dure’s control flow graph, attempting to examine all possible paths of execution.
The checker emits a report indicating a successful check if an individual call to
lock was matched by an individual call to unlock. If the checker encounters an
exit point for the procedure before a matching call to unlock is found, however,
it emits an error report (i.e., a failed check).

For this checker, decision analysis focuses around individual lock call sites.
Consider three scenarios: (1) one lock call site has many failed checks associated
with it and no successful ones, (2) a second lock call site has many successful
checks associated with it and only a few failed ones and finally (3) a third
lock call site has a few failed checks and a few successful ones (say of roughly
equal proportion). The first scenario looks very suspicious; the large number of
failed checks and no successful ones indicates the checked rule is violated to an
unusual degree for this lock call site. The failed checks are likely to be false
positives, and we should rank those error reports below those associated with

the second and third lock call site. The second case, however, looks promising.
The large number of successful checks suggests the analysis can handle the code;
consequently the failed checks are likely real errors. Thus, we should rank these
error reports high in the inspection ordering. The third population, however, is
difficult to conclude anything about. Since it does not have an explosion of failed
checks, the analysis tool appears not to be interacting poorly with the code, yet
the few number of successes (and the equal proportion of successes and failures)
does not imply that the rule definitely holds either. We should thus rank the
error reports associated with the third lock call site between the reports for the
other two.

2.1 Statistical Formulation

We now proceed to formalize the insights from the above lock checker example
into a complete ranking algorithm. First observe that for the lock example
we effectively divided the population of checks into three subpopulations, one
associated with each lock call site. Although for the lock checker example we
grouped messages by the source lock call site, different checkers will have similar
notions that sets of successful and failed checks will be associated with a common
analysis point. As a useful formalism, denote G to be the “grouping” operator
that groups sets of successful and failed checks related in this manner together
and partitions the set of reports P . The precise specification of G will be tied to
a specific checker.

Denote {PG1 , . . . ,PGm
} to be the set of subpopulations of P created by G.

Consider any of the subpopulations PGi
of P . Denote the number of successful

checks in PGi
as PGi

.s, and the number of failed checks as PGi
.f . The total

number of checks in PGi
, which is the sum of these two statistics, is denoted

PGi
.n. Clearly the observed proportion of checks in PGi

that were successful
checks is given by:

PGi
.p̂ = PGi

.s/PGi
.n . (1)

For brevity we will refer to PGi
.p̂ as p̂i. A näıve scheme would rank the popu-

lations {PG1 , . . . ,PGm
} simply by their p̂i values. However, this ranking ignores

population size. For example, assume we have two populations of checks. In the
first population, we observe one successful check and two failed checks, thus
p̂i = 1

3 . In the second population, we observe 100 successful checks and 200
failed checks, thus p̂i is also 1

3 . Clearly, the latter observed proportion is much
less likely to be coincidental than the first. We thus wish to rank populations
both by their p̂i values and our degree of confidence in the estimate p̂i.

We do so using hypothesis testing, which is a standard statistical technique
for comparing population statistics such as frequency counts. To do this, we
conceptually treat the checks in PGi

as a sequence of “binary trials:” indepen-
dent and identically distributed events that can take one of two outcomes. This
abstraction essentially models the behavior of the program checker for popula-
tion PGi

as a sequence of tosses from a biased coin that has a probability pi of

labeling a check as a “success” and probability 1 − pi as a “failure.”1 Note that
we do not know pi; our estimate p̂i will converge to it as the population size
increases. A standard statistical measure of the confidence of the value of p̂i as
an estimate for pi is its standard error (SE). If p is the “success” rate, σ2 the
variance, and n the number of observations then the SE for the success rate of
a sequence of binary trials is given by [10]:

SE =
√

n ·
√

σ2/n =
√

p(1 − p)/n =⇒ SEp̂i
=

√

pi(1 − pi)/PGi
.n . (2)

Notice in Equation 2 that the SE takes into account the sample size PGi
.n,

and higher values for PGi
.n lead to lower values for the SE. The SE is often

conventionally used to create confidence intervals that specify that the true value
of pi lies within a certain distance of p̂i with a certain probability. Moreover in
the domain of hypothesis testing, the SE can be used to test how likely a given
p̂i could have been observed assuming some value p0 as the true parameter.2 A
standard hypothesis test for doing this is the z-test [10], which measures how
many standard errors away an observed p̂i is from p0:

z =
observed− expected

SE
=

p̂i − p0

SE
=

p̂i − p0
√

p0(1 − p0)/n
. (3)

Equation 3 provides a distance measure between a pre-specified population and
an observed one. The SE is calculated assuming that p0 is the true success
rate, and the value computed by Equation 3, called the z-score, yields either
a positive or negative measure of divergence of p̂i from p0. The z-test defines a
statistically sound method of measuring the differences between two populations
that incorporates both the observed p̂i values and the population sizes. We can
thus construct a p0 such that populations PGi

that follow the weak hypothesis
have large positive z-scores and those that follow the strong hypothesis have
large negative z-scores. The value of p0 thus serves as the separation point, or
a relative baseline that seeks to differentiate error reports x ∈ B from reports
y ∈ F . Using these notions, we can now state the strong and weak hypotheses
more formally:

weak hypothesis: For a population PGi
with high success rate p̂i and low SE,

the error reports x ∈ (PGi
∩ E) will tend to be true errors, and a proper

choice of p0 will cause the population to have a large positive z-score.
strong hypothesis: For a population PGi

with low success rate p̂i and low SE,
the error reports x ∈ (PGi

∩ E) will tend to be false positives, and a proper
choice of p0 will cause the population to have a large negative z-score.

Notationally we will denote the z-score for population PGi
as PGi

.z. With the
above definitions, population ranking using z-scores becomes straightforward.

1 More formally, each check is modeled as a Bernoulli random variable with probability
pi of taking the value 1 (for a success). A sequence of checks is modeled using the
Binomial distribution [12].

2 In hypothesis testing, p0 is known as the null hypothesis.

We choose p0 so that the conditions of the strong and weak hypotheses gen-
erally hold, then compute the z-scores for each population PGi

and rank those
populations in descending order of their z-scores. The last critical detail is then
how to specify p0. We provide two systematic methods:

Pre-Asymptotic Behavior: Consider the case where each subpopulation of
checks PGi

is “small” (a precise definition of which is given in the next method
for estimating p0), implying a fairly high SE for all p̂i values. In this case it is
not always clear whether a population could be following the strong or weak
hypotheses. Despite this problem, the average population success rate is an in-
tuitive baseline that we can measure divergence from for all populations. This
value is computed as:

p̄ =

(

1

m

) m
∑

i=1

p̂i =

(

1

m

) m
∑

i=1

PGi
.s

PGi
.n

. (4)

In Equation 4 the value m is the number of populations created by G. The average
success rate as a baseline is useful for the following reason. If we let p0 = p̄,
then most populations will have low (in magnitude) z-scores. The populations,
however, that have slightly lower SE values than their cousins and slightly lower
or higher p̂i values will have greater (in magnitude) z-scores, and they will be the
most promising candidates that exhibit the strong or weak hypotheses because
they are departing in the direction of those extremes. Choosing p0 = p̄ institutes
ranking based on this divergence, and those populations that have diverged the
most from the mean will be ranked the highest/lowest in the ranking.

Asymptotic Behavior: When the size of a population PGi
gets large, the SE

value for p̂i becomes reasonably low to believe the general trend we are seeing in
that population. In this case, measuring divergences from the average population
success rate does not adequately capture our expectations of how many true
errors we expect to find, even if a p̂i value for a population is substantially higher
than the mean success rate. The main observation is that populations that are
both large and have a fairly high success rate p̂i but also have a substantial
number of failed checks are likely to have a significant portion of those failed
checks to be false positives. The basic intuition is that there cannot possibly be
that many real errors.

We proceed to formalize these intuitions. For a population of checks, let s
be the number of successes, f the number of failures, and b the number of real
bugs. We define the error rate of a population of successes and failures as [9]:

error rate = b/(s + f) . (5)

The error rate corresponds to the ratio of the number of bugs found to the
number of times a property was checked. Empirically we know that aggregate
error rates are less than 5% [9]. Consider an extreme case of the weak hypothesis

Algorithm 1 Z-Ranking Algorithm

1: APPLY: G to P to create subpopulations: {PG1 , . . . ,PGm}
2: for all PGi

do

3: PGi
.p̂← PGi

.s/PGi
.n

4: if max
PGi

PGi
.n < 51 then

5: p0 ←
(

1

m

)

m
∑

i=1

PGi
.p̂

6: else

7: p0 ← 0.85
8: for all PGi

do

9: if PGi
.s = 0 and using NO-SUCCESS HEURISTIC then

10: Discard PGi

11: else

12: PGi
.z ← (PGi

.p̂− p0)/
√

p0(1− p0)/PGi
.n

13: CREATE equivalence classes {Ez1 , . . . , Ezk
}: Ezi

← {PGj
∩ E|PGj

.z = zi}
14: SORT {Ez1 , . . . , Ezk

} by zi in descending order. Designate that order as
{Ez(1)

, . . . , Ez(k)
}.

15: for all i = 1, . . . , k do

16: Inspect error reports in Ez(i)
using an auxiliary ranking scheme

where all failures are real bugs and we have many successes. Equation 5, along
with our knowledge of error rates, then reduces to the following inequality:

b/(s + b) ≤ 0.5 =⇒ s/(s + b) ≥ 0.95 =⇒ p̂ ≥ 0.95 . (6)

Equation 6 tells us for the extreme case of the weak hypothesis we generally
expect p̂ ≥ 0.95. Furthermore, we desire populations that exhibit this behavior
to be ranked as being highly significant. We calibrate the ranking so that popu-
lations with this success rate (or greater) and small SE are ranked at least two
standard errors away from p0, providing the following constraint:

0.95 − p0 ≥ 2 SE . (7)

This calibration also causes populations with comparably small SE but smaller
p̂i to have z-scores less than 2, which is essentially the property we originally
desired. We also desire that our SE to be adequately small so that our estimate
of p̂i is accurate enough to assume such asymptotic behavior. Thus our second
constraint is:

SE =
√

p0(1 − p0)/n ≤ 0.1 . (8)

Putting Equations 7 and 8 together and solving for p0 and n at the boundary
condition of SE = 0.1 we have p0 = 0.85 and n ≥ 51. Thus n ≥ 51 is our
asymptotic threshold and 0.85 is the p0 we use for ranking.

Refinement: No-Success Heuristic The no-success heuristic discards error
reports in a population that has no successful checks (i.e., PGi

.s = 0). There are

two intuitions for why it works. First, a population with no successes obviously
has the lowest possible number of successes (zero), and thus the least likely
to have any confidence of all. Second, and more subtly, unlike all other cases
of errors, code that has no obeyed example of a checked property is logically
consistent in that it always acts as if the checked rule does not apply. A final
important observation is that if the code is always incorrect, even a single test
case should show it. While programmers rarely test all paths, they often test at
least one path, which would cause them to catch the error.

Sections 4-5 illustrate that in practice the no-success heuristic performs well,
in one case we observe that employing the heuristic results in only inspecting
approximately 25% of the error reports while discovering all true errors.

It is important to note that when the strong hypothesis fails to hold, this
heuristic performs poorly. An example of this is given in Section 6 where error
reports cluster heavily, causing the strong hypothesis to fail and populations
with many true errors and no successes to appear.

Z-Score Ties: Equivalence Classes If we have two or more populations with
the same z-score, we merge all populations PGi

with the same z-score value into
an equivalence class Ezj

. The reason for this is because for ranking purposes
populations with the same z-score are indistinguishable, and the reports in those
populations should be ranked together.

The complete z-ranking algorithm is specified in Algorithm 1. To apply z-
ranking, first we partition the set of reports P into subpopulations using the
grouping operator G (line 1). Then we compute the p̂i values for each popula-
tion (lines 2-3). Next we compute p0. If we have a population with 51 or more
reports in it (our asymptotic behavior threshold), we set p0 = 0.85 (line 7). Oth-
erwise, we set p0 to the average of the population success rates (line 5). We then
iterate through the set of populations, discarding those that have no successful
reports in them if we are using the no-success heuristic (line 9), and computing
the individual z-scores for the others (line 12). We then merge the remaining
populations into equivalence classes, where the equivalence class consists of all
populations with the same z-score (line 13). We then order the equivalence classes
in decreasing order of their z-scores (line 14) and then inspect the error reports
one equivalence class at a time based on that order (lines 15-16). Within an
equivalence class, we use an auxiliary ranking scheme to order the error reports,
which can be a deterministic method (one candidate being the order the reports
were emitted by the analysis tool) or some randomized or partially randomized
scheme.

Note that the ranking depends completely on the choice of the grouping
operator G. This is the component that maps a particular property checker to
the z-ranking algorithm. Sections 4–6 show various ways to map the results of
different checkers to the z-ranking algorithm.

3 Experimental Setup

For our experiments, we measure checker results from two systems, both written
in the C language. The first is the Linux kernel source tree, release 2.5.8, for which
we possess a large collection of inspected results to validate our findings. The
second is a large commercial (anonymous) source tree, referred to as “Company
X.”

The static analysis checker system we used was the MC system [8]. The
MC system is a flexible framework to create a wide range of property checkers.
Checkers consist of state machines specified by the checker writer. These state
machines consist of patterns to match in the source code and corresponding
actions, which can consist of state transitions in the checker. The intraprocedural
lock checker from the previous section would use two states to track whether a
lock was held and, if held, subsequently released. The state machine enters the
initial state when the system recognizes a lock call in the flow graph. The system
then traces subsequent possible paths in the flow graph, spawning copies of the
state machine at forks in the graph. A call to unlock causes the state machine
to transition to a termination state. If no call to unlock is discovered and an
exit point in the control flow graph is reached, the state machine transitions
to a termination state, but this time emitting an error. To be precise not all
possible execution paths are explored because the checker only maintains limited
contextual state information, and this allows some paths (and copies of the state
machine) to be merged at program points where paths meet (and hence not
all paths are fully explored) because they look equivalent from that point on.
The analysis the MC system performs is approximate because it records only
limited state information. This itself can lead to false positives (invalid errors).
Furthermore, a rule a property checker inspects for may only hold in certain
contexts, also leading to false positives.

We apply z-ranking to the reports of three checkers. The first two were de-
signed around z-ranking: (1) a lock checker that warns when a lock is not
paired with an unlock (Section 4) and (2) a free checker that warns about
uses of freed memory (Section 5). The remaining checker was not designed to
support z-ranking. It provides, however, enough information that we can do a
crude application of it, getting a tentative feel for generality. In our experiments
z-ranking is compared against three other ranking schemes: (1) optimal ranking,
which simply consists of placing all true errors (bugs) at the beginning of the
inspection order, (2) a deterministic ranking scheme used by the MC system,
and (3) random ranking.

The deterministic ranking scheme uses several heuristics to order messages.
The most important for our purposes is that it ranks intraprocedural errors over
interprocedural, interprocedural errors by the depth of the call chain, and errors
that span few lines or conditionals over those that span many. More detail can
be found in [11].

Random ranking consists simply of inspecting a report at random, which is
equivalent to sampling from a finite set without replacement. Sampling in this
manner is modeled using the hypergeometric distribution: if b is the number

of bugs and N the total number of reports, then the expected number of bugs
found after n inspections is equal to (b/N)× n [12]. When comparing z-ranking
to random ranking, we will plot the expected number of bugs found for random
ranking as a function of the number of inspections.

For all checkers, we inspect the majority of all error reports emitted by the
checker. We use the MC system to deterministically rank the reports, and we
treat the top N messages as our inspection population. Furthermore, when us-
ing z-ranking, for inspecting reports within populations we employed the MC

deterministic ranking scheme.
A key point to note is that the false positive rates for all the checkers are

noticeably more pessimistic than what would actually be observed in practice.
First, the false positive rates assume almost all messages are inspected. Some-
what surprisingly such diligence is rare: coders often inspect errors until they hit
too many false positives and then stop. As a result, good ranking is crucial. Sec-
ond, in practice putting related error into aggregated equivalence classes makes
inspection more efficient since when we hit a false positive, we can suppress
the entire class. Finally, many false positives are “historical” in that they were
inspected at some point in the past and marked as false positives — the MC

system automatically suppresses these in future runs, although in this paper
they are counted.

4 Results: Ranking Lock Errors

This section measures the effectiveness of z-ranking on sorting lock errors. The
checker takes a list of function pairs (l0, u0), . . . , (ln, un) and, after a call to li,
traverses all subsequent control flow paths, checking that they contain a call to
ui. As discussed in prior sections, for the purposes of z-ranking, each path where
the checker encounters a ui is considered a success; each path that ends without a
ui generates an error message and is considered a failure. The grouping operator
G groups messages that have a common li call site.

The checker suffers from two general approximations. First, its limited in-
traprocedural world view causes it to falsely flag errors where a required call
to ui is contained in a called function or in the calling function. The second
more difficult issue to remedy is the conflated roles of semaphores, which are
sometimes used as counters, which need not be paired (and hence should not be
checked), and sometimes as locks, which must be paired. Both limits can cause
many false positives; both are handled well by statistical ranking.

We checked four pairs of locking functions; while all conceptually must obey
the same rule, they form three reasonably distinct populations in Linux.

Population 1: is made of errors from the pair spin lock-spin unlock, which
are the most widely-used lock functions (roughly 5600 checks in our results).
This population has been deformed by many previous bug fixes. In the past,
we have reported roughly two hundred errors involving these two functions
to Linux maintainers. Most of these errors were fixed. Consequently, the ratio
of true errors reported in 2.5.8 to the number of checks is low. Similarly, the

// linux/2.5.8/mm/shmem.c:shmem_getpage_locked
repeat:

spin_lock (&info->lock); // line 506

...
if (...) {

// NOTE:517: [SUCCESS=spin_lock:506]
spin_unlock (&info->lock);

return page;
}
...

if (entry->val) {
...

if (...) {
UnlockPage(page);

// "ERROR:shmem_getpage_locked:506:554:": Didn’t reverse ’spin_lock’
// [FAIL=spin_lock:506]
return ERR_PTR(error);

}
...

}
...
wait_retry:

// NOTE:597: [SUCCESS=spin_lock:506]
spin_unlock (&info->lock);

...
// 2.5.8/drivers/ieee1394/sbp2.c:sbp2_agent_reset

if (!(flags & SBP2_SEND_NO_WAIT)) {
// ERROR: Did not reverse ’down’ [FAIL=down:1847]
down(&pkt->state_change); // signal a state change

Fig. 1. Lock check example: in the first function, shmem getpage locked, the lock
info→lock is acquired at line 506, has five successful releases (two shown, denoted
SUCCESS=spin lock:506) and one error (denoted FAIL=spin lock:506). The second
function sbp2 agent reset uses the semaphore pkt→state change to atomically sig-
nal a state change rather than as a lock. There were no successes in this function, and
the generated error is a false positive.

false positive rate is quite high, since while many errors have been fixed the
previous false positives have not been “removed.”

The two remaining populations below represent errors for the whole of the
kernel’s lifetime:

Population 2: is made of two straightforward pairing functions that we did
not check previously. They have a higher error rate and a lower false pos-
itive rate than spin locks. They come from two pairs. First, lock kernel-
unlock kernel which control the “the big kernel lock” (or BKL), a coarse-
grained lock originally used (as in many initially single-threaded Unix OSes)
to make Linux into a large monitor; its use has been gradually phased out
in favor of more fine-grained locking. Second, the pair cli-sti and cli-
restore flags, the most widely used way to disable and enable interrupts.

Population 3: down-up semaphore functions, which have a high false positive
rate since they have two conflated uses: as atomic counters, which need not
be paired, and as locks, which must be paired. Ranking easily distinguishes

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 50 100 150 200
B

ug
s

D
is

co
ve

re
d

(C
um

ul
at

iv
e)

Error Reports Inspected

Optimal Ranking
Z-Ranking

Random Ranking (Mean Value)
Deterministic Ranking

Fig. 2. Results of inspecting Linux spin-lock error reports. Z-ranking uses p0 = 0.21,
with 175 populations created by G, and 14 equivalence classes. 202 reports inspected,
with 19 real bugs. Within the first 21 (∼ 10%) inspections, z-ranking found 3 times
more bugs than the expected number found using random ranking. When using the
no-success heuristic, we inspect only the first 83 reports, discovering all real bugs.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 20 40 60 80 100 120 140 160

B
ug

s
D

is
co

ve
re

d
(C

um
ul

at
iv

e)

Error Reports Inspected

Optimal Ranking
Z-Ranking

Random Ranking (Mean Value)
Deterministic Ranking

Fig. 3. Results of inspecting Linux down-up (semaphore) pairs. Z-ranking uses p0 =
0.15, with 142 populations created by G, and 11 equivalence classes. 169 reports in-
spected, with 18 real bugs. Within the first 17 (∼ 10%) inspections, z-ranking found
6.6 times more bugs than the expected number found using random ranking. When
using the no-success heuristic, we inspect only the first 43 reports, discovering all real
bugs.

these two different uses, whereas adding additional traditional analysis will
not. (In fact, we had previously given up on checking this rule since the false
positive rate was unmanageable.)

Example Fig. 1 illustrates successes and failures the described checker finds
in a section of the Linux 2.5.8 kernel source. An acquisition to spin lock is
made and depicted are two successful releases and one failed one. These checks
correspond to the same spin lock call site, and the grouping operator G would
group these checks into the same population. In addition, an unmatched call to
down is shown at the bottom of Fig. 1. This unsuccessful check would be grouped
in a different population, since the check corresponds to a different source call
site.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 10 20 30 40 50 60 70
B

ug
s

D
is

co
ve

re
d

(C
um

ul
at

iv
e)

Error Reports Inspected

Optimal Ranking
Z-Ranking

Random Ranking (Mean Value)
Deterministic Ranking

Fig. 4. Results of inspecting Linux BKL calls and interrupt enable/disable calls. Z-
ranking uses p0 = 0.21, with 62 populations created by G, and 8 equivalence classes. 72
reports inspected, with 18 real bugs. Within the first 8 (∼ 10%) inspections, z-ranking
found 4 times more bugs than the expected number found using random ranking. When
using the no-success heuristic, we inspect only the first 34 reports, discovering all real
bugs.

Results We compared the use of z-ranking for inspecting error reports to both
the deterministic ranking scheme in the MC system and randomized ranking.
Depicted in Fig. 2-4 are the comparative z-ranking inspection results. To perform
z-ranking, different values for p0 were automatically estimated according to the
procedure in Algorithm 1, and these values are shown in the corresponding
figures. In all cases z-ranking performs well.

In the case of the spin lock errors (Fig. 2), the number of inspections needed
to recover all bugs in the report set is very large, but inspection using z-ranking
yields numerous bugs in the first few inspections. Moreover, with deterministic
ranking over 50 inspections are needed to discover the first bug. Even with
random ranking a user would need to inspect on average 10 error reports before
discovering a single bug. Furthermore, the no-success heuristic performs very
well. After inspecting 83 of the 202 reports (41%) all bugs are discovered.

In the case of the semaphore down data (Fig. 3), z-ranking performs even
better. Here the weak hypothesis fervently comes into play as populations where
the alternate use of down as atomic counters instead of lock acquisitions will yield
very few “successful” pairings with up and these error reports (which are invalid
errors) will be pushed towards the end of the inspection ordering. In addition,
the no-success heuristic again performs well. After inspecting 43 of 169 reports
(25.4%) all the bugs are discovered.

For the remaining population of big kernel lock acquisitions and interrupt
enable/disable routines (Fig. 4), z-ranking performs very close to optimal rank-
ing for the first dozen inspections, and performs far better than random ranking
and deterministic ranking. Inspection of the reports using z-ranking yields all
18 bugs within the first 38 inspections, while deterministic ranking requires in-
specting 77 out of 78 reports to discover all the true errors, which is over twice as
many inspections. Moreover, the no-success heuristic remains effective, requiring
inspecting roughly half of the error reports to discover all the bugs.

-0.5
 0

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 0 5 10 15 20 25 30 35 40 45
B

ug
s

D
is

co
ve

re
d

(C
um

ul
at

iv
e)

Error Reports Inspected

Optimal Ranking
Z-Ranking

Random Ranking (Mean Value)
Deterministic Ranking

Fig. 5. Results of inspecting lock errors for Company X. Z-ranking uses p0 = 0.32, with
38 populations created by G, and 9 equivalence classes. 46 reports inspected, with 4
real bugs. Within the first 5 (∼ 10%) inspections, z-ranking found 6.9 times more bugs
than the expected number found using random ranking. When using the no-success
heuristic, we inspect only the first 24 reports, discovering all real bugs.

In all cases, the crucial initial few error reports were always true errors.
In contrast, random ranking and deterministic ranking both had a very high
number of false positives in these slots (often all were false). As noted in the
introduction, if these first few reports are false users often immediately give up
on the tool.

Company X The results for Company X came after previous rounds of bug
fixes, which deformed the population similarly to the spin lock population of
Linux. As a result there were only four bugs left when the checker ran, making
it hard to get a good aggregate picture. The inspection results are shown in
Fig. 5. Despite there being only a few remaining bugs, the results seem relatively
similar to the Linux results: z-ranking places most bugs at the beginning of the
inspection ordering and most false positives are at the end.

5 Results: Ranking Free Errors

The previous section used z-ranking to compensate for intraprocedural analysis
approximations. This section uses it to control the impact of inter-procedural
analysis approximations for a checker that warns about potential uses of free
memory.

The checker is organized as two passes. The first pass uses a flow-insensitive,
interprocedural analysis to compute a list of all functions that transitively free
their arguments by calling a free function directly (such as kfree, vfree, etc)
or by passing an argument to a function that does. The second, flow-sensitive,
intraprocedural pass, uses this summary list to find errors. At every function call,
it checks if the function is a free function and, if so, marks the pointer passed
as the freeing argument as freed. It then emits an error report if any subsequent
path uses a freed pointer.

In practice, the checker suffers from two main sources of false positives. First,
false paths in the source code can cause it to think that a freed pointer can reach
a use when it cannot. Second, and more serious, a small number of functions will
free an argument based on the value of another argument. However, the flow-
insensitive relaxation is blind to such parameter data dependencies. Thus, it will
classify such functions as always freeing their argument. As a result, rather than
having an error rate of one error per few hundred call sites, these functions will
have rates closer to fifty errors per hundred call sites, giving a flood of false
positives. Fortunately, using z-ranking to sort based on these error rates will
push real errors to the top of the list and the false positives caused by such
functions the analysis could not handle will go to the bottom.

We apply z-ranking to the free errors as follows:

1. We count the number of checks rather than the number of successes. For
example, if kfree is a free function, we count a check every time we see a
call to kfree.

2. Each error message (where freed memory was used) is a failure.
3. After the source code has been processed, the grouping operator G groups

all checks and failures that correspond to the same free function (the func-
tion itself, not a particular call site). We then rank the populations using
Algorithm 1.

The end effect is that routines with a high ratio of checks to failures will be
ranked at the top and routines with low ratios at the bottom. In the Linux
kernel, the routine CardServices is a great example of this. It has a switch

statement with over 50 case arms selected by the first parameter. One of these
case arms frees the second parameter. Our checker is too weak to detect this
data dependency and, since CardServices can free its argument on a single
path, the checker assumes it always frees its argument on all paths. Fortunately,
the enormous number of (false) error reports push these reports to the lowest of
all routines in the ranking, effectively eliminating them.

Interprocedural Results Our experimental results only consider routines that
required interprocedural analysis. Since there were many reports we only in-
spected errors that involved functions that called free functions with a chain
depth of less than four. We expect this result to underestimate the effectiveness
of z-ranking since we expect that deeper call chains have even more false posi-
tives (since there were more opportunities for mistakes) and hence would benefit
more from our technique.

The error report inspection plot for the interprocedural checker is depicted in
Fig. 6. The highest ranked population was for function netif rx which had 180
checks and one failure. The last (worst) ranked population was for the routine
CardServices— it had even more false positives than shown, we stopped mark-
ing them after a while. Z-ranking does better than random ranking, though not
as substantially as with the lock checker. In part this is due to the fact that there
are more equivalence classes with a high number of false positives, dragging all
ranking methods to the same average.

 0

 5

 10

 15

 20

 0 20 40 60 80 100
B

ug
s

D
is

co
ve

re
d

(C
um

ul
at

iv
e)

Error Reports Inspected

Optimal Ranking
Z-Ranking

Random Ranking (Mean Value)
Deterministic Ranking

Fig. 6. Results of inspecting interprocedural free calls in Linux. Z-ranking uses p0 =
0.85 (Asymptotic Behavior), with 55 populations created by G, and 21 equivalence
classes. 113 reports inspected, with 23 real bugs. Within the first 12 (∼ 10%) inspec-
tions, z-ranking found 3.3 times more bugs than the expected number found using
random ranking. For this set of reports all populations have at least one failure (the
no-success heuristic does not apply).

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120

B
ug

s
D

is
co

ve
re

d
(C

um
ul

at
iv

e)

Error Reports Inspected

Optimal Ranking
Z-Ranking

Random Ranking (Mean Value)
Deterministic Ranking

Fig. 7. Unaltered format string checker results for Company X. Z-ranking uses p0 =
0.29, with 108 populations created by G, and 18 equivalence classes. 126 reports in-
spected, with 28 real bugs. Within the first 13 (∼ 10%) inspections, z-ranking found
3.1 times more bugs than the expected number found using random ranking. When
using the no-success heuristic, we inspect only the first 60 reports, discovering 17 real
bugs.

6 Results: String Format Errors

This section looks at the applicability of z-ranking even for checkers where it
would appear not to apply. Although not formally conclusive, these empirical
results provide insight on potential “lower-bounds” of how generally applicable
z-ranking is for ranking error reports.

We use z-ranking to rank error reports for a checker that looks at security
holes caused by format string errors (e.g., printf). The results presented were
from the application of the security checker to Company X’s source code base.
The z-ranking results of this checker are pessimistic for three reasons:

1. The checker has not been modified to support z-ranking. For historical rea-
sons it emits a single note for each call site that begins a check rather than

emitting a note for each success. Since a single call site can spawn many
errors and only crudely correlate with successful checks, the produced check
counts have significant noise.

2. The only report feature available for grouping is the name of the function
the report occurred in. Thus, we group all the checks for a function into the
same equivalence class. As with the previous approximation, aggregating
different checks loses valuable information and can have a marked impact on
the checkers from the previous section.

3. The errors are susceptible to “clustering” in that the checkers are for rules
that programmers often simply do not understand and thus violate exu-
berantly. The end results is that in some cases, the presence of one error
increases the probability of another. This violates our strong hypothesis.
However, the weak hypothesis holds in that many checks and one failed
check in a population still tends to indicate a likely error.

The inspection results for the security checker are shown in Fig. 7. Even with the
above three handicaps the results are extremely encouraging. Within inspecting
the first 17 error reports, z-ranking finds 11 of the 28 bugs, while inspection
using deterministic ranking only finds 3. Only after around 70 checks does the
performance of deterministic ranking overtake z-ranking, although at this point
random ranking performs just as well.

It is surprising that despite the presence of errors clustering z-ranking does
reasonably well. The weak hypothesis pushes many of the true error reports to
the top. We see that after inspecting 10% of the error reports z-ranking still
finds 3.1 times more bugs than the expected number found by random rank-
ing. The clustering of errors, however, causes the strong hypothesis not to hold.
This appears to have a significant effect on z-ranking’s performance, as after
inspecting 50% of the reports its performance matches that of random ranking.
Fortunately, this performance degredation occurs at the tail of the inspection
process and not the beginning. Inspection using the no-success heuristic appears
particularly dismal; many real errors are missed on account of the errors clus-
tering. In this case, z-ranking is best applied without the no-success heuristic.
Moreover, were the weak hypothesis to also fail z-ranking would likely perform
extremely poorly.

7 Quantitative Evaluation

In the previous sections we examined the application of z-ranking to sorting
error reports in several checkers. Those results demonstrated that in most cases
z-ranking dramatically outperforms randomized rankings. Z-ranking, however,
rarely produces an optimal ranking. This section further quantifies the efficacy
of z-ranking in the domains we examined.

An analysis tool generates a set of N error reports, where N can be hundreds
of error reports. There are N ! possible orderings of those reports. For a given p0,
z-ranking chooses a ranking RZ out of this large space of rankings. One way to

Table 1. Z-Ranking score S(RZ) compared to the scores of 1.0× 105 randomly gener-
ated rankings. Column 2 lists the number of random rankings whose score S(RR) was
less than or equal to S(RZ) (lower score is better). Column 3 lists the same quantity
as a percentage

Checker Number of RR: S(RR) ≤ S(RZ) Percentage (%)
Linux spin lock 0 0.0

Linux down-up 0 0.0
Linux BKL, interrupt enable/disable 0 0.0

Company X - lock 825 0.825
Linux Interprocedural Free 0 0.0

Company X - Format String 1518 1.518

quantify how good the choice of RZ was is by asking how many other rankings
RR could have provided as good or better as an inspection ordering as z-ranking.
To pursue this question, we need a quantitative measure to compare rankings.
After i inspections, an optimal ranking maximizes the cumulative number of true
errors discovered. Other ranking schemes should aspire to this goal. Let N be
the total number of error reports and b the number of bugs. Let R(i) denote the
cumulative number of bugs found by a ranking scheme R on the ith inspection.
If RO is an optimal ranking, note that RO(i) = min(b, i) (the minimum of b and
i). An intuitive scoring for R is the sum of the differences between RO(i) and
R(i) over all inspection steps :

S(R) =

N
∑

i=1

[RO(i) − R(i)] =

N
∑

i=1

[min(i, b) − R(i)] . (9)

Note that Equation 9 is simply the area between the plots of the cumulative
number of bugs found versus the number of inspections for an optimal ranking
and a ranking R. Observe that S(RO) = 0, so a lower score is a better score.
Using S(R), we can ask the question that out of all the possible N ! rankings,
what proportion of them perform as good or better than z-ranking? For rankings
consisting of greater than 10 error reports it is computationally prohibitive to
enumerate all possible rankings. Instead we settle for an approximation. For
each of the checkers we applied z-ranking to in this paper, we generated 1.0 ×
105 random rankings. The number of random rankings that scored as good or
better than RZ (i.e., S(RR) ≤ S(RZ)) is shown in Table 1. Not surprisingly, the
checker with the highest number of random rankings that had a score as good
or better than z-ranking was the format string checker. We recall, however, that
this checker was not even designed with z-ranking in mind, and the percentage of
randomly generated rankings that were better than z-ranking was only 1.518%.
Moreover, Table 1 shows that in practice random ranking will rarely perform as
well as z-ranking (at least according to Equation 9) for the checkers we analyzed.

8 Discussion: Possible Extensions to Z-Ranking

Z-ranking employs a simple statistical model to rank error reports. Extensions
to the simple model may facilitate more sophisticated ranking schemes.

One immediate extension is including prior information into the ranking pro-
cess about the source code being checked or the checker itself. Such prior knowl-
edge could be specified by hand or possibly be determined using statistical or
machine learning techniques. In both cases, one immediate approach would be
to encode the prior using a Beta distribution [12], which is conjugate to the
Binomial and Bernoulli distributions [13]. In this case, the prior would be rep-
resented by “imaginary” success/failure counts. These would then be combined
directly with the observed success/failure counts and z-ranking could then be
applied as usual on the combined counts. Using the Beta distribution also allows
one to specify the “strength” of the prior by varying the number of imaginary
counts; this helps facilitate fine tuning of ranking.

Furthermore, besides success/failure counts, populations of error reports (as
created by G) may have correlated characteristics that z-ranking will not take
into account. One example is the free checker discussed in Section 5. With the free
checker, there are some functions associated with a low number of success/failure
counts that always free their arguments and do so by passing the freed argument
to another function. The called function, however, may correspond to a highly
ranked population of reports. The characteristics of the two report populations
may be correlated, and the high ranking of one population should boost the
ranking of the other. Extensions to the z-ranking methodology may possibly
allow the ranking scheme itself to take such correlations into account.

9 Conclusion

This paper has explored and developed the idea of z-ranking, which uses fre-
quency counts of successful and failed checks to rank error messages from most
to least probable. We applied it to three different error checkers, two in-depth,
and the last briefly. In practice it worked well: (1) true errors generally were
pushed to the top of the ranking while (2) false positives were pushed to the
bottom. Furthermore, application of the no-success heuristic often reduced the
number of reports inspected substantially while still providing for all real bugs
to be discovered; in one case roughly only a quarter of all reports were inspected.
When compared to 1.0×105 randomized error rankings, z-ranking often scored in
the top 1%. Moreover, within the first 10% of error report inspections, z-ranking
found 3-7 times more bugs than the average number of bugs found by random
ranking for the checkers we analyzed.

Furthermore, z-ranking made formerly unusable checkers effective. A good
example was that the lock checker could not previously handle semaphores since
they had two conflated uses: (1) as paired locks and (2) as unpaired atomic
counters (each occurrence of which would generate a false message). Because
our checker could not distinguish these cases, previously we had given up. With
z-ranking we could easily find such errors.

We believe z-ranking would be useful in many static error checking tools: all
tools must make analysis approximations and, as a result, they all have false
positives. Z-ranking provides a simple way to control the impact of such approx-
imations.

10 Acknowledgements

We thank Priyank Garg, Rushabh Doshi, Yichen Xie, Junfeng Yang, Seth Hallem,
and Tony Abell for their invaluable comments on clarity and content. This re-
search was supported by DARPA contract MDA904-98-C-A933. Ted Kremenek
received additional funding through a National Science Foundation Graduate
Fellowship.

References

1. Ball, T., Rajamani, S.: Automatically validating temporal safety properties of
interfaces. In: SPIN 2001 Workshop on Model Checking of Software. (2001)

2. Das, M., Lerner, S., Seigle, M.: Path-sensitive program verification in polynomial
time. In: Proceedings of the ACM SIGPLAN 2002 Conference on Programming
Language Design and Implementation, Berlin, Germany (2002)

3. Evans, D., Guttag, J., Horning, J., Tan, Y.: Lclint: A tool for using specifications to
check code. In: Proceedings of the ACM SIGSOFT Symposium on the Foundations
of Software Engineering. (1994)

4. Flanagan, C., Freund, S.N.: Type-based race detection for Java. In: SIGPLAN
Conference on Programming Language Design and Implementation. (2000) 219–
232

5. Aiken, A., Faehndrich, M., Su, Z.: Detecting races in relay ladder logic programs.
In: Proceedings of the 1st International Conference on Tools and Algorithms for
the Construction and Analysis of Systems. (1998)

6. Wagner, D., Foster, J., Brewer, E., Aiken, A.: A first step towards automated
detection of buffer overrun vulnerabilities. In: 2000 NDSSC. (2000)

7. Foster, J., Terauchi, T., Aiken, A.: Flow-sensitive type qualifiers. In: Proceedings
of the ACM SIGPLAN 2002 Conference on Programming Language Design and
Implementation. (2002)

8. Engler, D., Chelf, B., Chou, A., Hallem, S.: Checking system rules using system-
specific, programmer-written compiler extensions. In: Proceedings of Operating
Systems Design and Implementation (OSDI). (2000)

9. Chou, A., Yang, J., Chelf, B., Hallem, S., Engler, D.: An empirical study of
operating systems errors. In: Proceedings of the Eighteenth ACM Symposium on
Operating Systems Principles. (2001)

10. Freedman, D., Pisani, R., Purves, R.: Statistics. Third edn. W.W. Norton (1998)
11. Hallem, S., Chelf, B., Xie, Y., Engler, D.: A system and language for building

system-specific, static analyses. In: SIGPLAN Conference on Programming Lan-
guage Design and Implementation. (2002)

12. Ross, S.M.: Probability Models. Sixth edn. Academic Press, London, UK (1997)
13. Santer, T.J., Duffy, D.E.: The Statistical Analysis of Discrete Data. Springer-

Verlag (1989)

