

Evaluating CALL Software

PHILIP HUBBARD

Stanford University

1. Introduction
When teachers evaluate a textbook for possible adoption in a language course,
they are working in familiar territory. They have used textbooks for years as stu-
dents and may already have significant experience teaching with them. Although
teachers can profit from receiving instruction in how to approach textbook evalu-
ation more analytically (see Byrd, 2001, for example), textbooks are relatively
straightforward to evaluate because they tend to have a transparent structure al-
lowing teachers to skim through them to get an overview of the organization and
content. Furthermore, teachers can almost always get a full version to review in
advance of making a selection.
 Not so with software. Although this profile is changing, many current language
teachers have limited experience with CALL software from the learners’ perspec-
tive and may be novices as well using technology for teaching. Unlike textbooks,
software structure is often not transparent and can be difficult to “skim” for both
content and program operation. Additionally, for commercial materials it may be
difficult to get a fully operational version for review. Finally, as Bradin (1999)
notes, “language teachers who are not accustomed to looking at CALL software
may perceive its purpose very differently than those who are more experienced”
(p. 159). All of these factors combine to make CALL software evaluation a unique
challenge.
 Because evaluation can have various interpretations in CALL and other do-
mains of language teaching, this chapter begins by clarifying the meaning of the
term as it used here. Evaluation refers to the process of (a) investigating a piece of
CALL software to judge its appropriateness for a given language learning setting,
(b) identifying ways it may be effectively implemented in that setting, and (c) as-
sessing its degree of success and determining whether to continue use or to make
adjustments in implementation for future use. We may think of these three stages
respectively as selection, implementation, and assessment. Historically, software
evaluation has been primarily concerned with the first of these stages and the ma-

Chapter 13 from L. Ducate and N. Arnold (eds) 2006. Calling on CALL:
From Theory and Research to New Directions in Foreign Language Teaching.
San Marcos: CALICO. Pre-publication copy.

2 HUBBARD

jority of this chapter is devoted to that area. This is not to say that the other two
are less important. However, as we will see, considerations of implementation can
and arguably should be an integral part of the selection process. Assessment will
be touched on and its value emphasized in the hopes of encouraging readers to
engage in further study.
 Clarification is also needed for the term “CALL software.” It is used here to
refer to computer programs and accompanying content that have a recognizable
instructional purpose, or a “teaching presence” (Hubbard & Bradin Siskin, 2004,
p. 457) and language learning objective. These are sometimes called dedicated
CALL or tutorial CALL programs, representing the computer functioning in what
Levy (1997, p. 178) refers to as the “tutor” role (as opposed to a “tool” role the
computer plays when the program in use is, for example, a web browser, word
processor, or email application). Both the degree and quality of the teaching pres-
ence vary considerably across CALL software, and, as with a live teacher, the
teaching presence can come in different forms. As we will see, one of the keys in
evaluation is to determine whether the teaching presence in a piece of software in
combination with the content is effective for the given objective.
 Tutorial software, also called “courseware,” can be of many types, from mul-
tiskill commercial products such as Tell Me More or Rosetta Stone or large-scale
single skill compilations such as Randall’s Cyber Listening Lab to individual lan-
guage exercises, including those created with CALL-specific authoring templates
like Hot Potatoes. For those new to the field wanting a clearer understanding of
the nature and extensive range and variability of tutorial software across a number
of languages, it is instructive to begin with a visit to the CALICO Review web
site. Although our focus in this chapter is on tutorial software, it is worth pointing
out that many of the considerations described here are relevant for other forms of
evaluation. These include the evaluation of CALL activities or tasks (for instance,
web quests or computer-mediated communication activities) that either do not
involve tutorial software or represent blends of tutorial and tool-oriented applica-
tions.
 In the next section, the different purposes of evaluation, such as selection
of software for an individual course or for a self-access lab, are touched upon.
Then, three major approaches to CALL software evaluation are described and
compared: checklists, methodological frameworks, and SLA research-based ap-
proaches. Following the section on the three major approaches to evaluation is an
extended example of a methodological framework similar to the one that informs
the CALICO Review, followed by a discussion of implementation considerations.
The chapter concludes with suggestions for continuing to evaluate software ap-
propriateness and effectiveness during and after student use, along with some
final comments.

2. Purposes of Evaluation
2.1 Selection for a Course

The most common reason for doing an evaluation is for a teacher to select appro-

 EVALUATING CALL SOFTWARE 3

priate software for his or her own class. In this situation, there is a lot of known
information that can be brought to bear on the evaluation process. Such informa-
tion includes (a) an understanding of the technical infrastructure of the institution
or the computing hardware and software available to the students if they are using
their own equipment, (b) relevant data about other course materials, the student
characteristics, and the structure and specific objectives of the course, and (c)
the teacher’s/evaluator’s assumptions about how language is learned. Besides the
classroom setting where many of the preceding factors are known, teachers may
also evaluate software for use beyond their own courses.

2.2 Selection for Self-access or Other Instructors’ Use

In some situations, teachers or other language professionals may be asked to
recommend software selections for a self-access lab or for an entire language
program. In this case, the same considerations of technology infrastructure will
presumably be taken into account, but the information about student characteris-
tics, course objectives and materials, and teacher assumptions may be less readily
available. In addition, there can be a great deal of variability in student and course
characteristics that can make the selection process more challenging. Evaluators
in this circumstance would do well to begin with some investigation of these fac-
tors rather than simply relying on their own assumptions and biases.

2.3 Reviews

Reviews differ from other forms of evaluation in that they typically focus on
the software itself rather than on the environment in which the software will be
used. Published reviews such as those found in the CALICO Journal and on the
CALICO Review web site are aimed at a broad audience of potentially interested
parties. As a form of evaluation, a review is an important source of information
that others can use both in making the initial identification of possible candidates
and in informing their own evaluations.

3. Three Approaches to Evaluation
Levy and Stockwell (in press) have identified three major types of CALL software
evaluation: evaluation driven by checklists or forms, evaluation guided by meth-
odological frameworks for language teaching, and evaluation linked to second
language acquisition (SLA) theory and research-based criteria. Each of these is
discussed briefly below.1

3.1 Checklists

Checklists have been present from the earliest stages of CALL and remain wide-
spread. Typically, a checklist presents a series of questions or categories for judg-
ment and the evaluator is expected to make a response based on information
gathered through the reviewing process. Many checklists simply ask for a yes/no
indication or a response along a Likert scale. Others, despite the “checklist” label,

4 HUBBARD

also include space for open-ended commentary following specific prompts. Pub-
lished checklists have been criticized for a number of reasons, including focusing
too heavily on technology at the expense of pedagogy and for being biased and
restrictive (Hubbard, 1988). However, Susser (2001) provides a rebuttal to many
of those criticisms and builds a convincing case for the value of CALL evaluation
checklists. The thrust of his argument is that the problem is not with the concept
of checklists but rather with particular instantiations of them.
 There are numerous examples of software checklists available online for those
interested in pursuing this option. The International Society for Technology in
Education (ISTE) has a highly regarded general software evaluation form for
educators available for download. An example of a checklist that demonstrates a
strong consideration of language learning research findings is one housed on the
web site of the National Foreign Language Resource Center in Hawaii that was
developed specifically for multimedia language learning software. A checklist by
a group of students at Rice University (Garrett, Nimri, & Peterson, n.d.) built on
a methodological framework is also available online.
 In the end, as Susser (2001) notes, checklists do not have to be accepted as is
but can be adapted and updated for particular purposes. They have the capacity
to provide teachers with a useful tool for recognizing the variety of elements that
make up a software application and for triggering reflection on some of their own
assumptions about CALL. Finally, among the many possible sources for items
on a checklist are methodological frameworks and SLA research, as discussed
below.

3.2 Methodological Frameworks

Methodological frameworks are compatible with some checklists but differ in two
significant ways. First, methodological frameworks attempt to be largely descrip-
tive rather than judgmental in their form. Second, they attempt fundamentally to
link with the language teaching and learning considerations that take place out-
side of technology. As noted in Hubbard (1988),

The framework approach to courseware evaluation is different from oth-
ers. … A framework in this context means an integrated description of the
components of something—in this case CALL materials—with respect to a
particular goal—in this case evaluation. Rather than asking a specific set of
questions, a framework provides a tool through which an evaluator can create
his or her own questions or develop some other evaluation scheme. (p. 52)

 Until the mid-1980s, evaluation had largely been conceptualized in terms of
checklists and procedures borrowed from general education and was lacking an
appropriate language learning focus. But in 1985, Phillips offered a framework
more explicitly linked to language teaching methodology. It included categories
for the CALL program types of its era but also described dimensions such as
language difficulty, learner focus (i.e., skill area—listening, speaking, reading,
and writing), and language focus (i.e., lexis, grammar, and discourse) that were
important to the language learning character of the program.

 EVALUATING CALL SOFTWARE 5

 Hubbard (1988) expanded Phillips’ system and integrated it with one developed
independently by Richards and Rodgers (1982) for describing and analyzing lan-
guage teaching methods. Richards and Rodgers (themselves building on an ear-
lier framework by Edward Anthony) characterized language teaching methods in
terms of three descriptive categories: (a) approach, or the underlying theories of
linguistics and language learning assumed by the method; (b) design, consistent
with the assumptions of the approach and including the syllabus model, general
and specific objectives of the method, and the roles of the students, teacher, and
materials; and (c) procedure, or the classroom techniques and activities through
which the design is realized. Hubbard (1988) adapted the approach, design, and
procedure constructs into categories describing the key elements of evaluation
and renamed them teacher fit, learner fit, and operational description, respec-
tively.
 The resulting framework became the evaluation module in a proposed compre-
hensive methodological framework that also included modules for courseware
development and implementation (Hubbard, 1996). A version of this framework
remains at the core of the review procedure for the CALICO Journal (for details,
see the Appendix to this chapter; Burston, 2003).

3.3 SLA-based Approaches

Given that teaching languages with software is a form of language teaching, an-
other reasonable procedure for developing software evaluation rubrics is to build
on recommendations from theory or research in instructed SLA. Ultimately, we
might expect to have definitive SLA results specifically from research on learning
with software, but to date there has not been a sufficiently established base for
such results. Consequently, this approach takes findings from non-CALL domains
and interprets them in the CALL context.
 An early attempt in this direction was Underwood (1984), who presented a case
for a communicative approach to CALL based on generalizations from research
and communicative theory of that period. His 13 points characterizing commu-
nicative CALL became a de facto evaluation rubric. Egbert and Hanson-Smith
(1999) structured the chapters in an edited volume on CALL around eight gener-
alizations for optimal language learning environments, again providing content
for a research-based evaluation scheme, although their work was not specifically
aimed at evaluation.
 The most ambitious project in this vein to date is represented by the work of
Carol Chapelle in the field she has dubbed CASLA—computer applications in
second language acquisition—which includes not only CALL but also computer-
based language testing and computer-based SLA research. Although parts of the
model were developed in earlier articles, the work comes together in Chapelle’s
2001 book, which represents a significant advance for (a) its characterization of
evaluation on the basis of principles and (b) its specific SLA-based criteria. With
respect to the first point, Chapelle offers a set of five principles for evaluating
CALL summarized as follows:

6 HUBBARD

1. CALL evaluation is situation-specific;
2. CALL should be evaluated both judgmentally and empirically;
3. CALL evaluation criteria should come from instructed SLA theory and

research;
4. the criteria should be applied relative to the purpose of the CALL task;

and
5. the central consideration should be language learning potential.

 In line with the preceding principles, Chapelle proposes a set of six general
evaluation criteria useful in determining the appropriateness of a given CALL
task for supporting language acquisition. Note that these criteria are relevant for
“both the aspects of the task defined by the software and those defined by the
teacher” (Chapelle, 2001, p. 58). These criteria appear initially in Chapelle (2001)
and are reprised in a recent evaluation study by Jamieson, Chapelle, and Preiss
(2005, p. 94).

1. Language learning potential: The degree of opportunity present for benefi-
cial focus on form;

2. Learner fit: The amount of opportunity for engagement with language un-
der appropriate conditions given learner characteristics;

3. Meaning focus: The extent to which learners’ attention is directed toward
the meaning of the language;

4. Authenticity: The degree of correspondence between the learning activity
and target language activities of interest to learners out of the classroom;

5. Positive Impact: The positive effects of the CALL activity on those who
participate in it; and

6. Practicality: The adequacy of resources to support the use of the CALL
activity.

 Jamieson, Chapelle, and Preiss (2004) show how these criteria can be opera-
tionalized for a judgmental analysis of a major software project, Longman English
Online (LEO).2 In a follow-up study (Jamieson, Chapelle, & Preiss, 2005), they
again build on these criteria to create a rubric for evaluating LEO empirically,
eliciting data from the software developers, a teacher using the software, and a set
of student users. Table 1 shows an example of their entry for “language learning
potential.”
 It is worth noting that Chapelle’s framework, though quite different in structure
and in underlying assumptions, is in some respects compatible with the method-
ological framework and checklist approaches described earlier. For instance, Cha-
pelle’s concept of learner fit can be related to that of Hubbard (1988), and most
of her other criteria are representative of a task-based, interactionist language
teaching approach that is likely to provide a good “teacher fit” for many current
language instructors, especially those who have been recently trained in such an
approach. Finally, as Table 1 illustrates, the result of an SLA-based approach can
be a principled checklist.
 This section has outlined approaches to evaluation based on checklists, method-
ological frameworks, and SLA research. While all three have their merits, the re-

 EVALUATING CALL SOFTWARE 7

mainder of this chapter will focus on presenting the methodological framework in
more detail since it is the most neutral in terms of language teaching approach.

Table 1
Example of CALL Criteria and 0perationalization from the Chapelle (2001)
Framework*

Criteria Operationalizations Desired responses
to support claims
for quality

Language learning
potential
• Sufficient opportu-

nity for beneficial
focus on form

• Will the grammar, vocabulary, and pronun-
ciation that was studied during the week be
remembered?

• Were the explanations clear?
• Were there enough exercises?
• Will the students’ English improve as a result

of LEO 3?
• Will the students’ quiz scores indicate mastery

of the material?

• Yes

• Yes
• Yes
• Yes

• Yes

*Excerpted from Table 2 of Jamieson, Chapelle, and Preiss (2005, p. 99)

4. A General Evaluation Framework
The following description is based on the assumption that evaluation is being
done for the most common purpose, namely a single teacher selecting software
for integration into a particular course. However, the framework outlined in this
section can be readily extended to any of the domains mentioned previously, that
is, selection for self-access or other instructors or evaluation for a formal review
(see Appendix). Note also that software packages are often complex, including a
number of different types of presentations, activities, exercises, and quizzes, so in
a thorough evaluation it will be necessary to cover examples of each type.

4.1 Rationale

Two of the articles noted above (Hubbard 1988, 1996) outlined a methodologi-
cal framework for CALL combining elements of development, evaluation, and
implementation viewed primarily through the lens of language-teaching approach
and design considerations. The description that follows remains true to the as-
sumption that language teaching and learning judgments are at the core of CALL
software evaluation rather than, or in addition to, principles from instructional
design or other areas of education. This is both because of the unique nature of
language learning and because many teachers performing these evaluations do
not have direct experience in these other areas. Also, by linking CALL software
evaluation to language-teaching methodology, the connections necessary for inte-
gration can be much more readily made.
 This chapter focuses on a methodological framework rather than the alterna-
tives primarily because of the methodological framework’s descriptive and more
comprehensive nature. Theory and research-based approaches such as Chapelle’s
(2001) are by their nature prescriptive, at least in terms of approach, because they

8 HUBBARD

are based on a particular conception of language teaching and learning (even one
as well established as that underlying Chapelle’s). A checklist procedure is avoid-
ed for the same reason, not because of any intrinsic limitations of checklists. In
fact, it is claimed here that both checklists and SLA-based evaluation criteria can
be largely accommodated by a descriptive methodological framework. Further,
a type of checklist—a list of considerations—can be generated directly from the
categories and elements in the following methodological framework.

4.2 Preliminaries—Identification of Potential Software

Before beginning any evaluation, we need to identify candidates to evaluate.
In most cases, these will probably be programs designed for language learning.
However, it is worth pointing out that teachers have had success with programs
designed for native speakers of the target language; in fact, many of the programs
in the TESOL CALL Interest Section list mentioned below (Healey & Johnson,
2005) fall into this category.
 The first step is to have a basic understanding of what characteristics to look
for in candidates. While a formal needs analysis is ideal, even a brief look at your
existing course structure will help in identifying programs with potential. Healey
and Johnson (1997/1998) offer a useful set of guiding questions for this step.

1. Who are the users you are targeting?
2. What are the goals of the students you are targeting?
3. What setting will the software be used in: independent study lab with no

teacher available, lab associated with a class, a teacher-led class with one
or a few computers?

4. How much do the teachers/lab assistants who will work with the students
know?

5. What do you have now in the way of hardware and technical assistance?
6. How much money do you have to spend?

 There are many sources of information about language learning software. For
ESL/EFL, the most comprehensive source is the TESOL CALL Interest Section
Software list (Healey & Johnson, 2005). For all languages, two useful sources
are the CALICO Review, both the current issue and archives, and the database at
the National Foreign Language Resource Center at Hawaii. Commercial vendors
(and even academic authors distributing their software for free) also have useful
information on their products, but it is a good idea whenever possible to supple-
ment the information they provide with independent reviews or comments from
other teachers who have used the programs.
 Robb and Susser (2000) conducted a survey of language teachers through sev-
eral listservs to explore their software selection process, focusing on 11 possible
“sources of information potentially affecting purchase decisions” (p. 45). Some
selected results from their 51 respondents are instructive. Eighty-one percent
claimed to have obtained the information needed for selection by getting a full
or demonstration version of the program and evaluating it themselves, while 37%
relied on information from a colleague, 31% on reviews from the literature and

 EVALUATING CALL SOFTWARE 9

only 25% claimed to have used a checklist. Interestingly, when asked about the
source of information for software they continued to use on a regular basis (rather
than just initially purchasing software), the largest group (78%) reported relying
on a recommendation from a colleague. This and other results from their study,
despite being from a limited, nonrandom sample, are consistent with their find-
ings that many practicing teachers use a variety of information sources (not just
a checklist-based review) to select software and that colleagues are a particularly
good source of relatively reliable information.

4.3 Overview of Basic Structure

We begin by assuming that there has been a “preevaluation” and that the software
under scrutiny is a reasonable candidate for ultimate selection. Figure 1 presents
the basic structure of the evaluation framework, adapted from Hubbard (1988,
1996) and Burston (2003).

Figure 1
Software Evaluation Framework: Core Components

At this level, even without further analysis, it reflects a simple evaluation proce-
dure embodying the following stages:

1. Technical preview. Make sure that the software will run the way you want
it to on the equipment that you or the students have available.

2. Operational description. Go through the main parts of the software as a co-
operative user (you can try to be less cooperative later). Get an understand-

Appropriateness
judgments

Implementation
schemes

Learner
fit

Teacher
fit

Operational
description

Technical
preview

10 HUBBARD

ing of the flow of lessons and items within them before making judgments.
You can record your first impressions but try to withhold judgment until
you understand how the software actually operates.

3. Teacher fit. Try to infer the language teaching approach that the software
reflects (which may be different from what the designers claim) and deter-
mine the degree to which it is compatible or incompatible with your own.

4. Learner fit. Note how well the content, skills, and language level corre-
spond to your students’ needs, especially as determined by the objectives
in the course syllabus. Note also how well the software fits the students’
interests and preferred learning styles.

5. Implementation schemes. Reflect on how the software might be integrated
into the course or a curriculum, including what students will need to know
in order to use it effectively and how much time that process will take.

6. Appropriateness judgments. Ultimately, make a decision to use or not,
based on the quality and degree of teacher fit and learner fit, along with
considerations of the costs and benefits of implementation. Keep in mind
that no software will be a perfect fit. It may be helpful to think of judging
a program’s teaching presence the way you would judge a human teacher.
Ultimately, one or more humans created the materials and structured the
program’s actions for learning purposes. Do you want that person or per-
sons teaching your students with the material they provided?

4.4 Technical Considerations

Technical considerations are of several types. The most basic one is: Will it run
on the machines the students will be using? The primary split here continues to be
between Microsoft Windows-based PCs and Apple Macintoshes (though Linux
seems to be gaining some ground). Some software runs on all platforms, par-
ticularly web-based applications, and some on just one. However, as software
is developed for PDAs and even cell phones, this question may become even
more complex. The operating system version, memory requirements, and other
hardware and software issues are often significant as well. If online materials are
being used, how accessible are they? Can students use them only in a lab, or are
they available on a larger institutional network or even the web? Additionally,
for online materials there are issues of bandwidth and server access—the speed
at which data is transferred and the impact of multiple users tapping into a single
application. This is a particularly important point when using audio and especially
video files, which may be delayed or degraded over slow connections.
 A description of all the technical issues is well beyond the scope of this chapter.
Evaluators who have concerns about their ability to make the preliminary judg-
ments at the technical level are encouraged to seek assistance from others who are
more knowledgeable, especially before making purchase decisions.

4.5 Operational Description

The operational description is a review of the components of the software and

 EVALUATING CALL SOFTWARE 11

how they operate on their own or are controlled by the user. It is meant to be an
objective description that can then be used to feed the judgmental aspects of the
framework. In the original framework, the operational description was presented
as a set of more or less independent central and peripheral descriptive categories,
and this remains a useful classification. However, we will briefly consider an al-
ternative conceptualization for some of its elements at the end of this subsection.
 The peripheral categories include any accompanying text, documentation, tu-
torial (on how to use the software), record keeping features outside of the main
program, and any other utilities such as teacher authoring capabilities. The central
categories include the general activity type (e.g., game, quiz, text reconstruction,
exploration, or simulation) and the presentational scheme, which describes the
way a CALL activity is presented to the learners. The reason for this distinction is
that a given activity type may have a number of diverse presentational schemes.
For example, the text-reconstruction activity type would likely have quite differ-
ent presentational schemes for hangman, a standard cloze exercise, and a scram-
bled sentence activity.
 Presentational schemes are defined by a number of subcategories.

1. The screen layout or interface is concerned with all aspects of the basic
appearance on screen, including fonts, color schemes, controls, as well as
presence, placement, and quality of graphics, video and audio. This is a
major area of investigation in the broader field of human computer interac-
tion (HCI) and may involve cultural factors in addition to the more obvious
cognitive and esthetic aspects.

2. Timing is a relevant category for some software, for instance, by limiting
the time that content material or a prompt appears on the screen, by limit-
ing the time allowed for a response, or by recording the time it takes for a
student to perform some action.

3. The control options category describes what is under learner vs. program
control as well as the physical nature of those controls. For example, does
the learner have the ability to go to any desired lesson through a menu, or
does the program require the student to complete one lesson before moving
on to another in a predetermined order? Can the learner call up text support
for an audio or video exercise, or is it always present (see Chapter 5 for a
detailed discussion of listening comprehension in CALL)? This is an arena
of some debate within CALL and CAI (computer-assisted instruction) in
general. A study by Boling and Soo (1999) for instance, found that novice
language learners tend to prefer more structured CALL software while ad-
vanced learners are more comfortable with taking control themselves.

4. User input (a category missing from earlier versions of the framework)
characterizes how the learner responds to implicit or explicit prompts from
the program (e.g., speaking, typing, clicking a button or hotspot, etc.).

5. Input judging describes the program’s procedure for handling user input,
which can involve such actions as recording a mouse click, various types
of pattern matching, speech analysis, or linguistic parsing.

12 HUBBARD

6. Feedback is provided to the user by the program as the result of the input
judging. This is a key part of the description of the presentational scheme
because there are a number of options, some of which clearly represent
a more active teaching presence than others. Feedback can be either im-
plicit (as when an incorrect answer simply disappears as a choice when
it is selected) or explicit. For a typical quiz or practice exercise, feedback
can simply indicate a correct or incorrect response, or it can provide ad-
ditional information in the form of hints or explanations. For other types
of programs, such as simulations, feedback can take other forms (e.g., in a
simulated dialogue a character in the program might respond orally to the
student’s input or perform some requested action). Feedback may also be
cumulative, as when the program saves scores and other performance data
for the student to review.

7. Help options represent the final element to consider in the presentational
scheme. In addition to a description of the content of the help, the key
points here are whether any assistance that is provided is contextualized
and targeted for a given item rather than being global and whether help is
available at all times or only under certain conditions.

 As noted above, the operational description in previous versions of this frame-
work did not directly portray the connections among the various elements, es-
pecially those in the presentational scheme (for details, see Hubbard, 1988). An
alternative way to conceive of these elements is to model their operation more
dynamically at the microlevel as an interactional sequence: a set of exchanges
between a program and a user on a single point or topic, such as a question in a
tutorial exercise. An interactional sequence involves one or more turns by each
party (the computer and the user) prior to shifting the topic (e.g., moving to the
next question or item) or ending the interaction.
 Here is an example of a typical interactional sequence: Assume a novice ESL
learner is using a program to learn vocabulary through picture identification. In
this lesson, the focus is on verbs associated with particular animals. The activity
is set up on the screen as four pictures: a fish, a lion, a snake, and a bird. These
represent the response domain (what the learner can click on).

Computer: Which of these can fly? [prompt]
Learner: (clicks on the fish) [input]
Computer: Sorry, that’s not right. Fish can’t fly. Fish swim.
 (fish swims off screen) [feedback]
 Which of these can fly? [prompt]
Learner: (clicks on the bird) [input]
Computer: That’s right. Birds can fly. (bird flies off screen) [feedback]
(the screen refreshes and a new set of pictures appears …)

 Hubbard (2001) offers an initial model for such sequences that covers three
common tutorial modes: presentation, exploration, and interrogation. In the pre-
ceding example, the sequence is in the interrogation mode because the computer
is doing the asking, prompting the student for a response, and then providing

 EVALUATING CALL SOFTWARE 13

feedback on the accuracy of that response. If we consider the same type of ex-
ample, namely teaching vocabulary through pictures, we can see how the other
two modes differ from interrogation. In presentation mode, the program would
simply provide information in the target language, for example, highlighting each
of the pictures (fish, lion, snake, and bird) one by one and playing an appropri-
ate description (“This is a bird. A bird can fly”). As with an audio or video tape
recording, the student’s interaction with the program would be limited to such ac-
tions as pausing, repeating, adjusting the volume, and so on. In exploration mode,
the learner is the one who does the asking, in this case by clicking on pictures as
desired to get information about them, with the option of ignoring those he or she
already knows.
 Although a detailed explanation of interactional sequences is beyond the scope
of this chapter, there are two concepts in this model that have a bearing on both the
selection and the implementation process. The interactional sequence model for
possible paths in interrogation mode is shown in Figure 2, though of course not all
paths will be open to every item—the richness of the options in an interactional
sequence is determined by the program designer.

Figure 2
Interactional Sequence Model for Interrogation Mode (Hubbard, 2001)

Note: The white boxes indicate what the computer does, and the gray boxes what the
learner does.

 The concepts of importance here are deliberation and consolidation. Delibera-
tion refers to the cognitive operations by the learner prior to taking a physical
action (inputting something: a mouse click, text, speech, etc.). Deliberation is the
largely invisible activity of reflecting and accessing the relevant information to ei-
ther answer the prompt correctly, make an educated or random guess, ask for help
or a hint, or give up. It is fed not only by all that precedes the initial input but also
by the feedback from the computer after the first “round” of the interactional se-
quence. Consolidation is a similar cognitive activity that involves taking whatever
bits of information were “learned” from that interaction and taking a moment to
reflect on them in the hopes of promoting retention and integration with existing
knowledge.

Item
setup Prompt

Deliberation Input
judgment

Response
domain Input Feedback Next

Consolidation

= Computer = Learner

14 HUBBARD

How much a given program supports (or does not support) deliberation and con-
solidation is thus another potential consideration in the evaluation process. The
degree to which learner training (see below) can encourage deliberation and con-
solidation and the possible cost in time and resources of providing that training
are additional points to ponder.

4.6 Teacher Fit

Teacher fit represents considerations largely at the level of Richards and Rodgers’
(1982) characterization of approach. This begins with the evaluator’s assump-
tions, ideally supported by theory and research, about two areas. The first of these
concerns assumptions about the nature of language, including issues such as the
relationship between language and communication and the relationship between
language and culture. The second set of assumptions (presumably compatible with
the first) is about how languages are learned. Together these form the evaluator’s
language-teaching approach. A further set of considerations emerges from the
evaluator’s understanding of the capacities of the computer as a delivery system
for both content and pedagogy. Combined with the language teaching approach,
these considerations yield approach-based evaluation criteria.
 In practice, these criteria can remain at a somewhat intuitive level (assuming
we can recognize when a language learning activity is at odds with our approach),
or they can be operationalized into a checklist or some other form. For example,
Hubbard (1988, p. 63) gives the following partial set of evaluation criteria for
what were referred to in that work as “explicit learning” approaches:

1. gives meaningful rather than mechanical practice, contextualized in a co-
herent discourse larger than a single sentence;

2. provides hints of various types to lead students to correct answers;
3. accepts alternative correct answers within a given context;
4. offers the option of explanations for why correct answers are correct; and
5. anticipates incorrect answers and offers explanations for why they are in-

correct.

 Regardless of whether they are used directly in the evaluation process, it is
an instructive exercise for any evaluator to experiment with producing some ap-
proach-based evaluation criteria since this necessitates reflecting on one’s own
beliefs about language, language learning, and the capacity of the computer to
support language learning as well as the foundation on which those beliefs rest.

4.7 Learner Fit

Learner fit covers many of the same topics as Richards and Rodgers’ (1982) con-
cept of design. The two central areas in which we are looking for compatibility
are learner variables (e.g., age, native language, proficiency level, sex, learner
needs, and learner interests) and the syllabus. Each of these variables is fed by
a number of other elements, some of which influence both. It should be noted
that learner variables are by their nature individual and in some cases not obvi-

 EVALUATING CALL SOFTWARE 15

ous to the teacher. However, if a class or group of students within a class can be
identified as having similar attributes, these variables become important in the
evaluation process. The concepts of learning style (taken here broadly to subsume
cognitive style, preferred learning strategies, and motivational orientations) and
classroom management (such as whether the software is to be used individually,
in pairs or groups, or as a whole class activity and the degree to which the learners
must be monitored) represent considerations associated with learner variables; in
particular, age and native language and culture. The linguistic objectives (“pro-
gram focus” in earlier versions of the framework and in Phillips (1985), are dis-
course/text, syntax, lexis, morphology, and phonology/graphology: these are part
of learner fit because they are related to the syllabus, as are the language skills
targeted by the software (previously “learner focus”), such as listening, speaking,
and so forth.
 The three remaining elements are connected to both learner variables and the
syllabus. The idea of language difficulty represents the level of linguistic chal-
lenge along several dimensions, such as grammar, lexicon, and speed of presen-
tation and clarity of pronunciation (for audio or video). The notion of program
difficulty has to do with the learning curve to operate the program (because of
inherent complexity or technical design flaws) and, in the case of games, the de-
liberate level of challenge the user is faced with. In both cases, the time spent in
pursuits not directly tied to language learning as well as the potential for frus-
tration are factors that weigh against the likely language-learning achievements
and any positive impacts on motivation. Finally, content is an issue for both the
syllabus and learner variables. The content should be considered with respect to
its consistency with course objectives (e.g., if the target culture is an element of
the syllabus, the cultural content should be authentic and appropriate) and with
respect to student interests and existing knowledge.
 Figure 3 (a variant of Hubbard (1988, 1996) shows the relationships among the
elements of learner fit.

Figure 3
Elements of Learner Fit

Language
difficulty

Classroom
management

Learner
variables

Learning
style

Language
skills

ContentProgram
difficulty

Linguistic
objectives

Syllabus

16 HUBBARD

4.8 Appropriateness Judgments

Teacher fit and learner fit considerations combine to yield judgments of the ap-
propriateness of a piece of CALL software for a given setting. Although the pro-
cess of getting to this point appears linear in Figure 1 above, decisions to reject a
program can be made at any point: for instance, if either teacher or learner fit is
noted early on to be poor, there is no need to continue. The result of this process is
a decision of whether or not to recommend purchase of the software, or, if it is al-
ready purchased or available for free, whether or not to use it. However, a teacher
evaluating a promising piece of software must determine not just whether but also
how and when to use it: this is the domain of implementation.

5. Implementation Schemes
5.1 General Considerations

Although implementation logically occurs after the selection stage in evaluation,
looking at the way in which a piece of CALL software may be implemented is
important for determining how to use it effectively and may influence whether
or not it is purchased (see also Chapelle’s [2001] criterion of practicality). In the
common situation where an institution has limited funds for procuring software,
implementation issues may clearly favor one program over another when the two
may otherwise be equally good candidates in terms of teacher and learner fit. The
implementation module in Hubbard (1996) provides several points of consider-
ation that converge on the development of schemes for learner use. These include
accessibility, preparatory and follow-up activities (especially if linked to other
course materials such as a textbook), and a number of teacher-controlled vari-
ables such as classroom management, site monitoring, teacher program control
(for programs that allow such settings), access to student records, and teacher
authoring possibilities.

5.2 Learner Training

The teacher’s job is not complete when the software has been selected, procured,
and integrated into the syllabus. In most cases, students need time and training to
learn how to use the software effectively from a pedagogical as well as a technical
perspective. In particular, they need to learn how to connect their actions with the
software to desired language learning objectives. For instance, they need to be
guided to understand that the primary purpose of a computer reading or listening
lesson is not to answer the comprehension questions correctly but rather to engage
with the language and content to improve their reading or listening proficiency—
comprehension questions are just the most visible part of that process.
 Hubbard (2004) argues that learner training should be a significant part of
CALL software implementation and proposes five guiding principles for CALL
learner training:

1. experience CALL yourself from the learner’s perspective;
2. provide learners with some teacher training so that they can make better

decisions when working independently;

 EVALUATING CALL SOFTWARE 17

3. employ a cyclical approach, making training ongoing rather than relying
on one-time training sessions when the software is first introduced;

4. use collaborative debriefings to encourage students to reflect on their learn-
ing process after using the software and to promote finding out about effec-
tive procedures from one another; and

5. teach general exploitation strategies so that they can take greater control of
the software and adapt it in ways that go beyond the designer’s vision.

 Kolaitis, Mahoney, Pomann, and Hubbard (in press) report on a project that
implemented these learner-training principles into an ESL program at a commu-
nity college. They found that while some of the learner training principles were
helpful, others, such as giving learners teacher training and finding time for col-
laborative debriefings, proved much more of a challenge for teachers. They noted,
however, that developing the materials and procedures for training their students
allowed them to have a clearer view of the need to link software use to learning
objectives and to teach specific CALL strategies to promote that linkage.

6. Evaluating Student Outcomes
A final area of the evaluation process that needs to be touched upon is determining
the degree to which the software is used and the manner in which it is used have
been successful. This assessment process helps the teacher decide whether to use
the software in the future, and, if so, whether to use it in the same way or differ-
ently. It also adds to the teacher’s general understanding of what students do with
the software, which can influence future evaluations and implementation deci-
sions. To this end, Chapelle (2001) provides a set of questions for determining the
results of student use, empirically reflecting the six criteria presented previously
for judgmental evaluation. For example, for the criterion of learner fit, she offers
the following: “What evidence suggests that the targeted linguistic forms are at
an appropriate level of difficulty for the learners? What evidence suggests that the
task is appropriate to learners’ individual characteristics (e.g., age, learning style,
computer experience)?” (p. 68). A more elaborated version appears in Jamieson,
Chapelle, and Preiss (2005).
 Although important in principle, this sort of evaluation can be quite challenging
and time consuming to accomplish well in practice. Even some empirical infor-
mation is better than none, however, so the use of one or more of the following
methods is highly recommended. It should also be noted that this kind of empiri-
cal study with students can be done at a “pilot” level during the selection stage if
a trial version of the software is available. In fact, Robb and Susser (2001) report
that 56% of their survey respondents during the selection process “obtained a
copy/demo and had some students try it” while 52% “used it under class condi-
tions” (p. 46).

6.1 Observation

The most direct way to get information on whether the software is having a posi-
tive effect on learning is by watching the students as they use it. In a lab situation,

18 HUBBARD

particularly when dealing with software that is new to the student, the teacher
can walk around, take note of how students are moving through the software, and
interact with them as they are interacting with the software. Information gleaned
in this manner can be used both to evaluate the software and to inform ongoing
learner training.

6.2 Tracking Systems

Perhaps the best way to get objective information on student use is either to select
software that includes tracking of student actions or to employ a screen capture
device (e.g., Lotus Screen Cam) that will record the changes in the student dis-
play. Depending on the type of tracking system used and the nature of the data
collected, this can allow for either a superficial overview, for example, student
quiz scores or time on the computer (not necessarily the same as time on task) or
a data set that is rich in detail but may be time consuming to analyze. Other things
being equal, however, the presence of a tracking system in software is seen as a
positive feature.

6.3 Student Surveys

Another approach to gathering information on student perceptions of success or
failure with the software is to ask them by using a survey or questionnaire. While
such information can be valuable, there are two concerns. First, if students know
their responses are tied to a grade or other assessment, or if they believe (even
erroneously) that this is the case, the results will be compromised. Thus, it can
be important to ensure anonymity if feasible. Second, even when students are
trying to be completely honest, their reports may not correspond to their actions.
Fischer (2004) reported on a study of French reading software in which the stu-
dent accounts of their use of program features were quite different from what was
observed in the objective data in the tracking logs. If surveys are to be used, then
it is advisable to administer them either during or immediately after completion of
a CALL activity to tap into fresh memories as much as possible.

6.4 Pre- and Posttesting

Evaluating student outcomes is a form of research, especially when it is done with
software that is untried for a particular setting. Certain types of CALL instruction,
particularly those which can be assessed with some degree of validity with dis-
crete-point tests such as vocabulary development, may be empirically evaluated
using a pre- and posttest regime. Note that while this may give useful information
on the outcome, it does not provide the data about the learning process that most
of the other options do. It does, however, often have strong face validity with stu-
dents and school administrations, especially when results are positive.

6.5 Student Journals

Kolaitis et al. (in press) report success having students keep a “CALL journal” in

 EVALUATING CALL SOFTWARE 19

which they include not only the time and description of the material worked on
but also reflections on why they got certain answers wrong in exercises. Although
this is mainly done for the students’ benefit, this kind of journal also provides
teachers with useful information on how their students are progressing and using
the software. Note, however, that like questionnaires, the data in student journals
may not be fully reliable and should be interpreted accordingly.

7. Conclusion
Software evaluation remains an important area of CALL and there are indications
its role may be increasing, particularly in the domain of empirical evaluation.
Reeder, Heift, Roche, Tabyanian, Schlickau, and Gölz (2004) have proposed a
learner-centered theory to support empirical “E/Valuation” (p. 56) built on rela-
tionships among learner variables, learner objectives, and both constructivist and
instructivist language-teaching methods. Their paper describes a collaboration
among the authors’ four institutions and outlines an ambitious plan for a four-na-
tion study of multimedia software, the development of an online technical manual
of reviews and E/Valuation techniques, and the founding of an International Insti-
tute for Language Learning Software Evaluation.
 However, for most language teachers software evaluation will remain primar-
ily a judgmental process, ideally with some empirical follow up of the types de-
scribed in the previous section. Even at the judgmental level, though, thorough
software evaluation of the type often mandated by published checklists and pro-
cedures is a time-demanding process that will be impractical for many classroom
teachers. The question remains then, which evaluation procedure to select. Robb
and Susser (2000) suggest an answer.

The vendor who explains everything, the colleague who remembers every-
thing, the checklist that covers everything, and the framework that suggests
everything do not exist and if they did, would probably be impossible to use.
Consequently, software selection is still very much an art honed by experi-
ence (p. 49).

 Reflecting on the material and procedures provided in this chapter is an impor-
tant first step in mastering that art, but the challenge remains for the individual to
gain the experience needed to determine a compatible CALL software evaluation
procedure that is practical and consistently yields reliable results.

20 HUBBARD

Questions for Reflection

1. Recall the three major types of evaluations: checklists, methodological frame-
works, and SLA-based approaches. If you had to evaluate a piece of software
today for possible use in your class, which approach, or combination of ap-
proaches, would you use and why?

2. Visit the CALICO Review site at www.calico.org/CALICO_Review. Select a
review that is relevant to your current or future teaching and read it critically.
Think about (a) what useful information is provided, (b) what support the
reviewer offered for the judgments made, and (c) what information was not
provided that you would have found helpful. If possible, compare your own
experiences working with this program with the reviewer’s opinion.

3. The methodological framework offered in this chapter requires a judgment
of teacher fit. What is your language teaching approach, and what approach-
based software evaluation criteria can you generate from it?

4. Locate a piece of language learning software and find one activity in it. Us-
ing the model in Figure 2, see whether you can describe the interactional
sequence of an item. What could you tell students about using the software
that would help their deliberation and consolidation?

5. Some software is designed by publishers to go with a particular textbook,
while other software is independent of any text. What are some of the advan-
tages and disadvantages of each?

6. If you are currently teaching or have recently taught a language class, think
about the kinds of CALL software support materials that could either be
integrated into your class or made available to students for supplementary
work. How would you go about locating such materials once you identify the
need?

7. If you have never learned a language using tutorial software, try to find some
at your institution or on the web and experience CALL from the learner’s per-
spective. Reflect on how your experience as a learner can inform evaluation
decisions that you make as a teacher of a language you know well.

Notes
1 For a more comprehensive contemporary treatment of these three approaches covering
not only software use but also other CALL tasks, see the evaluation chapter in Levy and
Stockwell (in press).
2As Jamieson, Chapelle, and Preiss (2005) note, the Longman English Online product was
dropped by Longman and much of its content has been released on CD-ROM as Longman
English Interactive.

 EVALUATING CALL SOFTWARE 21

References
Boling, E., & Soo, K.-S. (1999). CALL issues: Designing CALL software. In J. Egbert &

E. Hanson-Smith (Eds.), CALL environments: Research, practice, and critical
issues (pp. 442-457). Alexandria, VA: Teachers of English to Speakers of Other
Languages.

Bradin, C. (1999). CALL issues: Instructional aspects of software evaluation. In J. Eg-
bert and E. Hanson-Smith (Eds.), CALL environments: Research, practice, and
critical issues (pp. 159-175). Alexandria, VA: Teachers of English to Speakers
of Other Languages.

Burston, J. (2003). Software selection: A primer on sources and evaluation. CALICO Jour-
nal, 21 (1), 29-40.

Byrd, P. (2001). Textbooks: Evaluation for selection and analysis for implementation. In
M. Celce-Murcia (Ed.), Teaching English as a second or foreign language (3rd
ed., pp. 415-427).Boston: Heinle.

CALICO Review [web site]. www.calico.org/CALICO_Review
Chapelle, C. (2001). Computer applications in second language acquisition: Foundations

for teaching, testing, and research. Cambridge: Cambridge University Press.
Egbert, J., & Hanson-Smith, E. (Eds.) (1999). CALL environments: Research, practice,

and critical issues. Alexandria, VA: Teachers of English to Speakers of Other
Languages.

Fischer, R. (2004, September). How do students use CALL reading materials, and how do
we know that they do? Paper presented at the 11th CALL Conference. Antwerp.

Garrett, M., Nimri, M., & Peterson, J. (n.d.). Software evaluation guide. Retrieved Decem-
ber 16, 2005, from http://www.owlnet.rice.edu/~ling417/guide.html

Healey, D., & Johnson, N. (Eds.) (2005). TESOL CALL Interest Section software list. Re-
trieved December 16, 2005, from http://oregonstate.edu/dept/eli/softlist

Healey, D., & Johnson, N. (1997/1998). A place to start in selecting software. Computer
Assisted English Language Learning Journal, 8 (1). Also available at http://or-
egonstate.edu/~healeyd/cj_software_selection.html

Hot Potatoes [authoring software]. Available at http://hotpot.uvic.ca
Hubbard, P. (1988). An integrated framework for CALL courseware evaluation. CALICO

Journal, 6 (2), 51-72. Also available online at http://calico.org/journalarticles.
html

Hubbard, P. (1996). Elements of CALL methodology: Development, evaluation, and im-
plementation. In M. Pennington (Ed.), The power of CALL (pp. 15-33). Bolsover,
TX: Athelstan.

Hubbard, P. (2001, March). Extending & enhancing interactional sequences in tutorial
CALL. Paper presented at the annual CALICO Symposium, Davis, CA: March,
2001. Available at http://www.stanford.edu/~efs/phil/Hubbard-CALICO01.mht

Hubbard, P. (2004). Learner training for effective use of CALL. In S. Fotos & C. Browne
(Eds.), New perspectives on CALL for second language classrooms (pp. 45-68).
Mahwah, NJ: Lawrence Erlbaum.

Hubbard, P., & Bradin Siskin, C. (2004). Another look at tutorial CALL. ReCALL, 16 (2),
448-461.

22 HUBBARD

ISTE software evaluation form. Available at http://cnets.iste.org/teachers/pdf/App_D_Soft
ware.pdf

Jamieson, J., Chapelle, C., & Preiss, S. (2004). Putting principles into practice. ReCALL
16 (2), 396-415.

Jamieson, J., Chapelle, C., & Preiss, S. (2005). CALL Evaluation by developers, a teacher,
and students. CALICO Journal, 23 (1), 93-138.

Kolaitis, M., Mahoney, M., Pomann, H., & Hubbard, P. (in press). Training ourselves to
train our students for CALL. In P. Hubbard & M. Levy (Eds.), Teacher Educa-
tion in CALL. Amsterdam: John Benjamins.

Levy, Michael (1997). Computer-assisted language learning: Context and conceptualiza-
tion. Oxford: Clarendon/Oxford University Press.

Levy, M., & Stockwell, G. (in press). CALL dimensions: Options and issues in computer
assisted language learning. Mahwah, NJ: Lawrence Erlbaum.

Longman English Interactive [computer software]. (2003). New York: Pearson.
National Foreign Language Resource Center (Hawaii). Multimedia software evaluation

checklist. Available at http://www.nflrc.hawaii.edu/NetWorks/NW31/evalua
tion_checklists.htm

National Foreign Language Resource Center (Hawaii). [Software database]. Available at
http://www.nflrc.hawaii.edu/NetWorks/NW31/software_eval

Phillips, M. (1985). Logical possibilities and classroom scenarios for the development of
CALL. In C. Brumfit, M. Phillips, & P. Skehan (Eds.), Computers in English
language teaching (pp. 25-46). New York: Pergamon.

Randall’s Cyber Listening Lab [web site]. www.esl-lab.com
Reeder, K., Heift, T., Roche, J., Tabyanian, S., Schlickau, S., & Gölz, P. Toward a theory

of E/Valuation for second language media. In S. Fotos & C. Browne (Eds.), New
perspectives on CALL for second language classrooms (pp. 255-278). Mahwah,
NJ: Lawrence Erlbaum.

Richards, J., & Rodgers, T. (1982). Method: Approach, design, procedure. TESOL Quar-
terly, 16 (2), 153-68.

Robb, T., & Susser, B. (2000). The life and death of software. CALICO Journal, 18 (1),
41-52.

Rosetta Stone [computer software]. available at http://www2.rosettastone.com/en/?a=b
Susser, B. (2001). A defense of checklists for software evaluation. ReCALL, 13 (2), 261-

276
Tell Me More [computer software]. Available at http://www.auralog.com/us/tellmemore6_

GB.html
Underwood, J. (1984). Linguistics, computers, and the language teacher: A communicative

approach. Rowley, MA: Newbury House.

 EVALUATING CALL SOFTWARE 23

APPENDIX
CALICO Journal Review Form (http://calico.org/CALICO_Review/softrev00.
htm)

Software Evaluation Outline: Courseware
(2500 words ± 500)
3-4 Screen Shots
Name of product
Reviewer

Product at a glance (DO IN POINT FORM SUMMARY)
Product type (e.g., drill & practice, tutorial, game, simulation,

concordancer, facilitate tool, assessment, instructional
management, authoring, etc.)

Language(s)
Level (Beginner, intermediate, advanced; child, adolescent,

adult)
Activities (e.g., multiple choice, fill-in exercises; pronunciation,

dialog repetition; listening comprehension; transcription;
vocabulary learning, data base building, etc.)

Media Format (Floppy Disk, CD-ROM, DVD, WWW)
Operating System(s)
Windows
Mac

(Version)
(Version)

Hardware requirements
PC
Mac

(CPU)
(CPU)

RAM

Hard Disk Space
CD-ROM (x speed)
DVD
Sound (e.g., Sound card, microphone)
Video (x colors; screen resolution)
Supplementary Software (e.g., QuickTime Ver x; HyperCard Ver x; WWW browser

Ver x, Plugins)
Documentation
On-line
Printed

(e.g., user’s Guide, Teacher’s Guide)

Price:
Single User
Multiple Copies
Site License

24 HUBBARD

(DO REMAINDER OF REVIEW DISCURSIVELY)

1. General description (25% of review)
Summary of features
Background information
Advertising claims, previous reviews
Documentation: On-line help, printed manuals

2. Evaluation (60% of review)
Technological Features
Simplicity of installation (adequacy of instructions, trouble-free, easy to un-in-
stall)
Speed of program operation (where are the delays: at startup; loading videos; web
page loading?)
Reliability of operation (crashes & stalls)
Platform compatibility (PC/Mac; OS/Browser versions)
Screen management (esthetics, navigational transparency)
User interface (ease of use, operational consistency, on-line help)
Exploitation of computer potential (effective use of sound, graphics, video, speech
recognition, speech synthesis, intelligent response handling, student record keep-
ing, adaptability based on user profiles, www connectivity).

Activities (Procedure)
This is essentially a matter of determining what students do when they use a pro-
gram and how well these activities are designed. Judgments here must always be
made relative to activity type. You may be personally opposed, for example, to
the use of structuralist grammar exercises; but in evaluating these you can’t criti-
cize them for not being collaborative in nature. You have to judge such exercises
relative to how well done they are as a structuralist activity. (The appropriateness
of activities is a separate issue, dealt with under Teacher Fit). Broadly speaking,
activities can be classified into three major types:
Instructional (tutorials, drills, text reconstruction)
Collaborative (games, simulations, discussion forums, peer group writing)
Facilitative (dictionary, database, verb conjugator, spell/grammar checker, au-
thoring system)
Obvious activity features to consider are:
Linguistic focus (discourse, syntax, lexis, morphology, spelling, pronunciation)
Language skills (reading, listening, writing, speaking)
Sociolinguistic focus (information gathering/authentic tasks)
Supplementary/Complementary/Central relationship to the to curriculum

Teacher Fit (Approach)
An assessment of teacher fit primarily involves looking at the theoretical under-
pinnings of student activities, judging how well they conform to accepted theories
of cognitive development, second language acquisition, and classroom methodol-

 EVALUATING CALL SOFTWARE 25

ogy. Linguistic accuracy (i.e., grammaticality, authenticity, typos etc.) and the ap-
propriateness of socio-cultural representations (e.g. stereotypes, gender bias) also
contribute to how well a program meets teacher expectations.

Teacher fit is the most critical parameter of software evaluation, for it determines
the pedagogical soundness and appropriateness of the program. No matter how
technically brilliant a program may be or how rich the activities it provides, if its
methodology is dubious, if it fails to adhere to its avowed instructional approach,
or if it pays insufficient attention to linguistic accuracy or sociocultural authentic-
ity, then it will be of limited usefulness.

Not surprisingly, the assessment of teacher fit is the most difficult software pa-
rameter to determine. Partly, this is because software developers do not always
explicitly state the theoretical/methodological assumptions underlying their pro-
gram, thereby obliging a reviewer to extract them by implication. On the other
side of the coin, software producers are very much aware of what methodologi-
cal approaches are in favor (e.g. communicative, learner-centered, constructivist,
experiential) and label their products accordingly whatever the truth of the matter
may be.

Learner Fit (Design)
In considering learner fit, you are in essence defining the intended user of the
software program. In doing so, you are also determining the extent to which the
program is appropriate for, or can be adapted to, the needs of particular kinds of
students. Properties affecting learner fit include:
Linguistic level (grammar, vocabulary, register)
Response handling (error correction, feedback)
Adaptation to individual learner differences (age, interests)
Learning styles (recognition, recall, comprehension, experiential learning)
Learning strategies
 Field-dependent /-independent learning
 Deductive/Inductive reasoning
 Visual-graphic/Visual-textual learning
Individual/Group work
Learner control (sequencing, content, operating parameters)
Design flexibility/modifiability by the instructor

3. Summary (4-5 sentences + rating chart)
Scaled rating (1 low-5 high)
Implementation possibilities:
Pedagogical features (relative to evaluation parameters):
Sociolinguistic accuracy (typos, grammatical errors, stereotypes):
Use of computer capabilities (multimedia whistles & bells):
Ease of use (student/teacher):
Overall evaluation:
Value for money:

26 HUBBARD

4. Producer Details
Developer/distributor
Name
Address
Phone
Fax
E-mail
WWW

5. Reviewer information
Biodata (75 words)
Contact addresses (phone , fax, e-mail, s-mail)

About the Author
Dr. Philip Hubbard directs the English for Foreign Students Program in the Stan-
ford University Language Center. He has published on different aspects of CALL
such as CALL methodology and evaluation of courseware and has also designed
software applications for ESL.

