
Online Appendix

Dynamic Pricing under Debt:
Spiraling Distortions and Efficiency Losses

A Model with Nonzero Limited Liability

Our base model assumed zero liability under debt, so that the DM’s objective was given by E
[
(R(p)−

B)+
]
. In practice, failing to repay the debt often carries negative consequences for a borrower due to,

e.g., recourse by the lender (Wells Fargo, 2016), or bankruptcy/reputation costs when the firm goes

into default. To capture this limited (but nonzero) liability, we now assume that a DM faced with a

debt payment B maximizes the following objective function:

E
[
(R(p)−B)+

]
− k E

[
(B − R(p))+

]
, for some k ∈ [0, 1].

The parameter k controls the severity of the penalty when the DM fails to repay the debt. A choice of

k = 0 recovers our familiar model, and k = 1 corresponds to maximizing the total revenues R(p).

In this context, the recursion characterizing the DM’s problem is given by:

Ṽt(b, y) = max
p∈P

{
λ(p)Ṽt+1(b− p, y − 1) + (1− λ(p))Ṽt+1(b, y)

}
, y ≥ 1, t = 1, ..., T (A-1a)

Ṽt(b, 0) = ṼT+1(b, y) = (−b)+ − kb+, t = 1, ..., T + 1, y ≥ 0. (A-1b)

Let p̃t(b, y) denote the DM’s price in period t. Following similar arguments to our analysis in §3, it can
be readily shown that the DM always charges the revenue-maximizing price once the debt is covered,

i.e., p̃t(b, y) = p∗(y), ∀ b ≤ 0. Furthermore, the following proposition provides certain structural

properties for the DM’s value function.

Lemma A.1. We have that

i.) Ṽt(b, y) is convex, decreasing in the outstanding debt b and decreasing in t.

ii.) b+ Ṽt(b, y) is positive and increasing in b, and b+ Ṽt(b,y)
k is positive and decreasing in b.

iii.) Ṽt(b, y) is decreasing in k.

Proof of Lemma A.1. Note that ṼT+1(b, y) = max(−b,−kb) readily satisfies both properties. Assume

by induction that these are also satisfied at time t+ 1. We have that:

Ṽt(b, y) = max
p∈P

{
λ(p)Ṽt+1(b− p, y − 1) + (1− λ(p))Ṽt+1(b, y)

}
, y ≥ 1.
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To show (i), note that since the maximand is convex and decreasing in b for any p, Ṽt will also

retain these properties. Also, Ṽt(b, 0) ≥ Ṽt+1(b, 0) readily holds for y = 0; for any y ≥ 1, we have

Ṽt+1(b, y) ≤ Ṽt+1(b − p, y − 1) holding for at least some p ∈ P, so that Ṽt(b, y) ≥ Ṽt+1(b, y) follows.

Assuming that ∂Ṽt

∂b and ∂Ṽt+1

∂b are well defined, and that −1 ≤ ∂Ṽt+1

∂b ≤ −k holds by induction, we then

readily obtain that −1 ≤ ∂Ṽt

∂b ≤ −k by a direct application of the Envelope theorem. Part (iii) readily

follows by induction.

As with our base model, the DM’s value function decreases with the outstanding debt b, and

additional units of debt reduce his payoff by a diminishing amount. Reflective of the non-zero (but

limited) liability, the payoff always decreases at rates faster than k, and can now become negative.

As expected, this new model retains the analytical complexity of our earlier model. To characterize

the DM’s pricing policy and the impact of the nonzero liability, we thus restrict attention to the special

case of asset selling discussed in §5. Furthermore, since Y = 1, we limit attention to the interesting

case when b < p̄, so that the DM has a fractional probability of covering the debt. The following result

characterizes the DM’s policy in this setting.

Lemma A.2. Under Assumption 5.1 and for all b > 0,

i.) there exist thresholds 0 ≤ B̃T ≤ B̃T−1 ≤ · · · ≤ B̃1 such that the DM’s pricing policy and value

function are respectively given by:

p̃t(b) =

⎧
⎨

⎩
π
(
b+ Ṽt+1(b)

)
, if 0 ≤ b ≤ B̃t

p∗t , if B̃t < b < p̄
Ṽt(b) =

⎧
⎨

⎩
Ṽt+1(b) + h

(
b+ Ṽt+1(b)

)
, if 0 ≤ b ≤ B̃t

−kb+ kṼt(0), if B̃t < b < p̄,

where π(x) := argmaxp∈P λ(p)(p − x) and h(x) := maxp∈P λ(p)(p − x).

ii.) at low debt values (i.e., b ≤ B̃t), the DM’s price p̃t(b) is higher than the revenue-maximizing

price, and is increasing in the debt b and decreasing with the penalty k.

iii.) at large debt values (i.e., b > B̃t), the DM’s price p̃t(b) exactly corresponds to the revenue-

maximizing price, and is thus unaffected by the debt b or the penalty k.

Proof of Lemma A.2. The DM’s problem in period t ∈ {1, . . . , T} is given by:

Ṽt(b) = Ṽt+1(b) + max
p∈P

λ(p)
[
ṼT+1(b− p)− Ṽt+1(b)

] (
since ṼT+1(b) = max(−b,−kb)

)

= Ṽt+1(b) + max
{
max
p≥b

f ℓ
t (p, b), max

p≤b
fm
t (p, b)

}
,

where f ℓ
t (p, b) := λ(p)

[
p− b− Ṽt+1(b)

]
fm
t (p, b) := λ(p)

[
k(p− b)− Ṽt+1(b)

]
.
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We analyze each of the problems above separately. First, recall from Proposition 5.1 that for x ≥ 0,

we have 0 ≤ π′(x) ≤ 1. Therefore, since b+ Ṽt+1(b) ≥ 0 and b+ Ṽt+1(b)/k ≥ 0 by Lemma A.1, we have

qℓt(b) := argmax
p∈P

f ℓ
t (p, b) = π

(
b+ Ṽt+1(b)

)
, qmt (b) := argmax

p∈P
fm
t (p, b) = π

(
b+

Ṽt+1(b)

k

)
.

By Lemma A.1 and since π′(x) ≥ 0, we have that qℓt(b) is increasing and qmt (ℓ) is decreasing in b. To

determine the DM’s optimal price p̃t(b), we distinguish two cases, depending on the sign of Ṽt+1.

• If Ṽt+1(b) ≥ 0, then b ≤ qℓt(b) ≤ qmt (b), so that p̃t(b) = qℓt(b).

• If Ṽt+1(b) < 0, then qmt (b) < qℓt(b). We claim that the optimal policy involves a threshold, such that

qℓt(b) is charged for b below the threshold, and qmt (b) is charged for b above the threshold. First, note

that p̃t(b) = qℓt(b) for b ≤ qmt (b), and p̃t(b) = qmt (b) for b > qℓt(b). Let us define

gt(b) := fm
t

(
qmt (b), b

)
− f ℓ

t

(
qℓt(b), b

)
≡ k h

(
b+ Ṽt+1(b)/k

)
− h
(
b+ Ṽt+1(b)

)
,

where h(x) := maxp∈P λ(p)(p − x). To show that the policy is a threshold one, we first argue that g

is monotonic increasing. This follows since h(x) is decreasing, and by Lemma A.1, b + Ṽt+1(b)/k is

decreasing and b+ Ṽt+1(b) is increasing in b. Furthermore, gt(0) < 0 since Ṽt+1(0) ≥ 0, and gt(b) > 0

if b > qℓt(b) (which holds at large b, since π′ ≤ 1). Thus, there exists a threshold B̃t ≥ 0 given by:

gt(B̃t) = 0

price above such that the DM’s pricing policy is exactly given by

p̃t(b) =

⎧
⎨

⎩
qℓt(b), if b ≤ B̃t

qmt (b), if b > B̃t.

We also claim that B̃t ≥ B̃t+1, ∀ t ∈ {1, . . . , T − 1}. To see this, note that gt(b) ≤ gt+1(b), ∀ b ≥ 0,

since Ṽt+1(b) ≥ Ṽt+2(b), by Lemma A.1. Thus, since gt and gt+1 are increasing, B̃t ≥ B̃t+1.

To complete the proof, note that the expression for p̃t(b) and Ṽt(b) for the case b ≤ B̃t follows from

the arguments above. For b > B̃t, we prove by induction that for any t ∈ {1, . . . , T},

Ṽt(b) = −kb+ kṼt(0), ∀ b > B̃t.

First, note that this trivially holds at t = T +1 with B̃T+1 := 0, since ṼT+1(b) = −kb, ∀ b ≥ 0. Assume
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by induction that the property also holds at time t+ 1. We have:

∀ b > B̃t : qmt (b) = π
(
b+ Ṽt+1(b)/k

)
= (since B̃t ≥ B̃t+1) = π

(
b+

−kb+ kṼt+1(0)

k

)
= π

(
Ṽt+1(0)

)
= p∗t .

Replacing this in the expression for Ṽt(b), we obtain

Ṽt(b) = −kb+ kṼt+1(0) + kh
(
Ṽt+1(0)

)
= −kb+ kṼt(0),

which completes the induction and the proof of parts (i) and (iii).

To prove (ii), it can be readily seen that p̃t(b) = qℓ(b) is increasing in b for b ≤ B̃t. Since Ṽt(b) is

decreasing with k by Lemma A.1, so is

The result suggests that the presence of a non-zero liability carries certain nontrivial implications

on the DM’s pricing policy, depending on the required debt repayment b. Two regimes emerge. When

the debt is not too large, the DM charges prices that increase with the debt, and exceed the revenue-

maximizing price. Qualitatively, this exactly corresponds to the main distortion documented in our

base model, whereby the DM shifts risk by charging high(er) prices. However, prices now decrease with

the magnitude of k, which confirms the intuition that transferring more liability to the DM successfully

reduces his risk shifting incentives.

Interestingly, when debt is sufficiently high, the DM’s price exactly equals the revenue-maximizing

price. This occurs when the debt exceeds a certain time-dependent threshold B̃t, and the switch is

sudden: the DM’s price exhibits a downward jump, from a value that exceeds B̃t to p⋆t < B̃t. Once

the switch occurs, the DM then continues to follow the revenue-maximizing policy for the remaining

planning horizon (since B̃t ≥ B̃τ , ∀ τ ≥ t). Qualitatively, in this regime the DM effectively acts as if

he were unable to repay the debt, and therefore relies on a strategy that seeks to minimize his losses,

or equivalently maximize revenues. (In fact, since b > p⋆t holds here, following the revenue-maximizing

policy actually yields a “self-fulfilling prophecy,” guaranteeing bankruptcy.) This regime is new, and

is entirely caused by the non-zero liability, which acts as a severe threat for the DM. We note that

the debt required to generate this regime is very high: B̃t > Ṽt(0), so that the debt repayment would

exceed the expected revenues that could be generated over the remaining horizon.15

Regarding the time-dynamics of the pricing policy, similar arguments to those in Proposition 5.2

can be used to confirm that when the DM still relies on the risk-shifting strategy, he would reduce

prices over time, but the markdowns would always be lower than the revenue-maximizing ones, and

would decrease with the debt. Thus, the pricing distortions and efficiency losses would again compound

15Since loans might not be issued under such unfortunate circumstances, it would be interesting to study whether this
regime survives in equilibrium, once the debt repayment is endogenized. We leave this interesting analysis for future
research.
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over time, leading to a spiraling behavior.

To summarize our findings, the presence of the non-zero (limited) liability successfully reduces some

of risk-shifting incentives driving the DM’s decisions. However, unless the entire liability is transferred

to the DM (i.e., k = 1), the pricing distortions and the associated efficiency losses persist, albeit with

a diminished magnitude.

B Numerical Experiments on Multi-unit Case

In our experiments, we considered several demand functions that all yielded consistent findings—

including ones that do not satisfy the requirements in Assumption 5.1. Below, we present the case of

a logit demand function λ(p) = e1−p/(1 + e1−p).

Pricing policy. In Figure B-1, we depict the DM’s price p†T−4 and the revenue-maximizing price

p⋆T−4 as functions of the outstanding debt, for two starting inventory levels, y = 5 and y = 3. Consistent
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Figure B-1: The DM’s pricing policy structure. The demand curve is λ(p) = e1−p/(1 + e1−p), and
the time horizon is T = 5.
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with our findings in §4, we observe that the DM’s prices are piecewise increasing in the debt; but with

many units in inventory and many periods, there are now multiple discontinuity points, as we alluded

to in our earlier discussion.

In contrast with the two-period case depicted in Figure 1, it is no longer possible to exactly associate

strategies that rely on selling k units to cover the debt with prices that lie between b/(k− 1) and b/k.

The reason is that, with more than two periods to go, strategies become increasingly complex, as they

also need to account for multiple future contingent strategies that possibly rely on more or less units,

depending on sales realizations. This precisely illustrates how the underlying combinatorial structure

dramatically increases the complexity of the DM’s pricing policies in the general case, defying an

analytical characterization.

In Figure B-2, we depict the time-evolution of prices on sample paths where no sale occurs, for

different levels of debt. Similar to the analytical results in §4, the DM’s policy always entails slower

markdowns than the revenue-maximizing policy, and actually may prescribe markups. Furthermore,

price distortions increase monotonically over time. However, due to the discontinuities in the DM’s

price as a function of debt, price distortions are not monotonic in the debt level.
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Figure B-2: (a) Price evolution for the revenue-maximizing policy and the DM’s policy under λ(p) =
e1−p/(1 + e1−p), for T = 5 and y = 3, and for different levels of debt: ‘low’ bl = p⋆T/2, ‘medium’
bm = p⋆T , and ‘high’ bh = 1.5 × p⋆T . (b) Evolution of price distortions over time.

Finally, Figure B-3 depicts all possible sample paths corresponding to the evolution of the DM’s

price over time, as well as the corresponding expected prices. We observe that when inventory is ample,
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Figure B-3: Efficiency loss evolution under λ(p) = e1−p/(1+ e1−p), for T = 5, y = 5 and b = 1.75× p⋆T .

Each edge in the tree depicts a possible evolution of p†t(Bt,Yt). The width of the edge is proportional

to the probability of the edge. The dots on the dashed line depict E
[
p†t(Bt,Yt)

]
.

as in the case depicted, the expected price increases over time. Furthermore, the range of possible price

values also significantly expands, particularly on the paths on which few sales to date occur, where the

DM becomes more and more aggressive with pricing decisions as time progresses.

Efficiency losses. In Figure B-4, we explore the evolution of Lt and the various paths that may

be taken. In particular, consistent with all our analytical results thus far, we observe that the expected

efficiency loss Lt is increasing over time, and the “variability” of Lt also increases over time, with a

wide range of possible outcomes in the last period t = 5.

C Endogenizing Debt

In this section, we formulate a model where debt is endogenously determined. We base our analysis on

the setup in §4, but assume that the DM is no longer endowed with inventory; instead he can purchase

an inventory bundle of Y = 2 units at a cost of c, before the start of the selling season. The DM has

limited available equity ē that he can use to pay for the purchase. To exclude uninteresting cases, we

assume that the optimal revenues that could be generated from this purchase would exceed the costs,

i.e., J⋆ ≥ c, and that the DM’s available equity is insufficient to cover the purchase, i.e., ē < c.

If the DM decides to proceed with the purchase by investing e ≤ ē of his own equity, he may be able

to obtain a loan for the remaining amount c− e from a lender. We make the standard assumption that
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Figure B-4: Efficiency loss evolution under λ(p) = e1−p/(1+e1−p), for T = 5, y = 5, and b = 1.75×p⋆T .
Each edge in the tree depicts a possible evolution of Lt. The width of the edge is proportional to the
probability of the edge. The dots and dashed lines depicts Lt.

the debt market is perfectly competitive Tirole (2006, page 115). That is, when the borrowed amount is

c−e, the lender would set the required repayment B (of principal plus interest) at the loan’s maturity so

as to break even. More precisely, using the terminology and notation of §2, the lender would anticipate

that if the required repayment were set to B, the borrower would follow a pricing policy p†(B,Y ),

which would yield an expected repayment (i.e., a debt value) of D(B,Y ) := E
[
min{B,R(p†(B,Y ))}

]
.

The lender would then set B so that

D(B,Y ) = c− e. (C-2)

Note that this equation may not have a solution B for particular values of e, in which case the lender

would be unwilling to extend a loan. Intuitively, this could occur if the expected revenues are low and
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the borrowed amount c− e is high.

By not pursuing the inventory purchase, the DM would achieve a profit of zero. Alternatively,

by injecting equity e, borrowing c − e, and facing a repayment of B, his profit would be given by

V1(B,Y )− e. His decision problem before the start of the selling season can then be formulated as:

max

{
0, max

0≤e≤ē
D(B,Y )=c−e

V1(B,Y )− e

}
(C-3)

Several outcomes are possible. If the inner optimization problem is infeasible (i.e., when (C-2) is

infeasible for any e), we say that lenders refuse to lend. If the inner optimization is feasible, but has

a negative optimal value, we say that the DM finds the purchase unprofitable. In both of these cases,

the DM generates zero profit. Finally, if the optimal value in (C-3) is strictly positive, we say that the

inventory purchase goes through.

C.1 One-Period Case

We first analyze the one-period case under a linear demand model, i.e., T = 1 and λ(p) = α− βp, for

some α ∈ (0, 1] and β > 0. Using our analysis from the proof of Proposition 4.1 (with b ≡ B to retain

the familiar notation), it can readily be seen that the lender’s expected collected payment is equal to

D(b) = λ(p†T (b, 1))b =
1

2
bλ(b).

The break-even equation (C-2) yields βb2 − αb + 2(c − e) = 0. Consequently, lenders refuse to lend

unless

e ≥ c− α2

8β
,

where the right-hand side can be interpreted as the minimum equity level that lenders expect the DM

to inject. When the DM injects more than this minimum level, lenders set the repayment amount to

b(e) =
α−

√
α2 − 8(c− e)β

2β
,

and the DM’s profit can be expressed as

V1(b(e), 1) − e =
α
(
α+

√
α2 − 8(c− e)β

)
− 4(c + e)β

8β
.

It can be readily checked that V1(b(e), 1) − e is increasing in e. Thus, the DM injects all available

equity ē. The inventory purchase is then profitable for the DM as long as V1(b(ē), 1) − ē ≥ 0.

App 9



PSfrag

β

av
ai
la
b
le

eq
u
it
y
ē
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Figure C-5: Outcomes for T = 1, c = 1, α = 1 and different values of β and ē. Cyan means that the
inventory purchase goes through; Yellow means that lenders refuse to lend; Red means that the DM
finds the purchase unprofitable.

To summarize our findings for the case of T = 1: the DM always injects ē and achieves a profit of

V1(b(ē), 1) − ē, unless his available equity ē is low. In particular, if ē < c − α2

8β , the lenders refuse to

lend and if V1(b(ē), 1) − ē < 0, the DM finds the purchase unprofitable.

We illustrate the above cases graphically in Figure C-5, for fixed values of c = 1 and α = 1,

and all possible values of ē and β, namely 0 ≤ ē < 1 and 0 < β ≤ 1
4 .

16 We observe that for small

values of β (namely ≤ 1
8), no minimum equity is required for the inventory purchase to go through.

For intermediate values of β and above (namely ≥ 1
8), lenders always require some minimum equity

to be injected in order for them to lend. For higher values of β (namely ≥ 3
16), even if the DM

has the minimum equity that lenders require, he might still find the inventory purchase unprofitable.

Intuitively, this is because as β increases, the revenues that can be extracted decrease. Thus, for

intermediate β’s and above, lenders refuse to lend high amounts. For high β’s, even if they agree to

lend, it is possible that they charge a prohibitively high interest that makes the inventory purchase

unprofitable for the DM.

C.2 Two-Period Case

We now consider the two period case we analyzed in §4, i.e., T = 2 and Y = 2 and λ(p) = α − βp,

for some α ∈ (0, 1] and β > 0. In this case, the break-even equation (C-2) becomes a fourth-order

16The upper bound on β follows from J⋆ ≥ c.
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polynomial equation in b, when the DM prices so as to cover the debt in one period. In case he prices

qm so as to cover the debt in two periods, it also involves square root terms as in the definition of

qm, see (E-6). Consequently, we were unable to obtain closed-form expressions and tackle the DM’s

problem (C-3) analytically. Instead, we performed a numerical study for fixed values of c = 2 and

α = 1, where we considered various possible values for 0 ≤ ē < 2 and 0 < β ≤ 1
4 . Figure C-6(a) depicts

the outcomes. We distinguish the following cases, depending on the value of β:

• For small values of β’s (namely ≤ 0.133), lenders set a low enough repayment amount b, so that

the DM prices to cover it in one period, for any value of ē.

• For intermediate values of β’s (namely 0.133 ≤ β ≤ 0.211), if ē is too low, lenders might refuse to

lend (yellow region). If ē is slightly higher, then lenders set a high enough repayment amount b,

and the DM prices to cover it in two periods (magenta region). If ē is even higher, then lenders

set a lower repayment amount b, and the DM prices to cover it in one period (cyan region).

• For high values of β’s (namely ≥ 0.211), if ē is too low, lenders refuse to lend (yellow region).

If ē is slightly higher, then lenders set a high enough repayment amount b, and the DM finds

the purchase unprofitable (red region). If ē is even higher, then lenders set a lower repayment

amount b, and the DM prices to cover it in one period (cyan region).

These results are in line with our findings in the one period case above, and bear a similar inter-

pretation. Importantly, however, they demonstrate that both pricing strategies of covering the debt in

one or two periods (discussed in §4) could arise. Put differently, the discontinuity in the DM’s pricing

strategy we elicited in §4 (see Figure 1) could arise. This is further illustrated in Figure C-7 where we

plot the optimal price p⋆T−1(2) (green) and the DM’s price p†T−1(b, 2) (blue) for fixed ē = 0.4, as we vary

β. We observe that for high enough values of β, the repayment amount increases to the extent that

the DM switches his pricing strategy, resulting in a discontinuity point. The dashed line corresponds

to the repayment amount b, and helps to highlight the strategy switch.

An important feature that arises in the two period case is that the DM’s profit V1(b, 2) − e is no

longer monotonic in the equity injected e. In other words, the DM may find it profitable to only invest

a fraction of his initial equity, which would lead to larger profits than choosing whether to invest the

entire equity.

To appreciate this point, it is useful to compare Figure C-6(a) with Figure C-6(b). In Figure C-6(a),

the DM can choose what amount of equity to inject, i.e., e ∈ [0, ē]. In Figure C-6(b), the DM is only

allowed to choose whether to inject all his available equity, i.e., e ∈ {0, ē}. The critical difference

between the two figures occurs at intermediate values of β, namely 0.15 ≤ β ≤ 0.211. In this range,

there are particular values of the initial equity ē such that the inventory purchase goes through when
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Figure C-6: Outcomes for T = 2, Y = 2, c = 2, α = 1 and different values of β and available equity ē.
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and the DM prices so as to cover the debt in one (two) periods; Yellow means that lenders refuse to
lend; Red means that the DM finds the purchase unprofitable.
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Figure C-7: Optimal price p⋆T−1(2) (green) and DM’s price p†T−1(b, 2) (blue) as a function of β, for
T = 2, c = 1, α = 1, ē = 0.4. The dashed line depicts the associated repayment amount b.

App 12



available equity ē
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Figure C-8: Optimal injected equity e as a function of the available equity ē, for T = 2, c = 1, α = 1,
β = 0.175. Solid yellow means that lenders end up refusing to lend; Dotted magenta (dashed cyan)
means that the inventory purchase goes through, and the DM prices so as to cover the debt in two
(one) periods.

the DM can inject a fraction of the equity—corresponding to the magenta region in Figure C-6(a)—

but the inventory purchase does not go through when the DM only chooses whether to inject the

entire equity—corresponding to the red region in Figure C-6(b). To further illustrate this, Figure C-8

considers the case β = 0.175, and plots the optimal equity e ∈ [0, ē] that the DM would invest as a

function of the available equity ē. Note that three regions emerge:

• For ē < 1
6 , the DM injects all his equity, but lenders refuse to lend (solid yellow line).

• For ē > 1
2 , the DM injects all his available equity, e = ē, and the debt he raises induces him to

price so as to cover the debt in one period (dashed cyan line).

• For 1
6 ≤ ē ≤ 1

2 , the DM chooses to inject only e = 1
6 , i.e., he does not use all available equity and

e < ē. In this case, the amount of debt he raises induces him to price so as to cover the debt in

two periods (dotted magenta line).

This highlights the same phenomenon as our earlier discussion: at intermediate values of equity—when
1
6 ≤ ē ≤ 1

2—the DM would prefer not retain some of his equity, and only invest e = 1
6 . To understand

this preference, note that investing a lower equity requires the DM to raise a high debt; in turn, this

higher debt allows him to credibly pre-commit to a pricing strategy that clears the debt in two periods.
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Such a strategy is less risky, by relying on lower prices, as we discussed in §4. Consequently, this allows
the lenders to charge a lower interest, with the DM eventually benefiting.

This discussion illustrates the strategic role that debt could play in our setting. Thus, the appropri-

ate selection of capital structure leads to a better alignment of incentives, so that the DM implements

an ex-ante higher-value pricing policy. This strategic use of debt as a pre-commitment mechanism is

akin to other papers in the finance literature, e.g., see Titman (1984). More broadly, a positive effect of

debt on firm value has also been documented in several other papers in the corporate finance literature,

see, e.g., Brander and Lewis (1986) and Chemla and Faure-Grimaud (2001).

D Proofs for Section 3

Proof of Lemma 3.1. i.) If y = 0, Vt(b, y) = (−b)+ is clearly convex, decreasing in b. If y ≥ 1,

VT+1(b, y) is similarly convex, decreasing in b. Assuming that so is Vt+1(b, y) for some t = 1, . . . , T ,

then the recursion (2) yields that

Vt(b, y) = max
p∈P

{λ(p)Vt+1(b− p, y − 1) + (1− λ(p))Vt+1(b, y)} .

For any p ∈ P, the maximand above is convex, decreasing in b because it is a convex combination of

two such functions. Thus, Vt(b, y) is also convex, decreasing in b.

To show that Vt(b, y) is decreasing in t, note that it is immediate for y = 0, since Vt(b, y) = (−b)+.

For y ≥ 1, by the recursion (2) it suffices to show that Vt(b, y) ≤ Vt(b− p, y − 1), for some p ∈ P, for

all t = 1, . . . , T + 1. We shall show it for p = p. At T + 1, we get VT+1(b, y) = (−b)+ ≤ (p − b)+ =

VT+1(b− p, y − 1). Suppose that it is true at t+ 1. Then, for y ≥ 2

Vt(b− p, y − 1) = max
p∈P

{λ(p)Vt+1(b− p− p, y − 2) + (1− λ(p))Vt+1(b− p, y − 1)}

≥ max
p∈P

{λ(p)Vt+1(b− p, y − 1) + (1− λ(p))Vt+1(b, y)}

= Vt(b, y).

A similar argument can be employed for y = 1.

ii.) For b ≤ 0, it suffices to show that Vt(b, y) = −b+ Vt(0, y), t = 1, . . . , T +1. At T +1, VT+1(b, y) =
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(−b)+ = −b = −b+ VT+1(0, y). Suppose now that it is true at some t+ 1. Then, (2) yields

Vt(b, y) = max
p∈P

{λ(p) (p− b+ Vt+1(0, y − 1)) + (1− λ(p)) (−b+ Vt+1(0, y))}

= −b+max
p∈P

{λ(p)Vt+1(−p, y − 1) + (1− λ(p))Vt+1(0, y)}

= −b+ Vt(0, y).

For b > 0, it suffices to show iii.) below.

iii.) At T + 1, or for y = 0, Vt(b, y) =
∂
∂bVt(b, y) = 0 and the probability of covering the debt is 0.

For y ≥ 1, at T the DM generates no revenue and fails to cover the debt with probability 1, unless he

charges p†(b, y) ≥ b. Consequently, if p < b, we have that p†(b, y) ≤ p < b and VT (b, y) =
∂
∂bVT (b, y) = 0.

Otherwise, if p ≥ b the DM charges p†(b, y) ∈ [b, p] and covers the debt only if he makes a sale, i.e.,

with probability λ(p†T (b, y)). Also, by the Envelope Theorem

− ∂

∂b
VT (b, y) = − ∂

∂b
{λ(p)(p − b)}

∣∣∣∣
p=p†T (b,y)

= λ(p†T (b, y)).

Thus, VT is differentiable with respect to b and − ∂
∂bVT (b, y) is the probability of covering the debt.

Assuming that Vt+1 has the same properties, we can apply the Envelope Theorem to the recursion for

t to obtain

− ∂

∂b
Vt(b, y) = − ∂

∂b

{
λ(p)Vt+1(b− p, y − 1) + (1− λ(p))Vt+1(b, y)

}∣∣∣∣
p=p

†
t (b,y)

= −λ(p†t(b, y))
∂Vt+1

∂b
(b− p†t(b, y), y − 1)− (1− λ(p†t(b, y)))

∂Vt+1

∂b
(b, y).

By the law of total probability (applied depending on whether a sale occurred at t), it follows that

− ∂
∂bVt(b, y) is the probability of covering the debt at t.

E Proofs for Section 4

Proof of Proposition 4.1. To facilitate exposition, we first attend to parts ii.) and iii.).

ii.) Since there is only one period left p†T (b, y) = p†T (b, 1), which is shown to be increasing in b in the

analysis of the one-unit case, Proposition 5.1.

iii.) The fact that p†T−1(b, 1) is increasing in b follows again from Proposition 5.1.

Next, we analyze p†T−1(b, 2), which involves the solution of the optimization problem in (2), for

t = T − 1 and y = 2. To this end, a characterization of VT (b, y) is required.

Consider first the case of b ≤ α
β . Clearly, VT (b, 0) = 0. For y ≥ 1, VT (b, y) = VT (b, 1). Thus,
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by the analysis of the one-unit case, for b ≥ 0 (F-22) yields that p†T (b, 1) = 1
2

(
α
β + b

)
. Substituting

into (F-25), we get that VT (b, 1) = λ2(b)
4β . For b < 0, as we argued in the proof of Lemma 3.1ii.),

VT (b, 1) = −b+ VT (0, 1). Summarizing then,

VT (b, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ2(b)
4β b ≥ 0, y ≥ 1

−b+ VT (0, 1) b < 0, y ≥ 1

0 y = 0.

Substituting for VT (b, y) using the above equation, the maximand of (2) for t = T − 1 and y = 2

becomes

VT (b, 1) +

⎧
⎨

⎩
f ℓ(p) := λ(p) (p− b+ VT (0, 1) − VT (b, 1)) p ∈ (b, αβ ]

fm(p) := λ(p) (VT (b− p, 1) − VT (b, 1)) p ∈ [0, b].

We next analyze the problems maxp∈(b,α
β
] f ℓ(p) and maxp∈[0,b] fm(p) separately. We show that they

have unique optimal solutions, denoted by pℓ(b) and pm(b), and optimal values denoted by F ℓ(b) and

Fm(b) respectively. If we let ∆F (b) := F ℓ(b)− Fm(b) we have

p†T−1(b, 2) =

⎧
⎨

⎩
pℓ(b) if ∆F (b) ≥ 0

pm(b) otherwise.
(E-4)

• For maxp∈(b,α
β
] f ℓ(p), note that f ℓ is concave, quadratic attaining its maximum at

qℓ(b) :=
1

2

(
b+ VT (b, 1)− VT (0, 1) +

α

β

)
. (E-5)

The value qℓ(b), which is quadratic in b, is bigger than b if and only if b ≤ bℓ :=
α
β −

√
α2+4−2

β .

Thus,

pℓ(b) =

⎧
⎨

⎩
qℓ(b) b ∈ [0, bℓ]

b b ∈ [bℓ,
α
β ].

• For maxp∈[0,b] fm(p), note that fm is cubic. By solving the quadratic equation (fm)′(p) = 0 we

obtain the stationary points
2βb−α±

√
4β2b2−10αβb+7α2

3β . It can be readily checked that for b ∈ [0, αβ )

the point

qm(b) :=
2βb− α+

√
4β2b2 − 10αβb + 7α2

3β
(E-6)

is non-negative and a local maximizer, whereas the other point is non-positive and a local mini-

mizer. Thus, fm is increasing in [0, qm(b)] and decreasing in [qm(b),∞). Since we are interested
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in p ∈ [0, b], note that qm(b) < b ⇔ 3β2b2−12αβb+6α2 < 0 ⇔ b > bm := (2−
√
2)αβ . Combining

the last two observations,

pm(b) =

⎧
⎨

⎩
b b ∈ [0, bm]

qm(b) b ∈ (bm, αβ ].

We use these results to simplify (E-4). In particular, we consider different values for b.

• For 0 ≤ b ≤ bm < bℓ,17 we have ∆F (b) = F ℓ(b)−Fm(b) = f ℓ(qℓ(b))− fm(b) > f ℓ(b)− fm(b) = 0.

• For bm < bℓ ≤ b ≤ α
β , we similarly get ∆F (b) < 0.

• For bm < b < bℓ we have that ∆F (b) = f ℓ(qℓ(b)) − fm(qm(b)). Using tedious algebra, one

can show that (∆F )′ is increasing in b and negative at bℓ. Thus, ∆F is decreasing in b. Since

∆F (bm) > 0 and ∆F (bℓ) < 0, there exists a unique b̂ ∈ (bm, bℓ) such that ∆F (b) ≥ (<)0 for

b ≤ (>)̂b.

By combining the above we obtain that

p†T−1(b, 2) =

⎧
⎨

⎩
qℓ(b) b ∈ [0, b̂]

qm(b) b ∈ (̂b, αβ ].

For b ∈ (αβ , 2
α
β ], we have that VT (b, y) = 0 and thus

p†T−1(b, 2) ∈ argmax
p∈[0,α

β
]
{λ(p)VT (b− p, 1)} .

The objective function above, denoted by fh, evaluates to 0 for b − p > α
β . Thus, we consider only

prices p ≥ b− α
β . Then, fh is cubic. Its stationary points are −λ(b)

β , which is a local minimizer, and

qh(b) :=
b

3
+

α

3β
,

which is a local maximizer. It can be readily checked that qh(b) ∈ [b− α
β ,

α
β ] and as a result p†T−1(b, 2) =

qh(b) for b ∈ (αβ , 2
α
β ].

Having characterized the three pricing regimes for p†T−1(b, 2), it suffices to show that qℓ, qm, and

qh are all increasing. In particular, qℓ is increasing by Lemma 3.1ii.). To show that qm is increasing

note that

dqm
db

(b) =
2

3
+

4βb− 5α

3
√

4β2b2 − 10αβb + 7α2
,

d2qm
db2

(b) =
α2β

(4β2b2 − 10αβb + 7α2)
3
2

> 0.

17It can be readily checked that bm < bℓ for α ≤ 1.
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Thus, dqm
db (b) ≥ dqm

db (0) = 2
3 − 5

3
√
7
> 0. qh is linear and clearly increasing.

i.) By parts ii.) and iii.), we get that for b > 0, p†T (b, y) > p†T (0, y) = p⋆T (y) and p†T−1(b, 1) >

p†T−1(0, 1) = p⋆T (1). For p†T−1(b, 2), we consider the three regimes. For 0 < b ≤ b̂, p†T−1(b, 2) = qℓ(b) >

qℓ(0) = p†T−1(0, 2) = p⋆T (2). For b̂ < b ≤ α
β , p

†
T−1(b, 2) = qm(b) ≥ qm(0) =

√
7−1
3

α
β > α

2β = p⋆T−1(2).

Finally, for α
β < b ≤ 2α

β , note that p
†
T−1(b, 2) = qh(b) ≥ qh(

α
β ) = qm(αβ ) > p⋆T−1(2) since qh is increasing,

and the proof is complete.

We also note that the DM’s price p†T−1(b, 2) is higher than the debt b for 0 ≤ b ≤ b̂, and lower than

the debt for b̂ < b ≤ 2α
β . To see this, note that for b ≤ b̂ we have that p†T−1(b, 2) = qℓ(b), which by its

definition is greater than b. For b ∈ (̂b, αβ ] we have that p†T−1(b, 2) = qm(b), which by its definition is

less than b. Finally, our claim follows for b > α
β since prices are less than α

β .

Proof of Lemma 4.1. We consider three cases, depending on b.

Case 1. When b ∈ [0, b̂], the DM’s pricing policy in period T −1 is given by p†T−1(b) = qℓ(b), where

qℓ is given by (E-5) (refer to the proof of Proposition 4.1). Expressing L1 = 1− J†
T−1

J⋆
T−1

, it can be readily

checked that:

∂2L1

∂b2
=

α2[(4 + 3βb)2 − 12(1 + βb)α+ 2α2]

8α2
≥ 0

∂2L1

∂α2
=

β2b2[βb(48 + 9βb− 8α) + 24(4 − α)]

16α4
≥ 0

∂2L1

∂β2
=

b2[(4 + 3βb)2 − 12(1 + βb)α+ 2α2]

8α2
≥ 0

∂L1

∂b
=

β2b[3β2b2 + 6βb(2− α) + 2(4 − α)(2− α)]

8α2
≥ 0

∂L1

∂α
= −β2b[βb+ 4(4− α) + 4(8 − 3α)]

16α3
≤ 0

∂L1

∂β
=

βb2[3β2b2 + 6βb(2− α) + 2(4 − α)(2− α)]

8α2
≥ 0.

The inequalities readily follow in each case, by recognizing that α,β, b ≥ 0 and α ≤ 1. This shows that

L1 is component-wise convex in b, α, and β, and has the desired monotonicity.

To prove the lower bound on L1, we let y := b
p⋆ , and define

gℓ(y,α) :=
L1

y2
=

128− 32(3 − y)α+ (4− y)(4− 3y)α2

512
.
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Note that gℓ is convex and quadratic in y, reaching its minimum at −8(2−α)
3α < 0. Therefore,

gℓ(y,α) ≥ gℓ(0,α) =
(4− α)(2 − α)

32
.

The latter function is convex and quadratic in α, reaching its minimum at α = 3. Thus, it is decreasing

on [0, 1], so we can conclude that L1/y2 = gℓ(y,α) ≥ gℓ(0, 1) =
3
32 ≈ 0.093.

Case 2. When b ∈ (̂b, αβ ], by the proof of Proposition 4.1 we have that p†T−1(b) = qm(b), which is

given by (E-6). The efficiency loss can be written as

L1(b,α,β) =
1

54α2

[
123β2b2 + 16β3b3 − 240αβb − 28β3b2α+ 106βα2 − 2β2α2b+ 18βα3+

(
41β2b+ 8β3b2 − 40βα − 4β2αb− 9βα2

)√
4β2b2 − 10βbα + 7α2

]
.

As such, it can be readily checked that testing the positivity or negativity of a first-order or second-order

partial derivative of L1 with respect to b, α, or β is equivalent to showing that

f0(α,β, b) ≥ 0, ∀ (α,β, b) ∈ X := {(α,β, b) ∈ R
3 : fi(α,β, b) ≥ 0, i = 1, . . . ,m},

where {fi}mi=0 are polynomial functions in the variables b,α,β. This problem falls in the general class

of polynomial optimization problems, which require testing the positivity of a polynomial objective on

a feasible set given by a finite number of polynomial equalities and inequalities. Exact computational

methods are available to produce certificates in such problems, using sum-of-squares (SOS) methods

(see Parrilo, 2003 and references therein for details). We use these for every derivative above, and

confirm that ∂2L1

∂b2
≥ 0, ∂

2L1

∂α2 ≥ 0, ∂
2L1

∂β2 ≥ 0, ∂L1

∂b ≥ 0, ∂L1

∂α ≤ 0, ∂L1

∂β ≥ 0 always hold. Details are omitted

for space considerations, but are available upon request.

To prove the bounds on L1, we can again write L1 = gm(y,α), where y := b
p⋆ and

gm(y,α) :=
1

216

[
636− 480y + 123y2 + 184α − 108yα − 12y2α+ 8y3α+

(−240 + 96y − 64α + 8yα+ 8y2α)
√

y2 − 5y + 7
]
.

Before proceeding with the argument, it is useful to derive a set of bounds on the value of y. To

this end, note that b ≥ b̂, and by the proof of Proposition 4.1, b̂ ≥ bm := (2 −
√
2)αβ . Thus, we have

y := 2βb
α ≥ 4− 2

√
2. Furthermore, since b ≤ α

β , we also have y ≤ 2. Using SOS techniques, it can then
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be readily checked that for any (y,α) ∈ [4− 2
√
2, 2]× [0, 1],

∂gm
∂α

≤ 0 (E-7a)

∂2gm
∂y2

≥ 0. (E-7b)

By letting y := 4− 2
√
2, we can therefore conclude that

gm(y,α)
(E-7a)
≥ gm(y, 1)

(E-7b)
≥ gm(y, 1) +

∂gm(y, 1)

∂y

∣∣∣∣
y=y

· (y − y), ∀ y ∈ [y, 2],

which yields the desired bound when substituting the values.

Case 3. When b ∈ (αβ , 2
α
β ], by the proof of Proposition 4.1 we have that p†T−1(b) = qh(b) =

βb+α
3β .

The efficiency loss can be written as

L1(b,α,β) =
−2β3b3 − 6αβb+ (15 − 8α)α2 + 6(1 + α)β2b2

27α2
.

As such, we have:

∂L1

∂b
=

2β[βb(2 + 2α− βb)− α]

9α2
≥ 0

∂L1

∂α
= −8α3 + 6(2 + α)β2b2 − 4β3b3 − 6αβb

27α3
≤ 0

∂L1

∂β
=

2b[βb(2 + 2α− βb)− α]

9α2
≥ 0

∂2L1

∂b2
=

4β2(1 + α− βb)

9α2
≥ 0

∂2L1

∂α2
=

4βb[βb(3 + α− βb)− α]

9α4
≥ 0

∂2L1

∂β2
=

4b2(1 + α− βb)

9α2
,

where each of the inequalities follows by using the fact that α ≤ βb ≤ 2α ≤ 2.

To prove the bound on L1, we can again write L1 = gh(y,α), where y := b
p⋆ and

gh(y,α) :=
1

108

[
6(y2 − 2y + 10) − α(y + 2)(4 − y)2

]
.
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Since b ∈ (αβ , 2
α
β ], we always have y ∈ (2, 4], and it can then be readily checked that for any such y,

∂gh
∂α

= −(4− y)2(2 + y)

108
≤ 0. (E-8a)

∂2gh
∂y2

=
2− α(y − 2)

18
≥ 0. (E-8b)

Therefore, we always have:

gh(y,α)
(E-8a)
≥ gh(y, 1)

(E-8b)
≥ gh(2, 1) +

∂gh(y, 1)

∂y

∣∣∣∣
y=2

· (y − 2), ∀ y ∈ (2, 4]

and the proof is complete.

Proof of Proposition 4.2. i.) We use the expressions for p†t(b, 2), t = T − 1, T derived in the proof

of Proposition 4.1. We deal with the three regimes separately.

For 0 ≤ b ≤ b̂, we have that

E

[
p†T (BT ,YT )

]
− p†T−1(b, 2) = λ(qℓ(b))p

†
T (0, 1) + (1− λ(qℓ(b)))p

†
T (b, 2) − qℓ(b)

=
βb2(2(1 − α) + βb)

16
,

which is clearly positive and increasing in b.

For b̂ < b ≤ α
β , we have that

E

[
p†T (BT ,YT )

]
− p†T−1(b, 2) = λ(qm(b))p†T (b− qm(b), 1) + (1− λ(qm(b)))p†T (b, 2) − qm(b),

and for α
β < b ≤ 2α

β , we have that

E

[
p†T (BT ,YT )

]
− p†T−1(b, 2) = λ(qh(b))p

†
T (b− qh(b), 1) + (1− λ(qm(b)))p†T (b, 2)− qh(b).

Substituting for qm, qh, and p†T , and using similar arguments as in the proof of Lemma 4.1, one can show

that the above differences are positive and increasing in b. Details are omitted for space considerations,

but are available upon request.

ii.) The result follows from analysis of the one-unit case, Proposition 5.2.

iii.) We use the expressions for p†t(b, 2), t = T − 1, T derived in the proof of Proposition 4.1. We show

that g(b) := p†T−1(b, 2) − p†T (b, 2) is decreasing. For b ∈ [0, b̂], g′(b) = (qℓ)′(b) − 1
2 = 1

2
∂
∂bVT (b, 1) ≤ 0,

where the inequality follows from Lemma 3.1iii.). For b ∈ (̂b, αβ ], g
′(b) = (qm)′(b)− 1

2 ≤ (qm)′(αβ )−
1
2 =

1
3 − 1

2 < 0, where the first inequality follows from qm′ being increasing and positive, as argued in the
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proof of Proposition 4.1. For b ∈ (αβ , 2
α
β ], g

′(b) = (qh)′(b)− 1
2 = 1

3 −
1
2 < 0. We finally need to check the

difference at the point of discontinuity b̂. We have lim
b→b̂+ g(b) = qm(̂b)− p†T (̂b, 2) < qℓ(̂b)− p†T (̂b, 2) =

lim
b→b̂− g(b), where the inequality follows from Proposition 4.1. To complete the proof, note that for

y > T − t it can be readily seen that the revenue-maximizing policy is to charge the same price in both

T − 1 and T , thus p†T−1(b, y)− p†T (b, y) ≤ p⋆T−1(y)− p⋆T (y) = 0.

Proof of Proposition 4.3. For y = 1 the result follows from analysis of the one-unit case, Proposi-

tion 5.3. For y = 2, according to Proposition 4.1, the price p†T−1(b, 2) takes different expressions for b

in [0, b̂], (̂b, αβ ] and (αβ , 2
α
β ]. We argue for these cases separately. Note that in all cases, it can be readily

shown that following the revenue-maximizing policy would result in pricing at argmaxp∈P{pλ(p)} = α
2β

in both periods. Thus J⋆ = 2 α
2βλ(

α
2β ) =

α2

2β .

• For b ∈ [0, b̂], according to Proposition 4.1, p†T−1(b, 2) = qℓ(b) > b. Thus, in case of a sale at T−1,

the DM covers his debt and charges p†T (0, 1) at T . Otherwise, he charges p†T (b, 1). Combining

these observations we get

J† = λ(qℓ(b))
(
qℓ(b) + λ

(
p†T (0, 1)

)
p†T (0, 1)

)
+ (1− λ(qℓ(b)))λ

(
p†T (b, 1)

)
p†T (b, 1).

We now derive an expression for the expectation E

[
J †

T
J ⋆

T

]
. Using the law of total expectation, in

a similar fashion as in the proof of Proposition 5.3, we get

E

[
J †

T

J ⋆
T

]

= λ(qℓ(b))
qℓ(b) + λ

(
p†T (0, 1)

)
p†T (0, 1)

p⋆T−1(2) + λ
(
p⋆T (1)

)
p⋆T (1)

+
(
λ
(
p⋆T−1(2)

)
− λ(qℓ(b))

) λ
(
p†T (b, 1)

)
p†T (b, 1)

p⋆T−1(2) + λ
(
p⋆T (1)

)
p⋆T (1)

+ λ
(
p⋆T−1(2)

) λ
(
p†T (b, 1)

)
p†T (b, 1)

λ
(
p⋆T (1)

)
p⋆T (1)

.

By substituting for all the prices in the expressions above and setting x := βb ∈ [0,βb̂], after

some tedious algebra we get

J† − E

[
J †

T

J ⋆
T

]

J⋆ = − x2(2− α)

64β(2 + α)︸ ︷︷ ︸
<0

(
3x2 + 8(2− α)x− 4α(6 − α)

)
︸ ︷︷ ︸

<0

> 0.
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To see that the second multiplier above is negative, note that it is increasing for x ≥ 0. Since

βb̂ < α, we can upper bound the multiplier by evaluating it for x = α, which yields −α(8+α) < 0.

• For b ∈
(
b̂, αβ

]
, according to Proposition 4.1, p†T−1(b, 2) = qm(b) < b. Thus, in case of a sale

at T − 1, the DM still fails to cover his debt and charges p†T (b − qm(b), 1) at T . Otherwise, he

charges p†T (b, 1). Combining these observations we get

J† = λ(qm(b))
(
qm(b) + λ

(
p†T (b− qm(b), 1)

)
p†T (b− qm(b), 1)

)
+(1−λ(qm(b)))λ

(
p†T (b, 1)

)
p†T (b, 1).

Using the law of total expectation as above we get

E

[
J †

T

J ⋆
T

]

= λ(qm(b))
qm(b) + λ

(
p†T (b− qm(b), 1)

)
p†T (b− qm(b), 1)

p⋆T−1(2) + λ
(
p⋆T (1)

)
p⋆T (1)

+
(
λ
(
p⋆T−1(2)

)
− λ(qm(b))

) λ
(
p†T (b, 1)

)
p†T (b, 1)

p⋆T−1(2) + λ
(
p⋆T (1)

)
p⋆T (1)

+ λ
(
p⋆T−1(2)

) λ
(
p†T (b, 1)

)
p†T (b, 1)

λ
(
p⋆T (1)

)
p⋆T (1)

.

By substituting for all the prices in the expressions above and setting x := βb ∈ (βb̂,α], after

some tedious algebra we get

J† − E

[
J †

T

J ⋆
T

]

J⋆ = − (2− α)

108β(2 + α)︸ ︷︷ ︸
<0

⎛

⎝g1(x)︸ ︷︷ ︸
<0

√
4x2 − 10αx + 7α2 + g2(x)

⎞

⎠ ,

where g1(x) := 8x2 + (4α + 48)x − 4α(4α + 15) and g2(x) := 16x3 + 4(α + 12)x2 − 2α(27α +

120)x + α2(46α + 159). To see that g1(x) is negative, note that it is increasing for x ≥ 0 and

evaluates to −4α(α + 3) < 0 for x = α. Thus, it suffices to show that

g22(x)− g21(x)(4x
2 − 10αx+ 7α2) = 27(α − x)︸ ︷︷ ︸

≥0

w(x) ≤ 0,

or equivalently that w(x) ≤ 0, where w(x) = 32x4 + (8α(1 + 2α) + 165)x3 − α(4α + 315)x2 +

α2(3− 44α(α+ 4))x+ α3(4α(11 + 3α) + 3). The derivative of w is cubic in x and can be readily

maximized over [0,α] to obtain that w′(x) ≤ 0. Since w is then decreasing, we can upper bound

it as follows

w(x) ≤ w(̂bβ) ≤ w(bmβ) = w((2 −
√
2)α) < 0.
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Note that w((2 −
√
2)α) depends only on α and be readily maximized over (0, 1] to obtain the

last inequality above, which concludes the proof for this case.

• For b ∈
(
α
β , 2

α
β

]
, according to Proposition 4.1, p†T−1(b, 2) = qh(b) ≤ α

β < b. Thus, in case of a

sale at T − 1, the DM still fails to cover his debt and charges p†T (b − qh(b), 1) at T . Otherwise,

it becomes infeasible for him to cover the debt. Combining these observations we get

J† = λ(qh(b))
(
qh(b) + λ

(
p†T (b− qh(b), 1)

)
p†T (b− qh(b), 1)

)
.

Using the law of total expectation as above we get

E

[
J †

T

J ⋆
T

]

= λ(qh(b))
qh(b) + λ

(
p†T (b− qh(b), 1)

)
p†T (b− qh(b), 1)

p⋆T−1(2) + λ
(
p⋆T (1)

)
p⋆T (1)

.

By substituting for all the prices in the expression above we get

J† − E

[
J †

T

J ⋆
T

]

J⋆ =
(2− α)(βb+ α)(βb − 2α)(βb − 2α− 3)

27β(2 + α)
≥ 0,

since βb− 2α− 3 < βb− 2α ≤ 0 for b ≤ 2α
β .

F Proofs for Section 5

Proof of Proposition 5.1. To show i.), we follow the steps below.

Step 1: We first show that for all 0 ≤ x < p, λ(p)(p − x) admits a unique maximizer in p over P,

equal to π(x), such that π(x) ≥ x.

To this end, note that no p < x can be a maximizer of λ(p)(p − x) in p over P. This is clear if

x ≤ p. For x > p and for all p such that p < p < x < p, we get that λ(p)(p − x) < 0 ≤ λ(p)(p − x).

Our claim that π(x) ≥ x follows.

To show that λ(p)(p − x) admits a unique maximizer over [x ∧ p, p], it suffices to show that it is

unimodal. If it has no stationary points in (x∧p, p), this is clearly the case. Otherwise, let p̂ ∈ (x∧p, p)

be a stationary point, i.e., p̂ solves the FOC

d

dp
{λ(p)(p − x)}

∣∣∣∣
p̂

= λ′(p̂)(p̂ − x) + λ(p̂) = 0. (F-9)
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The second derivative at p̂ evaluates to

d2

dp2
{λ(p)(p − x)}

∣∣∣∣
p̂

= λ′′(p̂)(p̂ − x) + 2λ′(p̂) = − 1

λ′(p̂)︸ ︷︷ ︸
>0

(
λ′′(p̂)λ(p̂)− 2(λ′(p̂))2

)
︸ ︷︷ ︸

<0

< 0, (F-10)

where the second equality follows by substituting for p̂−x from the FOC (note that if λ′(p̂) = 0, we get

λ(p̂) = 0 from the FOC, a contradiction since p̂ ∈ (x ∧ p, p)). The negativity of the second multiplier

above follows from log-concavity of λ, which yields 0 ≥ λ′′(p̂)λ(p̂) − (λ′(p̂))2 > λ′′(p̂)λ(p̂) − 2(λ′(p̂))2.

As such, all stationary points are local maxima. Thus, there exists a unique local maximum, which

has to be the unique global maximizer.

Step 2: We show that 0 ≤ π′(x) ≤ 1. To this end, note that from (F-9) for p → x the derivative

of λ(p)(p − x) becomes positive. Thus, if it has no stationary points in (x ∧ p, p), it is increasing and

π(x) = p, which trivially satisfies our claim. Otherwise, π(x) is equal to the unique solution of the

FOC. We calculate its derivatives using the Implicit Function Theorem. In particular, by taking the

derivative of the FOC with respect to x we get

π′(x) =
λ′(π(x))

λ′′(π(x))(π(x) − x) + 2λ′(π(x))
=

−(λ′(π(x)))2

λ′′(π(x))λ(π(x)) − 2(λ′(π(x)))2
≥ 0, (F-11)

where the second equality and the inequality follow from (F-10). Showing π′(x) ≤ 1 is equivalent to

λ′′(π(x))λ(π(x)) − 2(λ′(π(x)))2 ≤ 0, which follows from log-concavity of λ.

Step 3: We now complete the proof of i.) by deriving the DM’s price. For b ≥ p, as we argued in

Section 5.1 we can take p†t(b) = p without loss.

For b < p, we have that p†t(b) ∈ argmax
p∈P, p≥b

{λ(p) [p− (b+ Vt+1(b))]} for all t = 1, . . . , T. Note first

that posting a price p < b + ϵ < p (for ϵ > 0 appropriately chosen) ensures a non-zero probability

of covering the debt since λ(b + ϵ) > 0. Thus, −V ′
t (b) < 1 for all t = 1, . . . , T by Lemma 3.1iii.).

Consequently, b+Vt+1(b) is strictly increasing and b+Vt+1(b) < p+Vt+1(p) = p. By our result in Step

1, we get that p†t(b) = π(b+ Vt+1(b)).

Finally, we also remark that for b < p, we have that p†t(b) > b. To see this, note that if b < p,

clearly p†t(b) > b. Otherwise, for p ≤ b < p note that for p = b, the maximand above is less than equal

to zero, whereas for p = b + Vt+1(b) + ϵ′ < p (for ϵ′ > 0 small enough) it is positive. Hence, again

p†t(b) > b and the proof is complete.

To show ii.) and iii.), we argue as follows. For b ≥ p, i.) suggests that p†t(b) = p, which is trivially

increasing in b. For b < p, we have that p†t(b) = π(b+Vt+1(b)), which is increasing in b since b+Vt+1(b)

is increasing in b (by Lemma 3.1ii.)) and so is π (by i.)). The proof is complete by recalling that

p†t(0) = p⋆t .
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Proof of Proposition 5.2. We first show that π(x) is concave. To that end, using (F-11) and dif-

ferentiating, we obtain:

π′′(x) =
([λ′′(π(x))]2 − λ′(π(x))λ′′′(π(x)))(π(x) − x)π′(x) + (1− π′(x))λ′(π(x))λ′′(π(x))

(λ′′(π(x))(π(x) − x) + 2λ′(π(x)))2

∝ ([λ′′(π(x))]2 − λ′(π(x))λ′′′(π(x)))︸ ︷︷ ︸
≤0, by −λ′ log-convex

(π(x)− x)π′(x)︸ ︷︷ ︸
≥0, by Proposition 5.1

+ (1− π′(x))︸ ︷︷ ︸
≥0, by Thm. 5.1

λ′(π(x))λ′′(π(x))︸ ︷︷ ︸
≤0, by λ convex

≤ 0.

To show i.), first note that for b ≥ p, Proposition 5.1 suggests that p†t(b) = p†t+1(b) = p, and thus

their difference is trivially decreasing in b. For b < p, we express the prices p†t(b), p
†
t+1(b) using the

function π and take the derivative of their difference. We obtain

d

db

(
p†t(b)− p†t+1(b)

)
=
(
1 + V ′

t+1(b)
)
π′(b+ Vt+1(b))−

(
1 + V ′

t+2(b)
)
π′(b+ Vt+2(b)).

Note that Vt(b) is decreasing in t (Lemma 3.1), and π′ is positive and decreasing. Thus,

π′(b+ Vt+2(b)) ≥ π′(b+ Vt+1(b)) ≥ 0.

Also, since −V ′
t (b) is less that one and decreasing in t, we get

1 + V ′
t+2(b) ≥ 1 + V ′

t+1(b) ≥ 0.

Based on these two inequalities and the expression for the derivative above, we conclude that p†t(b)−
p†t+1(b) is decreasing in b.

To show ii.), simply recall that p†t(0) = p⋆t and that p†t(b) ≥ p⋆t . For iii.), we have that

p†t(b)

p⋆t
=

(p†t(b)− p†t+1(b)) + p†t+1(b)

(p⋆t − p⋆t+1) + p⋆t+1

(∗)
≤

(p⋆t − p⋆t+1) + p†t+1(b)

(p⋆t − p⋆t+1) + p⋆t+1

(∗∗)
≤

p†t+1(b)

p⋆t+1

,

where (∗) follows from part i), and (∗∗) is true since 0 ≤ p⋆t+1 ≤ p†t+1(b), by Proposition 5.1.

Proof of Proposition 5.3. Similarly to J†
t , we define J

⋆
t as the expected revenues under the revenue-

maximizing policy at the beginning of period t, conditional on no sale in periods 1, . . . , t − 1. For

clarity, we explicitly highlight the dependence of J†
t on the debt, i.e., we write J†

t (b). We first show

that L1 ≤ L2, or equivalently that

J†
1(b)

J⋆
1

≥ E

[
J †

2

J ⋆
2

]

= E

[
E[R(p†)|σ(W1)]

E[R(p⋆)|σ(W1)]

]
. (F-12)
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We condition on the value of W1 in order to express the right-hand side above using the law of total

expectation. In particular, since p†1(b) ≥ p⋆1 by Proposition 5.1, we consider the events E1 = {W1 < p⋆1},
E2 = {p⋆1 ≤ W1 < p†1(b)} and E3 = {p†1(b) ≤ W1}. Under E1, no sale occurs under either the DM’s or

the revenue-maximizing policies. Under E2, a sale occurs only under the revenue-maximizing policy,

whereas under E3 a sale occurs under both policies. For the revenue-maximizing (DM’s) policy, expected

revenue equal J⋆
2 (J†

2(b)) when no sale occurs, and p⋆1 (p†1(b)) when a sale occurs. Combining all these

facts, we get that

E

[
E[R(p†)|σ(W1)]

E[R(p⋆)|σ(W1)]

]
=

3∑

i=1

E

[
E[R(p†)|σ(W1)]

E[R(p⋆)|σ(W1)]

∣∣∣∣ Ei
]
P(Ei)

=
J†
2(b)

J⋆
2

(1− λ(p⋆1)) +
J†
2(b)

p⋆1
(λ(p⋆1)− λ(p†1(b))) +

p†1(b)

p⋆1
λ(p†1(b))

= (1− λ(p⋆1))

(
1

J⋆
2
− 1

p⋆1

)
J†
2(b) +

1

p⋆1
J†
1(b),

where the last equality follows from J†
1(b) = λ(p†1(b))p

†
1(b) + (1− λ(p†1(b)))J

†
2 (b). Thus,

J†
1(b)

J⋆
1

− E

[
J †

2

J ⋆
2

]

= J†
2(b)

[(
1

J⋆
1
− 1

p⋆1

)
J†
1(b)

J†
2(b)

− (1− λ(p⋆1))

(
1

J⋆
2
− 1

p⋆1

)]

.

Thus, the inequality in (F-12) is equivalent with
(

1
J⋆
1
− 1

p⋆
1

)
J
†
1(b)

J
†
2(b)

− (1 − λ(p⋆1))
(

1
J⋆
2
− 1

p⋆
1

)
≥ 0. For

b = 0 the inequality holds with equality, since the two policies become the same. For b > 0, it suffices

to show that the left-hand side is increasing in b. This is indeed the case since
J†
1 (b)

J†
2
(b)

is increasing in b,

and J⋆
1 < p⋆1, p

⋆
1 being the largest price charged under the revenue-maximizing policy.

Using identical arguments and the fact that J†
t (b)

J
†
t+1(b)

is increasing in b, one can show that for all

t = 2, . . . , T − 1

J†
t (b)

J⋆
t

≥ E

[
J †

t+1

J ⋆
t+1

∣∣∣∣∣W1 = . . . = Wt−1 = 0

]

, (F-13)

where the conditioning event in the right-hand side ensures that no sale has occurred under either

policy up until and including period t− 1.

We now show that for any t = 2, . . . , T − 1 we have that Lt ≤ Lt+1, or equivalently that

E

[
J †

t

J ⋆
t

]

≥ E

[
J †

t+1

J ⋆
t+1

]

. (F-14)
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We condition again on the events {Ei}i=1,2,3 to express the left-hand side as follows

E

[
J †

t

J ⋆
t

]

=
p†1(b)

p⋆1
λ(p†1(b)) +

J†
2(b)

p⋆1
(λ(p⋆1)− λ(p†1(b))) + E

[
J †

t

J ⋆
t

∣∣∣∣∣W1 < p⋆1

]

(1− λ(p⋆1)),

where we used the fact that E
[
J †

t

∣∣∣W1 < p⋆1

]
is equal to J†

2(b) by definition. We can now use the same

approach in order to express the expectation in the last term above, by conditioning on the value of

W2. In particular, we get

E

[
J †

t

J ⋆
t

]

=
p†1(b)

p⋆1
λ(p†1(b)) +

J†
2(b)

p⋆1
(λ(p⋆1)− λ(p†1(b)))

+(1−λ(p⋆1))

(
p†2(b)

p⋆2
λ(p†2(b)) +

J†
3(b)

p⋆2
(λ(p⋆2)− λ(p†2(b))) + E

[
J †

t

J ⋆
t

∣∣∣∣∣W1 < p⋆1, W2 < p⋆2

]

(1− λ(p⋆2))

)

.

By applying the same approach recursively we obtain

E

[
J †

t

J ⋆
t

]

=
t−1∑

τ=1

φτ−1

[
p†τ (b)

p⋆τ
λ(p†τ (b)) +

J†
τ+1(b)

p⋆τ
(λ(p⋆τ )− λ(p†τ (b)))

]

+ φt−1
J†
t (b)

J⋆
t

,

where we used that E

[
J †

t

J ⋆
t

∣∣∣∣W1 < p⋆1, . . .Wt−1 < p⋆t−1

]
= J†

t (b)
J⋆
t

, and φ0 := 1, φτ :=
∏τ

i=1(1− λ(p⋆τ )) for

τ ≥ 1. If we use the same expression for the right-hand side of the inequality (F-14) we want to show,

we can express the difference of the two sides as

E

[
J †

t+1

J ⋆
t+1

− J †
t

J ⋆
t

]

= φt−1

(
p†t(b)

p⋆t
λ(p†t(b)) +

J†
t+1(b)

p⋆t
(λ(p⋆t )− λ(p†t(b)))

)

+ φt

J†
t+1(b)

J⋆
t+1

− φt−1
J†
t (b)

J⋆
t

= φt−1

(
p†t(b)

p⋆t
λ(p†t(b)) +

J†
t+1(b)

p⋆t
(λ(p⋆t )− λ(p†t(b))) + (1− λ(p⋆t )

J†
t+1(b)

J⋆
t+1

− J†
t (b)

J⋆
t

)

= φt−1

(

E

[
J †

t+1

J ⋆
t+1

∣∣∣∣∣W1 = . . . = Wt−1 = 0

]

− J†
t (b)

J⋆
t

)

≤ 0,

where the inequality follows from (F-13) and the proof is complete.

Proposition F.1. Suppose that the demand function is either linear or exponential. Then, J†
t /J

†
t+1

is increasing in b for any t = 1, ..., T − 1.

Proof of Proposition F.1. Throughout this proof, x′ will denote the derivative d
dbx. To ease nota-
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tion, we suppress the superscript † and the dependence on b, e.g., pt = p†t(b), etc. Also, let

λt := λ(p†t(b)), t = 1, . . . , T.

We also define ωt to be the probability of failing to cover the debt under the DM’s policy at the

beginning of period t, given that no sale has occurred until then. That is,

ωT+1 := 1 and ωt := (1− λt)ωt+1, t = 1, . . . , T. (F-15)

Using our notation, Lemma 3.1iii.) can be expressed as

1− ωt = −V ′
t , t = 1, . . . , T + 1. (F-16)

Also, the expected revenue can be expressed as

Jt = λtpt + (1− λt)Jt+1 = Vt + (1− ωt)b, t = 1, . . . , T + 1. (F-17)

By differentiating (F-17) and using (F-16) we get

J ′
t = −bω′

t, t = 1, . . . , T + 1. (F-18)

We treat the two cases separately.

Case (1): λ(p) = e−αp, α > 0, p ∈ [0,∞).18 Using our notation, Proposition 5.1 yields that pt =

π(b + Vt+1), for all t = 1, . . . , T . Using the fact that argmaxp≥0 e
−αp(p − x) = 1

α + x and (F-17), we

get that

pt =
1

α
+ b+ Vt+1 =

1

α
+ bωt+1 + Jt+1, t = 1, . . . , T. (F-19)

In conjunction with Lemma 3.1i.), this also shows that pt is decreasing in t. By diffentiating (F-19)

and using (F-16), we get that

p′t = ωt+1, t = 1, . . . , T, (F-20)

which also yields

λ′
t = (e−αpt)′ = −αp′tλt = −αωt+1λt, t = 1, . . . , T. (F-21)

18The proof can be generalized to the case where λ(p) = α0e
−αp, α0 ∈ (0, 1), in a straightforward manner.
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These allow us to express

(
Jt−1

Jt

)′

=

(
λt−1pt−1 + (1− λt−1)Jt

Jt

)′

=

(
λt−1pt−1 − λt−1Jt

Jt

)′

=
λt−1

J2
t

(
(pt−1 − Jt)

λ′
t−1

λt−1
Jt + p′t−1Jt − pt−1J

′
t

)

=
λt−1

J2
t

(
−(pt−1 − Jt)αp

′
t−1Jt + p′t−1Jt − pt−1J

′
t

)
[by (F-21)]

=
λt−1

J2
t

(
−α(− 1

α
+ pt−1 − Jt)p

′
t−1Jt − pt−1J

′
t

)

=
λt−1

J2
t

(
−αbωtp

′
t−1Jt − pt−1J

′
t

)
[by (F-19)]

=
λt−1

J2
t

(
−αbω2

t Jt + bω′
tpt−1

)
[by (F-20) and (F-18)]

=
λt−1ωtb

J2
t

(
−αωtJt +

ω′
t

ωt
pt−1

)
,

for all t = 2, . . . , T . Thus, it suffices to show that the inequality ω′
t

ωt
≥ αωtJt

pt−1
holds for all t = 2, . . . , T+1.

We will use induction. It is trivially true for T +1, since ωT+1 = 1 and JT+1 = 0. We hypothesize now

that it is true for some t+ 1. Then,

ω′
t

ωt
= − λ′

t

1− λt
+

ω′
t+1

ωt+1
[by differentiating (F-15)]

≥ − λ′
t

1− λt
+

αωt+1Jt+1

pt
[by the induction hypothesis]

≥ αωt+1

(
λt

1− λt
+

Jt+1

pt

)
[by (F-21)]

= α
ωt

1− λt

λtpt + (1− λt)Jt+1

(1− λt)pt
[by (F-15)]

=
αωtJt

(1− λt)2pt
[by (F-17)]

≥ αωtJt
pt−1

[since 1− λt < 1 and pt is decreasing in t]

and the proof for this case is complete.

Case (2): λ(p) = α− βp, α ∈ (0, 1], β > 0, p ∈ [0, αβ ]. Let b <
α
β . As before,

pt = π(b+ Vt+1) =
1

2

(
α

β
+ b+ Vt+1

)
=

1

2

(
α

β
+ bωt+1 + Jt+1

)
, t = 1, . . . , T, (F-22)
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which also shows that pt is decreasing in t and that

p′t =
1

2
ωt+1, t = 1, . . . , T (F-23)

λ′
t = −βp′t = −β

2
ωt+1, t = 1, . . . , T (F-24)

By substituting for pt in the main recursion Vt = λt(pt − b) + (1− λt)Vt+1, we obtain

Vt = Vt+1 +
λt

2

(
λ(b)

β
− Vt+1

)
, t = 1, . . . , T, (F-25)

which in conjuction with Lemma 3.1i.) also shows that

λ(b)

β
− Vt+1 ≥ 0, t = 1, . . . , T, (F-26)

Also, for all t = 2, . . . , T

(1− λt)
2λt ≤ (1− λt)λt [since 1− λt < 1]

= λt−1 − (λt−1 − λt)− λ2
t

= λt−1 −
β

2
(Vt+1 − Vt)− λ2

t [since λt = α− βpt and (F-22)]

= λt−1 −
βλt

4

(
Vt+1 −

λ(b)

β

)
− λ2

t [by (F-25)]

= λt−1 −
βλt

4

(
Vt+1 −

λ(b)

β
+

4

β
λt

)

= λt−1 −
βλt

4

(
Vt+1 − 2Vt+1 +

λ(b)

β

)
[since λt = α− βpt and (F-22)]

= λt−1 −
βλt

4

(
λ(b)

β
− Vt+1

)

≤ λt−1. [by (F-26)]
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These allow us to express as above

(
Jt−1

Jt

)′

=
1

J2
t

(
(pt−1 − Jt)λ

′
t−1Jt + λt−1p

′
t−1Jt − λt−1pt−1J

′
t

)

=
1

J2
t

(
−β

2
(pt−1 − Jt)ωtJt +

1

2
λt−1ωtJt + λt−1pt−1bω

′
t

)
[by (F-24), (F-23) and (F-18)]

=
λt−1pt−1bωt

J2
t

([
1− β(pt−1 − Jt)

λt−1

]
Jt

2pt−1b
+

ω′
t

ωt

)

=
λt−1pt−1bωt

J2
t

([

1−
β( 1βλt−1 + bωt)

λt−1

]
Jt

2pt−1b
+

ω′
t

ωt

)

[by (F-22) and (F-17)]

=
λt−1pt−1bωt

J2
t

(
− βωtJt
2λt−1pt−1

+
ω′
t

ωt

)
,

for all t = 2, . . . , T . Thus, it suffices to show that the inequality ω′
t ≥ βω2

t Jt
2λt−1pt−1

holds for all t =

2, . . . , T + 1. We will use induction. It is trivially true for T + 1, since ωT+1 = 1 and JT+1 = 0. We

hypothesize now that it is true for some t+ 1. Then,

ω′
t = (V ′

t )
′ [by (F-16)]

= (−λt + (1− λt)V
′
t+1)

′ [by the Envelope Theorem applied to (4)]

= −λ′
tωt+1 + (1− λt)ω

′
t+1 [by (F-16)]

≥ −λ′
tωt+1 + (1− λt)

βω2
t+1Jt+1

2λtpt
[by the induction hypothesis]

=
β

2
ω2
t+1 + (1− λt)

βω2
t+1Jt+1

2λtpt
[by (F-23)]

=
βω2

t+1Jt
2λtpt

[by (F-17)]

=
βω2

t Jt
2(1 − λt)2λtpt

[by (F-15)]

=
βω2

t Jt
2λt−1pt−1

, [since (1− λt)
2λt ≤ λt−1 and pt is decreasing in t]

and the proof is complete.

G Proofs for Section 6

Proof of Proposition 6.1. Claim 1: J† = JE . We first deal with contracts with early repayment

option. The DM’s problem at T is the same with the one we analyzed in Section 4. Thus, the DM

charges p†T (b, 1), and the value function VT (b, y) is as in Proposition 4.1. At T − 1, the DM can follow
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a strategy of covering the debt either in one, or two periods. We analyze these separately.

• When the DM plans on covering the debt in one period, his problem can be expressed as

max
p∈(γb,α

β
]
fE
ℓ (p, γ),

where fE
ℓ (p, γ) := λ(p) (p− γb+ VT (0, 1) − VT (b, 1)) in this case. The price he charges then is

qEℓ (b, γ) :=
1
2

(
γb+ VT (b, 1) − VT (0, 1) +

α
β

)
.

Having characterized the DM’s pricing policy, we can now express the debt value

D({B, γ}) = λ(qEℓ (B, γ)) · γB + (1− λ(qEℓ (B, γ))) · λ(p†T (B, 1)) · B,

where the first term corresponds to the expected (discounted) debt payment the debtholders

receive if the DM makes a sale at T − 1, and the second term in case he makes a sale only at T .

Similarly, expected revenues are

J({B, γ}) = λ(qEℓ (B, γ))(qEℓ (B, γ) + VT (0, 1)) + (1− λ(qEℓ (B, γ))) · λ(p†T (B, 1)) · p†T (B, 1),

where the terms have similar interpretation as above (see also the proof of Proposition 4.3 for

similar derivations).

By equation (6b), note that B is essentially a function of γ. In case this equation has multiple

positive roots, we assume that the smallest one is always preferred; this is because higher debt

repayment B will lead to higher efficiency losses for the regime where the DM charges a price to

cover the debt in one period (see, for example, Figure 2 and the discussion in that Section). It

can also be readily checked that

D({0, γ}) = D

({
2
α

β
, γ

})
= 0,

which implies that
∂D({B, γ})

∂B
≥ 0

is a necessary condition for the smallest positive root of (6b).

We now argue that expected revenues J({B, γ}) are non-decreasing in γ, implying that γ = 1

would be an optimal early payment discount. In particular note that

dJ({B, γ})
dγ

=
∂J({B, γ})

∂γ
+

∂J({B, γ})
∂B

dB

dγ
,
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where the derivative of B with respect to γ can be obtained using the Implicit Function Theorem

for (6b)
∂D({B, γ})

∂γ
+

∂D({B, γ})
∂B

dB

dγ
= 0.

One can then readily verify, using sum-of-square techniques, that the set

{
(β, B, γ, d) :

dJ({B, γ})
dγ

≤ 0, D({B, γ}) = d,
∂D({B, γ})

∂B
≥ 0, β ∈ (0, 1], B ≥ 0, γ ∈ (0, 1], d > 0

}

(G-27)

is empty.

• When the DM plans on covering the debt in two periods, we follow a similar approach. In

particular, his problem can be expressed as

max
p∈[0,γb]

fE
m(p, γ),

where fE
m(p, γ) := λ(p)

(
VT (B − p

γ , 1)− VT (b, 1)
)
in this case. The price he charges then is

qEm(b, γ) :=
2βbγ + α(1− 2γ) +

√
α2 + 2α(α − βb)γ + 4(α − βb)2γ2

3β
.

Having characterized the DM’s pricing policy, we can now express the debt value

D({B, γ}) = λ(qEm(B, γ)) ·
[
qEm(B, γ) + λ

(
p†T

(
b− qEm(B, γ)

γ
, 1

))(
b− qEm(B, γ)

γ

)]

+ (1− λ(qEm(B, γ))) · λ(p†T (B, 1)) ·B.

Similarly, expected revenues are

J({B, γ}) = λ(qEm(B, γ)) ·
[
qEm(B, γ) + λ

(
p†T

(
b− qEm(B, γ)

γ
, 1

))
p†T

(
b− qEm(B, γ)

γ
, 1

)]

+ (1− λ(qEm(B, γ))) · λ(p†T (B, 1)) · p†T (B, 1).

We now argue that expected revenues J({B, γ}) are non-decreasing in γ, implying that γ = 1

would be an optimal early payment discount in this case as well. In particular, one can then

readily verify, using sum-of-square techniques, that the set (G-27) is empty.

Since γ = 1 is without loss an optimal early payment discount in all cases, we have J† = JE.

Claim 2: J† ≤ JR. We now deal with contracts with debt relief. If r = 0, we recover the plain
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contract. If r = 1 debtholders have the option of adjusting the debt repayment at the beginning of

period T so as to maximize debt value. That is, if the outstanding debt is bT > 0, debtholders adjust

debt repayment by solving

max
0≤b≤bT

λ(π(b)) · b.

Thus, debt is adjusted to min{p⋆T , bT }. Consequently, no debt relief will take place if the outstanding

debt is low enough, bT ≤ p⋆T .

As we shall prove later, the DM’s price at T − 1 under an optimal contract with debt relief with

r = 1 is always such that it leads to no debt relief when a sale takes place. That is, the DM’s price at

T − 1 is always higher than B − p⋆T .

Using the above observation as a fact, we now analyze the cases where the DM follows a strategy

of covering the debt in one or two periods at T − 1 separately. Note also that if r = 0, or if r = 1 and

B ≤ p⋆T , debtholders would never adjust the debt. In other words, the contract {B, 0} is essentially a

plain contract with debt repayment B, and so {B, 1} when B ≤ p⋆T . We henceforth deal with contracts

for which r = 1 and B > p⋆T :

• When the DM plans on covering the debt in one period, his problem can be expressed as

max
p∈(b,α

β
]
fR
ℓ (p),

where fR
ℓ (p) := λ(p) (p− b+ VT (0, 1) − VT (p⋆T , 1)) in this case. The price he charges then is

qRℓ (b) :=
1
2

(
b+ VT (p⋆T , 1)− VT (0, 1) +

α
β

)
.

Having characterized the DM’s pricing policy, we can now express the debt value

D({B, 1}) = λ(qRℓ (B)) ·B + (1− λ(qRℓ (B))) · λ(p†T (p
⋆
T , 1)) · p⋆T , (G-28)

where the first term corresponds to the debt payment the debtholders receive if the DM makes a

sale at T − 1, and the second term in case he makes a sale only at T—after his debt is adjusted.

Similarly, expected revenues are

J({B, 1}) = λ(qRℓ (B))(qRℓ (B) + VT (0, 1)) + (1− λ(qRℓ (B))) · λ(p†T (p
⋆
T , 1)) · p

†
T (p

⋆
T , 1). (G-29)

• When the DM plans on covering the debt in two periods, we follow a similar approach. In

particular, his problem can be expressed as

max
p∈[0,b]

fR
m(p),
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where fR
m(p) := λ(p) (VT (B − p, 1)− VT (p⋆T , 1)) in this case. The price he charges then is

qEm(b) :=
4βb− 2α+

√
19α2 − 16αβb + 4β2b

6β
.

Having characterized the DM’s pricing policy, we can now express the debt value

D({B, 1}) = λ(qRm(B)) ·
[
qRm(B) + λ

(
p†T
(
b− qRm(B), 1

)) (
b− qRm(B)

)]

+ (1− λ(qRm(B))) · λ(p†T (p
⋆
T , 1)) · p⋆T . (G-30)

Similarly, expected revenues are

J({B, 1}) = λ(qRm(B)) ·
[
qRm(B) + λ

(
p†T
(
b− qRm(B), 1

))
p†T
(
b− qRm(B), 1

)]

+ (1− λ(qRm(B)) · λ(p†T (p
⋆
T , 1)) · p

†
T (p

⋆
T , 1). (G-31)

We now show that J† ≤ JR need not always hold with equality, nor with strict inequality. To

this end, consider the following instances:

– For d = 2, α = 1 and β = 0.13, by solving (6b) we obtain that {4.11} is an optimal

plain contract, under which the DM charges a price qℓ = 5.15, yielding revenues J† =

J({4.11}) = 3.26. Under a contract with debt relief (r = 1 and B > p⋆T ), by solving (6b)

we obtain B = 4.2, qRℓ = 5.22 and J({4.2, 1}) = 3.28 when the DM follows a single-period

debt-covering strategy. Consequently, J† < J({4.2, 1}) ≤ JR.

– For d = 2, α = 1 and β = 0.1, by solving (6b) we obtain that {3.32} is an optimal

plain contract, under which the DM charges a price qℓ = 5.97, yielding revenues J† =

J({3.32}) = 4.74. Under a contract with debt relief (r = 1 and B > p⋆T ), by solving (6b)

we obtain B = 10.2, qRℓ = 9.17 and J({10.2, 1}) = 2.7 when the DM follows a single-period

debt-covering strategy; B = 13.3, qRℓ = 9.18 and J({13.3, 1}) = 2.64 when the DM follows

a two-period strategy. Thus, the optimal contract with debt relief has r = 0, in particular,

{3.32, 0}, and J† = JR for this instance.

To complete the proof of this claim, we now revisit the possibility of the DM charging a price

that is lower than B−p⋆T at T −1, under an optimal contract with debt relief, r = 0 and B > p⋆T .

Under such circumstances, whether the DM makes a sale at T − 1 or not, his outstanding debt

at the beginning of T would remain higher than p⋆T , and thus trimmed to that level. Because

the DM becomes indifferent about the price he charges at T − 1, we assume that he charges a

revenue-maximizing price. We distinguish two cases:

App 36



– When B − p⋆T > p⋆T , the revenue-maximizing price that is lower than B − p⋆T is precisely

p⋆T−1(2) = p⋆T . Thus, the debt value can be written in this case as

D̃({B, 1}) = λ(p⋆T ) ·
[
p⋆T + λ

(
p†T (p⋆T , 1)

)
p⋆T

]
+ (1− λ(p⋆T )) · λ(p

†
T (p

⋆
T , 1)) · p⋆T .

Similarly, expected revenues are

J̃({B, 1}) = VT (0, 1) + λ(p†T (p
⋆
T , 1)) · p

†
T (p

⋆
T , 1).

Suppose now that such a contract is optimal. It will therefore yield higher revenues than a

debt relief contract {B′, 1} that induces a price qRℓ (B
′) > p⋆T . In other words,

{
(β, B,B′, d) : J̃({B, 1}) > J({B′, 1}),

D̃({B, 1}) = d, B > 2p⋆T , D({B′, 1}) = d, B′ > p⋆T , β > 0, d > 0
}

is non-empty, where the expressions for J and D are as in the single-period debt-covering

strategy case above. However, one can readily use sum-of-squares techniques to show that

the above set is, in fact, empty.

– When B − p⋆T ≤ p⋆T , the revenue-maximizing price that is lower than B − p⋆T is precisely

B − p⋆T . Thus, the debt value can be written in this case as

D̃({B, 1}) = λ(B − p⋆T ) ·
[
B − p⋆T + λ

(
p†T (p⋆T , 1)

)
p⋆T

]
+ (1− λ(B − p⋆T )) · λ(p

†
T (p

⋆
T , 1)) · p⋆T .

Similarly, expected revenues are

J̃({B, 1}) = λ(B − p⋆T ) · (B − p⋆T ) + λ(p†T (p
⋆
T , 1)) · p

†
T (p

⋆
T , 1).

Suppose now that such a contract is optimal. It will therefore yield higher revenues than a

debt relief contract {B′, 1} that induces a price qRℓ (B
′) > p⋆T . In other words,

{
(β, B,B′, d) : J̃({B, 1}) > J({B′, 1}),

D̃({B, 1}) = d, B ≤ 2p⋆T , B > p⋆T , D({B′, 1}) = d, B′ > p⋆T , β ∈ (0, 1], d > 0
}

is non-empty, where the expressions for J and D are as in the single-period debt-covering

strategy case above. However, one can readily use sum-of-squares techniques to show that

the above set is, in fact, empty.
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Claim 3: JR < JA. We now compare contracts with debt relief and contracts with debt amortization.

We first claim that, in equilibrium, any debt amortization contract {B, θ} must satisfy B ≤ p⋆T . To

that end, consider two contracts {B, θ} and {B′, θ′} such that B ≤ p⋆T < B′. The DM’s pricing policy

for a given debt amortization contract is fully characterized in Proposition G.1. When B ≤ p⋆T , the DM

charges a price q1ℓ (B) ≥ B in period T − 1, and the price p⋆T is always charged in period T . Therefore,

the value of the debt and the expected revenues under the contract {B, θ} can be written as:

D
(
{B, θ}

)
= λ

(
q1ℓ (B)

)
B +

[
1− λ

(
q1ℓ (B)

)]
λ(p⋆T )B (G-32a)

J
(
{B, θ}

)
= λ

(
q1ℓ (B)

)
q1ℓ (B) + λ(p⋆T )p

⋆
T . (G-32b)

It is worth noting that the expressions above are independent of θ.

Under contract {B′, θ′}, two cases can arise, depending on whether B′ ≤ B̃ (see Proposition G.1):

• if B′ ≤ B̃, the DM charges a price q2ℓ (B
′) ≥ B′ at T − 1, and p⋆T < B′ is always charged at T .

The value of the debt and the expected revenues are thus:

D′
ℓ

(
{B′, θ′}

)
:= λ

(
q2ℓ (B

′)
)
B′ +

[
1− λ

(
q2ℓ (B

′))
]
λ(p⋆T )p

⋆
T

J ′
ℓ

(
{B′, θ′}

)
:= λ

(
q2ℓ (B

′)
)
q2ℓ (B

′) + λ(p⋆T )p
⋆
T .

As with the contract {B, θ}, these expressions do not depend on θ′. Using Proposition G.1 to

express D,J,D′
ℓ and J ′

ℓ as functions of B, θ, B′, θ′,α and β, we can then verify through sums-of-

squares techniques that the set

{
(α,β, B,B′, d) : J ′

ℓ({B′, θ′}) > J({B, θ}), D′
ℓ({B′, θ′}) = d, D({B, θ}) = d,

B′ ≥ p⋆T , B ≤ p⋆T , α ∈ [0, 1], β > 0, d > 0
}

is always empty, which proves that the contract {B, θ} dominates {B′, θ′}.

• if B̃ < B′ ≤ 2α
β , the DM charges a price qθm(B′) ≤ B′ at T − 1. Provided that this results in a

sale, the DM then charges a price p†T
(
B′− qθm(B′)

)
at T ; otherwise, the price p⋆T is charged. The

debt value and the expected revenues thus become:

D′
m

(
{B′, θ′}

)
:= λ

(
qθm(B′, θ′)

)[
qθm(B′, θ′) + λ

(
p†T
(
B′ − qθm(B′, θ′)

))
·
(
B′ − qθm(B′, θ′)

)]

+
[
1− λ

(
qθm(B′, θ′)

)]
λ(p⋆T )p

⋆
T

J ′
m

(
{B′, θ′}

)
:= λ

(
qθm(B′, θ′)

)[
qθm(B′, θ′) + λ

(
p†T
(
B′ − qθm(B′, θ′)

))
· p†T

(
B′ − qθm(B′, θ′)

)]

+
[
1− λ

(
qθm(B′, θ′)

)]
λ(p⋆T )p

⋆
T .
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Note that two sub-cases can be further distinguished depending on θ′, which determines qθm(B′, θ′)

per Proposition G.1. For each case, using Proposition G.1 to express D,J,D′
m, J ′

m as functions

of B, θ, B′, θ′,α,β and θ′, we can verify again through sums-of-squares techniques that the set

{
(α,β, B,B′, θ′, d) : J ′

m({B′, θ′}) > J({B, θ}), D′
m({B′, θ′}) = d, D({B, θ}) = d,

B′ ≥ p⋆T , B ≤ p⋆T , α ∈ [0, 1], β > 0, d > 0
}

is also empty, which confirms that the contract {B, θ} again dominates the contract {B′, θ′}.

We now proceed to complete the proof that JR < JA. Based on the argument above, we only need

to consider contracts with debt amortization {B, θ} with B ≤ p⋆T . Consider a contract allowing debt

relief {B′, r}, with r ∈ {0, 1}. Based on the argument in Claim 2, we distinguish two cases:

• For r = 1, let D′({B′, 1}) and J ′({B′, 1}) denote the corresponding debt value and expected rev-

enues, respectively. The expressions for D′ and J ′ are available from Case 2, and are respectively

given by either (G-28)-(G-29) or (G-30)-(G-31), depending on whether the DM plans on covering

the debt with one or two sales. In each case, we can use sums-of-squares techniques to verify

that the set

{
(α,β, B,B′, d) : J ′({B′, 1}) ≥ J({B, θ}),

D′
m({B′, 1}) = d, D({B, θ}) = d, B ≤ p⋆T , α ∈ [0, 1], β > 0, d > 0

}

is always empty, where D({B, θ}) and J({B, θ} are given by (G-32a)-(G-32b). This proves that

a contract with debt amortization always strictly dominates one with debt relief here.

• For r = 0, the debt relief contract becomes a plain contract. Based on the analysis in the proof

of Proposition 4.1, the debt value D′({B′, 0}) for this contract is given by:

D′({B′, 0}) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ
(
qℓ(B′)

)
B′ +

[
1− λ

(
qℓ(B′)

)]
λ
(
p†T (B

′, 1)
)
B′, if B′ ≤ b̂

λ
(
qm(B′)

)[
qm(B′) + λ

(
p†T (B

′ − qm(B′), 1)
)
· (B′ − qm(B′))

]

+
[
1− λ

(
qm(B′)

)]
λ
(
p†T (B

′, 1)
)
B′, if B′ > b̂,

where qℓ(B′) and qm(B′) are given by (E-5) and (E-6), respectively. Similarly, the expected
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revenues J ′({B′, 0}) are:

J ′({B′, 0}) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

λ
(
qℓ(B′)

)[
qℓ(B′) + λ(p⋆T )p

⋆
T

]

+
[
1− λ

(
qℓ(B′)

)]
λ
(
p†T (B

′, 1)
)
p†T (B

′, 1), if B′ ≤ b̂

λ
(
qm(B′)

)[
qm(B′) + λ

(
p†T (B

′ − qm(B′), 1)
)
· p†T (B′ − qm(B′), 1)

]

+
[
1− λ

(
qm(B′)

)]
λ
(
p†T (B

′, 1)
)
· p†T (B′, 1), if B′ > b̂.

For each of the two cases above, we can use sums-of-squares techniques to verify that the set

{
(α,β, B,B′, d) : J ′({B′, 0}) ≥ J({B, θ}),

D′({B′, 0}) = d, D({B, θ}) = d, B ≤ p⋆T , α ∈ [0, 1], β > 0, d > 0
}

is always empty, where D({B, θ}) and J({B, θ} are given by (G-32a)-(G-32b). This proves that

a contract with debt amortization always strictly dominates a plain contract, and completes the

proof of Claim 3.

Claim 4: JA < J⋆. Consider an arbitrary debt amortization contract {B, θ}. If B ≤ α
2β , by Proposi-

tion G.1, the price charged in period T−1 will be p̃T−1(B, 2) > p⋆T−1(2) =
α
2β , and thus J({B, θ}) < J⋆.

Conversely, if B > α
2β , then even if the DM actually charged α

2β in period T − 1, the price in period T

upon making a sale would be p†T
(
B − α

2β

)
> p⋆T , so that again J({B, θ}) < J⋆. Thus, JA < J⋆.

Proposition G.1. Consider a contract with debt amortization κ = {B, θ}, and let bT denote the DM’s

outstanding debt in period T . The DM’s prices are given by:

∀ y, p̃T (bT , y) =

⎧
⎨

⎩
p†T (bT , y), if bT ≤ (1− θ)B

p⋆T (1), otherwise

p̃T−1(B, 2) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

q1ℓ (B) := 1
4

[
B(2− α) + 2α

β

]
, if 0 < B ≤ α

2β

q2ℓ (B) := 4βB+α(4−α)
8β , if α

2β < B ≤ B̃

qθm(B, θ), B̃ < B ≤ 2α
β ,

where qθm(B, θ) :=

⎧
⎨

⎩

α+βB
3β , if θ ≤ 1

3 + α
3βB

θB, otherwise,
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and B̃ ∈
[
α
2β ,

α
β

]
depends on α,β (and θ, if θ > 1

3 + α
3βB ). Furthermore,

p̃T−1(B, 2) > p⋆T−1(2) =
α

2β

p̃T−1(B, 2) ≥ B, ∀B ∈ (0, B̃)

p̃T−1(B, 2) < B, ∀B ∈
(
B̃,

2α

β

]
.

Proof of Proposition G.1. The price charged in period T is either p⋆T (1) (if bT > (1− θ)B, i.e., the DM

loses control) or p†T (bT ) (if the DM retains control). In the latter case, the value function at time T

would thus be given by the (proof of) Proposition 4.1. We separate the analysis for period T − 1 into

different cases, depending on the value of B.

Case 1. B ∈ [0, α
2β ]. When no sale occurs at T − 1, the DM loses control but still achieves a positive

expected payoff of λ
(
p⋆T (1)

)(
p⋆T (1)− b) = α(α−2βB)

4β . Therefore, p̃T−1(B, 2) ∈ argmaxp f(p), where

f(p) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

fℓ(p) := λ(p)
[
p−B + α

2βλ
(

α
2β

)
− α(α−2βB)

4β

]
, p ∈ [B, αβ ]

fm(p) := λ(p)
[
λ2(B−p)

4β − α(α−2βB)
4β

]
, p ∈ [θB,B)

fh(p) := λ(p)
[
α[α−2β(B−p)]

4β − α(α−2βB)
4β

]
, p ∈ [0, θB).

We analyze each of the maximization problems separately, and compare their optimal values.

• For maxp∈[B,α
β
] fℓ(p), note that fℓ is a concave, quadratic function, achieving its maximum at

q1ℓ (B) :=
1

4

[
B(2− α) +

2α

β

]
. (G-33)

Furthermore, B ≤ q1ℓ (B) ≤ α
β always holds, so that q1ℓ (B) is also the optimal constrained decision.

• For maxp∈[θB,B) fm(p), note that fm is cubic. By solving the equation (fm)′(p) = 0, we obtain

the critical points
−α+2βB±

√
7α2−10αβB+β2B2

3β . It can be checked that for B ∈ [0, α
2β ], the critical

point given by a plus sign takes a value larger than B and corresponds to a local maximum, while

the other critical point is negative, and corresponds to a local minimum. Therefore, the optimal

decision is always p → B, resulting in an optimal value fm(B).

• For maxp∈[0,θB) fh(p), note that fh is concave, quadratic, with a maximum achieved at α
2β . Since

α
2β ≥ B ≥ θB, it is optimal to take a price p → θB, resulting in a value of fh(θB).

We now compare the values above. It can be checked that fm(B) = fℓ(B), and fm(θB) − fh(θB) =
1
4βB

2(1− θ)2(α− θβB) ≥ 0 (when B ≤ α
2β ). Therefore, the DM’s price in Case 1 is always q1ℓ (B). To

complete this case, it can be readily checked that q1ℓ (B) ≥ p⋆T−1 =
α
2β , and that q1ℓ (B) ≥ B.
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Case 2: B ∈ ( α
2β ,

α
β ]. When no sale occurs at T − 1, the DM achieves a payoff of zero. Therefore,

p̃T−1(B, 2) ∈ argmaxp f(p), where

f(p) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

fℓ(p) := λ(p)
[
p−B + α

2βλ
(

α
2β

)]
, p ∈ [B, αβ ]

fm(p) := λ(p)λ2(B−p)
4β , p ∈ [θB,B)

fh(p) :=
λ(p)α[α−2β(B−p)]

4β , p ∈
[
B − α

2β , θB
)

0, p ∈
[
0, B − α

2β ).

(G-34)

We again analyze the maximization problems separately, and compare their optimal values to determine

the DM’s pricing decision.

• The problem maxp∈[B,α
β
] fℓ(p) parallels the one considered in Case 1. In particular, note that

fℓ is a concave quadratic that achieves its maximum at the value q2ℓ (B) := 4βB+α(4−α)
8β . While

q2ℓ (B) ≤ α
β always holds, note that q2ℓ (B) ≥ B if and only if B ≤ α(4−α)

4β . Thus, the optimal price

and expected payoff in this case are respectively given by

pℓ(B) =

⎧
⎨

⎩
q2ℓ (B), B ∈

(
α
2β ,

α(4−α)
4β

]

B, B ∈
(α(4−α)

4β , αβ
] Fℓ(B) =

⎧
⎨

⎩

(α(4+α)−4Bβ)2

64β , B ∈
(

α
2β ,

α(4−α)
4β

]

α2(α−βB)
4β , B ∈

(α(4−α)
4β , αβ

]
.

(G-35)

• For maxp∈[θB,B) fm(p), note that fm is cubic. By solving the equation (fm)′(p) = 0, we obtain the

critical points B − α
β and qθm(B) := α+βB

3β . When B ∈ ( α
2β ,

α
β ], it can be checked that the former

critical point is always negative and corresponds to a local minimum, while qθm(B) corresponds

to a local maximum, and always satisfies qθm(B) < B. Furthermore, qθm(B) ≥ θB if and only if

θ ≤ 1
3 + α

3βB . Therefore, fm is increasing on [θB, qθm(B)] and decreasing for p ≥ qθm(B), so that

the optimal price and payoff are respectively given by

pm(B) =

⎧
⎨

⎩
qθm(B), θ ≤ 1

3 + α
3βB

θB, otherwise
Fm(B) =

⎧
⎨

⎩

(2α−βB)3

27β , θ ≤ 1
3 +

α
3βB

(α−θβB)(α−(1−θ)βB)2

4β , otherwise.

(G-36)

• For maxp∈[B− α
2β

,θB) fh(p), note that fh is concave, quadratic, with a maximum achieved at

qθh(B) := α+2βB
4β . Under B ∈ ( α

2β ,
α
β ], it can be checked that qθh(B) ≥ B − α

2β always holds,
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and qθh(B) < θB if and only if θ > 1
2 + α

4βB . Thus, the optimal price and payoff are given by

ph(B) =

⎧
⎨

⎩
θB, θ ≤ 1

2 +
α

4βB

qθh(B), otherwise
Fh(B) =

⎧
⎨

⎩

α(α−2(1−θ)βB)(α−θβB)
4β , θ ≤ 1

2 + α
4βB

α(3α−2βB)2

32β , otherwise.

(G-37)

We now compare the optimal values in the problems above. Letting C denote the set of constraints

{α ≥ 0, α ≤ 1, β ≥ 0, B ≥ α
2β , B ≤ α

β , θ ≥ 0, θ ≤ 1}, it can be checked that:

{
(α,β, θ, B) : Fh(B) > Fm(B), C

}
= ∅.

This requires testing three different conditions, depending on θ, and the corresponding sets can always

be shown to be empty using sums-of-squares techniques. Therefore, Fm(B) ≥ Fh(B) always holds.

Similarly, it can also be tested using sums-of-squares techniques that:

∅ =
{
(α,β, θ, B) : Fℓ(B) ≥ Fm(B), B ≥ α(4− α)

4β
, C

}

∅ =
{
(α,β, θ, B) : F ′

ℓ(B) > F ′
m(B), B ≤ α(4− α)

4β
, C

}

∅ =
{
(α,β, θ) : Fℓ

( α

2β

)
≤ Fm

( α

2β

)
, α ≥ 0, α ≤ 1, β ≥ 0, θ ≥ 0, θ ≤ 1

}

∅ =
{
(α,β, θ) : Fℓ

(α(4− α)

4β

)
> Fm

(α(4− α)

4β

)
, α ≥ 0, α ≤ 1, β ≥ 0, θ ≥ 0, θ ≤ 1

}
.

These results imply that there exists a B̃ such that Fℓ(B) > Fℓ(B) for B ∈
[
α
2β , B̃

)
and Fℓ(B) ≤

Fm(B), ∀B ∈ [B̃, α(4−α)
4β ]. This exactly yields the pricing policy in the statement of the proposition.

To complete the proof, note that p̃T−1(B, 2) ≥ α
2β is immediate, and also q2ℓ (B) ≥ B, qθm(B) ≤ B.

Case 3: B ∈ (αβ ,
2α
β ]. In this case, the DM must rely on two sales, and his payoff is always zero when

failing to make the intermediate sale. Therefore, p̃T−1(B, 2) ∈ argmaxp f(p), where

f(p) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, p > α
β

fm(p) := λ(p)λ2(B−p)
4β , p ∈

[
θB, α

β

]

fh(p) :=
λ(p)α[α−2β(B−p)]

4β , p ∈
[
B − α

2β , θB
)

0, p < B − α
2β .

The two optimization problems for fm and fh are identical to those considered in (G-34) for Case 2.

Therefore, the price that maximizes fm is pm(B) and the corresponding payoff is Fm(B), as per (G-36).

Since pm(B) ≤ α
β , this remains optimal in Case 3, as well. For the problem of maximizing fh, a
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candidate price is ph(B) given by (G-37). However, in addition to the conditions in Case 2, it can be

readily checked that ph(B) ≥ B− α
2β holds if and only if B ≤ 3α

2β . Letting Fh(B) = fh
(
max

{
ph(B), B−

α
2β

})
and using sums-of-squares techniques, it can be verified that:

{
(α,β, θ, B) : Fh(B) > Fm(B), α ≥ 0, α ≤ 1, β ≥ 0, B ≥ α

β
, B ≤ 2α

β
, θ ≥ 0, θ ≤ 1

}
= ∅.

This requires testing three cases, depending on θ and B; the feasible set in each case is empty. This

proves that the DM’s price is qm(B). To complete the proof, note that α
2β ≤ pm(B) ≤ α

β ≤ B.
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