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A Proofs

Proof of Theorem 1. The theorem requires solving the following convex optimization problem in variables

xi,x
+
i ,x

−
i , τ̄ij and τ̄i:

maximize f
(
u1(x1)− τ̄1, . . . , un(xn)− τ̄n

)

subject to xi ∈ Ci, ∀i ∈ I

xi = x+
i − x−

i , ∀i ∈ I

x+
i ,x

−
i ≥ 0, ∀i ∈ I

τ̄i =
∑

j∈J

τ̄ij , ∀i ∈ I

(P) E
[
t̃j(x

+
ij , x

−
ij , ξ)

]
≤ τ̄ij , ∀i ∈ I, j ∈ J

E

⎡

⎣t̃j

⎛

⎝
∑

a∈I\{i}

x+
aj ,

∑

a∈I\{i}

x−
aj , ξ

⎞

⎠

⎤

⎦ ≤
∑

a∈I\{i}

τ̄aj , ∀i ∈ I, j ∈ J

E

[
t̃j

(
∑

a∈I

x+
aj ,
∑

a∈I

x−
aj , ξ

)]
≤
∑

a∈I

τ̄aj , ∀j ∈ J (23a)

ui(xi)− τ̄i ≥ U IND
i , ∀i ∈ I,

To understand the origin of problem (P), consider first a problem (ŜP), obtained from (SP) by replacing

the a.s. constraints (17c) with the expectation constraints

E

[
t̃j

(
∑

a∈I

x+
aj ,
∑

a∈I

x−
aj , ξ

)]
≤
∑

a∈I

E
[
τaj(Z̃)

]
, ∀j ∈ J .

Clearly, the optimal value in (ŜP) is at least that in (SP), since any decisions that are feasible in (SP)

remain feasible in (ŜP). Furthermore, note that in (ŜP), the policies τij and τi only affect the objective

and constraints through their expected values. By replacing these expected values with the static decision

variables τ̄ij and τ̄i, respectively, we arrive at problem (P). This reasoning also shows that the optimal value

in (P) is at least that in (SP). Since, at optimality, the constraints (23a) always hold as equalities in (P),

it can be readily checked that x⋆
i , (x

⋆
i )

+, (x⋆
i )

− and the choice in (18) result in feasible decisions in (SP),

which also yield the same objective as the optimal value of (P). Therefore, these decisions must be optimal

for (SP).

Proof of Theorem 2. First, note that any feasible solution in (15) results in a feasible solution in (19), by

simply projecting out the variables τij , i.e., by considering τi =
∑

j∈J τij , ∀ i ∈ I in (19). Therefore, the

feasible set of (19) contains the corresponding one in (15).

To prove the reverse inclusion, consider any feasible solution {xi,x
+
i ,x

−
i , τi}i∈I in (19). Extending

this into a feasible solution for (15) is equivalent to finding a set of τij variables satisfying the following
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constraints:

∑

j∈J

τij = τi, ∀i ∈ I

τij ≥ tj(x
+
ij , x

−
ij), ∀i ∈ I, j ∈ J

(∗) τij ≤ tj

(∑

a∈I

x+
aj ,
∑

a∈I

x−
aj

)
− tj

( ∑

a∈I\{i}

x+
aj ,

∑

a∈I\{i}

x−
aj

)
∀i ∈ I, j ∈ J

∑

a∈I

τaj ≥ tj

(∑

a∈I

x+
aj ,
∑

a∈I

x−
aj

)
, ∀j ∈ J .

(24)

In writing this system, we imposed the externality constraints (∗) using the original expressions in (12),

rather than the equivalent conditions in (15). It can be readily seen that this change is without loss of

generality, as the feasible set is not altered.

To simplify this system, let us define the following new variables and parameters:

∆i
def
= τi −

∑

j∈J

tj(x
+
ij , x

−
ij), ∀ i ∈ I (25a)

εij
def
= tj

(∑

a∈I

x+
aj ,
∑

a∈I

x−
aj

)
− tj

( ∑

a∈I\{i}

x+
aj ,

∑

a∈I\{i}

x−
aj

)
− tj(x

+
ij , x

−
ij), ∀ i ∈ I, j ∈ J (25b)

sj
def
= tj

(∑

a∈I

x+
aj ,
∑

a∈I

x−
aj

)
−
∑

a∈I

tj(x
+
aj , x

−
aj), ∀ j ∈ J (25c)

qij
def
= τij − tj(x

+
ij , x

−
ij), ∀ i ∈ I, j ∈ J . (25d)

Note that ∆i ≥ 0 since τi is feasible in (19). We also claim that εij ≥ 0. To see this, recall that, by

our standing assumption in Section 2, the functions tj : R2
+ → R are jointly convex and component-wise

increasing. Therefore, tj must exhibit increasing differences on the set R2
+, i.e., tj is increasing in the first

argument when the second is fixed, and vice-versa. This, in turn, implies that tj are supermodular on R2
+

(see, e.g., Corollary 2.6.1 in Topkis (1998)), so that

tj(y + δ)− tj(y) ≥ tj(x+ δ)− tj(x), ∀x,y, δ ∈ R
2
+ such that x ≤ y. (26)

Applying this to (25b) with x = 0 and using the fact that tj(0) = 0 then readily yields that εij ≥ 0.

Returning to our original problem, note that finding a set of τij feasible in (24) is then equivalent to the

following linear program with variable q being feasible:

minimize 0

subject to
∑

j∈J

qij = ∆i, ∀ i ∈ I ⇐ −λi

qij ≤ εij , ∀ i ∈ I, j ∈ J ⇐ −ηij
∑

i∈I

qij ≥ sj , ∀ j ∈ J ⇐ µi

q ≥ 0.

(27)
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With the choice of dual variables λ, η, µ as indicated above, the dual to program (27) becomes

maximize
∑

j∈J

µjsj −
∑

i∈I

λi∆i −
∑

i∈I,j∈J

ηijεij

subject to µj − λi − ηij ≤ 0, ∀ i ∈ I, j ∈ J

η, µ ≥ 0.

(28)

Since εij ≥ 0, it can be readily seen that in any optimal solution to the dual, we have ηij = (µj − λi)+. The

dual therefore simplifies to an (unconstrained) optimization over λ and µ ≥ 0. In this context, note that

feasible decisions τij exist in (24) if and only if, for any λ, we have

max
µ≥0

[∑

j∈J

µjsj −
∑

i∈I,j∈J

(µj − λi)
+εij

]
≤ 0.

In the above problem, if sj ≤
∑

i∈I εij , the optimal choice is to always set µj = λi. Otherwise, by taking

µj → ∞, the optimal value can be made arbitrarily large. Therefore, the optimal value in the problem above

is (at most) zero if and only if sj ≤
∑

i∈I εij , ∀ j ∈ J . By using (25b) and (25c) to express these, we arrive

at the following set of conditions:

∑

i∈I

tj

( ∑

a∈I\{i}

x+
aj ,

∑

a∈I\{i}

x−
aj

)
≤ (n− 1) · tj

(∑

a∈I

x+
aj ,
∑

a∈I

x−
aj

)
, ∀ j ∈ J . (29)

These conditions, however, are always true, due to the following reasoning:

tj

(∑

a∈I

x+
aj ,
∑

a∈I

x−
aj

)
=

n∑

i=2

[
tj

( i∑

a=1

x+
aj ,

i∑

a=1

x−
aj

)
− tj

(i−1∑

a=1

x+
aj ,

i−1∑

a=1

x−
aj

)]
+ tj(x

+
1j , x

−
1j)

≤
n∑

i=1

[
tj

(∑

a∈I

x+
aj ,
∑

a∈I

x−
aj

)
− tj

( ∑

a∈I\{i}

x+
aj ,

∑

a∈I\{i}

x−
aj

)]

= n · tj
(∑

a∈I

x+
aj ,
∑

a∈I

x−
aj

)
−
∑

i∈I

tj

( ∑

a∈I\{i}

x+
aj ,

∑

a∈I\{i}

x−
aj

)
.

The first equality above comes from telescoping the sum, and the inequality is a direct result of applying (26)

to every term in the summation over i.

B Extensions

B.1 Cross-trading of Assets

The model of trading introduced in Section 2 explicitly forbade the possibility of crossing trades, i.e., the

practice of offsetting buy and sell orders of separate clients for the same asset “in-house,” without recording

the trade on the exchange. While cross-trading is outlawed at most exchanges, it has been traditionally

permitted under rule 206(3)-2 of the Advisers Act (Securities and Exchange Commission) under selective

circumstances. As of 2008, the US Department of Labor also finalized regulations that allowed cross-trading

for retirement plans in excess of $100M (see (U.S. Department of Labor 2008), which amended section
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408(b)(19)(H) of the Employee Retirement Income Security Act).

Furthermore, note that the market impact model in Section 2 could potentially overestimate the actual

market impact costs in case all orders are sent to the open market. In practice, buys and sells offset each

other to some extent, though less so than if an internal cross of the trades is made.

With this motivation, we now argue that our framework, and particularly the main formulation (15),

extend to the case where cross-trading is allowed. Recall that the trading model we have adopted thus far

(introduced in Section 2), effectively forbade cross-trading by assuming that the (aggregate) buy and sell

orders are submitted for execution without offsetting. More formally, let

z+j
def
=
∑

a∈I

x+
aj , z−j

def
=
∑

a∈I

x−
aj

denote the total buy and sell orders in the jth asset, respectively. Under the trading model discussed thus

far, these aggregate orders are submitted for execution and the associated market impact costs are t(z+j , z
−
j )

(see equation (2)). When cross-trading is allowed, the manager first nets a buy and sell order for the same

security in-house, and then places a single market order for the remainder of the bigger trade. The expression

in (2) for the total market impact costs then becomes

∑

j∈J

[
tj
(
(z+j − z−j )

+, 0
)
+ tj

(
0, (z−j − z+j )

+
) ]

. (30)

The first term of the summands above corresponds to the market impact cost of a net buy order for the

jth asset, while the second corresponds to a net sell order. Effectively, the cost separates into buy and sell

impact costs, since the manager never places both a buy and a sell order for the same security at the same

time.16 Note also that since max(·) is a convex function, tj
(
(z+j −z−j )+, 0

)
and tj

(
0, (z−j −z+j )

+
)
are convex

functions of z+j and z−j (Boyd and Vandenberghe 2004).

We use the same variables τij to denote the amounts charged to the ith account for trading activity in

the jth asset (for all i ∈ I and j ∈ J ). Also let τ ∈ Rmn be the vector containing all these values, and

τi
def
=
∑

j∈J τij , ∀i ∈ I, denote the total amount charged to the ith account.

We now argue that the constraints (11)-(13) are directly applicable to the present model. By using

expression (30) for the market impact costs, the former constraints can be written as follows:

(11) ⇔ tj
(
(x+

ij − z−j )
+, 0

)
+ tj

(
0, (x−

ij − z+j )
+
)
≤ τij , ∀i ∈ I, j ∈ J (31a)

(12) ⇔ τij ≤

[
tj
(
(z+j − z−j )+, 0

)
− tj

(
(z+j − z−j − x+

ij)
+, 0

)]

+

[
tj
(
0, (z−j − z+j )

+
)
− tj

(
0, (z−j − z+j − x−

ij)
+
)]
, ∀i ∈ I, j ∈ J (31b)

(13) ⇔
∑

a∈I

τaj = tj
(
(z+j − z−j )

+, 0
)
+ tj

(
0, (z−j − z+j )

+
)
, ∀j ∈ J . (31c)

Constraint (31a) reflects that the amount charged to an account for trading a particular quantity in an

asset is at least the market impact cost of trading only what remains of that quantity, after first netting against

opposing trades by other accounts. Note that this is a conservative lower bound, in that it corresponds to

16Note that although the summands in (30) can be rewritten as t
(

(z+j −z−j )+, (z−j −z+j )+
)

, we keep the formulation
in (30) for the simplicity of exposition.
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the most favorable treatment the ith account could hope for (since it is the first one to obtain the netting,

before any other accounts).

Constraint (31b) places an upper bound on τij that corresponds to the least favorable treatment of the

ith portfolio, where its activity is the last one to be accounted for. The constraint can be understood by

separately interpreting the terms in the brackets on the right-hand side. The first term reflects the externality

imposed by an account i seeking to buy the jth security on to the aggregate market impact cost of buying

the jth security. Similarly, the second bracket is the externality imposed by selling on the total market

impact cost of selling.

Constraint (31c) simply states that the aggregate charge to all the accounts for trades in a particular

asset equals the aggregate market impact cost for that asset.

In this context, the manager can determine the trades x and the split of market impact costs τ by

solving the following optimization problem, in variables x, x+, x−, z+, z− and τ :

maximize f(u1(x1)− τ1, . . . , un(xn)− τn)

subject to xi ∈ Ci, ∀i ∈ I

xi = x+
i − x−

i , ∀i ∈ I

x+
i ,x

−
i ≥ 0, ∀i ∈ I

z+ =
∑

a∈I

x+
a

z− =
∑

a∈I

x−
a

τi =
∑

j∈J

τij , ∀i ∈ I

tj
(
(x+

ij − z−j )
+, 0

)
+ tj

(
0, (x−

ij − z+j )
+
)
≤ τij , ∀i ∈ I, j ∈ J

tj
(
(z+j − z−j − x+

ij)
+, 0

)
+ tj

(
0, (z−j − z+j − x−

ij)
+
)
≤

∑

a∈I\{i}

τaj , ∀i ∈ I, j ∈ J

tj
(
(z+j − z−j )

+, 0
)
+ tj

(
0, (z−j − z+j )

+
)
≤
∑

a∈I

τaj , ∀j ∈ J

ui(xi)− τi ≥ U IND
i , ∀i ∈ I.

As noted, the problem remains convex since all the functions tj are convex in the x+
ij and x−

ij variables.

B.2 Models with Permanent Price Impact

The formulations we analyzed so far involved general transaction cost models that depended entirely on the

amounts bought or sold over a particular trading period. Despite their generality, such models are unable to

capture permanent price impact effects, which frequently occur when large amounts are traded (see Carlin

et al. (2007)). This is because losses (or gains) due to permanent price impact also depend on the holdings

that a portfolio maintains, and not just on trading activities.

In the context of MPO, permanent price impact effects introduce further interactions between the mul-

tiple portfolios that can be potentially problematic. For instance, liquidation of a position in a particular

asset held by one portfolio might permanently reduce the price of the asset, thus permanently devaluing long
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positions that other portfolios under management hold. Such interactions need to be properly accounted for

in order for the manager to jointly optimize the portfolios, and fairly distribute costs and gains.

In this section, we show how our MPO model can be extended to capture the permanent price impact of

trading. For illustration purposes, we provide our analysis in the context of the portfolio liquidation problem

studied in Brown et al. (2010), which we extend to a multiportfolio setting. For simplicity of exposition and

to ease notation, we limit attention to the case of n = 2 portfolios under management; the extension for

n > 2 is straightforward. We first discuss the price and trading model, then formulate the MPO counterpart

and draw our conclusions.

Price and Trading Model. For completeness, we present only the basic elements of the model here, and

refer the reader to Brown et al. (2010) for details and justifications of underlying assumptions.

A financial adviser managing two distinct portfolios ofm assets wishes to (partly) liquidate their holdings

in continuous time over a finite horizon. Let wi(0) ∈ Rm
+ be the initial holdings of the ith portfolio and

li its liabilities. At any time t ∈ [0, T ], yi(t) ∈ Rm
− is the rate at which the manager trades its assets.17

Consequently, its holdings at time t are given by wi(t) = wi(0) +
∫ t

0
yi(s)ds.

The prices of the assets at time t are denoted by p(t) ∈ Rm
+ , and are determined by:

p(t) = q + Γ(w1(t) +w2(t)) + Λ(y1(t) + y2(t)). (33)

Here, q ∈ Rm is an intercept, and Γ ∈ Rm×m, Λ ∈ Rm×m are positive definite, diagonal matrices capturing

the effects of the permanent and temporary price impact, respectively. We refer the reader to Brown et al.

(2010) for a thorough discussion of this pricing equation.

We denote the cumulative trades of the ith portfolio by xi = wi(T ) −wi(0), the cumulative trades of

the manager by x = x1 + x2 and the trading rate by y(t) = y1(t) + y2(t). The cash that is generated by

trading over the horizon is

κ = −

∫ T

0

p(t)Ty(t)dt.

It is easy to see that a constant trading rate y(t) = 1
T
x maximizes the cash generated, which in that case is

equal to

κ = −p(0)Tx1 − p(0)Tx2 − xT

(
Λ+

1

2
Γ

)
x. (34)

In the above expression, the first two terms correspond to the cash generated by the sales of the two portfolios’

holdings. The third term corresponds to the total transaction costs due to price impact.

Under this setting, the value of the assets of the ith portfolio at the beginning of the horizon is ai(0) =

p(0)Twi(0). At the end of the trading horizon, the value becomes

ai(T ) = p(T )Twi(T )

= ai(0) + p(0)Txi +wi(0)
TΓx+ xT

i Γx. (35)

That is, the change in asset value ai(T ) − ai(0) is equal to the value of the liquidated assets xi, priced at

p(0), plus the devaluation of the assets of the ith portfolio due to permanent price impact. The devaluation,

which is driven by the price impact Γx according to (33) and is captured by the sum of the last two terms

17Due to regulatory restrictions, only selling is allowed; see also Moallemi and Sağlam (2012).
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in the expression above, wi(0)TΓx+xT
i Γx. The terms have a slightly different origin: the first corresponds

to a devaluation of all initial holdings wi(0) (and would be incurred by the ith account even if it did not

trade, due to permanent impact from the other accounts’ trades), while the second is in fact related to the

trading activity xi.

MPO formulation. We now use our methodology to formulate the MPO problem in this setting. We

aggregate the transaction costs and the devaluation effects that are exclusively due to trading, and allow the

MPO formulation to decide how to allocate them among the two portfolios. These costs amount to

xT

(
Λ+

1

2
Γ

)
x

︸ ︷︷ ︸
transaction costs

− xT
1 Γx︸ ︷︷ ︸

devaluation for pf 1

− xT
2 Γx︸ ︷︷ ︸

devaluation for pf 2

= xT

(
Λ−

1

2
Γ

)
x.

The transactions costs term is obtained from (34), whereas the devaluation terms (related to trading) are

obtained from (35). As in Brown et al. (2010), we henceforth assume that Λ− 1
2
Γ is positive semi-definite.

Let τ1 and τ2 be the associated split decision variables. The utility of the ith portfolio at the end of the

horizon is equal to its equity, i.e., value of its assets, plus cash generated, minus its liabilities li. Aggregating

all the terms, we get

ui = ai(0) +wi(0)
TΓx− li.

Note that the equity or utility above is not adjusted for transaction and devaluation costs due to trading,

in order to mimic our base formulation from Sections 2-3. The MPO problem is then to optimize over the

cost-adjusted net utilities ui−τi (using the welfare function f), subject to particular liquidation constraints18

that are captured by the trade feasibility sets Ci, and with decision variables x, xi, τi, and ui:

maximize f(u1 − τ1, u2 − τ2)

subject to ui = ai(0) +wi(0)
TΓx− li, i = 1, 2

xi ∈ Ci, i = 1, 2

x = x1 + x2

xT
i

(
Λ−

1

2
Γ

)
xi ≤ τi, i = 1, 2

xT

(
Λ−

1

2
Γ

)
x ≤ τ1 + τ2.

(36)

Discussion. We now make several remarks about formulation (36), and compare it with formulation (15).

Firstly, one can easily include coordination benefits constraints alike (14), by suitably adapting the indepen-

dent scheme for this optimal liquidation problem.

Secondly, note that the lower bounds on τi exactly reflect the costs the would have been incurred by

the manager, had she executed only the trades of the respective portfolio. Thus, the associated constraints

18Examples of such constraints are the exposure of a portfolio to a particular sector, restrictions on the liquidated
amounts, possible regulatory constraints that enforce selling only and no short positions, etc.
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correspond to constraints (11-12). In particular, in the “best-case” scenario for it, portfolio 1 is charged

τ1 = xT
1

(
Λ−

1

2
Γ

)
x1

= xT
1

(
Λ+

1

2
Γ

)
x1 + xT

1 Γx2 − xT
1 Γx.

In the expression above, the last term corresponds to the asset devaluation due to trading, as per (35). The

first two terms correspond to portfolio 1’s “share” of the incurred transaction costs due to price impact from

equation (34). Accordingly, under the same scenario, portfolio 2 is charged

τ2 = xT

(
Λ−

1

2
Γ

)
x− xT

1

(
Λ−

1

2
Γ

)
x1

= xT
2

(
Λ+

1

2
Γ

)
x2 + 2xT

1 Λx2 − xT
2 Γx,

where one can note a similar break-down of the costs as for portfolio 1.

Thirdly, note that in the presence of permanent price impact, the utility of a portfolio depends on the

overall trading activity through the term wi(0)TΓx, and not just on its own activity xi. As discussed

above, this term corresponds to the devaluation of the holdings of the ith portfolio due to the overall trading

activity. Thus, it is possible that the portfolio will incur losses in its equity even under no trading activity.

However, note that a portfolio that is not trading would never be charged further related costs, that is, τi

would be 0.

Finally, note that for Γ = 0, there is no permanent price impact. Then, the model we considered here is

identical to the base model from Sections 2-3, where the (temporary) market impact cost function takes the

form xTΛx.
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