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DETERMINATION, UNIFORMITY, AND RELEVANCE : 

NORMATIVE CRITERIA FOR GENERALIZATION 

AND REASONING BY ANALOGY 

INTRODUCTION: THE IMPORTANCE OF PRIOR KNOWLEDGE 
IN REASONING AND LEARNING FROM INSTANCES 

If an agent is to apply knowledge from its past experience to a present 
episode, it must know what properties of the past situation can justifi
ably be projected onto the present on the basis of the known similarity 
between the situations. The problem of specifying when to generalize or 
reason by analogy, and when not to, therefore looms large for the 
designer of a learning system. One would like to be able to program 
into the system a set of criteria for rule f~rmation from which the 
system can correctly generalize from data as they are received. Other
wise, all of the necessary rules the agent or system uses must be 
programmed in ahead of time, so that they are either explicitly repre
sented in the knowledge base or derivable from it. 

Much of the rese~ch in machine learning, from the early days when 
the robot Shakey was learning macro-operators for action (Nilsson, 
1984) to more recent work on chunking (Rosenbloom and Newell, 
1986) and explanation-based generalization (Mitchell et aI., 1986), has 
involved getting systems to learn and represent explicitly rules and 
relations between concepts that could have been derived from the start. 
In Shakey's case, for example, the planning algorithm and knowledge 
about operators in STRIPS were jointly sufficient for deriving a plan to 
achieve a given goal. To say that Shakey "learned" a specific sequence 
of actions for achieving the goal means only that the plan was not 
derived until the goal first arose. Likewise, in explanation-based 
generalization (EBG), explaining why the training example is an 
instance of a concept requires knowing beforehand that the instance 
embodies a set of conditions sufficient for the concept to apply, and 
chunking, despite its power to simplify knowledge at the appropriate 
level, does not in the logician's terms add knowledge to the system. 

The desire to automate the acquisition of rules, without programming 
them into the system either implicitly or explicitly, has led to a good 
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deal of the rest of the work in symbolic learning. Without attempting a 
real summary of this work, it can be said that much of it has involved 
defining heuristics for inferring general rules and for drawing conclu
sions by analogy. For example, Patrick Winston's program for learning 
and reasoning by analogy (Winston, 1980) attempted to measure how 
similar a source and target case were by counting equivalent corre
sponding attributes in a frame, and then projected an attribute from the 
source to the target if the count was large enough. In a similar vein, a 
popular criterion for enumerative induction of a general rule from 
instances is the number of times the rule has been observed to hold. 
Both types of inference, although they are undoubtedly part of the story 
for how people reason inductively and are good heuristic methods for a 
naive system, I are nonetheless frought with logical (and practical) peril. 
In reasoning by analogy, for example, a large number of similarities 
between two children does not justify the conclusion that one child is 
named "Skippy" just because the other one is. First names are not 
properties that can be projected with any plausibility based on the 
similarity in the childrens' appearance, although shirt size, if the right 
similarities are involved, can be. In enumerative induction, likewise, the 
formation of a general rule from a number of instances of co-occur
rence mayor may not be justified, as Nelson Goodman's well-known 
unprojectible predicate "grue" makes very clear (Goodman, 1983). So 
in generalizing and reasoning by analogy we must bring a good deal of 
prior knowledge to the situation to tell us whether the conclusions we 
might draw are justified. Tom Mitchell has called the effects of this 
prior knowledge in guiding inference the inductive "bias" (Mitchell, 
1980). 

A LOGICAL FORMULATION OF THE PROBLEM OF ANALOGY 

Reasoning by analogy may be defined as the process of inferring that a 
conclusion property Q holds of a particular situation or object T (the 
target) from the fact that T shares a property or set of properties P 
with another situation/object S (the source) which has property Q. The 
set of common properties P is the similarity between Sand T, and the 
conclusion property Q is projected from S onto T. The process may be 
summarized schematically as follows: 
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P(S) 1\ Q(S) 
P(T) 

Q(T). 
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The form of argument defined above is nondeductive, in that its 
conclusion does not follow syntactically just from its premises. Instances 
of this argument form vary greatly in cogency. As an example, Bob's 
car and Sue's car share the property of being 1982 Mustang GLX V6 
hatchbacks, but we could not infer that Bob's car is painted red just 
because Sue's car is painted red. The fact that Sue's car is worth about 
$3500 is, however, a good indication that Bob's car is worth about 
$3500. In the former example, the inference is not compelling; in the 
latter it is very probable, but the premises are true in both examples. 
Clearly the plausibility of the conclusion depends on information that is 
not provided in the premises. So the justification aspect of the logical 
problem of analogy, which has been much studied in the field of 
philosophy (see, e.g. Carnap, 1963; Hesse, 1966; Leblanc, 1969; 
Wilson, 1964), may be defined as follows. 

THE JUSTIFICATION PROBLEM: 
Find a criterion which, if satisfied by any particular analo
gical inference, sufficiently establishes the truth of the 
projected conclusion for the target case. 

Specifically, this may be taken fo be the task of specifying background 
knowledge that, when added to the premises of the analogy, makes the 
conclusion follow soundly. 

It might be noticed that the analogy process defined above can be 
broken down into a two-step argument as follows: (1) From the first 
premise P(S) 1\ Q(S), conclude the generalization Vx P(x) ~ Q(x), 
and (2) instantiate the generalization to T and apply modus ponens 
to get the conclusion Q (T). In this process, only the first step is 
nondeductive, so it looks as if the problem of justifying the analogy has 
been reduced to the problem of justifying a single-instance inductive 
generalization. This will in fact be the assumption henceforth - that the 
criteria for reasoning by analogy can be identified with those for the 
induction of a rule from one example. This amounts to the assumption 
that a set of similarities judged sufficient for projecting conclusions 
from the source to the target would remain sufficient for such a 
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projection to any target case with the same set of similarities to the 
source. There are clearly differences in plausibility among different 
single-instance generalizations that should be. revealed by ~orrect 
criteria. For example, if inspection of a red robm reveals that Its leg 
are I nger than its beak, a projection of thi conclusion onto un een red 
robin. is plausible, but projecting that the . cratch on the fir 1 bird' 
beak will be observed on a second red robin is implau ible. However, 
the criteria that aJlow us to distinguish between good and bad gener~ 
alizations from one instance cannot do so on the basis of many of the 
considerations one would use for enumerative induction, when the 
number of cases is greater than ooe. The criteria for enumerative 
induction include (I) whether or not the conclusion property taken as a 
predicate is "entTenched" (unlike 'grue' for io rance) (Goodman 1983) 
(2) bow many in tances have confirmed the generalization (3) ~hether 
or nOI there a re any known counterexamples to the rule that IS to be 
inferred, and (4) how much variety there is in the confirming instances 
on dimensions other than those represented in the rule's antecedent 
(Thagard and Nisbett, 1982). When we have information about only a 
single instance of a property pertinent to its association with another, 
then none of the above criteria will provide us with a way to tell 
whether the generalization is a good one. Cri teria for generalizingJrom 
a ingle instance, or for reasoning by analogy mu t therefore be impler 
than tho e required for general enumerative induction. Identifying those 
more specialized criteria thus seems like a good place to start in 
elucidating precise rules for induction. 

One approach to the analogy problem has been to regard the 
conclusion as plausible in proportion to the amount of similarity that 
exists between the target and the source (see Mill, 1900). Heuristic 
variants of this have been popular in research on analogy in artificial 
intelligence (AI) (see, e.g. Carbonell, 1983; Winston, 1980). Insofar as 
these "similarity-based" methods and theories of analogy rely upon a 
measure over the two cases that is independent of the conclusion to be 
projected, it is easy to see that they fail to account for the differences in 
plausibility among many analogical arguments . For example in the 
problem of inferring propertie of an unseen red robin from those of 
one already studied, the amount of similarity is fixed namely that both 
things are red robins, but we are much happier to infer that the bodily 
proportions wiII be the same in both cases than to infer that the unseen 
robin will also have a scratched beak. It is worth emphasizing that this 
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is true no matter how well constructed the similarity metric is. Partly in 
response to this problem, researchers studying analogy have recently 
adverted to relevance as an important condition on the relation 
between the similarity and the conclusion (Kedar-CabeUi, 1985; Shaw 
and Ashley, 1983). However, to be a useful criterion, the condition of 
the similarity P being relevant to the conclusion Q needs to be weaker 
than the inheritance rule Yx P(x) ~ Q(x), for then the conclusion in 
plausible analogies would always follow just by application of the rule 
to the target. Inspection of the source would then be redundant. So a 
solution to the logical problem of analogy must, in addition to provid
ing a justification for the conclusion, also ensure that the information 
provided by the source instance is used in the inference. We therefore 
have the following. 

THE NONREDUNDANCY PROBLEM: 
The background knowledge that justifies an analogy or 
single-instance generalization should be insufficient to imply 
the conclusion given information only about the target. The 
source instance should provide new information about the 
conclusion. 

This condition rules out trivial solutions to the justification problem. In 
particular, although the additional premise Yx P(x) ~ Q(x) is suffi
cient for the validity of the inference, it does not solve the nonredun
dancy problem and is therefore inadequate as a general solution to the 
logical problem of analogy. To return to the example of Bob's and Sue's 
cars, the nonredundancy requirement stipulates that it should not be 
possible, merely from knowing that Bob's car is a 1982 Mustang GLX 
V6 hatchback, and having some rules for calculating current value, to 
conclude that the value of Bob's car is about $3500 - for th~n it would 
be unnecessary to invoke the information that Sue's car is worth that 
amount. The role of the source analogue (or instance) would in that 
case be just to point to a conclusion which could then be verified 
independently by applying general knowledge directly to Bob's car. The 
nonredundancy requirement assumes, by contrast" that the information 
provided by the source instance is not implicit in other knowledge. This 
requirement is important if reasoning from instances is to provide us 
with any conclusions that could not be inferred otherwise. As was 
noted above, the rules formed in EBG-like systems are justified, but the 
instance information is redundant, whereas in systems that use heu-
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ristics based on similarity to reason analogically, the conclusion is not 
inferrable from prior knowledge but is also not justified after an 
examination of the source. 

There has been a good deal of fruitful work on different methods for 
learning by analogy (e.g., Burstein, 1983; Carbonell, 1983, 1986; 
Greiner, 1985; Kedar-Cabelli, 1985; Winston, 1980) in which the 
logical problem is of secondary importance to the empirical usefulness 
of the methods for particular domains. Similarity measures, for 
instance, can prove to be a successful guide to analogizing when precise 
relevance information is unavailable, and the value of learning by 
chunking, EBG, and related methods should not be underestimated 
either. The wealth of engineering problems to which these methods and 
theories have been applied, as well as the psychological data they 
appear to explain, all attest to their importance for AI. In part, the 
current project can be seen as an attempt to fill the gap between 
similarity-based and explanation-based learning, by providing a way to 
infer conclusions whose justifications go beyond mere similarity but do 
not rely on the generalization being implicit in prior knowledge. In that 
respect, there will be suggestions of methods for doing analogical 
reasoning. The other, perhaps more important, goal of this research has 
been to provide an underlying normative justification for the plausi
bility of analogy from a logical and probabilistic perspective, and in so 
doing to provide a general form for the background knowledge that is 
sufficient for drawing reliable, nonredundant analogical inferences, 
regardless of the method used. The approach is intended to comple
ment, rather than to compete with, other approaches. In particular is 
not intended to provide a descriptive account of how people reason by 
analogy or generalize from cases, in contrast to much of the work in 
cognitive psychology to date (e.g., Gentner, 1983; Gick and Holyoak, 
1983). Descriptive theories may also involve techniques that are not 
logically or statistically sound. The hope is that, by elucidating what 
conclusions are justified, it will become easier to analyze descriptive 
and heuristic techniques to see why they work and when they fail. 

DETERMINATION RULES FOR GENERALIZATION 

AND ANALOGICAL INFERENCE 

Intuitively, it seems that a criterion that simultaneously solves both 
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the justification problem and the nonredundancy problem should be 
possible to give. As an example, consider again the two car owners, 
Bob and Sue, who both own 1982 Mustang GLX V6 hatchbacks in 
good condition. Bob talks to Sue and finds out that Sue has been 
offered $3500 on a trade-in for her car. Bob therefore reasons that he 
too could get about $3500 if he were to trade in his car. Now if we 
think about Bob's state of knowledge before he talked to Sue, we can 
imagine that Bob did not know and could not calculate how much his 
car was worth. So Sue's information was not redundant to Bob. At the 
same time, there seemed to be a prior expectation on Bob's part that, 
since Sue's car was also a 1982 Mustang GLX V6 hatchback in good 
condition, he could be relatively sure that whatever Sue had had offered 
to her, that would be about the value of his (Bob's) car as well, and 
indeed of any 1982 Mustang GLX V6 hatchback in good condition. 
What Bob knew prior to examining the instance (Sue's car) was some 
very general but powerful knowledge in a form of a determination 
relation, which turns out to be a solution to the justification and 
nonredundancy problems in reasoning by analogy. Specifically, Bob 
knew that the make, model, design, engine-type, condition and year of 
a car determine its trade-in value. With knowledge of a single deter
mination rule such as this one, Bob does not have to memorize (or 
even consult) the Blue Book, or learn a complicated set of rules for 
calculating car values. A single example will tell him the value for all 
cars of a particular make, model, engine, condition, and year. 

In the above example, Bob's knowledge, that the make, model, 
design, engine, condition, and year determine the value of a car, 
expresses a determination relation between functions, and is therefore 
equivalent to what would be called a "functional dependency" in 
database theory (Ullman, 1983). The logical definition for function G 
being functionally dependent on another function F is the following 
(Vardi,1982): 

(*) 't/x,yF(x)=F(y)~ G(x)=G(y). 

In this case, we say that a function (or set of functions) F functionally 
determines the value of function(s) G because the value assignment for 
F is associated with a unique value assignment for G. We may know 
this to be true without knowing exactly which value for G goes with a 
particular value for F. If the example of Bob's and Sue's cars (CarB and 
Cars respectively) from above is written in functional terms, as follows: 
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Make( Car~) = Ford 
Mode/(Cars) = Mustang 
Design ( Cars) = GLX 
Engine(Cars) = V6 
Condi(ion( Cars) = Good 
Year( Cars) = 1982 
Value(Cars) = $3500 

Value(CarB) = $3500 

Make(CarB) = Ford 
Model( CarB) = Mustang 
Design ( CarB) = GLX 
Engine(CarB) = V6 
Condition(CarB) = Good 
Year(CarB) = 1982 

then knowing that the make, model, design, engine,condition, and year 
determine value thus makes the conclusion valid. 

Another form of determination rule expresses the relation of one 
predicate deciding the truth value of another, which can be written as: 

(**) ("Ix P(x) => Q(x)) V ("Ix P(x) => .., Q(x)). 

Tills ays Lhal either all p 's are Q 's or none of them are. Having this 
assumption in a background theory is sufficieDt to guarantee the truth 
of the conclu ion Q (T) from P (S) 1\ P (T) 1\ Q (S). while at the 
same lime requiring an in pection of the source case S to rule out one 
of Lhe disjuncts. It is therefore a solution to both the justification 
problem and the nonredundancy problem. We often have knowledge of 
the form ' P decide Whether Q applies' . Such rules express our belief 
in the rule-like relation between two properties. prior to knowledge of 
the direction of the relation. For example, we might as ume that either 
all of the car leaving San Franci co on the Golden Gate Bridge have to 
pay a toll , or none of them do. 

Other, more complicated formulas expressing determination rela
tions can be represented. It is interesting to note that determination 
cannot be formulated as a connective, i.e. a relation between proposi
tions or closed formulas. Instead it should be thought of as a relation 
between predicate schemata, or open formulas. In the semantics of 
determination presented in the next section, even the truth value of a 
predicate or schema is allowed to be a variable. Determination is then 
defined as a relation between a determinant schema and its resultant 
schema, and the free variables that occur only in the detenninant are 
viewed as the predictors of the free variable.'i thal occur only in the 
re ultant (the response variables). II i worth noLing that there may be 
more than one determinant for any given resultant. ' For example, one's 
zip code and capital city are each individually ufficient to determine 
one' lale. In our generalized logical definition of determination ( ee 
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the section on "Representation and Semantics"), the forms (*) and (**) 
are subsumed as special cases of a single relation "P determines Q", 
written as P > Q. 

Assertions of the form "P determines Q" are actually quite common 
in ordinary language. When we say "The IRS decides whether you get a 
tax refund," or "What school you attend determines what courses are 
available," we are expressing an invariant relation that reflects a causal 
theory. At the same time, we are expressing weaker information than is 
contained in the statement that P formally implies 2 Q. If P implies Q 
then P determines Q, but the reverse is not true, so the inheritance 
relation falls out as a special case of determination. That knowledge of 
a determination rule or of "relevance" underlies preferred analogical 
inferences seems transparent when one has considered the shortcom
ings of alternative criteria like how similar the two cases are, or whether 
the similarity together with our background knowledge logically imply 
the conclusion. It is therefore surprising that even among very astute 
philosophers working on the logical justifications of analogy and induc
tion, so much emphasis has until recently been placed on probabilistic 
analyses based on numbers of properties (Camap, 1963), or on 
accounts that conclude that the analogue is redundant in any sound 
analogical argument (e.g., Copi, 1972). Paul Thagard and Richard 
Nisbett (Thagard and Nisbett, 1982) speculate that the difficulty in 
specifying the principles that describe and justify inductive practice has 
resulted from an expectation on the part of philosophers that inductive 
principles would be like deductive ones in being capable of being 
formulated in terms of the syntactic structure of the premises and 
conclusions of inductive inferences. When, in 1953-54 Nelson Good
man (Goodman, 1983) made his forceful argument for the importance 
of background knowledge in generalization, the Carnapian program of 
inductive logic began to look less attractive. Goodman was perhaps the 
first to take seriously the role and form of semantically-grounded 
background criteria (called by him "overhypotheses") for inductive 
inferences. The possibility of valid analogical reasoning was recognized 
by Julian Weitzenfeld (Weitzenfeld, 1984), and Thagard and Nisbett 
(Thagard and Nisbett, 1982) made the strong case for semantic (as 
opposed to syntactic, similarity- or numerically-based) criteria for 
generalization. In the process both they and Weitzenfeld anticipated the 
argument made herein concerning determination rules. The history of 
AI approaches to analogy and induction has largely recapitulated the 
stages that were exhibited in philosophy. But the precision required for 
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making computational use of determination, and for applying related 
statistical ideas, gives rise to questions about the scope and meaning of 
the concepts that seem to demand a slightly more formal analysis than 
has appeared in the philosophical literature. In the next section, a 
general form is given for representing determination rules in first order 
logic. The probabilistic analogue of determination, herein called 
"uniformity", is then defined in the following section, and finally the two 
notions - logical and statistical - are used in providing definitions of 
the relation of "relevance" for both the logical and the probabilistic 
cases. 

THE REPRESENTATION AND SEMANTICS OF DETERMINATION 

To define the general logical form for determination in predicate logic, 
we need a representation that covers (1) determination of the truth 
value or polarity of an expression, as in example cases of the form 
"P(x) decides whether or not Q(x)" (formula (**) from previous 
section), (2) functional determination rules like (*) above, and (3) other 
cases in which one expression in first order logic determines another. 
Rules of the first form require us to extend the notion of a first order 
predicate schema in the following way. Because the truth value of a first 
order formula cannot be a defined function within the language, let us 
introduce the concept of a polar variable which can be placed at the 
beginning of an expression to denote that its truth value is not being 
specified by the expression. For example, the notation" iP (x)" can be 
read "whether or not P(x)", and it can appear on either side of the 
determination relation sign" > " in a determination rule, as in 

P1(x) A ;1 P2(x) > iz Q(x). 

This would be read, "PI (x) and whether or not P2(x) together jointly 
determine whether or not Q (x)", where ;1 and iz are polar variables. 

As was mentioned above, the determination relation cannot be 
formulated as a connective, i.e. a relation between propositions or 
closed formulas. Instead, it should be thought of as a relation between 
predicate schemata, or open formulas with polar variables. For a first 
order language L, the set of predicate schemata for the language may be 
characterized as follows. If S is a sentence (closed formula or wff) of L, 
then the following operations may be applied, in order, to S to generate 
a predicate schema: 

(1) 

(2) 

(3) 
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Polar variables may be placed in front of any wffs that are 
contained as strings in S, 
Any object variables in S may be unbound (made free) by 
removing quantification for part of S, and 
Any object constants in S may be replaced by object variables. 

All of and only the expressions generated by these rules are schemata 
ofL. 

To motivate the definition of determination, let us tum to some 
example pairs of schemata for which the determination relation holds. 
As an example of the use of polar variables, consider the rule that, 
being a student athlete, one's school, year, sport, and whether one is 
female determine who one's coach is and whether or not one has to do 
sit-ups. This can be represented as follows: 

EXAMPLE 1: 
(Athlete(x) A Student(x) A School(x) = s 

A Year(x) = y A Sport(x) = z A il Female(x» 
> (Coach(x) = c A izSit - ups (x». 

As a second example, to illustrate that the component schemata may 
contain quantified variables, consider the rule that, not having any 
deductions, having all your income from a corporate employer, and 
one's income determine one's tax rate: 

EXAMPLE 2: 
(Taxpayer(x) A Citizen(x, US) A 

(-, 3d Deductions(x, d» A (Vi Income(i, x) ~ 
Corporate(i» A Personal Income(x) = p) 

> (Tax Rale(x) = r). 

In each of the above examples, the free variables in the component 
schemata may be divided, relative to the determination rule, into a case 
set x of those that appear free in both the determinant (left-hand side) 
and-the resultant (right-hand side), a predictor set r of those that 
appear only in the determinant schema, and a response set ~ of those 
that appear only in the resultant. These sets are uniquely defined for 
each determination rule. In particular, for example 1 they are::! = {x}, 
r = {s, y, z, id, and ~ = {c, i2}; and for example 2 they are::! = {x}, 
r = {p}, ~ = {r}. In general, for a predicate schema ~ with free 
variables x and l', and a predicate schema X with free variables ::! 
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(shared with L) and ~ (unshared), whether the determination relation 
holds is defined as follows: 

LI~, xl > X[~, z I 
iff -

V'X,~(3~ Lls!'1 /\ XI~,~J) => (V'~ Lls!'1 => XI~,~])· 

For interpreting the right-hand side of this formula, quantified polar 
variables range over the unary Boolean operators (negation and affir
mation) as their domain of constants, and the standard Tarskian seman
tics is applied in evaluating truth in the usual way (see Genesereth and 
Nilsson, 1987). This definition covers the full range of determination 
rules expressible in first order logic, and is therefore more expressive 
than the set of rules restricted to dependencies between frame slots, 
given a fixed vocabulary of constants. Nonetheless, one way to view a 
predicate schema is as a frame, with slots corresponding to the free 
variables. 

USING DETERMINATION RULES IN DEDUCTIVE SYSTEMS 

Determination rules can provide the knowledge necessary for an agent 
or system to reason by analogy from case to case. This is desirable 
when the system builds up a memory of specific cases over time. If 
the case descriptions are thought of as conjunctions of well-formed 
formulas in predicate logic, for instance, then questions about the target 
case in such a system can be answered as follows: 

(1) Identify a resultant schema corresponding to the question being 
asked. The free variables in the schema are the ones to be bound 
(the response variables ~). 

(2) Find a determination rule for the resultant schema, such that the 
determinant schema is instantiated in the target case. 

(3) Find a source case, in which the bindings for the predictor 
variables y in the determinant schema are identical to the 
bindings inthe target case for the same variables. 

(4) If the resultant schema is instantiated in the source case, then 
bind the shared free variables x of the resultant schema to their 
values in the target case's instantiation of the determinant 
schema, and bind the response variables to their values in the 

CRITERIA FOR GENERALIZATION 239 

source case's instantiation of the resultant schema. The well
formed formula thus produced is a sound conclusion for the 
target case. 

Such a system might start out with a knowledge base consisting only of 
determination rules that tell it what information it needs to know in 
order to project conclusions by analogy and as it aequire a larger and 
larger databa~e of cases, the system can draw more and more conclu-
ion based on its previous experience. The determination rule aL<;o 

provides a matching con traint in searching for a . ouree case. Rather 
than seeking to maximize the imilarity between the ource and the 
target, a system u ing determination rule looks for a case that matches 
the target on predictor brndings for a determinant chema which may 
or may not involve a long list of features that the two case must have 
in common. 

A second use of determination rules is in the learning of generaliza
tions. A single uch ruJe, for example that one's pecies determines 
whether one can fly or not, can generate a potentially infinite number of 
more pecific rules about which species can fly and whicb cannot just 

, from collecting case data on individual organisms tnat includes in each 
description the pecie and whetber thaI individual can fly. 0 the 
suggestion for machine learning systems that grow out of this work i 
thai systems be programmed with knowledge about determination 
rules, from which they can form more specific rule of the form 'Ix P(x, 
Y) => Q (x, Z). Determination rules are a very common form of 
knowledge, perhaps even more so than knowledge about strict implica
tion relationships. We know that whether you can carry a thing i 
determined by its size and weight, that a student athlete' coach is 
determined by his or her school , year port , and ex. In short, for 
many pas ibly most, outcomes about whicll we are in doubt, we can 
name a et of functions or variables that joinlly determine it, even 
though we often cannol predid the outcome from just these values. 

Some recem AT y tern can be een to embody the use of knowl
edge about determination relation hip (e.g., see Baker and Burstein, 
1987; Carbonell , ] 986; Ris land and Ashley, 1986). For example, 
Edwina Rissland and Kevin Ashley's program for reasoning from 
hypothetical cases in law represents cases along dimensions which are, 
in a loose sense, determinants of the verdicts. Likewise, research in the 
psychology and theory of induction and analogy (see, e.g. Nisbett et al., 
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1983) has postulated the existence of knowledge about the "homo
geneity" of popUlations along different dimensions. In all of this work, 
the reality that full, indefeasible determination rules cannot be specified 
for complicated outcomes, and that many of the determination rules we 
can think of have exceptions to them, has prompted a view toward 
weaker relations of a partial or statistical nature (Russell, 1986), and to 
determination rules that have the character of defaults (Russell and 
Grosof, 1987). The extension of the determination relation to the 
statistical case is discussed in the next section on unifonnity. 

A third use of determination rules is the representation of knowledge 
in a more compact and general fonn than is possible with inheritance 
rules. A single determination rule of the form P(x, y) >- Q(x, z) can 
replace any number of rules of the fonn Vx P(x, Y) ~ Q(x, Z) with 
different constants Y and Z. Instead of saying, for instance, "Donkeys 
can't fly," "Hummingbirds can fly," "Giraffes can't fly," and so forth, 
we can say "One's species determines whether or not one can fly," and 
allow cases to build up over time to construct the more specific rules. 
This should ease the knowledge acquisition task by making it more 
hierarchical. 

UNIFORMITY: THE STATISTICAL ANALOGUE 

OF DETERMINATION 

The problem of finding a determining set of variables for predicting the 
value of another variable is similar to the problem faced by the applied 
statistician in search of a predictive model. Multiple regression, analysis 
of variance, and analysis of covariance techniques all involve the 
attempt to fit an equational model for the effects of a given set of 
independent (predictor) variables on a dependent (response) variable 
or vector (see Johnson and Wichern, 1982; Montgomery and Peck, 
1982). In each case some statistic can be defined which summarizes 
that proportion of the variance in the response that is explained by the 
model (e.g. multiple R2, (02). In regression, this statistic is the square of 
the correlation between the observed and model-predicted values of the 
response variables, and is, in fact, often referred to as the "coefficient of 
determination" (Johnson and Wickern, 1982). When the value of such a 
statistic is 1, the predictor variables clearly amount to a determinant for 
the response variable. They are, in such cases, exhaustively relevant to 
determining its value in the same sense in which a particular schema 
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determines a resultant in the logical case. But when the proportion of 
the variance explained by the model is less than 1, it is often difficult to 
say whether the imperfection of the model is that there are more 
variables that need to be added to determine the response, or that the 
equational form chosen (linear, logistic, etc.) is simply the wrong one. In 
low dimensions (one or two predictors), a residual plot may reveal 
structure not captured in the model, but at higher dimensions this is not 
really possible, and the appearance of randomness in the residual plot 
is no guarantee in any case. So, importantly, the coefficient of deter
mination and its analogues measure not the predictiveness of the 
independent variables for the dependents, but rather the predictiveness 
of the model. This seems to be an inherent problem with quantitative 
variables. 

If one considers only categorical data, then it is possible to assess the 
predictiveness of one set of variables for determining another. However 
there are multiple possibilities for such a so-called "association meas
ure". In the statistics literature one finds three types of proposals for 
such a measure, that is, a measure of the dependence between variables 
in a k-way contingency table of count data. Firstly, there are what have 
been termed "symmetric measures" (see Haberman, 1982; Hays and 
Winkler, 1970) that quantify the degree of dependence between two 
variables, such as Pearson's index of mean square contingency (Hays 
and Winkler, 1970). Secondly, there are "predictiveness" measures, 
such as Goodman and KruskaI's A (Goodman and Kruskal, 1979), 
which quantify the proportional reduction in the probability of error, in 
estimating the value of one variable (or function) of an individual, that 
is afforded by knowing the value of another. And thirdly, there are 
information theoretic measures (e.g. Theil, 1970) that quantify the 
average reduction in uncertainty in one variable given another, and can 
be intepreted similarly to the predictive measures (Hays and Winkler, 
1970). In searching for a statistic that will play the rule in probabilistic 
inference that is played by determination in logic, none of these three 
types of association measure appear to be what we are looking for. The 
symmetric measures can be ruled out immediately, since determination 
is not a symmetric relation. The predictive and information theoretic 
measures quantify how determined a variable is by another relative to 
prior knowledge about the value of the dependent variable. While this 
is a useful thing to know, it corresponds more closely to what in this 
paper is termed "relevance" (see next section), or the value of the 
information provided by a variable relative to what we already know. 
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Logical determination has the property that a schema can contain some 
superiJuous information and still be a determinant for a given outcome; 
that is, information added to our knowledge when something is deter
mined does not change the fact that it is determined, and this seems to 
be a useful property for the statistical analogue of determination to 
have. 

So a review of existing statistical measures apparently reveals no 
suitable candidates for what will hereinafter be called the uniformity of 
one variable or function given the value of another, or the statistical 
version of the determination relation. Initially we might be led simply to 
identify the uniformity of a function G given another function F with 
the conditional probability: 

Prj G(x)= G(y)1 F(x) = F(Y)l 

for randomly select pairs x and y in our population. Similarly, the 
uniformity of G given a particular value (property or category) P might 
defined as: 

Prj G(x)= G(y)1 P(x) II P(y)j, 

and permutations of values and variables in the arguments to the 
uniformity function could be defined along similar lines. This possibility 
is adverted to by Thagard and Nisbett (Thagard and Nisbett, 1982), 
though they are not concerned with exploring the possibility seriously. 
If the uniformity statistic is to underlie our confidence in a particular 
value of G being shared by additional instances that share a particular 
value of F, where this latter value is newly observed in our experience, 
then it seems that we will be better off, in calculating the uniformity of 
G given F, if we conditionalize on randomly chosen values oj F, and 
then measure the probability of a match in values for G, rather than 
asking what is the probability of a match on G given a match on F for 
a randomly chosen pair of elements in our past experience, or in a 
population. 

An example should illustrate this distinction and its importance. If 
we are on a desert island and run across a bird of a species unfamiliar 
to us (say, "shreebles," to use Thagard and Nisbett's term) and we 
further observe that this bird is green, we want the uniformity statistic 
to tell us, based on our past experience or knowledge of birds, how 
likely it is that the next shreeble we see will also be green. Let us say, 
for illustration, that we have experience with ten other species of birds, 
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and that among these species nine of them are highly uniform with 
respect to color, but the other is highly varying. Moreover, let us 
assume that we have had far greater numerical exposure to this tenth, 
highly variable species, than to the others, or that this species (call them 
"variabirds") is a lot more numerous generally. Then if we were to 
define uniformity as was first suggested, sampling at random from our 
population of birds, we would attain a much lower value for uniformity 
than if we average over species instead, for in the latter case we would 
have high uniformities for all but one of our known species and 
therefore the high relative population of variabirds would not skew our 
estimate. Intuitively the latter measure, based on averaging over species 
rather than individuals in the conditional, provides a better estimate for 
the probability that the next shreeble we see will be green. The 
important point to realize is that there are multiple possibilities for such 
a statistic, and we should choose the one that is most appropriate for 
what we want to know. For instance, if the problem is to find the 
probability of a match on color given a match on species for randomly 
selected pairs of birds, then the former measure would clearly be better. 
Another factor that plays in the calculation when we average over 
species is the relative confidence we have in the quality of each sample, 
i.e. the sample size for each value of F. We would want to weigh more 
heavily (by some procedure that is still to be specified) those values for 
which we have a good sample. Thus the uniformity statistic for esti
mating the probability of a match given a new value of F would be the 
weighted average, 

1 p 

U(G I F) = - L w; Prj G(x) = G(y) I F(x) = F(y) = Pd, 
p ;-1 

where p is the number of values P; of F for which we have observed 
instances and also know their values for G. In the absence of informa
tion about the relative quality of the samples for different values of F, 
all of the weights W; would equal 1. 

How might we make use of such a statistic in- learning and reason
ing? Its value is that, under the assumption that the uniformity of the 
function given another can be inferred by sampling, we can examine a 
relatively small sample of a population, tabulate data on the subsets of 
values appearing in the sample for the functions in question, and 
compute an estimate of the extent to which the value of one function is 
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determined by the other. This will in turn tell us what confidence we 
can have in a generalization or inference by analogy based on a value 
for a predictor function (variable) co-occurring with a value for a 
response function, when either or both have not been observed before. 
The ~xperience of most people in meeting speakers of foreign languages 
provIdes a good example. In the beginning, we might think, based on 
our early data, that one's nationality determines one's native language. 
But then we come across exceptions - Switzerland, India, Canada. We 
still think that native language is highly uniform given nationality, 
however, because its conditional uniformity is high. So in coming across 
someone from a country with which we are not familiar, we can assume 
that the probability is reasonably high that whatever language he or she 
speaks is likely to be the language that a randomly selected other 
person from that country speaks.' 

RELEVANCE: LOGICAL AND STATISTICAL DEFINITIONS 

FOR THE VALUE OF INFORMATION 

The concepts of determination and uniformity defined above can be 
used to help answer another common question in learning and problem 
solving. Specifically, the question is, how should an agent decide 
whether to pay attention to a given variable? A first answer might be 
th~t on~ ought to. attend to variables that determine or suggest high 
umformlty for a given outcome of interest. The problem is that both 
determination and uniformity fail to tell us whether a given variable is 
necessary for determining the outcome. For instance, the color of 
Smirdley's shirt determines how many steps the Status of Liberty has 
as determination has been defined, because the number of step~ 
presumably does not change over time. As another example, one's zip 
code and how nice one's neighbors are determine what state one lives 
in, because zip code determines state. This property for determination 
and uniformity is useful because it ensures that superfluous facts will 
not get in the way of a sound inference. But when one's concern is what 
information ne~d~ to be sought or taken into account in determining an 
outco~e, the lImIts of re~ource and time dictate that one should pay 
attentIOn only to those vanables that are relevant to determining it. 

The logical relation of relevance between two functions F and G 
may ?e I~osely defined as follows: F is relevant to determining G if and 
only If F IS a necessary part of some determinant of G. In particular, let 
us say that 
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F is relevant to determining G iff there is some set of 
functions 0 such that (1) FED, (2) 0 > G, and (3) 0-
(Fl does not determine G.4 

We can now ask, for a given determinant of a function, which part of it 
is truly relevant to the determination, and which part gives us no 
additional information. Whether or not a given function has value'i 
to us in a given situation can thus be answered from information 
about whether it is relevant to a particular goal. Relevance as here 
defined i a special case of the more general notion becau e we have 
u ed only functional determinarion in defining it. Nonetheless, this 
restricted version capture the important properti~ of relevance. Devika 

ubramanian and Michael Geneserelh (1987) have recently done \ ork 
demonstrating that knowledge about the irrelevance of, in their exam
ples, a particular proposition, to the solution of a logical problem, is 
useful in reformulating the problem to a more workable version in 
which on.ly the aspects of !:he problem description that are nece sary to 
solve it are repre. ented. In a imilar vein, Michael Georgeff has hown 
that knowledge about independence among subprocesses can eliminate 
the frame problem in modeling an unfolding process for planning 
(Georgeff, 1987). Irrelevance and determination are dual concepL'>. and 
it is intere ling that knowledge in both forms is important in reasoning. 

Irrelevance in the statistical ca e can on reflection, be seen to be 
related to the concept of probabilistic independence. In probability 
theory, an event A L aid to be independent of an event B iff the 
conditional probability of A given B is the same as the marginal 
probability of A. The relation is symmetric. The statistical concept of 
irrelevance is a symmetric relation as defined in this paper. The 
definition is the following: 

F is (statistically) irrelevant to determining G iff 
U i G(x) = G(y)1 F(x) = F(Y)1 = Pr( G (x) = G(Y)I· 

That is, F is irrelevant to G if it provides no information about the 
value of G. For cases when irrelevance does not hold, one way to 
define the relevance of F to G is as follows: 

R(F, G) = I UIG(x) = G(y)IF(x) = F(Y)1 - PrIG(x) = 

G(Y)II. 

That is, relevance is the absolute value of the change in one's informa
tion about the value of G afforded by specifying the value of F. Clearly, 
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if the value of G is known with probability 1 prior to inspection of F 
then F cannot provide any information and is irrelevant. If the prior is 
between 0 and 1, however, the value of F may be highly relevant to 
determining the value of G. It should be noted that relevance has been 
defined in terms of uniformity in the statistical case, just as it was 
defined in terms of determination in the logical case. The statistic of 
relevance is more similar to the predictive association measures men
tioned in the last section for categorical data than is the uniformity 
statistic. As such it may be taken as another proposal for such a 
measure. Relevance in the statistical case gives us a continuous measure 
of the value of knowing a particular function, or set of functions, or of 
knowing that a property holds of an individual, for purposes of 
determining another variable of interest. Knowledge about the relevance 
of variables can be highly useful in reasoning. In particular, coming up 
with a set of relevant functions, variables, or values for determining an 
outcome with high conditional uniformity should be the goal of an agent 
when the value of the outcome must be assessed indirectly. 

CONCLUSION 

The theory presented here is intended to provide normative justifica
tions for conclusions projected by analogy from one case to another, 
and for generalization from a case to a rule. The lesson is not that 
techniques for reasoning by analogy must involve sentential representa
tions of these criteria in order to draw reasonable conclusions. Rather it 
is that the soundness of such conclusions, in either a logical or a 
probabilistic sense, can be identified with the extent to which the 
corresponding criteria (determination and uniformity) actually hold for 
the features being related. As such it attempts to answer what has to be 
true of the world in order for generalizations and analogical projections 
to be reliable, irrespective of the techniques used for deriving them. 
That the use of determination rules without substantial heuristic control 
knowledge may he intractable for systems with large case libraries does 
not therefore mean that determination or uniformity criteria are of no 
use in designing such systems. Rather, these criteria provide a standard 
against which practical techniques can be judged on normative grounds. 
At the same time, knowledge about what information is relevant for 
drawing a conclusion, either by satisfying the logical relation of rele-
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vance or by being significantly relevant in the probabilistic sense, can 
be used to prune the factors that are examined in attempting to 
generalize or reason by analogy. 

As was mentioned earlier, logic does not prescribe what techniques 
will be most useful for building systems that reason by analogy and 
generalize successfully from instances, but it does tell us what problem 
such techniques should solve in a tractable way. As such, it gives us 
what David Marr (1982) called a "computational theory" of case-based 
reasoning, that can be applied irrespective of whether the (in Marr's 
terms) "algorithmic" or "implementational" theory involves theorem 
proving over sentences (Davies and Russell, 1987) or not. A full 
understanding of how analogical inference and generalization can be 
performed by computers as well as it is performed by human beings 
will surely require further investigations into how we measure simi
larity, how situations and rules are encoded and retrieved, and what 
heuristics can be used in projecting conclusions when a valid argument 
cannot be made. But it seems that logic can tell us quite a lot about 
analogy, by giving us a standard for evaluating the truth of its conclu
sions, a general form for its justification, and a language for distin
guishing it from other forms of inference. Moreover, analysis of the 
logical problem makes clear that an agent can bring background 
knowledge to bear on the episodes of its existence, and soundly infer 
from them regularities that could not have been inferred before. 
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NOTES 

J See the essay by Stuart Russell elsewhere in this volume. 
The term 'formal implication' is due to Bertrand Russell and refers to the relation 

between predicates P and Q in the inheritance rule VxP(x) => Q(x). 
J I am indebted to Stuart Russell for this example, and for the suggestion of the 

term 'uniformity'. 
, This definition can easily be augmented to cover the relevance of sets of func

tions, and values, to others. 
5 'Value' as used here refers only to usefulness for purposes of inference. 
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