
SOME NOTES ON THE PROBABILISTIC SEMANTICS OF LOGISTIC FUNCTION PARAMETERS IN NEURAL NETWORKS. 
Todd R. Davies. Artificial Intelligence Center, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025 USA I 

A common choice for the activation function that is computed at each node in a model neural network is one that is given by the 
logistie equation , 
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in whieh OJ is the activation value (in [0,1]) for the jth unit (node), Ij is the s~t {il , ... ,in} of inputs to j, Wlj is the weight (in at) 
connecting all input i t.o unit j, Zi is the state (usually binary or in [0,11) of i, 8j is the thre1ihold or biM (ill 9?) for j, and T is the 
tem~ratu~ or r;ain parameter (in Jt+, assumed herein t.o ~ I). The activatioll value oJ is usually thought of A3 represelltinr; either the 
computed probability of the proposition or event ascribed to j /lS its content, or the probabilit.y thl'.t j, M a binary unit, will tum 011 
(i.e., that its state z) will be I rather than 0). The weight and threshold terms are often not given a dear probabilist ic interpretation 
by thoee .. ho U!iIe them in models, but intuitively a weilht Wij expresses the strength of evidence in favor of (or against) the proposition 
~presented by ;(:j that is provided by ;(:1 = I, and the threshold 8j expresses the (positive or negative) t.endency for Zj t.o r;o to I in the 
ab!Jence of a.ny of the inputs being on or ~true" . If OJ il identified with the probability of &n event or propOliition B j (which could be 
identital to the event zl = I) given the input state veetor (or vector oftrutb values) x = (;(:i". ,a:,.) then the logit tranlformation of 
the pl"Qbability P(BJ I x) definet a.n a1t.erna~ive form of ~he logistie equation (with T = I), namely, 
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If we ue t.o int.erpret networb with loptic units in pl"Qbabillltk terms, or if we wish t.o know how t.o tra.nsl&te pl"Qbability at&t.ements 
into pa.ramet.er V&lues for such networb, then two quettions that a.rise a.re (I) Howea.n a.ctiv&tion V&lues, weighu, a.nd thresholds ~ 
expr_d as functionl of pl"Qbabilities?, and (2) Wht assumptions about pl"Qbabilities are embodied in tbe logistic model? Little if any 
&ttention appea.tll t.o have been p&id to theee problems by st&tisticiana, probably beelLuse logistic regression models &r(> Llsed primarily for 
predietion iLfLd the exact a.nalysia of coefficients is not of r;te&t int.erest (Cox, 1970). Hinton &. Sejnowski (1983) discuss possible definitions 
for the weight a.nd threshold pa.r&lleters for the case of one input Itate Zj, under the _umption, Lh&L Qj represents p(Bj), and th&t 
Zj = 1 ~presents the presence of input evidence Ai, and Zi = 0 represents its absence ....,Aj. The definilions on which they settle, for the 
restrieted CllSe of I Ij 1= 1, amount to the following: 
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A simHIIl semantica has been propo:s-ed by Geffner k Pearl ( 1987). A very useful feature of these definitions, 1\.'1 Hinton and Sejnowski 
point out, is that the function for weigh ts is symmetric in Ai and Bio implying that Wij = WJI" The $emantica therefore provides a 
justification for the symmetry constraints often imposed by network architectures. 

The definitions given above may be difficnlt to understand intuiti,·ely. Howe"cr, if we e .... tend tile analysis of Hinton and Sejnowski 
t.o the cue of multiple inputs, then a.n equivalent form ea.n be given for these equations that defines 8j as a function of one probability 
value, and requires just one additional probability value t.o be specified for each wij, \'i~, 

8j = logit[p(Bj I ..... Ai " •.. , ....,Ai • )}, WiJ = 10gil[P(Bj ! Ai and ..... At for all k S.t. k E Ij , I; of I)J - 8}" 

The parameters can thus be defined as (unctions of the probability of a hypothesis given evidence, rather tha.n the reverse, alld th is lIlay 
be easier t.o think about. Because the lopt mapping it one-kKlne we can ~cover these prob&bilities fl"Qm the pMamet.er values. Extension 
to multiple input.l aJao allows u. t.o prove the following: ForOj lI"d Wij defined lIS abo~e, p(Bj I x) (0" 6e cqmpllltd 4.! 0 logi$ticj_nction 
of Lid. WijZi + 8j for eoch input vector x iff 

J 

p(x [B/ ) = n p(z; I B j ) and p{x I ..... Bj) = n p(z; [....,Bj ). 
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In words, l\S&umptions of conditional independence &mong the components of x for both Bi a.nd -.Bj are necess&ry and sufficient conditions 
for exact ~presentation of the probability model in & lor;istie function. From the definitio~ given above for WLJ and 8j one c&n derive 
& SYltem of line&r equationa that significantly over determine the parameters and probabili~ies. When Ihe conditional independence 
lS5umptio~ Me violated, error·minimillltion (e.g. orthogonalization, least-squares) ca.n be applied to the system t.o determine an optimal 
interpretation at _ignment for the para.meters. The analysis ofviol.tions suggests how much error"orre,tion, in the form of informational 
redundancy, should be buih into the network to <\thieve high <\tcurecy. 
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