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Ca2+-dependent regulation in neuronal gene expression
Haruhiko Bito∗†, Karl Deisseroth∗‡ and Richard W Tsien∗§

Ca2+ is an important signal-transduction molecule that plays a
role in many intracellular signaling pathways. Recent advances
have indicated that in neurons, Ca2+-controlled signaling
mechanisms cooperate in order to discriminate amongst
incoming cellular inputs. Ca2+-dependent transcriptional
events can thereby be made selectively responsive to bursts
of synaptic activity of specific intensity or duration.
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Abbreviations
AP1 activator protein 1
BAPTA 1,2-bis(2-aminophenoxy)ethane-tetraacetic acid
CaM calmodulin
CaMK Ca2+/CaM-dependent protein kinase
CaMKK CaMK kinase
CBP CREB-binding protein
CRE cAMP-response element
CREB CRE-binding protein
EGF epidermal growth factor
EGTA ethylene glycol-bis(β-aminoethyl ether)-tetraacetic acid
GRF guanine nucleotide releasing factor
JNK c-Jun N-terminal kinase
L-LTP late-LTP
LTP long-term potentiation
MAPK mitogen-activated protein kinase
MAPKAP MAPK-activated protein
NCAM neural cell adhesion molecule
NFAT nuclear factors of activated T cell
NMDA N-methyl-D-aspartate
pCREB phospho-CREB
PKA protein kinase A
PP1 protein phosphatase 1
SAPK stress-activated protein kinase
SRE serum response element
SRF serum response factor
STAT signal transducer and activator of transcription

Introduction
Recent studies have helped to delineate some of the
mechanisms involved in activity-dependent surface-to-
nucleus signaling in neurons [1–8]. The signaling path-
ways are being mapped, and the points of crosstalk
between them are being identified. In some cases, we
have even begun to understand the functional significance
of these synaptically recruited signaling pathways. In this
review, we will summarize briefly recent advances in
this rapidly moving field, and then focus specifically on

regulatory events that are modulated by Ca2+, a critical
messenger in the CNS [9].

Signaling from the synapse to the nucleus:
key features of Ca2+ as a second messenger
Activity-dependent changes in neuronal structure and
synaptic remodeling [1,2], which are so essential for brain
function, depend critically on protein synthesis [3]. In
considering how these events come about, it is important
to understand the relationship between the electrical
activity of a CNS neuron and gene expression at its
nucleus [4–8]. From its vantage point within the cell body,
the nucleus acts as a sensitive information-processing
device, receiving inputs derived from surface stimuli that
are transferred centrally via diverse cytoplasmic signals.

In some ways, the nucleus may be compared to the axonal
action potential initiation zone — both are computers of
sorts, stationed downstream of the dendritic tree, with the
nucleus deciding on RNA production in the same way
that the action potential initiation region decides on spike
firing. Both devices are clearly sensitive to the intensity,
duration, and temporal pattern of incoming information,
and both probably rely on some pre-processing of
incoming signals within the dendritic tree, whether the
signals be electrical or biochemical.

In several respects, however, the nucleus has a much more
complex job to perform. First, whereas the action potential
initiation zone takes one type of input (membrane voltage)
and generates one type of output (the action potential),
the nucleus has many different types of input (multiple
converging signal-transduction cascades) and generates
many different types of output (multiple genes that
can be expressed in different patterns and at different
levels). In this sense, the nucleus is the more complicated
computer of the two. Second, nuclear signaling may
need special engineering in a way that the spike-firing
decision does not. The latter takes a fast input (membrane
depolarization) and uses a rapid calculator (voltage-gated
Na+ and K+ channels) to determine a fast output (the
action potential). But the nucleus, in generating its slow
output of changes in gene expression, needs to consider
not only similarly slow inputs, like hourly variations in
external hormone, but also fast changes in membrane
voltage, on a time-scale of milliseconds. If the nucleus
could not respond to fast synaptic depolarizations, it would
be throwing away potentially useful information — in
modern parlance, wasting bandwidth.

Relying on voltage changes themselves to generate a
second messenger for nuclear signaling is part of the
solution. As a general strategy, excitable cells achieve fast
conversion from electricity to biochemistry through an
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intense but local influx of Ca2+ [9]. In neurons, voltage-de-
pendent Ca2+ channels and postsynaptic NMDA receptor
channels are able to respond quickly to millisecond-scale
electrical events by generating Ca2+ signals, which can
have a lasting impact once they are decoded by the
appropriate Ca2+-sensitive proteins. This signaling cascade
provides a rationale for why Ca2+ may be an important
mediator of synapse-to-nucleus signaling.

Indeed, extensive studies of stimulus-dependent gene
expression in CNS neurons, carried out in vivo [5,8,10–13],
in acute slices [14••], and in cultured neurons [15••],
have generally borne out the importance of Ca2+ entry
pathways. This has been demonstrated by disrupting
signaling to the nucleus with blockers of NMDA receptors
[10,11], inhibitors of voltage-gated Ca2+ channels [14••], or
both [15••]. In these studies, nuclear signaling pathways
are able to discriminate between features of the electrical
stimuli, such as their frequency, intensity, duration or
pattern of repetition. Such discrimination may well
involve Ca2+ signaling mechanisms. In principle, fast
Ca2+ influx could link up to Ca2+ targets with different
Ca2+ sensitivity, thereby providing discrimination between
Ca2+ signals of varying amplitudes, or to Ca2+ targets
that activate or inactivate over time [9,16•,17••,18], thus
representing the duration or temporal pattern of the
signals.

Knowledge about the general properties of activity-depen-
dent gene expression has heightened interest in the mech-

anisms of signaling from the synapse to the nucleus. At
least three fundamental questions need to be addressed.
First, what are the various molecular pathways that link
patterns of synaptic activity with specific downstream
genes? Are they all dependent on Ca2+, to some extent,
or are some Ca2+-independent? Second, what are the
downstream genes and how is their expression modified?
How do they give rise to activity-induced changes (or
maintenance) of neuronal properties? Third, how does
gene expression at the nucleus lead to synapse-specific
changes? Does this involve a mechanism of local ‘synaptic
tagging’ [19••]?

Activity-dependent regulation of nuclear
transcription factors
Increasing attention has been directed lately toward the
signaling pathways that are crucial for the activation of
nuclear events. Initial studies carried out in immortalized
neuronal cell lines such as phaeochromocytoma PC12 cells
highlighted the complexity of the signaling pathways
that lead to transcriptional activation (e.g. [4,20–26,27•]).
More recently, it has become possible to examine
signaling pathways in non-immortalized neurons and
to delineate the specific patterns of neuronal input
that can lead to transcriptional activation and gene
expression [28–33,34••,35••]. Likewise, there has been a
progression from gel-shift assays, which measure generic
changes in the binding of transcription factors to their
cognate regulatory elements (see e.g. [36]), to analysis of
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Integration of multiple signaling pathways onto pCREB/CBP. In neuronal cells, phosphorylation of CREB at Ser133 could be mediated by many
different serine/threonine protein kinases. Extensive crosstalk amongst these pathways has been reported. Once CREB is phosphorylated to
pCREB, it presents a high-affinity binding site to CBP, which is a histone acetyltransferase and which could interact as a co-activator with
various other transcriptional activators, such as E1A, AP1, STATs or nuclear hormone receptors. AC-I, type I adenylyl cyclase.
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specific transcription factors and their upstream signaling
pathways.

A leading example is the Ca2+/cAMP-response element
binding protein (CREB), which is activated by phos-
phorylation of Ser133, an event that can be brought
about by a variety of neuronal protein kinases, includ-
ing protein kinase A (PKA), Ca2+/calmodulin-dependent
protein kinase II (CaMKII), CaMKIV, pp90rsk, rsk-2,
and MAP kinase-activated protein (MAPKAP) kinase-2
[34••,37–47,48•,49] (Figure 1). The convergence of mul-
tiple signaling pathways onto CREB raises the issue
of whether and how information from specific neuronal
inputs might be preserved. Increased phosphorylation
of CREB leads to the formation of a stable complex
with the CREB-binding protein (CBP) and, in turn, to
recruitment of the RNA polymerase II holoenzyme [50].
CBP is itself a remarkable signal integrator [51–53,54•,55•].
When phosphorylated by PKA and mitogen-activated
protein kinase (MAPK), CBP responds in distinct ways to
stimulate c-fos transcription [56]. Furthermore, pp90rsk, by
binding to CBP, seems to act as an inhibitory regulator of
CREB-mediated transcription [55•], despite the fact that
pp90rsk and rsk-2 are known CREB kinases [35••,48•].

Finally, and most dramatically, CBP has been shown to
be a co-activator of transcription not only for CREB, but
also for a number of other transcription factors, including
(but clearly not restricted to) activator protein 1 (AP1),
nuclear hormone receptors, and STATs (signal transducers
and activators of transcription) [57••–60••,61–70]. The
convergence of signals onto CBP is all the more re-
markable in light of evidence suggesting an additional
role for CBP (and for P/CAF, a CBP-binding protein)
as a histone acetyltransferase critical for transcriptional
initiation [71,72••,73••]. Taken together, the multiplicity
of signaling mechanisms acting on CREB and CBP
provide a rich array of possibilities for input-specific
patterns of gene expression.

Interest in the CREB/CBP system has been intensified
by rapidly growing evidence for its importance in memory
storage. The first analyses of specific transcriptional events
in synaptically connected neurons were carried out in
Aplysia by Kandel’s group [3,74–76,77••], who established
that PKA-dependent regulation of the CREB system was
essential in the long-term sensitization of the gill-with-
drawal reflex, a classic example of implicit learning. In
Drosophila, a dramatic dependence on CREB signaling has
been found for protein-synthesis-dependent, long-lasting
components of olfactory learning [78,79,80••]. Mutant
mice lacking α- and δ-isoforms of CREB display intact
short-term memory but deficient long-term memory in
three independent learning tasks [81,82••]; concomitantly,
late long-term potentiation (L-LTP) in hippocampal CA1
is also impaired [81].

In contrast to the striking phenotype of the CREB-de-
ficient mice, knockouts of immediate early transcription

factor zif/268 (also known as NGFI-A) [83], NFAT (nu-
clear factors of activated T cell) [84] and cAMP-response
element modulator (CREM) (JA Blendy, JH Kogan,
G Schutz, AJ Silva, Soc Neurosci Abstr 1996, 22:1391) have
not yet yielded remarkable behavioral changes. Deletions
of c-fos [85] and fosB [86] cause behavioral abnormalities,
but their neurobiological basis is not understood. There-
fore, the pronounced but specific defects arising from
elimination of only two of the many CREB isoforms is
particularly interesting. Taken together, these results have
placed the CREB/CBP system at the forefront of current
thinking about the role of the nucleus in controlling
long-term changes in the properties of neurons.

On the basis of studies in Aplysia and Drosophila, PKA
has been assumed to be important in CREB-dependent
learning in mammals. PKA clearly is required for learning
and L-LTP [87], and its catalytic subunit shuttles to the
nucleus in forskolin-stimulated PC12 cells [88]. However,
it remains to be established that PKA is involved directly
in CREB phosphorylation. PKA may also be important for
phosphorylating other components of the transcriptional
apparatus, such as CBP, or, alternatively, PKA could be
important for the local (e.g. dendritic) implementation of
a change directed by the nucleus.

Signaling from the synapse to the nucleus: an
example of Ca2+-dependent CREB regulation
A central issue is how synaptic activity leads to activation
of the CREB pathway. Several groups have examined
the patterns of synaptic activity required for triggering
phosphorylation of nuclear CREB at Ser133 and have tried
to relate this phosphorylation to activation of downstream
genes such as c-fos [14••,15••,34••,35••]. In hippocampal
cultures, rapid, Ca2+-dependent CREB phosphorylation
can be evoked in postsynaptic neurons when they receive
synaptic input at frequencies that induce either increases
or decreases in synaptic strength; however, in the absence
of synaptic transmission, high-frequency action potential
firing is not able to induce CREB phosphorylation ([15••];
see also [89]). Thus, CREB activation seems to depend
critically on postsynaptic Ca2+ entry — the substantial
amount of Ca2+ influx (and nuclear Ca2+ elevation) that
occurs during action potential firing is present in either
the wrong place or the wrong quantity to give rise to
CREB phosphorylation [15••]. This is an interesting and
potentially useful distinction for a neuron to make, as
discriminating against action potentials allows synaptic
potentials to have a much greater relative effect on nuclear
signaling.

In hippocampal neurons, both the phosphorylation and
dephosphorylation of CREB have been found to utilize
Ca2+/calmodulin (CaM)-regulated mechanisms. Positive
regulation occurs through a CaMK cascade involving
nuclear CaMKIV [34••]. CaMK cascades have been
studied intensively in vitro [90–96,97••], and it has been
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Regulation of CREB by Ca2+ in hippocampal neurons. (a) Schematic diagram illustrating the net effect on gene expression of a dual
Ca2+/CaM-dependent regulation. When a short stimulus is applied, the combined activation of both kinase and phosphatase activities leads
to a transient pCREB state in the nucleus, which is presumably insufficient to trigger a significant amount of transcriptional activity. When the
synaptic activity is long-lasting, an inactivation of the phosphatase pathway enables a more sustained pCREB state in the nucleus, leading
to a detectable amount of CRE-mediated transcription. This state could be mimicked in vitro by coupling a short stimulus with inhibition
of calcineurin. (b) Synaptic activity induces Ca2+ influx through glutamate receptor channels of the NMDA-type (NMDA-R), as well as
through L-type voltage-gated Ca2+ channels. This influx leads to a build-up of Ca2+/CaM near the plasma membrane, which activates two
Ca2+/CaM-dependent mechanisms: a CaMK cascade, which culminates in the stimulation of nuclear CaMKIV via CaMKK; and calcineurin
(CaN)-mediated regulation of nuclear PP1 activity, presumably by a change in the phosphorylation state of a PP1 regulatory subunit. Both
mechanisms are stimulated simultaneously when synaptic stimuli are applied; however, the CaN-regulated mechanism is inhibited when the
stimulus duration is increased substantially by a superoxide-sensitive mechanism. Phospho-CREB (pCREB) can then stably associate with CBP
in the nucleus (not shown) to induce a variety of CRE-regulated genes. Adapted with permission from [34••]. PPase, protein phosphatase.

established that CaMKIV can be strongly activated by
trans-phosphorylation via an upstream CaMK [98–101].
Together, the distinct brain localization of CaMK ki-
nase (CaMKK)-α or CaMKK-β [102] and the differing
efficiencies of CaMKK action on various CaMKs [103•]
offer interesting possibilities for subtle fine-tuning of

Ca2+-dependent CREB phosphorylation in different cell
types.

Negative regulation of CREB in hippocampal neurons
has been found to occur through calcineurin-dependent
regulation of nuclear protein phosphatase 1 (PP1) activity
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[34••,35••] (Figure 2). An interesting parallel has been
uncovered in organotypic slice cultures of the striatum;
Liu and Graybiel [35••] suggest that a calcineurin-con-
trolled phosphatase gate may provide a mechanism for
activity-dependent regulation of CREB phosphorylation
and striatal compartment formation.

In hippocampal cultures, increasing stimulus duration
has been found to block the effect of calcineurin and
thereby allow phospho-CREB (pCREB) to persist for
a much longer time. This turns out to be significant
for gene expression, as sustained, but not transient,
elevation of nuclear CREB phosphorylation is required
for efficient stimulus–transcription coupling in both hip-
pocampal [34••] and striatal [35••] neurons. This discrim-
ination appears to work through an activity-dependent
inactivation of calcineurin [34••]. As first described by
Klee and colleagues [16•,17••] in vitro, such inactivation
requires Ca2+/CaM activation of calcineurin, but it also
depends on the action of superoxide. There is evi-
dence for activity-dependent reactive oxygen production
in hippocampal neurons, as well as evidence for the
involvement of superoxide in controlling the rate of CREB
dephosphorylation [34••].

It is tempting to speculate on the information-processing
utility of these different Ca2+-dependent control steps.
For example, consider Ca2+-dependent activation of
CREB phosphorylation coupled with Ca2+-dependent
inactivation of CREB dephosphorylation. If activation
of both Ca2+-dependent pathways is required to give
rise to stable pCREB levels in the nucleus, there will
probably exist some degree of cooperativity in the Ca2+-
dependent control of CREB-dependent gene expression.
Such cooperativity could well allow for non-linear or
switch-like behavior in the synaptic control of nuclear gene
expression. Whether this intriguing control mechanism
is involved in learning and memory remains to be
established.

The importance of other signaling pathways
and crosstalk
Even though the Ca2+/CaM-dependent component of
Ca2+/cAMP-response element (CRE) regulation appears
to play a critical role in many types of neurons [15••,20,27•,
31,33,34••,104], several groups (see [15••,104]) have noted
a PKA-dependent component in neurotransmitter-acti-
vated regulation of CRE, raising the possibility of an
additional regulatory phosphorylation event. Without a
doubt, CREB phosphorylation is itself strongly dominated
by PKA in certain systems (such as dopaminergic neurons
in the CNS) [6,35••], even though the dephosphorylation
of CREB may still lie under the control of calcineurin
in these cells (such as in striosomal neurons [35••]).
Furthermore, in vitro studies have suggested that PKA
may exert its effects by increasing the transcriptional
potential of CBP [51,52,54•], as does MAPK [53]. Whether
PKA regulates CBP in neurons remains to be determined.

PKA may also have an impact on the activation of the
Ca2+-effector pathway: PKA-dependent phosphorylation
of CaMKK has been found to inhibit its activation of
CaMKIV (GA Wayman, H Tokumitsu, TR Soderling,
Soc Neurosci Abstr 1996, 22:372), and PKA is known to
act as a kinase to the phosphorylation site targeted by
calcineurin during the calcineurin-mediated inactivation
of the inhibitory subunits for PP1, such as inhibitor-1 or
DARPP-32 [105]. Conversely, CaMKIV can phosphorylate
and inactivate the enzymatic activity of Ca2+/CaM-sen-
sitive type I adenylyl cyclase [106•] (Figure 1, dashed
arrows), thus suppressing the PKA pathway.

The role of Ca2+ in CRE-mediated gene expression
may not be limited solely to CaMKIV-induced CREB
phosphorylation. In the immortalized AtT20 cell line,
CRE-dependent transcription depends more on nuclear
Ca2+ than on cytoplasmic Ca2+ [27•]. This is in contrast
to hippocampal neurons, in which highly local rises
in Ca2+, but not bulk cytoplasmic or bulk nuclear
Ca2+, are the critical signals in synaptic activation of
CREB phosphorylation [15••]. In fact, in hippocampal
neurons, generalized elevations in nuclear Ca2+ are not
only unnecessary for CREB phosphorylation but also
insufficient [15••]. It is easy to imagine, however, why such
different cell types might use different signaling pathways.
Neurons, with vast and spatially complex dendritic trees,
would perhaps be best designed if they could make good
use of local Ca2+ signals in synapse-to-nucleus signaling;
whereas the much more compact AtT20 cells (which have
no neuronal processes) may have no need for such clever
engineering, as the whole surface plasma membrane is
close to the nucleus. Alternatively, a nuclear Ca2+ pool,
although not critical for CREB phosphorylation per se,
could influence the long-term stability of pCREB. If
so, this would profoundly affect CRE-dependent gene
expression [34••]. Though speculative, a model in which
two separate cellular pools of Ca2+ are used to control
distinct steps in the same signaling pathway is interesting
computationally, implying that synaptically generated Ca2+

is a variable that may be used in two or more terms within
the same equation.

Are the effects of Ca2+ restricted to regulation of CRE-like
elements? Clearly not. There is strong evidence for a
Ca2+-dependent pathway leading to Ras/MAPK activation,
which is critical in neuronal serum response element
(SRE)-mediated transcription [27•,107,108•]. The links
between Ca2+ and Ras have not been outlined clearly
in neurons, though possible candidates for a Ca2+ sensor
include protein kinase C (PKC) [109], pyk2 [110••], and
Ras-GRF (guanine nucleotide releasing factor) [111••].
Furthermore, overexpression of a constitutively active
form of CaMKIV in PC12 cells either phosphorylates
serum response factor (SRF) directly [112] or leads
to increased basal activity of various MAPK pathways,
including the ERK, JNK/SAPK, and p38 pathways [113•]
(Figure 1, dashed arrows), all of which have been
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implicated upstream of SRE via phosphorylation of either
elk-1 or SRF. Other regulators of small GTP-binding
proteins such as IQGAP1 and IQGAP2 have also been
reported to bind Ca2+/CaM, suggesting an alternate small
GTPase route by which Ca2+ might regulate SRE through
JNK/p38, downstream of Rac/Cdc42 pathways [114–117].
The JNK/SAPK pathways could also be modulated by
Ca2+ via pyk2 [118].

Taken together, these studies suggest that a wide variety
of possibilities must be considered when approaching
CREB signaling in specific neuronal systems. In addition,
of course, the CREB/CBP system will not stand alone
in the induction of target genes. For example, maximal
activation of c-fos in vivo requires cooperation among
multiple regulatory elements on the c-fos promoter,
including SRE, the sis-inducible element, the AP1 binding
element, and CRE [119••].

Figure 3

Tyrosine
phosphatase

Tyrosine
phosphatase

Cytoplasm

EGF
Ca2+ influx

Ca2+ influx Receptor activation

Jak

TyrosineTyrosine

CaN

PP1

CaMKK

CaMKIV

CREB
Grb2/Sos

Ras

P

(a) (b)

(c) (d)

NFATNFAT STATSTAT
CaN

P
P

STATSTAT

P

NFATNFAT

P Nucleus Nucleus

© 1997 Current Opinion in Neurobiology

Regulation of gene expression by the opposing actions of kinases
and phosphatases. Activation of a kinase cascade is associated
with inhibition of its opposing phosphatase (a) in CREB signaling in
hippocampal neurons, as well as (b) in EGF signaling in A431 cells.
Transcription factor shuttling is regulated by the balance of kinase
and phosphatase activities on each side of the nuclear membrane
(c) in NFAT signaling and (d) in the Jak/STAT system.

Common features of phosphorylation/
dephosphorylation-mediated regulation of
gene transcription
It is interesting to compare Ca2+ regulation of gene
expression in neurons to that found in other cell types,
particularly T lymphocytes (Figure 3a,c). Stimulation of
T cells with antigen initiates a sustained Ca2+ influx that,
in turn, leads to transcription of the interleukin-2 gene
(Figure 3c). The targets of Ca2+-dependent regulation
are NFATs, transcription factors that are activated when
dephosphorylated by calcineurin. Dephospho-NFAT shut-
tles into the nucleus [120••–122••], where it binds to
a co-activator complex such as AP1, thereby activating
transcription. A constitutive nuclear protein kinase activity
rephosphorylates NFAT, leading to its rapid export
from the nucleus [120••,122••]. Nuclear CaMK, such as
CaMKIV [123] or a nuclear isoform of CaMKII [124],
may also play a role in NFAT-dependent transcription.
As in the case of neuronal CREB, activation of NFAT
in lymphocytes requires Ca2+/CaM-dependent enzymatic
activity, but it is a phosphatase rather than a kinase that
acts as the initial trigger.

From an even more general perspective, it is useful
to recognize that bidirectional regulation of transcription
factor complexes by opposing kinases and phosphatases
also exists outside of the specific context of Ca2+-mediated
nuclear signaling. A classic example is the activation of the
tyrosine kinase cascade by growth factors (Figure 3b,d). As
shown recently, autophosphorylation and activation of the
epidermal growth factor (EGF) receptor tyrosine kinase
is associated with an EGF-induced, hydrogen-peroxide-
dependent inactivation of a critical tyrosine phosphatase
[125••] (Figure 3b). Two other groups [126•,127•] have
found that STAT-dependent transcription is negatively
regulated by a nuclear tyrosine phosphatase that promotes
export of STAT from the nucleus by dephosphorylating
tyrosine residue(s), identical to the Jak kinase phospho-
rylation site(s), that are critical for STAT’s nuclear entry
(Figure 3d). Again, as in the case of NFAT, the dynamic
shuttling of the activated transcription factor is regulated
by the opposing kinase (or phosphatase) activity in the
nucleus (Figure 3). Thus, both Ca2+-influx-mediated
nuclear signaling and ligand–receptor-interaction-induced
surface-to-nucleus signaling may control the timing of
nuclear events by using similar signaling principles.

Next steps: what are the target genes and
what are their functions?
Despite the considerable effort invested in elucidating
the molecular mechanisms involved in activity-induced
gene transcription, surprisingly little is known about how
changes in gene expression lead to long-term biological
consequences, such as synaptic remodeling.

In Aplysia neurons in culture, where CREB signaling
seems important for enduring changes in the efficacy
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and morphology of synapses [3,77••,128], one of the
important downstream genes is an adhesion molecule,
ApCAM, an Aplysia homolog of mammalian neural cell
adhesion molecule (NCAM) [77••,129,130]. In mammalian
neurons, NCAM is involved in activity-induced synapse
plasticity [131,132] and learning [133], but the molecular
linkage between activity and NCAM is less clear in
the mammalian system than in Aplysia. Expression of
another neural adhesion molecule, L1, can be induced by
restricted patterns of impulse activity [29]. Other gene
products whose expression changes in association with
synaptic plasticity include tissue plasminogen activator
[134•,135], β-A-activin [136], Narp [137], Arc [138•], and
cyclooxygenase-2 [139].

As more activity-dependent genes are uncovered, critical
attention must be focused on their relationship to the
implementation of long-lasting modifications. The elegant
study by Frey and Morris [19••] brings to the fore
additional questions regarding the interaction between
short-term, synapse-specific changes, probably involving
post-translational effects, and long-term changes in synap-
tic number or shape that require transcriptional activation.
Many mysteries lie ahead, but there is little question that
Ca2+ signaling will play a significant role in these events.
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