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This paper compares two frameworks for measuring risk in a multiperiod setting. The first corresponds to applying a single
coherent risk measure to the cumulative future costs, and the second involves applying a composition of one-step coherent risk
mappings. We characterize several necessary and sufficient conditions under which one measurement always dominates the
other and introduce a metric to quantify how close the two measures are. Using this notion, we address the question of how
tightly a given coherent measure can be approximated by lower or upper bounding compositional measures. We exhibit
an interesting asymmetry between the two cases: the tightest upper bound can be exactly characterized and corresponds
to a popular construction in the literature, whereas the tightest lower bound is not readily available. We show that testing
domination and computing the approximation factors are generally NP-hard, even when the risk measures are comonotonic and
law-invariant. However, we characterize conditions and discuss examples where polynomial-time algorithms are possible.
One such case is the well-known conditional value-at-risk measure, which we explore in more detail. Our theoretical and
algorithmic constructions exploit interesting connections between the study of risk measures and the theory of submodularity and
combinatorial optimization, which may be of independent interest.
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1. Introduction. In recent years, the framework of convex and coherent risk measures has emerged as an
axiomatically justified and computationally tractable approach for quantifying the risk of an uncertain future
outcome (Artzner et al. [4], Follmer and Schied [23], Schmeidler [51]). It has also provided a strong bridge
across several streams of research, including ambiguous representations of preferences in economics (Gilboa and
Schmeidler [26], Schmeidler [52], Epstein and Schneider [20], Maccheroni et al. [36]); axiomatic treatments of
market risk in financial mathematics (Artzner et al. [4], Follmer and Schied [22]); actuarial science (Wirch and
Hardy [59], Wang [58], Acerbi [2], Kusuoka [34], Tsanakas [57]); operations research (Ben-Tal and Teboulle [9],
Ruszczyriski and Alexander [49]); and statistics (Huber [31]). Our goal in the present paper is to take this axiomatic
framework as given and analyze two distinct ways of using it to quantify risk in dynamic decision settings.

To fix ideas, let us consider a dynamic setting with a finite set of stages 1 € {0, 1,..., T} and a scenario
tree representation of uncertainty, where €, is the set of nodes at stage t, %, < %, C --- € ¥, denotes the
natural filtration generated by the elementary events in {€Q,}, (o .. 7}, and &, is the space of functions that are
7 ,-measurable.

In this setting, consider evaluating the risk of a single terminal cost X € &, from the perspective of an
intermediate stage ¢t € {0,...,T}. A first approach might be to apply a “desirable” functional to the cost,
conditional on the available information. More formally, the risk in X evaluated at time ¢ would be given by
w (X | i), where i € Q, denotes the state of the world at time ¢ and u': %, — R is a risk measure constrained to
obey particular desirable axioms. In practice, often the same risk measure u' = u is used, resulting in a compact
and unified representation of risk preferences. The approach also has one other key advantage: with convex risk
measures, static decisions that affect the cost X can be efficiently computed by combining simulation procedures
with convex optimization (Rockafellar and Uryasev [43], Ruszczynski and Shapiro [50]). This has led to a wide
adoption of the approach in practice (Jorion [33]), as well as in several academic papers (see, e.g., Basak and
Shapiro [8], Cuoco et al. [17], and references therein).

The above “static” paradigm, however, is known to suffer from the serious shortcoming of generating potentially
inconsistent preferences over risk profiles in time, whereby a decision maker might deem a terminal cost X
riskier than Y in every state of the world at some time 74 1 but nonetheless consider Y riskier than X at time ¢.
This has been criticized from an axiomatic perspective because it is a staple of irrational behavior (Epstein
and Schneider [20], Roorda et al. [46], Boda and Filar [11], Artzner et al. [5]). Furthermore, time inconsistent
objectives couple risk preferences over time, which is very undesirable from a dynamic optimization viewpoint
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since it prevents applying the principles of dynamic programming to decompose the problem in stages (Epstein and
Schneider [20], Ruszczyriski and Alexander [49], Nilim and El Ghaoui [37], Iyengar [32]). To prevent such
undesirable effects, additional conditions must be imposed on the risk measurement process at distinct time periods.
More formally, if u,: %, — %, denotes the risk mapping used at time ¢, with components given by (,uf),-sn’, then

the axiom' of rime (or dynamic) consistency asks that {u,}’ "' should satisfy the condition

Vie{0,....T=1}, VX, Y € Xy, py(X) Z ppy (V) implies  u, (X) = g, (Y). (M

This requirement has been discussed extensively in the literature, and it has been shown that any risk measure
that is time consistent is obtained by composing one-step conditional risk mappings. More formally, any {u,}"-]
satisfying property (1) can be written as

w (X)=pri (Pra - (pr (X)) -+4)), )

where p,,;: X, — ¥, Vt€{0,...,T — 1} are single-period conditional risk mappings (see, e.g., Epstein
and Schneider [20], Riedel [40], Artzner et al. [5], Detlefsen and Scandolo [18], Roorda et al. [46], Cheridito
et al. [14], Roorda and Schumacher [45], Penner [38], Follmer and Penner [21], Ruszczyriski [48], and references
therein). Apart from yielding consistent preferences, this compositional form also allows a recursive estimation
of the risk and an application of the Bellman optimality principle (Nilim and El Ghaoui [37], Iyengar [32],
Ruszezynski and Alexander [49]). This has led to its adoption in several application areas, such as actuarial science
(Hardy and Wirch [28], Brazauskas et al. [13]); inventory management (Ahmed et al. [3]); commodity operations
(Devalkar et al.[19]); hydro-thermal scheduling (Philpott et al. [39]); financial engineering (Lin and Pefia [35],
Rudloff et al. [47]); control and dynamical systems (Chow and Pavone [15]); and others.

From a pragmatic perspective, however, the compositional form entails a significantly more complicated risk
assessment than the former (potentially inconsistent) approach. A decision maker needs to specify single-period
conditional risk mappings for every future stage; furthermore, even if these corresponded to the same risk measure
p, the result of the composition would no longer be easily interpretable and would bear no immediate relation to
the original p. As an example, when p corresponds to the well-known Conditional (or Average)-Value-at-Risk
(AVaR), the overall u, would correspond to the so-called “iterated conditional tail expectation (CTE)” (Hardy and
Wirch [28], Brazauskas et al. [13], Roorda and Schumacher [45]), which does not lend itself to the same simple
interpretation as AVaR. This has been acknowledged as one of the main problems in adopting the approach
in practice (Rudloff et al. [47]). Our conversations with managers also revealed a certain feeling that such a
measurement could result in “overly conservative” assessments since risks are compounded in time—for instance,
for the iterated CTE, one is taking tail conditional expectations of quantities that are already tail conditional
expectations. This has been recognized informally in the literature by Roorda and Schumacher [44, 45], who
proposed new notions of time consistency avoiding the issue but without establishing formally if or to what degree
the conservatism is true. Furthermore, it is not obvious how “close” a particular compositional measure is to a
given inconsistent one, and how one could go about constructing the former in a way that tightly approximates the
latter. This issue is relevant when considering dynamic decision problems under risk (Rudloff et al. [47]), but it
seems to have been largely ignored in the literature. Most papers start with the premise of a given time-consistent
risk measure as the objective in an application and characterize the resulting optimal policies through dynamic
programming arguments (see, e.g., Ahmed et al. [3], Shapiro [55], Devalkar et al.[19], Lin and Pefia [35], Chow
and Pavone [15]).

With this motivation, the goal of this paper is to mathematically characterize the relation and trade-offs between
the two measurement approaches above and to provide guidelines for constructing and estimating safe counterparts
of one from the other. Our contributions are as follows.

e We provide several equivalent necessary and sufficient conditions that guarantee when a time consistent risk
measure u. always over- (or under-) estimates risk as compared with an inconsistent measure u,. We argue that
iterating the same u; does not necessarily over- (or under-) estimate risk as compared to a single static application
of w,, and this is true even in the case considered in Roorda and Schumacher [44, 45]. We show that composition
with conditional expectation operators at any stage of the measurement process results in valid, time consistent
lower bounds. By contrast, upper bounds are obtained only when composing with worst-case operators in the
last stage.

' We note that there are several notions of time consistency in the literature (see Penner [38], Acciaio and Penner [1], Roorda and
Schumacher [45] for an in-depth discussion and comparison). The one we adopt here is closest in spirit to strong dynamic consistency and
seems to be the most widely accepted notion in the literature.
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e We formalize the problem of characterizing and computing the smallest «, , and «, ,. such that

Me =My =y, e and g <pe <ay .-y, respectively. The smallest such factors, o, |, and o,
provide a compact notion of how closely a given u, can be multiplicatively approximated through lower
(respectively, upper) bounding consistent measures p., respectively. Since in practice u, may be far easier to elicit
from observed preferences or to estimate from empirical data, characterizing and computing a7, , and a7, , = can
be seen as the first step toward constructing the time-consistent risk measure . that is “closest” to a given ;.

o Using results from the theory of submodularity and matroids, we specialize our results to the case when u,
and pc are both comonotonic risk measures. We show that computing o, , and «;, , is generally NP-hard,
even when the risk measures in question are law invariant. However, we provide several conditions under which
the computation becomes simpler. Using these results, we compare the strength of approximating a given w, by
time-consistent measures obtained through composition with conditional expectation or worst-case operators.

e We characterize the tightest possible time-consistent and coherent upper bound for a given u, and show
that it corresponds to a construction suggested in several papers in the literature (Epstein and Schneider [20],
Roorda et al. [46], Artzner et al. [5], Shapiro [55]) that involves “rectangularizing” the set of probability measures
corresponding to ;. This yields not only the smallest possible 7, , ~but also the uniformly tightest upper bound
among all coherent upper bounds.

e We summarize results from our companion paper (Huang et al. [30]), which applies the ideas derived here
to the specific case when both u; and u. are given by average value-at-risk, a popular measure in financial
mathematics. In this case, the results take a considerably simpler form: analytical expressions are available for
two-period problems, and polynomial-time algorithms are available for some multiperiod problems. We give an
exact analytical characterization for the tightest uniform upper bound to w, and show that it corresponds to a
compositional AVaR risk measure that is increasingly conservative in time. For the case of lower bounds, we give
an analytical characterization for two-period problems. Interestingly, we find that the best lower bounds always
provide tighter approximations than the best upper bounds in two-period models but are also considerably harder to
compute than the latter in multiperiod models.

The rest of the paper is organized as follows. Section 2 briefly reviews the necessary background in static risk
measures and formalizes the precise questions addressed in the paper. Section 3 discusses the case of determining
upper or lower bounding relations between two arbitrary consistent and inconsistent risk measures and characterizes
corresponding multiplicative scaling factors. Section 4 discusses our results in detail, touching on the computational
complexity and introducing several examples of how the methodology can be used in practice. Section 5 concludes
the paper and suggests future directions.

1.1. Notation. With i < j, we use [i, j] to denote the index set {i,...,j}. For a vector x € R"” and
ie{l,...,n}, we use x, to denote the i-th component of x. For a set S € {1,...,n}, we let x(§) £ ", x;. Also,
we use Xg € R” to denote the vector with components x; for i € S and 0 otherwise (e.g., 15 is the characteristic
vector of the set S) and x|g € RIS/ to denote the projection of the vector x on the coordinates i € S. When no
confusion can arise, we denote by 1 the vector with all components equal to 1. We use x” for the transpose of x,
and x"y £ > o, x;y; for the scalar product in R”.

For a set or an array S, we denote by T1(S) the set of all permutations on the elements of S. The terms 7 (S) or
o (S) designate one particular such permutation, with 7 (i) denoting the element of S appearing in the i-th position
under permutation 7.

We use A" to denote the probability simplex in R"; i.e., A" = {p e R”: 1"p=1}. For a set P CR", we use
ext(P) to denote the set of its extreme points.

Throughout the exposition, we adopt the convention that 0/0 = 0.

2. Background in risk measures. Precise problem statement. The present section briefly introduces the
class of risk measures examined in the paper, reviews the two approaches for measuring dynamic risk outlined in
the introduction, and formally states and discusses the main questions addressed in this work.

2.1. Probabilistic model. Our notation and framework are closely in line with that of Shapiro et al. [56], to
which we direct the reader for more details. For simplicity, we work with a scenario tree representation of the
uncertainty space, where ¢ € [0, T] denotes the time, and (), is the set of nodes at stage ¢ € [0, T]. We denote by
C, the set of children of node i € ), and by D, the set of all leaves descending from node i.> We also define
Dy E Uiy D; for any set U C Q,.

2 More formally, with D, = {i}, Vi € Q;, we recursively define D, dérUje@i D, Vie U=,
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We let 7, € F, C--- CF; denote the natural filtration generated by the elementary events in {{2,},.o 7} and
construct a probability space (;, 7, P) by introducing a reference measure P € A1 satisfying® P > 0. We let
%, denote the space of all functions X,: ), — R that are F,-measurable. Since %, is isomorphic with R/¥|, we
denote by X, the random variable and by X, € R/*r! the vector of induced scenario-values, and we identify the
expectation of X, with respect to q € A%l as the scalar product q”X,. To simplify notation, we also identify any
function f: &, — &, with a set of [(),| functions and write f = (f});cq,, Where f;: R+l — R. Furthermore,
since all the functions of this form that we consider correspond to conditional evaluations on the nodes of the tree,
we slightly abuse the notation and write f = (f;);cq,, Where f;: R — R.

2.2. Static risk measures. As stated in the introduction, our treatment aims to compare two frameworks for
measuring dynamic risk, both of which are centered around the concept of risk measures. To formally introduce
these concepts, consider a generic probability space (2, F,[P), and let % be a linear space of random variables
on . The standard approach in the literature for assessing the risk in a cost X € % is to use a functional
p: % — R such that pu(X) represents the minimal reduction that makes the cost X acceptable. The following
requirements, which we also adopt in the present paper, are typically imposed on .

[P1] Monotonicity. For any X, Y € %, such that X > Y almost surely, u(X) > u(Y).

[P2] Transiation invariance. For any X € % and any m € R, uw(X + m) = uw(X) + m.

[P3] Convexity. For any X,Y € %, and any A € [0, 1], u(AX + (1 —=A)Y) <Au(X)+ (1 = )u(Y).

[P4] Positive homogeneity. For any X € %, and any A >0, u(AX) = Au(X).

[P5] Comonotonicity. p(X +Y) = u(X) + pn(Y) for any X, Y € %, that are comonotone; i.e., [X(w) —
X(o")][Y(w) —Y(w')] >0, for any w, o' € Q.

For an in-depth discussion and critique of these axioms, we direct the reader to Artzner et al. [4], Féllmer and
Schied [23], Schmeidler [51], and references therein. Any functional satisfying [P1-P2] is called a risk measure,
and risk measures additionally satisfying [P3], [P3-P4], and [P3-P5] are called convex, coherent and comonotonic,
respectively. The main focus of the present paper are coherent measures, but some results take a simpler form
in the comonotonic case. To this end, we recall one of the main results in the literature, which is a universal
representation theorem of coherent (comonotonic) risk measure (Schmeidler [51], Féllmer and Schied [23]).

THEOREM 1. A risk measure  is coherent if and only if it can be represented as
#(X) = maxEq[X] (€)
€@

for some @ C AN, Furthermore, if u is comonotonic, then @ = {Q € A®!: Q(S) < c(S), VS € F}, where c is a
Choquet capacity.

The result essentially states that any coherent risk measure is an expectation with respect to a worst-case
probability measure, chosen adversarially from a suitable set of test measures (or scenarios) @. For comonotonic
risk measures, this set is uniquely determined by a particular function ¢, known as a Choquet capacity.

DEFINITION 1. A set function ¢: 2 — [0, 1] is said to be a Choquet capacity if it satisfies the following
properties:

e nondecreasing: c(A) <c¢(B), VACBCQ

e normalized: ¢(@) =0 and ¢(Q) =1

e submodular: ¢c(ANB)+c(AUB) <c(A)+c(B), VA,BC Q.

An example of such a risk measure, popular among academics and practitioners alike, is average value-at-risk at
level € € [0, 1] (AVaR,), also known as conditional value-at-risk, tail value-at-risk or expected shortfall. 1t is
defined as

1 !
AVaR,(X) & — / VaR,_,(X)dt. (4a)
€ Jl—¢

where VaR_(X) £ inf{m € R: P[X —m > 0] < &} is the Value-at-Risk at level &. Although AVaR is comonotonic,
it is well known that VaR is not even convex since it fails requirement [P3].

3 This is without loss of generality—otherwise, all arguments can be repeated on a tree where leaves with zero probability are removed.
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2.3. Dynamic risk measures. Main problem statement. As discussed in the introduction, static (coherent or
comonotonic) risk measures can be used as building blocks for measuring risk in dynamic settings. More formally,
considering again the problem of assessing the risk of a terminal cost Y € &, from the perspective of time t =0,
two frameworks are typically considered:

e a potentially time-inconsistent measurement, which involves applying a single (coherent or comonotonic) risk
measure w,: ¥, — R to assess the risk in Y, and

e a time-consistent measurement, which entails using a risk measure w.: %, — R obtained by composing
one-step conditional risk mappings. More formally, wo(Y) = wo(; (- pr_(Y)--+)), where u,: &, — %,
M = (/J’i)ieQ,’ and w': Rl — R are (coherent or comonotonic) risk measures, for any i € ), and any
tel0, T —1].

The goal of the present paper is to take the first step toward better understanding the relation and trade-offs
between these two ways of measuring risk. To this end, we address the following related problems.

ProBLEM 1. Given u; and u., test whether

we(Y) =p (Y), VY ey or p,(Y)=pc(Y), VYed,.

PrOBLEM 2. Given u,;, te, find the smallest Xy > 0 and QX ue > 0 such that
if we(Y) <p, (), VY then u;(Y) <e, . -#c(Y), VYed,, Y>0 (5a)
if w,(Y)<pc(Y), VY then puc(Y) <a,, ,.-m(Y), YY€Xy, Y >0. (5b)

A satisfactory answer to Problem 1 would provide a test for whether one of the formulations is always over- or
underestimating risk as compared to the other. A central issue of concern here is the computational tractability
of these tests and how that relates to the representation of the risk measures u; and w.. To understand the
relevance of Problem 2, note that the minimal factors o, , and a, , satisfying (5a) and (5b), respectively,
provide a compact notion of how closely u, can be approximated through lower or upper bounding consistent
measures fi, Tespectively.* Since in practice it may be far easier to elicit or estimate a single static risk measure u,,
characterizing and computing «;, and o* constitute the first step toward constructing the time-consistent

C> My Mps ke
risk measure u that is “closest” to a given p,.

We conclude the section by a remark pertinent to the two problems and our analysis henceforth.

REMARK 1. Requiring nonnegative Y in the text of Problem 2 might initially seem overly restrictive. However,
if we insisted on wo(Y) < u,(Y) holding for any cost Y, and if ., u, were allowed to take both positive and
negative values, then the questions in Problem 2 would be meaningless, in that no feasible a. . would exist
satisfying (5a) or (5b). To this end, we occasionally require the stochastic losses Y to be nonnegative. This is not
too restrictive whenever a lower bound is available for ¥;* furthermore, in specific applications (e.g., multiperiod
inventory management; Ahmed et al. [3]), Y is the sum of intraperiod nonnegative costs, so the restriction is
without loss.

3. Bounds for coherent and comonotonic risk measures. In this section, we seek answers to Problem 1 and
Problem 2. To keep the discussion compact, we first treat an abstract setting of comparing two coherent measures
on the same space of outcomes and then revisit and specialize the results to the comonotonic case in §3.2.

Consider a discrete probability space (2, 7, P), and let % be the space of all random variables on (), isomorphic
with RIYl, On this space, we are interested in comparing two coherent risk measures Mo X — R given by
polyhedral sets of measures; i.e.,

w(Y) =m%quY, VYew, Viell,2},
qed;

where @, , C Al are bounded polyhedra.® Our main focus is on (1) characterizing conditions such that
wi (Y) <, (Y),VY €%, and (2) finding the smallest factor « such that u,(Y) < u,(Y) <au,(Y), VY € ¥ (Y > 0).

4 A similar concept of inner and outer approximations by means of risk measures appears in Bertsimas and Brown [10]; however, the goal and
analysis there are quite different since the question is to approximate one static risk measure by means of another.

SIf Y, is a lower bound, by using the cash-invariance property [P2], one could reformulate the original question with regard to the random loss
Y —Y,, which would be nonnegative.

6 Several of the results discussed here readily extend to arbitrary closed, convex sets of representing measures. We restrict attention to the
polyhedral case since it captures all comonotonic risk measures, is simpler to describe, and is computationally advantageous because evaluating
the risk measure entails solving a linear program (LP).

>



IITGHTS

Iancu, Petrik, and Subramanian: Tight Approximations of Dynamic Risk Measures
660 Mathematics of Operations Research 40(3), pp. 655-682, © 2015 INFORMS

Since w,;(Y) can be identified as the support function of the convex set @;, the following standard result in
convex analysis (see, e.g., Rockafellar [42, Corollary 13.1.1]) can be invoked to test whether one risk measure
dominates the other.

PROPOSITION 1. The inequality pu,(Y) < u,(Y), VY € ¥ holds if and only if @, C @,.

The usefulness of the latter condition critically depends on the representation of the sets @;. For instance, the
containment problem @, C @, is co-NP-complete when @, is given by linear inequalities and @, is given by its
extreme points, but it can be solved in polynomial time, by linear programming (LP), for the other three possible
cases (Freund and Orlin [24]).

Proposition 1 also sheds light on the second question of interest, through the following corollary.

COROLLARY 1. There does not exist any a # 1 such that u,(Y) <au,(Y), VY € %.

ProoF. For any a > 0, the condition {u,(Y) <au,(Y), VY € %} is equivalent to @, € a@,. Since @, , C Al?],
the containment cannot hold for any a#1. 0O

This result prompts the need to restrict the space of random losses considered. As suggested in §2.3, a sensible
choice is to take Y > 0, which is always reasonable when a lower bound on the losses is available. This allows us
to characterize the desired conditions by examining inclusions of down-monotone closures of the sets @,. To this
end, we introduce the following two definitions (see Appendix A for more details and references).

DEFINITION 2. A nonempty set Q C R is said to be down-monotone if for any x € Q and any y such that
0 <y <x, we also have y € Q.

DEFINITION 3. The down-monotone closure of a set Q CR”, denoted by sub(Q), is the smallest down-
monotone set containing Q; i.e.,

sub(Q) = {xeR": 3q € 0, x < q].

When restricting attention to nonnegative losses, one can readily show that a coherent risk measure can be
obtained by evaluating the worst case over an extended set of generalized scenarios, given by the down-monotone
closure of the original set (these scenarios are such that their probabilities may sum up to strictly less than 1). This
is summarized in the following extension of representation Theorem 1.

PROPOSITION 2. Let u(Y) =max, o q"Y be a coherent risk measure. Then

qe@
w(¥)= max q"Y, VY >0. (6)
qesub(@)
PrOOF. The inequality max,., q"Y < maxy ,ne q" Y follows because @ C sub(@). To prove the reverse,

consider any Y >0 and let q; € arg max ¢ ,p(q) q7Y. By Definition 3, there exists q, € @ such that q, > q, > 0.
Therefore, max,.. 'Y > ) Y > q] Y =max  p @' Y. O

In view of this result, one can readily show that testing whether a risk measurement dominates another can be
done equivalently in terms of the down-monotone closures of the representing sets of measures, as stated in the

next result.
LEMMA 1. The inequality p,(Y) < u,(Y), VY € ¥ holds if and only if sub(@,) C sub(@,).

ProoF. By Proposition 1, the above is equivalent to showing
@, S, < sub(@,) Csub(@,).

(=) Consider q, € sub(@,). Then by Definition 3, there exists q; € @, such that q} > q,. Since @, € @,, we
have q| € @,, and therefore q, € sub(@,).
(<) Note that @, = sub(@,) N A®! for i =1, 2. Then

sub(@,) C sub(@,) = sub(@,)NAY Csub(@,)NAY & @, ca@, O

Figure 1 depicts examples of the sets @,, @, and their down-monotone closures sub(@,) and sub(@,), respectively.
Note that the conditions provided by Lemma 1 hold for any cost Y; i.e., nonnegativity is not needed. They may
also be more efficient in practice than directly checking @, C @, in cases when a suitable representation is
available for sub(@, ,), but not for @, , (Freund and Orlin [24]).

By considering down-monotone closures and restricting to nonnegative losses, we can also address the second
question of interest, namely, retrieving the smallest « such that u,(Y) < a-u,(Y). The following result characterizes
any such feasible .
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FIGURE 1. (Color online) Inclusion relation between @, @, (and the corresponding down-monotone closures, sub(@,), and sub(@,),
respectively) that is equivalent to u,(Y) < u,(Y), VY e %,.

PROPOSITION 3.  The inequality u,(Y) < a - u,(Y) holds for all Y >0 if and only if sub(@,) C « - sub(@,).

PrOOF. By Proposition 2, u;(¥) = maxgcqm(e,) q’Y, for i =1, 2. The claim then follows directly from Goemans
and Hall [27, Lemma 1, also see Theorem 10 in the appendix]. O

In view of this result, the minimal « exactly corresponds to the smallest inflation of the down-monotone
polytope sub(@,) that contains the down-monotone polytope sub(@,). This identification leads to the following
characterization of the optimal scaling factor.

THEOREM 2. Let o, = denote the smallest value of o such that p,(Y) < a-pu,(Y), VY > 0.
1. Ifsub(@l)_{qe[R?”' alq<b, Vie .7}, where a,>0, b, >0, then

T T
max yaq max a q M (a;
esub(@ €@
o axw :max# = max M (7)
N iy b. ied b. ief b;

l 1

2. If @, ={qeR": q<b}, then a;,
bilinear program is at most zero:

u, IS the smallest value t such that the optimal value of the following

max (Aq—1tb)Tp
qe@,,

n>0,
AT > 0.

®)

PrOOF. The first claim is a known result in combinatorial optimization—see Goemans and Hall [27, Theorem 2,
Theorem 10 in the appendix] for a complete proof.
To argue the second claim, note that the smallest « can be obtained, by definition, as follows:

mm{ : max [max Y q—t-max YTq] < 0]
qe@, qe@,

Y>0 | qe@, ATp=Y qe@,
n=0 10, ATp>0

:min{t: max|:maxYTq—t mm b’ :|§0}:min{t: max (Aq—tb)Tp,SO}.

The first equality follows by strong LP duality applied to the maximization over q € @,, which always has a finite
optimum since @, is bounded. The second equality follows by replacing the separable inner optimization problems
with a joint single maximization, switching the order of the maximizations, and eliminating the variables Y. [

The results in Theorem 2 give a direct connection between the problem of computing «j , and the
representations available for the sets @; and sub(@;). More precisely,

o If a polynomially sized inequality description is available for sub(@,), then oy, ,, can be obtained by solving
the small number of LPs in (7). Every such LP essentially entails an evaluation of the risk measure M, leading to
an efficient overall procedure.
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TABLE 1. Computational complexity for determining whether w,(Y) <a-u,(Y), VY >0 for a given a > 0.
“Poly ext” and “Poly face” denote a polynomially sized vertex and inequality description, respectively.
“P” denotes a polynomial-time algorithm is available.

Poly ext(@,) Poly face(@,) Poly ext(sub(@,)) Poly face(sub(@,))

Poly ext(@,) P P P P
Poly face(@,) P
Poly ext(sub(@,)) P P P P
Poly face(sub(@,)) P

e If a compact inequality representation is available for @,, then aj, , ~can be found by bisection search over
t >0, where in each step the bilinear program in (8) is solved. Since bilinear programs can be reformulated as
integer programs (Horst and Tuy [29]), for which powerful commercial solvers are available, this approach may
lead to a scalable procedure, albeit not one with polynomial-time complexity.

Our observations concerning the complexity of testing sub(@,) C « - sub(@,) are summarized in Table 1. When
@, or sub(@,) have polynomially sized vertex descriptions, the test simply requires checking containment for a
finite set of points, and when sub(@,) has a polynomially sized description, the results of Theorem 2 apply. We
conjecture that all the remaining cases are NP-complete but do not pursue a formal complexity analysis in the
present paper. Section 4.1 revisits the question of computational complexity in the context of comonotonic risk
measures and argues that the general containment problem is NP-hard.

We conclude our general discussion by noting that the tightest scaling factor a,  ~can also be used to directly
reexamine the first question of interest, namely, testing when a given coherent risk measure upper bounds another.
This is formalized in the following corollary, which is a direct result of Lemma 1 and Proposition 3.

COROLLARY 2. The inequality pu,(Y) < (Y), VY € X holds if and only if o, , <1

Bi My —

The latter result suggests that characterizing and computing the tightest scaling factor is instrumental in
answering all questions relating to the approximation of a coherent risk measure by means of another. In particular,
given p, and p,, by determining the scaling factors «;, , and aj . we can readily test domination and also
approximate one measure by the other, as follows:

o If o <1, then u,(Y)e[l/a} 1]- uy(Y), VY > 0.

[ 51*#«2’
o Ifa; , <1 thenu,(Y)e[l,a; , ] u(Y),VY=>0.

3.1. Tightest time consistent and coherent upper bound. The results and exposition in the prior section only
required that the coherent risk measures w, , have polyhedral sets of representing measures @, @,. In this section,
we discuss some of these results in the context of §2.3—more precisely, we take w, as the time-inconsistent risk
measure wu,, and @, denotes the compositional measure .

Our goal is to show that for coherent u,, a complete characterization of the tightest possible uniform upper
bound to u, is readily available and is given by a popular construction in the literature (Epstein and Schneider [20],
Roorda et al. [46], Artzner et al. [5], Shapiro [55]). This not only yields the tightest possible factor e, , , but
also considerably simplifies the test u,(Y) < u-(Y), VY, for any coherent w.

The next proposition introduces this construction for an arbitrary coherent measure u.

def

PROPOSITION 4. Consider a risk measure u(Y) = supy.q q’Y, VY € ¥,, and define the risk measure i(Y) =
(i 0fiy 00 fr)(Y), where the mappings fi, = (A');cq, , ¥, — %,_, are given by

t—1

A Esupa’y, VYEREL 1e[1,T], icn,, ©)
qe@L
. p(D))
@ =lqeallapea g =2 viee,l. 10

Then [ is a time-consistent, coherent risk measure, and w(Y) < u(Y), VY € ¥;.

As mentioned, this idea has already been considered in the literature, and several authors have recognized that
it provides an upper bound to w. It is known that Q& is time consistent and has a representation of the form
ay) = SUPgcd, q7Y, VY € %, where the set @u has a product or rectangular structure.” Furthermore, @ C @2”,
and therefore w(Y) < a(Y), VY € ¥, (Epstein and Schneider [20], Roorda et al. [46], Shapiro [55]).

7 Note that it is obtained by computing products of the sets @’u of single-step conditional probabilities, obtained by marginalization at each node
in the tree. However, this rectangularization procedure generally does not preserve comonotonicity; i.e., 4 may not be comonotonic, even when

M is.
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In view of this, we claim that (&, actually represents the trightest upper bound for u,, among all possible
coherent and time-consistent upper bounds. This is formalized in the following result.

LEMMA 2. Consider any risk measure ju;(Y) = supyq, qTY, VY € X, and let ji; be the corresponding risk
measure obtained by the construction in Proposition 4. Also, consider any time-consistent, coherent risk measure

pe(Y)Z (propy---opr)(Y), where p, = (p))icq, ;+ %, — %,_, are given by

pi(Y)=maxq"Y, VYR
qed),

for some closed and convex sets @; C Al%l. Then the following results hold:
L Ifuc(Y)=>u,(Y), VY € Xy, then
pe(Y) >4, (Y), VYe¥; and a ,<a, . (11)

M — TR Re

2. ue(Y)=u, (Y), VY €Xy, holds if and only if

@ ca@,vieQ, ,, Vte[l,T]. (12)

PrOOF. 1. Since u is a coherent risk measure, it can always be written as ¢ (¥) = maxycq,. q7Y. Furthermore,
it is known that the set of representing measures @ is obtained by taking products of the sets @ L (see, e.g.,
Roorda et al. [46] or Follmer and Schied [23]). Because of this property, @ is closed under the operation of
taking marginals and computing the product of the resulting sets of conditional one-step measures (Epstein and
Schneider [20], Roorda et al. [46], Artzner et al. [5]); i.e.,

(13)

. p(D;))
@Pz{qu@ Ipee g = }

p(D)’

Since w-(Y) > w,(Y), we must have @, C @.. But then from (10) and (13), we obtain that QA;” Ca@,VieQ, vt
This readily implies that Q 4, © @c, and hence f;(Y) < uc(Y), VY. The inequality for the multiplicative factors a},
follows from the definition.

2. For the second result, note that the “=" implication has already been proved in the first part. The

reverse direction follows trivially since F i = @2’ implies that (’ C @, and since (YY) < 4,(Y), we have
pi(Y) =pe(Y), VY. O

This result is useful in several ways. First, it suggests that the tightest time-consistent, coherent upper bound for
a given w; is f1;. This not only yields the smallest possible multiplicative factor a;, ., but the upper-bound is
uniform, i.e., for any loss Y. Also, a, o is a lower bound on the best possible a7 , ~when the consistent
measures i are further constrained, e.g., to be comonotonic.

The conditions (13) also prescribe a different way of testing u; < p, by examining several smaller dimensional
tests involving the sets @’ @’ C All, This will prove relevant in our subsequent analysis of the case of
comonotonic risk measures

3.2. The comonotonic case. The results introduced in §§3 and 3.1 simplify when the risk measures u, and
e are further restricted to be comonotonic. We discuss a model with T =2, but the results readily extend to a
finite number of stages (see §3.4).

We start by characterizing u,, with its set of representing measures @, and its down closure sub(@,;). The central
result here, formalized in the next proposition, is the identification of @, with the base polytope corresponding to a
particular Choquet capacity c. This analogy proves very useful in our analysis since it allows stating all properties
of @, by employing known results for base polytopes of polymatroid rank functions,® a concept studied extensively
in combinatorial optimization (see Appendix B, Fujishige [25], and Schrijver [54] for a comprehensive review).

PROPOSITION 5.  Consider a naive dynamic comonotonic risk measure ju,: %, — R, with u,(Y) = maX,cq, q Ty,

VY € %,. Then there exists a Choquet capacity c: 2! — R such that

8 We note that with the exception of the normalization requirement ¢({) = 1, which is unimportant for analyzing fundamental structural
properties, the definition of a Choquet capacity is identical to that of a rank function of a polymatroid (Fujishige [25, Chapter 2]). Therefore,
we use the two names interchangeably throughout the current paper.

1T "f
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1. The set of measures @, is given by the base polytope corresponding to c; i.e.,
@, =B, = {qeR!: q(S) <c(S), YSCQ,, q(,) =c(Qy)}. (14)
2. The down-monotone closure of @, is given by the polymatroid corresponding to c; i.e.,
sub(@,) =2, £ {qe R q(8) < c(S), ¥S S Q,}). (15)

PrOOF. By Theorem 1 for comonotonic risk measures, there exists a Choquet capacity ¢ such that @, =
{qe A%l q(S) < ¢(S), VS € Q,). Since ¢(Q,) =1, this set can be rewritten equivalently as the base polytope
corresponding to ¢ (also refer to Corollary 7 of the appendix for the argument that %, C R‘fz‘). For the second
claim, we can invoke a classical result in combinatorial optimization, that the downward monotone closure of
the base polytope %, is exactly given by the polymatroid corresponding to the rank function c, i.e., %, (see
Theorem 11 in Apppendix B). O

In particular, both sets @, and sub(@,) are polytopes contained in the nonnegative orthant and generally
described by exponentially many inequalities, one for each subset of the ground set (},. However, evaluating the
risk measure u, for a given Y € %, can be done in time polynomial in |€),| by a simple greedy procedure (see
Follmer and Schied [23, Theorem 12 in the appendix or Lemma 4.92]).

In view of the results in §3.1, one may also seek a characterization of the tightest upper bound to u,, i.e., L, or
of its set of representing measures @, . Unfortunately, this seems quite difficult for general Choquet capacities c,
but is possible in at least one case of interest, namely, when u, is given by AVaR,, which we discussed in our
companion paper (Huang et al. [30]). However, Lemma 2 nonetheless proves useful for several of the results in
this section.

The following result provides a characterization for the time-consistent and comonotonic risk measure
MLe =M o U, as a coherent risk measure by describing its set of representing measures @, and its down-monotone
closure sub(@,).

PROPOSITION 6. Consider a two-period consistent, comonotonic risk measure u-(Y) = w, o w,, where
X, — %,_,. Then

1. There exists G- € A2 such that pc(Y) = max o q"Y, VY € %,.
2. The set of measures @ is given by
@ g {qEAlﬂz'HPEAlﬂl p(S)SCI(S)’VSQQI }
¢ . | qU) <p;-c,;(U),YUCC,, VieQ,

={qeA™: peB,  qlpeB,., . VicQ}],

PiCali
where c,: 2 — R and Cit | 26 - R, Vie Q, are Choquet capacities, and Be,» :%Co“ are the base polytopes
corresponding to ¢, and c;|;, respectively.

3. The downward monotone closure of Q. is given by

P(S) =i (S), VSO, }

ef ) ll
sub(@.) £ {qe[RR'jzi Elpe[R'i ! qU)<p,-c,(U), VUCEC, YieQ
=Pi Gy > =i 1

={qeR'f”:ElpeQ>q:q|@le@ VieQ,}

Pit€2i?

where &, and & are the polymatroids associated with ¢, and p;c,;, respectively.

Pic2|i
Proor. The proof is technical and involves a repeated application of ideas similar to those in the proof of
Proposition 5. Therefore, we relegate it to Appendix C. [

As expected, the set of product measures @ and its down-monotone closure sub(@.) have a more complicated
structure than @, and sub(@,), respectively. However, they remain polyhedral sets, characterized by the base
polytopes and polymatroids associated with the Choquet capacities ¢; and ¢, ;. The inequality descriptions of @
and sub(@.) involve exponentially many constraints, but evaluating u-(Y) at a given Y € %, can still be done in
time polynomial in |(),|, by using the greedy procedure suggested in Theorem 12 in a recursive manner.

Because @, and @ are polytopes, they can also be described in terms of their extreme points. The description
of the vertices of polymatroids and base polytopes has been studied extensively in combinatorial optimization (see
Theorem 13 in the appendix or Schrijver [54] for details). Here, we apply the result for the case of @, and extend
it to the special structure of the set @.

>
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PROPOSITION 7.  Consider two risk measures ; and ¢, as given by Proposition 5 and Proposition 6. Then
1. The extreme points of @, are given by

doty = (U o) - (U o). iel o),

k=1 k=1

where o € 11(Q),) is any permutation of the elements of (},.
2. The extreme points of Q. are given by

Do) = |:CI<CJ 7T(k)> - <G W(k)>:| . |:c2|e(LiJ Ue(k)> - c”<[j a[(k)>:|, Vie[l,|C,]], YLe,,

k=1 k=1 k=1 k=1

where a € I1(€),) is any permutation of the elements of Q,, and o, € I1(C,) is any permutation of the elements of
C, (for each £ € Q).

Proor. Part (1) follows directly from the well-known characterization of the extreme points of an extended
polymatroid, summarized in Theorem 13.

Part (2) follows by a repeated application of Theorem 13 to both p and q in the description of @, of
Proposition 6. In particular, any value of p can be expressed as a convex combination of the extreme points p™ of
B,, such that p=73"_ 1, A,P" for appropriate {A,},cpq,)- Now for each £ € (), the value q ¢, € P ppey, €N
be similarly expressed as a convex combination of the extreme points qf for an appropriate set of convex weights

{go-}(rel'[(el) , such that

q|€g=pl' Z ‘fu’qg: Z Z )\ﬂgopfqu Z Z X‘n',o'p?qg'

aell(C,) mell(Qy) oell(€)) mell(Qy) oell(Cy)
The proposition then follows directly from the fact that ), , are themselves convex combination coefficients, and

D74, are extreme points. [J

3.3. Computing the optimal bounds «;; , and o} e With the representations provided above, we now
derive one of our main technical results, estabhshmg a method for computing the tightest multiplicative bounds for
comonotonic risk measures.

THEOREM 3. For any pair of risk measures w; and . as introduced in §3.2,

N D ies MAXyce, (Q(U))/(Cz|i(U))
= max max ) (16)
Be B gesub(@)) SS9, ¢, (8)
. q($)

= max max
i#e T gequb(ae) S0, ¢(S)

(17)

Furthermore, the value for o, ., ~remains the same if the outer maximization over q is done over @;, ext(@,), or

ext(sub(@,)), and correspondmg statements hold for o,

ProoOF. To prove the first result, recall from Proposition 3 that for any Y >0,
pi(Y) =a-pc(Y) & sub(@;) € a-sub(@c).

Consider an arbitrary q € sub(@,). Any feasible scaling @ > 0 must satisfy that (1/a)q € sub(@.). Using the
representation for sub(@.) in Proposition 6, this condition yields

1 p(S) =¢,(S), VScQ,

—qesub(@.) & EIpeR‘f“: 1

« —q(U) <p;- i (U), YUCC;, Vie,.
o

The second set of constraints implies that any feasible p satisfies

p,>lmax q(U)

T avse (U )’

Vie),.
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Corroborated with the first set of constraints, this yields

1 q(U) D ies MaXyce, (Q(U))/(CZ\I'(U))
@ DU @) SENE®, VIS @ azpny ) |

Since this must be true for any q € sub(@,), the smallest possible « is given by maximizing the expression above
over q € sub(@,), which leads to the result (16).

The expression for o, , is a direct application of the second part of Theorem 2, by identifying sub(@,) with
sub(@,) and using the compact representation for sub(@,) from Proposition 5.

The claim concerning the alternative sets follows by recognizing that the function maximized is always
nondecreasing in the components of q so that sub(@) can be replaced with @, and it is also convex in ¢, hence
reaching its maximum at the extreme points of the feasible set. [

From Theorem 3, it can readily seen that when u. < u,, the optimal [ will always be at least 1 and can be
~+o00 whenever the dimension of the polytope @ is strictly smaller than that of @,. Similarly, when w, < u., the
optimal o, ', is always at least 1 and can be +oo when the dimension of the polytope @, is smaller than @.. To
avoid the cases of unbounded optimal scaling factors, one can make the following assumption about the Choquet
capacities.

AsSUMPTION 1 (RELEVANCE). The Choquet capacities c, ¢, ¢,|; appearing in the representations for i,
and e (Proposition 5 and Proposition 6) have the properties

c({k}) >0, YkeQ,,
a{i}) =0, VieQ,,
c({j}) >0, VieQ,, Vjel,

This ensures that both risk measures consider all possible outcomes in the scenario tree and is in line with
the original requirement of relevance in Artzner et al. [4], which states that any risk measure w should satisfy
1(Y) > 0 for any random cost ¥ >0, ¥ #0. In this case, the polytopes @, and @ are both full-dimensional (Balas
and Fischetti [6]), which leads to finite minimal scalings.

As suggested in our general exposition at the beginning of §3, determining the optimal scaling factors aj,
and o also leads to direct conditions for determining whether u. lower bounds w, or vice versa. The

Kps e
f0110w1ng corollary states these in terms of optimization problems.

COROLLARY 3. For any pair of risk measures u, and p. as introduced in §3.2,
1. The inequality uo(Y) <, (Y), VY € %, holds if and only if

max max[q(S) —c(9)] <

qeext(@c) SCQ

2. The inequality u,(Y) <uc(Y), VY € %, holds if and only if

U
max max[Zmax (CO cl(S):| <0
qeext(@;) SCQ, USe; ¢y, (U)

PrROOF. The proof follows from Corollary 2, by recognizing that the condition u. < w, is equivalent to setting
a, =1 (and similarly for the reverse inequality and a, ,). The formulas in Theorem 3 then immediately
yield the desired conclusions. [

The results in Corollary 3 are stated in terms of nontrivial optimization problems. It is also possible to write out
the conditions in a combinatorial fashion, using the analytical description of the extreme points of @, and @,, as
summarized in the following corollary.

COROLLARY 4. For any pair of risk measures u, and p. as introduced in §3.2,
1. The inequality uo(Y) < u,(Y), VY € ¥, holds if and only if

E(0p) - (0e)] =)

where (s, .. ., 5)q,) denotes any permutation of the elements of Q,, and U; C C; for any i € ;.
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2. The inequality pu,(Y) <uc(Y), VY € X, holds if and only if

C(U@i) <¢(8), VScQ,,

ieS

c(U) .
<c¢,;(U), YUCC,;,, Vie,.
c(U)—l—l—c(Qz\C’,.UU)_Cz"( ) =bo VIE

Proor. The proof is slightly technical, so we defer it to Appendix C. [

The above conditions are explicit and can always be checked when oracles are available for evaluating the
relevant Choquet capacities. The main shortcoming of that approach is that the number of conditions to test
is generally exponential in the size of the problem, even for a fixed 7: @((|Q,|!) - 21®%!) for u. < u,, and
O(|A] - 2m>iea €T for pu; < wc, respectively, where A =, 7y ,. However, under additional assumptions on
the Choquet capacities or the risk measures, it is possible to derive particularly simple polynomially sized tests. We
refer the interested reader to the discussion in §4.1 and the example in §4.3.

We note that the reason the conditions for u; < u. take a decoupled form and result in a smaller overall
number of inequalities is directly related to the results of Lemma 2, which argues that testing u; < w. can be done
by separately examining conditions at each node of the scenario tree.

3.4. Multistage extensions. Although we focused our discussion thus far on a setting with 7' =2, the ideas
can be readily extended to an arbitrary, finite number of periods. We briefly outline the most relevant results in this
section, but omit including the proofs, which are completely analogous to those for 7 = 2.

In a setting with general 7', our goal is to compare a comonotonic u, with a time-consistent, comonotonic
te =y opyo0---opmy. The former is exactly characterized by Proposition 5, whereas the representation for the
latter can be summarized in the following extension of Proposition 6.

PROPOSITION 8.  Consider a time-consistent, comonotonic risk measure .. Then
1. There exists G- € A7 such that uo(Y) = max. q"Y, VY € Z,.
2. The set of measures G is given by

ac = {PT e All: 3{p, € AthI}te[l,T—l]? p.(U) <p._({i}) - ¢,;(U), YUCC,;, YVieQ, , Vtell, T]}

= {pTEAmle EI{pzeAmll}te[l,Tfl]’pt|c’,- €% Viegr—ls VlE[l,T]}, (18)

Pi—1 ({"})"ﬂi ’

where ¢, : 2% — R are Choquet capacities with corresponding base polytopes B, for every t € [1, T] and for
every i€, ;.
3. The downward monotone closure sub(@.) of @ is obtained by replacing A% with [F\E‘f" and ‘%p,fl({i})»c,u

with the polymatroid 951,[71({,-}){1“ in Equation (18).

Crli

The proof exactly parallels that of Proposition 6 and is omitted due to space considerations. With this result, we
can now extend our main characterization in Theorem 3 for the optimal multiplicative factors to a multiperiod
setting, as follows.

THEOREM 4. For any comonotonic measure [.; and time-consistent comonotonic measure i,

ies 21 (1,
= ma 2zies 210> @) (19)
B gesub(@)) SSO, ¢, (8)

where 2,(i,q) £ q;, Vi€ Qy, and

() Emax 2l o gy vieq,
vee  cyi(U)

Also,
. q(S)

= max max .
Bi-ke gesub(@c) s<0r ¢(S)

(20)

*

Furthermore, the value for o, .
ext(sub(@,)). Corresponding statements hold for a

would remain the same if the outer maximization were taken over @, ext(@,) or
*
M iie”
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The proof follows analogously to that of Theorem 3 by using the expressions for sub(@,) and sub(@.) provided
by Proposition 5 and Proposition 8, respectively, to analyze the conditions sub(@,) € « - sub(@.) or vice versa. We
omit it for brevity.

By comparing (23) and (20) with their two-period analogues in (16) and (17), respectively, it is interesting to
note that the complexity of the formulation for &}, , = remains the same, whereas the optimization problems
yielding a7, =~ get considerably more intricate. Section 4 contains a detailed analysis of the computational
complexity surrounding these problems.

For completeness, we remark that direct multiperiod counterparts for Corollary 3 and Corollary 4 can be
obtained by recognizing that (YY) < u,(Y), VY is equivalent to a* <1 and by using the results in Theorem 4

s hC
and Lemma 2 to simplify the latter conditions. We do not include these extensions because of space considerations.

4. Discussion of the results. In view of the results in the previous section, several natural questions
emerge. What is the computational complexity of determining the optimal scaling factors a;, | pe and oy for
coherent/comonotonic risk measures? If this is generally hard, are there special cases that are easy, i.e., admitting
polynomial-time algorithms? What examples of time-consistent risk measures can be derived starting with a
given u,, and how closely do they approximate the original measure? This section addresses such questions

in detail.

*

4.1. Computational complexity. As argued in §3, computing the optimal scaling factors a7, .

entails solving the optimization problems in (16) and (17).

We now show that this is NP-hard even for a problem with 7 =1 and even when restricting attention to a
special subclass of comonotonic measures, known as distortion measures. These measures correspond to Choquet
capacities that are uniquely determined by a concave distortion of the underlying probability of events; i.e.,

e and «

o(S)=WV(P(S)), VSeT, 1)

where W: [0, 1] — [0, 1] is a concave, nondecreasing function satisfying W(0) =0 and W (1) = 1. Such measures
are known to satisfy additional axiomatic properties (such as law invariance) and have been studied extensively in
the literature (see, e.g., Kusuoka [34], Acerbi [2]).

To prove hardness, we use a reduction from the NP-hard SUBSET-SUM problem (Cormen et al. [16]) which is
defined as follows.

DEFINITION 4 (SUBSET-SUM). Given a set of integers {k,, k,,...,k,,}, is there a subset that sums to s?
This following result is instrumental in showing the complexity of computing the optimal scalings a7,
and o .
Kes i

THEOREM 5. Consider two arbitrary distortion risk measures , ,: ¥ — R. Then it is NP-hard to decide if
&, . =7 forany y>0. The problem remains NP-hard even when u,(Y) <u,(Y), for all Y € %,(Y > 0).

ProoF. Representation Theorem 1 written for the specific case of distortion measures yields u,;(Y) =
maxy.o q'Y, where
@, ={qe A q(S) <c,(5), ¥ScQ,}, Vie(l,2},
and ¢;(S) = V;(P(S)), where W [0, 1] — [0, 1] are concave, increasing functions satisfying ¥;(0) =0, ¥;(1)=1.
Because both sub(@,) and sub(@,) are polymatroids and downward monotone, the second result in Theorem 3 can
be further simplified to

* _ C) (S)
Mooy ggg? CZ(S)' (22)
Now consider a SUBSET-SUM problem with values k, k,, . . ., k,, and a value s such that 1 <s < K, where
K =3""_, k;. Construct the functions ¢, and c, as follows:
k. P(S)-K
P(s;,) = E c,(S) = min{ L, 1}, ,(S) =min{c,(S), vP(S)}.
s

Since both ¢, ¢, satisfy the conditions of distortion risk measures, any SUBSET-SUM problem can be reduced to
the problem of computing the optimal scale of two distortion risk measures.
Now the optimal value of (22) is upper bounded as

c,(S) K
max <./ —
5201 ¢,(S) ~V s
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The maximum is achieved when there exists S such that P(S) =s/K. To show this, consider c,(S)/c,(S) as a
function of P(S). This function is (1) nondecreasing on the interval [0, s/K) and nonincreasing on the interval
(s/K, 1], (2) strictly greater than one for P(S) =s/K, (3) equal to 1 for P(S) € {0, 1}, and (4) continuous.
Therefore, the SUBSET-SUM problem has a subset that sums to s if and only if the optimal value of (22) is
+/K/s. Finally, the result also holds when w,(Y) < u,(Y) since our choice already has ¢,(S) < ¢,(S) for all
S € Q,, which implies u,(Y) <u,(Y). O

The complexity of computing the optimal scalings a7,
Theorem 5.

and o}, readily follows as a direct corollary of

e s My

COROLLARY 5. Under a fixed T = 1 and for any given 'y =0, it is NP-complete to decide whether o, >y
for an arbitrary inconsistent comonotonic measure i, and a consistent comonotonic measure L. The result remains
true even when . and w,; are such that puo(Y) < u,(Y) for all Y € ¥, (Y > 0). Similarly, it is NP-complete to
decide whether o, , >y, and the result remains true even when p;(Y) <uc(Y), VY € Xy (Y >0).

Prookr. First, note that finding the scaling factors for any 7 > 1 is at least as hard as for 7 = 1. This can be
seen by setting |(),| =1 for all € [2, T — 1]. The NP-hardness then follows from Theorem 5 by setting u, = u
and p, = u,;. The membership in NP follows by checking the inequality (16) for every extreme point q, subset S,
and the appropriate subsets U. The second result follows analogously. O

Corollary 5 argues that computing the optimal scaling factors for arbitrary distortion risk measures cannot be
done in polynomial time. Although the NP-hardness may be somewhat disappointing, solving the two optimization
problems in Theorem 3 is nonetheless clearly preferable to simply examining all possible values of Y.

Although the problem of computing the scaling factors is hard for general distortion measures, polynomial-time
algorithms are possible when the representations of @,, @, or sub(@,), sub(@.) fall in the tractable cases discussed
in Table 1 of §3.

In fact, some of the results of Table 1 can even be strengthened—one such case is when a vertex description for
the polytope @, is available, and problem (23) can be solved in time polynomial in ||, under oracle access to
the Choquet capacities c,; yielding the measure u.

LEMMA 3. If the polytope @, is specified by a polynomial number of extreme points, then «;, , can be
computed in time polynomial in |Q|.

Proor. Consider the specialization of (23) for a fixed q € @,:

* . Z] (U? q)
= max max ————,
He B gesub(e)) s<0y ¢ (S)

(23)

where z,(i,q) = ¢, Vi € O, and

def z,,(U,q)

i,q)=max ———, Vre[l, T—1], Vie,.
20 S TR Vie 1 T 1] :
Note that each value z,(i, q) and also oy ., can be written as
z,.,(U, .
z,(i, q) :maxM :mm{l eR: ¢y (U)—2,,(U,q) =20, VU C (?i}.

vee: ¢y (U)

For any [, the constraint /- ¢,,,,(U) —2,.,(U,q) >0, VU C C; can be checked in polynomial time since the set
function on the left-hand side is submodular in U and can be minimized with a polynomial number of function
evaluations (Schrijver [54]). O

The result above is slightly stronger than what Table 1 suggests since the representation of @, =@, can still be
exponential both in terms of extreme points and vertices as long as oracle access to ¢,; is available.

4.2. Examples. To see how our results can be used, we now consider several constructions suggested in the
literature. The starting point is typically a single risk measure u,;: %, — R, denoting the inconsistent evaluation.
This is then composed with other suitable measures (for instance, with itself, with the conditional expectation
and/or the conditional worst-case operator), to obtain time-consistent risk measures that are derived from wu,. The
questions we would like to address here are which of these measures lower bound or upper bound the inconsistent
evaluation u; and what can be said about the relative tightness of the various formulations.
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To construct dynamically consistent measures by composing u,, we must first specify the conditional one-step
risk mappings corresponding to u,, formally denoted by u,': %, — R and u,?: %, — %,. This is most natural
when w, is a distortion risk measure. Recall from our brief discussion in §4.1 that any such measure is uniquely
specified by the concave function W yielding its set of representing measures, through the Choquet capacity
¢(8) =P(P(S)), VS S Q,. The conditional one-step risk mappings ;" and p,* = (u,?"),q, are then obtained by
applying the same distortion W to suitable conditional probabilities. More precisely, u,' and ;" are the distortion
risk measures corresponding to the Choquet capacities:

c;: 2 >R, ¢,(S) = W(ZP(Q)), VSCQ,,
ieS
P)
P(C)
The conditional risk mappings u,! and w,* can then be used to define dynamic time-consistent risk measures.
Some examples often considered in the literature include

Cy 2@'—>[R{,c2|,-(Ui)=‘lf< ) YU CGC, Vie,.

2 1 1 2 1 2
Eou,”, n, ok, Mo 1y, M, omax, maxo t;”,

where E denotes the expectation operator, and max is the worst-case operator. When the meaning is clear from
context, we sometimes omit the time subscript and use shorthand notation such as Eopu,, u, oE, u; 0o u,, etc.,
although we are formally referring to compositions with u,! and/or u,?. (All the proofs in this section make use
of the results in §3; we choose to relegate them to the appendix since they rather are technical and not very
insightful.)

4.2.1. Time-consistent lower bounds derived from a given ©,. We begin by discussing two choices for
lower-bounding consistent risk measures derived from u,. The following proposition formally establishes the first
relevant result.

PROPOSITION 9.  Consider any distortion risk measure ;. %, — R and the time-consistent, comonotonic
measures p; ot and Eo ;. Then for any cost Y € %,,

(o B)(Y) <p (Y) and  (Eop)(Y) < p(Y).

This is not a surprising result since the E operator is known to be a uniform lower bound for any static coherent
risk measure (Follmer and Schied [23]). The same remains true in dynamic settings, provided that u, is applied in
a single time step and expectation operators are applied in all other stages.

Since both u; o and E o u, are lower bounds for u,, a natural question is whether one provides a “better”
approximation than the other does. More precisely, the following are questions of interest:

1. For a given u,, is it true that (i, oE)(Y) < (Eopu,)(Y), VY € ¥, (or vice versa)?

2. Is it true that o}, ¢ , > af,, . for any distortion measure u, (or vice versa)?
Clearly, a positive answer to the first question would provide a very strong sense of tightness of approximation.
However, as the following example shows, neither inequality holds in general.

ExampLE 1. Consider a scenario tree with T =2, |Q,| =2,|C;| =2, Vi € ,, under uniform reference
measure. Introduce the following two random costs X, Y (specified as vectors in RI2/):

X|e,=M-1, X|e, =0, Y|, =Yl|e,=[M,0]".

With M > 0, and u; = AVaR, ,, it can be checked that (u; o E)(X) =M > (Eou,)(X) = M /2, whereas
(moB)(Y)=M/2 < (Eop,)(Y)=M.

The second question can always be answered for a specific i, by calculating the optimal scalings, so it really
makes sense when posed for all risk measures. Unfortunately, our computational experiments show that any one of
the scaling factors can be better than the other, so neither of the two claims holds. However, it would be very
interesting to characterize conditions (on the risk measures, the underlying probability space, or otherwise) under
which a particular compositional form always results in a smaller scaling factor. The following result suggests that
the two lower bounds result in equal tightness of approximation in certain cases of interest.

THEOREM 6. Consider a uniform scenario ftree, i.e., |Q| =N,
measure. Then for any distortion risk measure w,;, we have

W(1/N?) W(2/N?)
W(1/N)" Ww(2/N) "

C;| =N, VieQ,, under a uniform reference

*
Xpyob. ;= FEopypy

* =N~max{ ..,\If(l/N)}.
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4.2.2. Time-consistent upper bounds derived from a given w,. In an analogous fashion to the previous
discussion, one can ask what time-consistent upper bounds can be derived from a distortion measure w,. A natural
supposition, analogous to the results of §4.2.1, may be that w; o max and maxo u, are upper bounds to w, since
max is the most conservative risk mapping possible (Follmer and Schied [23]). The following result shows that
unlike in the lower bound setting, only one of the two composed measures is a valid upper bound.

ProrosITION 10.  Consider any distortion measure p,;, and the risk measures p; o max and maxo u,, where
max denotes the conditional worst-case operator. Then

(i) For any cost Y € %,, u;(Y) < (u; o max)(Y).

(ii) There exists a choice of p, and of random costs Y\, € X, such that (maxou,)(Y}) < u,(Y,) and
(maxo ;) (1) > g, (¥y).

The result in Proposition 10 also suggests that upper bounds to w, can be derived by composing u, with more
conservative mappings in later time periods. This intuition is sharpened in §4.3 and our companion paper (Huang
et al. [30]), which show that when u, = AVaR,, all upper bounds of the form AVaR, o AVaR, must have y <&,
and, in many practical settings, y =0, i.e., worst-case as the second-stage evaluation.

Since u,; o max is an upper bound for a given u,, one can also turn to the question of comparing the resulting
scaling factor a, ., With the factors of the previous section, namely, o,  , or of,, . Our computational
tests show that there is no general relation between these, even when the scenario tree and the reference measure
are uniform, a claim due to the following result.

ProposITION 11.  Consider a uniform scenario tree, i.e., |Q| = N,|C;|= N, Vi€ Q,, under a uniform
reference measure. Then for any distortion risk measure j;, we have

. B W(1/N) W(2/N) 1
Xy, payomax —max{ W(1/N2)’ W(2/N?)’ " W¥(1/N) }

Corroborating this result with the expression in Theorem 6 for «,  , , one can readily find simple examples of
distortions ¥ such that either the latter or the former scaling factor is smaller.

An opinion often held among practitioners, and informally argued in the literature (Roorda and Schumacher
[44, 45]) is that composing a risk measure with itself would compound the losses, resulting in a larger evaluation
of risk, i.e., that u, o w, should over-bound u,. For instance, if u, = AVaR—the case considered in Roorda and
Schumacher [45]—the compositional measure corresponds to the so-called “iterated CTE,” which takes tail
conditional expectations of quantities that are already tail conditional expectations. We show by means of an
example that this informal belief is actually not true, even in the case of AVaR.

ExAMPLE 2 (ITERATED AVaR). Consider a uniform scenario tree (i.e., || =|C;| =4, Vi € Q) and a uniform
reference measure. Furthermore, consider the risk measure u; = AVaR; 4, and the following two costs (specified as
real vectors in R/, with components split in the four subtrees of stage T = 2):

X|61 =X|62 =1, X|e3 =X|e4 =[1’ 1, —M, _M]T7
Y|@|:Y|C’2:Y|€3:[l’ 1, 1,_M]T, Y|€4:_M'1.

When M > —1, it can be readily checked’ that u;(X)=1> (4,0 u;)(X)=(8—-M)/9, and (u;0 u,)(¥)=1>
wi(Y) = (3= M)/4.

We direct the interested reader to our companion paper (Huang et al. [30]), which is focused specifically on the
AVaR case and discusses the exact necessary and sufficient conditions for when one of the two dominates the other.

4.3. The case of AVaR. Several of the results in the paper can be considerably simplified when the risk
measures in question correspond to AVaR. In particular, analytical expressions or polynomial-time procedures
can be derived for computing o, and o, = and for testing u,(Y) < pc(Y) or vice versa. Furthermore, the
question of designing the measures u . providing the tightest lower or upper approximations to a given u, can also

be more satisfactorily addressed.

° For the case of discrete probability measures, one has to be careful in defining AVaR, since it is no longer exactly given by the conditional
expectation of the loss exceeding VaR,. The precise concepts are presented and discussed at length in Rockafellar and Uryasev [41], which we
follow here.
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The case is discussed at length in our companion paper (Huang et al. [30]), to which we direct the interested
reader for any technical details and proofs. Our goal for the remainder of the section is to outline the main results
and briefly discuss the implications.

To start, we consider a uniform scenario tree under uniform reference measure (|C;|=N, Vi € U,T;Ol Q,, and
P=1/NT), and the following choice of risk measures:

i, =AVaR,, ee[1/N", 1] (24a)
pe = AVaR, oAVaR, o---0AVaR, , & €[1/N,1], Vte[l,T]. (24b)

Note that the restriction on & and &, is without loss of generality since AVaR, with £ < 1/N7 is identical to the
worst-case risk measure, rendering the case € € [0, 1/NT) analogous to e = 1/NT.
In this setup, we can revisit our main results in Theorem 3 and provide the following expressions for the tightest

* * J—
factors O, and Wy e for the case T = 2.

THEOREM 7. Consider a case T =2, and the pair of risk measures in (24a) and (24b). Then

{ £,&, } 1
maxyNe,, —=,Ne, ¢, €< —
. & N
Wy = (25a)
&, 1
max{—,f(N,a,sz)}, £> —,
e N
. e
@, . =max 1, . s (25b)

where f(N, g, &,) is an explicit analytical function. Furthermore, the result for @, .. remains true under an
arbitrary scenario tree and reference measure P.

Note that the above result has several immediate implications. First, it readily allows checking whether
pe(Y) < p(Y), VY (or vice versa) since the latter conditions are equivalent to a;, , <1 (respectively, ez, , <1).
This leads to the following simple tests.

CoROLLARY 6. Consider the pair of risk measures in (24a) and (24b). Then
1. the inequality uo(Y) < u,(Y), VY € ¥, holds if and only if

£,8,> g (26)
2. the inequality u,(Y) < uc(Y), VY € X, holds if and only if

1 1
£ Smax(ﬁ,s) and szfmax<N,Ns—N+1>. (27)

Furthermore, (26) remains true under an arbitrary scenario tree and reference measure [P.

The latter result confirms the observation in Example 2 that the iterated AVaR, i.e., u. = AVaR, o AVaR_, is
generally neither an upper nor a lower bound to the inconsistent choice u, = AVaR,. By (27), &, = ¢ is always a
feasible option, but one must take &, <max(1/N, Ne — N + 1). In fact, as argued in Huang et al. [30], most
relevant choices of & would actually lead to taking &, = 1/N, i.e., the worst-case operator in the second stage.

The analytical results above can also be used to optimally design the compositional risk measure . that is
the tightest approximation to a given u;, = AVaR,. More precisely, one can characterize the choice of u. (i.e.,
levels S,LE) that results in the smallest possible factor «, , among all compositional AVaR that are lower
bounds for AVaR, and similarly the values &}3 yielding the smallest possible o, . among all upper-bounding
compositional AVaRs. The optimal choices satisfy several interesting properties:

e For values of ¢ that are common in financial applications, i.e., satisfying € < 1/N (Jorion [33]), the optimal
o, . is obtained by taking &}® = 5" = /e, corresponding to an iterated AVaR measure.

e The optimal a7, , requires choosing &/® = & and &5® = max(1/N, Ne — N + 1). Typical values of & used in
practice would entail sgB =1/N, i.e., the worst-case scenario in the second stage.

e The optimally designed «;, , is always smaller than o, , , i.e., for every & and N, which suggests that
starting with an underestimating AVaR, results in tighter dynamically consistent approximations for AVaR.

The results discussed in Theorem 7 for T =2 can also be (partially) extended to a case of an arbitrary T, which
is summarized in the following claim.
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THEOREM 8. Consider an arbitrary T and the pair of risk measures in (24a) and (24b). Then

L. There is an algorithm that computes c, _, in time O(N .
2 a, .= max{1, g/ (]_[tT:1 &,)}, and the expression remains valid for an arbitrary scenario tree and reference
measure.

It is interesting to note that computing «;, , , and hence also testing uc < u,, remains as easy for general T as
for T =2: an analytical expression is available that actually holds in considerably more general settings (arbitrary
tree and reference measure). By contrast, computing «;, , and testing u; < i now requires an algorithm that is
polynomial only for a fixed 7. In light of our earlier result, this suggests that although starting with lower bounds
for u; may lead to a tighter approximating ., the gain does not come for free because the computation of the
resulting o, is typically harder than that for o},

In a multiperiod setting, the question of designing the tightest possible lower-bounding approximation . to a
given u,; becomes harder—even computing one scaling factor o, requires a polynomial-time algorithm. By
contrast, a complete characterization of the tightest upper-bound . is available! Quite surprisingly, it turns out
that this choice exactly corresponds to the risk measure [, introduced by the construction in Proposition 4, by
expanding the set of measures of ;. This is summarized in the following result (for a proof, see Huang et al. [30]).

THEOREM 9. Consider the risk measure p; = AVaR,, under an arbitrary reference measure P, and the
construction for the risk measure fL, characterized in Proposition 4. Then L, = AVaR, o AVaR, o - -- o AVaR,
where AVaR, = (;);cq, , and

max, if P(D)<l-¢

VieQ, ,, =
-t * AVaRyi, otherwise.

Here, v; = (P(D;) — 1 +¢&)/(P(D,)), and AVaR, is computed under the conditional probability induced by P, i.e.,
(D)) (P(D)) jee,-

This result, which holds under any reference measure [P, suggests that starting with u, = AVaR, and expanding
its set of representing probability measures until it becomes rectangular exactly results in a risk measure (i, that is
a composition of one-step AVaRs. These one-step AVaRs are computed under levels vy, that can be different at
each node i in the tree and under the natural conditional probability induced by the reference measure [P.

There are several immediate implications. First, since [, is the tightest possible coherent upper bound for any
given coherent w, (see Lemma 2), this implies that the tightest possible choice for a compositional AVaR that
upper bounds a given AVaR, is exactly AVaRE. In a different sense, this also provides an instance when starting
with a comonotonic (in fact, distortion) risk measure yu, results in a comonotonic (distortion) risk measure [,
which furthermore belongs to the same class as w,.

Lastly, the theorem confirms that the best possible compositional AVaR that upper bounds AVaR, does involve
compositions with the worst-case operator, in any node i that has probability at most 1 — &. Furthermore, it
suggests, in a precise sense, that the compositional AVaR gets increasingly conservative as the risk measurement
process proceeds in time: note that y; > y;, V j € C;, and once node i requires a worst-case operator, so will
any descendant of i since P(D;) >P (D)), Vj € C,. In particular, all future stages are more conservative than
the measurement at time ¢ =0 (i.e., the root node), which exactly corresponds to the inconsistent evaluation
u; =AVaR,.

This last point may be of particular relevance when designing risk measures for use in dynamic financial
settings: it suggests that regulators looking for safe counterparts (i.e., upper bounds) for a static AVaR, should use
risk measurement processes that are compositions of increasingly conservative AVaR, measurements.

5. Conclusions. In this paper, we examined two different paradigms for measuring risk in dynamic settings: a
time-consistent formulation, whereby the risk assessments are designed so as to avoid naive reversals of preferences
in the measurement process, and a time-inconsistent one, which is easier to specify and calibrate from preference
data. We discussed necessary and sufficient conditions under which one measurement uniformly bounds the other
from above or below and provided a notion of the multiplicative tightness with which one measure can be
approximated by the other. We also showed that it is generally hard to compute the scaling factors even for
distortion risk measures but provided concrete examples when polynomial-time algorithms are possible.
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Sciences of the IBM T.J. Watson Research Center, whose financial support is gratefully acknowledged.
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Appendix A. Submissives, downward monotone closures, and antiblocking polyhedra. In the current section, we
discuss the important notion of the down monotone closure of a polytope, also known as its antiblocking polyhedron or its
submissive. Our exposition mostly follows Schrijver [53, Chapter 9], to which we direct the interested reader for a more
comprehensive treatment and references to related literature.

A polyhedron Q in R” is said to be down-monotone or of antiblocking type if

0#0, QCR!, and 0<y<x and xeQ imply yeQ.
The following proposition summarizes a useful representation for down-monotone polyhedra.

PROPOSITION 12. A polyhedron Q in R" is down-monotone if and only if there is a finite set .F of vectors {a;},cs and
coefficients {b;},cs such that a; >0, a;#0, b;>0, Vi€ ¥, and

O={xeR"a/x<b,Vie.J}
PrOOF.  The proof follows closely from the definitions. We omit it here and direct the interested reader to Schrijver [53]. O

We remark that whenever Q is full-dimensional, the right-hand sides b; in the representation above can be taken to be strictly
positive.
For any polyhedron Q € R", we can define its down-monotone closure, also known as its submissive, by

sub(Q) = {y e R.: Ix € 0, x > y}. (A1)

It can be easily checked that sub(Q) = (Q+R"”)NR’, and that sub(Q) is full-dimensional if and only if Q\{x e R": x; =0} # 2,
for all j € [1, n] (see Balas and Fischetti [6]). A very interesting characterization of the down-monotone closure of a polyhedron
is also possible in terms of the polar of the polyhedron P. However, since these results are not directly needed in our treatment
here, we direct the interested reader to Balas and Fischetti [6], Balas et al. [7], or Schrijver [53, Chapter 9] for more details.
Down-monotone polyhedra have been used for studying the strength of relaxations in integer programming and combinatorial
optimization—see Goemans and Hall [27] are references therein. The following result is relevant for our purposes.

THEOREM 10. Let P and Q be two nonempty, downward monotone polytopes in R',. Then
1. PC aQ if and only if, for any nonnegative vector w € R",

1
max{w’x: x € 0} > — max{w'x: x € P}.
@
2. IfQ={xeRi:alx <b, Vie .}, where a;, b, >0, then

d. ‘
def
@ =max —, where d; 2 maxalx.
ic.¥ bi xeP

PrOOF.  Part (1) is essentially Goemans and Hall [27, Lemma 1]. Since the latter reference omits a proof, we include one
below, for completeness. “=>" Follows trivially. “<=" Note first that @ > 0. Assume (by contradiction) that 3x € P\« Q.
Since Q is down-monotone, by Proposition 12, it can be written as Q = {x e R": a/x < b;, Vi € .7}, where a,, b, > 0,
Vi e J. Since X ¢ aQ, there exists j € .¥ such that ajTi > abj. Since x € P, we obtain the desired contradiction,
(1/@)max{alx: x € P} > (1/a)alx > b; > max{a]x: x € Q}.

Part (2) is exactly Goemans and Hall [27, Theorem 2], to which we direct the reader for a complete proof. O

The above result shows that a* can be 400, which is the case if Q has a strictly smaller dimension than P (in this case, some
b, are 0, whereas the corresponding d; are strictly positive Schrijver [53]). However, if Q is full-dimensional, o* is always finite.

Appendix B. Submodular functions and polymatroids In this section of the appendix, we discuss the basic properties of
Choquet capacities in light of their connection with rank functions of polymatroids. The exposition is mainly based on
Schrijver [54, Chapter 44, Vol. B] and Fujishige [25, Chapter 2, §3.3], to which we direct the interested reader for more
information.

Consider a ground set Q with || =7, and let ¢ be a set function on Q; that is, ¢: F > R, where F =29 is the set of all
subsets of ). The function c is called submodular if

c(T)+cU)=c(TNU)+c(TUU), YT, U€T.

The function ¢ is called nondecreasing if ¢(T) < ¢(U) whenever T C U C Q. For a given set function ¢ on , we define the
following two polyhedra

P, £ {xeR: x>0,x(5) <c(5), VS O},

def (B1)
€P, = {xeRI: x(S) <c(S), VS Q}.

1T "f
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Note that 2, is nonempty if and only if ¢ > 0 and that EP, is nonempty if and only if ¢(&) > 0. These conditions are
trivially satisfied in our exposition since all set functions c of interest are Choquet capacities; i.e., by Definition 1, they are
nondecreasing and normalized, ¢(&) =0, ¢(Q) =1.

If ¢ is a submodular function, then %, is called the polymatroid associated with ¢, and €%, the extended polymatroid
associated with c. Note that a nonempty extended polymatroid is always unbounded, whereas a polymatroid is always a
polytope since 0 < x; < c({i}), Vi € . The next theorem provides a very useful result concerning the set of tight constraints in
the representation of €%,.

THEOREM 44.2 IN SCHRUVER [54]. Let ¢ be a submodular set function on Q and let x € €%P,. Then the collection of sets
U C O satisfying x(U) = c(U) is closed under taking unions and intersections.

ProofF. Suppose x(7) = ¢(T) and x(U) = ¢(U). Then
c(T)+c(U)=c(TNU)4+c(TUU)=x(TNU)+x(TUU)=x(T)+x(U)=c(T)+ c(U),
hence equality most hold throughout, and x(TNU)=c(TNU) and x(TUU) =c(TUU). O

A vector x € €2, (or in P,) is called a base vector of €2, (or of P.) if x(Q2) = c(Q). The set of all base vectors is called
the base polytope of ¢ and is denoted by %,

B, E [xe R x(8) < ¢(S), VS € Q,x(Q) = c(Q)}.
The following theorem summarizes several simple properties of %3, and its relation to €%, and 2.

THEOREM 1.  For any submodular function c¢ satisfying c(&) =0,
(i) 9B, is a face of €D, and is always a polytope.

(i) €P.=%B.+R", so that €P, and B, have the same extreme points.

(iii) P, =sub(%,).

(iv) Forany A>0, B, =\-B, €P,,=\-EP, and P, =\-P..

PrOOF. (i) That %, is a face of €%, follows directly from the definitions. To see that %3, is a polytope, note that for any
i€, x; <c({i}), and x; =x(Q) —x(Q\{i}) = c(Q) — c(Q\{i}).

(ii) “2” Follows trivially. “C” Consider any y € €%,. Without loss of generality,'’ assume y does not lie in the strict interior
of €%, and let .¥, L (S eF: y(S)=c(S)} denote the collection of sets corresponding to tight constraints at y. If Q € Jy, then
y € B,, and the proof would be complete. Therefore, let us assume Q ¢ .7,.

We claim that there exists s € ) such that s € S, VS € jy. To see this, note that if any s € () were contained in some S € Jy,
then () € .7, since the set of tight constraints is closed under union and intersection, by Theorem 11. We can then consider the
vector y, =y + Al for A > 0. It is easy to test that for small enough A, y, € €%.. By making A sufficiently large, at least one
constraint a set S containing s becomes tight, hence enlarging the set .7,. Repeating the argument for the point y, recursively,
we eventually recover a vector y that belongs to %3,. Since y =y + & for some & > 0, we have that y € %, + R", which
completes the proof of the first part of (ii). Since R” is a cone, and %, is a polytope, the representation exactly corresponds to
the Motzkin decomposition of an arbitrary polyhedron, so that ext(€%,) = ext(%,).

(iii) Follows immediately from (i) since %, = €% NR} = (B, +R2) NR’ “ sub(%,).

(iv) Since Ac is also submodular, the results immediately follow from the definitions. O

A central result in the theory of submodularity, due to Edmonds, is that a linear function w”x can be optimized over an
(extended) polymatroid by an extension of the greedy algorithm. The following theorem summarizes the finding.

THEOREM 12 (THEOREM 44.3, COROLLARIES 44.3(a,b) IN SCHRUVER [54].). Let ¢: 2% — R be a submodular set function
with ¢(2) =0, and let w € [lel. The optimum solution of maxycey wix is

X(si)‘gc({sl, coos ) —c({s, .. ous0)), ie(ln],

where (s, ...,s,) is a permutation of the elements of Q such that w(s,) > w(s,) > ---w(s,). If ¢ is also nondecreasing, then
the above X is also an optimal solution to the problem maxyg, wix.

PrROOF. The proof follows by duality arguments. We omit it here and direct the interested reader to Schrijver [54]. O
In view of this result, the following characterization for the extreme points of %, €%, and & is immediate.
THEOREM 13.  For a submodular set function c satisfying c(2) =0, the extreme points of B, and €, are given by
Xo() = c({a’(l), - ,0'(1')}) — c({(r(l), o o(i— 1)}), ie[l,n],
where o € I1(Q) is any permutation of the elements of Q. When c is also nondecreasing, the extreme points of P, are given by

c({a’(l), N ONE c({a’(l), oo(i— 1)}) ifi <k,
0 ifi >k,

Xo(i) =
where o € I1(Q) is any permutation of the elements of Q, and k ranges over [0, n].

19Such a y can always be obtained by adding a certain £ > 0, and if the resulting y + & € %, +R", then also y € %, +R".
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ProoF. For a complete proof, we direct the reader to Fujishige [25, Theorem 3.22] and Schrijver [54, §44.6c]. O

The previous result shows that there is a one-to-one correspondence between vertices of %, and permutations of [1, n] and
also that every inequality constraint in the characterization of 9. is tight at some x € 9. The following corollary also
immediately follows from the above result.

CoROLLARY 7.  For any submodular ¢ such that ¢(@) =0, B. C R, if and only if ¢ is nondecreasing.

PrOOF. “«<=" Immediate, since %, is the convex hull of its extreme points, which (by Theorem 13) are nonnegative.
“=" Consider any two sets 7 C U C ), and take a chain of sets §; CS, C--- C Sy such that S, =T and S\ =U.
By Theorem 13, there exists an extreme point x of 98, having elements c(S;, ) —c(S;), i € [1, |[U\T| — 1] among some of its
coordinates. Since x > 0, we immediately obtain that ¢(U) — ¢(T) > 0.

Appendix C. Technical proofs. This section contains several technical results from our analysis.

PROPOSITION 6.  Consider a (two-period) consistent, comonotonic risk measure pc(Y) = py o pty, where pu,;: &, — &,_,. Then
1. There exists G- C A%l such that pw-(Y) < max q'Y, VY e¥,.
2. The set of measures @ is given by

qetc

Qe = {qu‘QZ‘; Ipe Al p(S) <¢i(5), VSO, }

qU) =p;-c;;(U), YUCSC;, Viel,

={qeA™:IpeB, :qle B Vie O},

Pi-€2i°

where ¢;: 2 - R and Gt 26 5 R, Vie Q, are Choquet capacities, and Beys ZJBCZU are the base polytopes corresponding
to ¢| and c,;, respectively.
3. The downward monotone closure of @ is given by

S) < ¢ (S), VS CQ,,
SUb(@c)d—if{qeRLﬁlz‘;gpeREll\’ p(S) < /(S) 1 }

q(U) =p;-cy;(U), YU S C;, Vie,

:{qe[Ri‘f”:Elpe?]’clzqheP]’ VieQ,}

pi€2)i?

where &, and & are the polymatroids associated with ¢, and p;c,;, respectively.

pic2|i

ProOOF. The first claim is a standard result in the literature (Epstein and Schneider [20], Artzner et al. [5], Roorda
et al. [46]), but we rederive it here together with the second claim to keep the paper self-contained. To this end, recall
from §2.3 that pu. can be written as u,; o u,, where u, = (u');cq, and p, : &; — R, as well as u': R - R, Vie Q,, are
comonotonic risk measures. By Theorem 1, for any X, € | and X, € &,, we have

m(X)) = maxp’X,, @ = {peA™lp(S) < (S). VS Q) (Cla)
pel
M;(Xz) = ;22}“ qTXZ’ @y); = {q e Al q(U) < Czu(U)’ VYU CC; Q|nz\@, =0}- (Clb)

In particular, @, = 93, , and, similarly, the projection of the polytope @,; on the coordinates C; is exactly given by .%02‘[, for

any i € ;. From these relations, we have that . (Y) =max,., q”Y, where O has the following product form structure
(Shapiro et al. [56]):
0= {q €A™l 3pe@, 3¢ €@,,, YVieQ,, such that q= ) piqi}. (C2)
i€
We now show that O = @, by double inclusion.

“C” Consider any q € 0, and let pe@ and ¢’ € @,; denote the corresponding vectors in representation (C2). Since
qe,=p;q, VieQ,, and q' € @,;, Vi€ Q,, we trivially have that p and q satisfy the equations defining @.

“>” Consider any q € @, and let p be a corresponding measure satisfying the constraints for @.. It can be readily
checked that ¢ & e,/ P; € @y; (the only nonobvious constraint is 17q’ = 1, which must hold since otherwise we would have
Yica, 4(C)) = Yico, pil"q’ <p(Q) =1, contradicting q € A!®2!). Therefore, q =3, piq’ € 0. For completeness, we also
note that q' =qe,/p; € @,; < qle,/p; € 97302‘,. (e, € Bp,.cy ;> for any i € (by part (iv) of Theorem 11 in Appendix B).

To prove the last claim, note that the two sets on the right being identical is immediate from the definition of the polymatroid
associated with a rank function ¢ (see Appendix B). As such, denote by o the set on the right of the equation.

“C” Consider an arbitrary x € sub(@.). By definition, x > 0 and 3q € @, such that q > x. Let p correspond to q in
the representation for @.. To argue that x € 9/, we show that the pair (p, x) satisfies all the constraints defining s¢. To
this end, since p € %,, (and %,, C [RE‘f"), we immediately have p € %, . Furthermore, Vi € ; and VU C C;, we have
x(U) 2q(U) < p; - ¢5;(U), which proves that x € 5.

“D” Consider an arbitrary q € &4, and let p be such that the pair (p, q) satisfies all the constraints defining . Since

pe P, =sub(A, ), 3p € B, such that p > p > 0. Furthermore, q|¢, € ?])131_‘02“ = sub(%ﬁ’”cz",), for any i € (). Therefore,
Jqe IRL?Z' such that qe, € Biy-cy; and Gle, > dle, > 0, for any i € ;. It can be readily checked that by construction, the pair

(p, q) satisfies all the constraints defining @.. Therefore, with q € @, and q > q > 0, we must have q € sub(@.). O
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COROLLARY 4.  For any pair of risk measures w; and uc as introduced in §3.2,
1. The inequality puo(Y) <, (Y), VY € %, holds if and only if

B (0l 0=y )

where (s, . .., Sq,|) denotes any permutation of the elements of ), and U; C C; for any i € Q).
2. The inequality u,;(Y) <uc(Y), VY € %, holds if and only if

c<Ue,.> <c(S), ¥SCQ,,

ieS

c(U)
0 i(U), YUCE,, Yieq,.
) F1=c\eun) =2 =0 VEESh

PrOOF. The main idea proof behind the proof is to rewrite the results in Corollary 3 in terms of the extreme points of @,
and @,, and then to suitably simplify the resulting problems.
To prove part (1), by Corollary 3, we have that u-(Y) < u,(Y), VY € %, holds if and only if

max q(S) <c(S), VSCQ,.
qeext(@c)
To this end, consider any S € (),, and partition it as S = Ueq, U,, for some U, € C,, V£ € (). The expression for ext(@c) is
given in Proposition 7, which we paste below for convenience

Do) = [cl (CJ 7T(k)) - (U 7T(k)>] - [caz(LiJ w(k)) - cm(U w(k))} Vie[l,|C], YeeQ,.

k=1 k=1 k=1 k=1

where 7 is any permutation of €, and o, is any permutation of €,, for each £ € ),.

Consider a fixed permutation 7 € ;. We claim that the permutation o, yielding a maximal value of q(U,) is always of the
form (a(U,), 0(C,\U,)); i.e., it has the elements of U, in the first |U,| positions. This is because the functions c,|, are
submodular so that ¢(U,) — ¢(&) > ¢(U, U A) — c(A), for any A C C,\U,. With this recognition, the optimal permutations o,
always result in q(U,) = [¢;(Uf_, 7 (k)) — ¢, (U2} m(k))]cye(Up). Maximizing over all permutations 7 € I1(£2,) then leads to
the first set of desired conditions.

To prove part (2), one can use the expression from Corollary 3 and show that it reduces to the desired condition. Instead, we
find it more convenient to work with the results of Lemma 2 concerning fi,, the tightest possible coherent upper bound to w,.
To this end, first recall the representation for @, in Proposition 6, pasted below for convenience:

Gr={qeA™: e, :qle e, .VieQ]

PiC2|i
Lemma 2 implies that that u,(Y) < uc(Y) & @L, S B, VieQ, ,, Y1 e[l,2] Here, a

., are the one-step conditional risk
measures yielding fi;, and are given by (10). This is equivalent to

ma,xq(ue,-) <e(S). VSO, *)
99 \;gy
q(U)

ax —=<¢,(U), YUCC,, Vie,. .
qe;:q(C;)#0 q(@l) — 2\1( ) - 1 ( )

We now argue that (*) and (**) are equivalent to the conditions in part (2). Recalling the description of @, in Proposition 5 and
because any inequality q(S) < c(S) is tight at some set S (also see Theorem 13), it can be seen that the maximum value of
q(U;es C;) in (%) is exactly ¢(U;cs C;), which yields the first desired condition. The proof that (**) are equivalent to the second
condition is the subject of Proposition 13 below, which completes our proof. [

ProOPOSITION 13.  Consider any i € Q,_, for some t € [1, T]. Then for any U C C,, we have

max 9(Dy) _ c(Dy)
act;: 400 q(D;)  c(Dy) +1—c(Q\D;UD,)"

(C3)

ProoFr. Since the problem on the left is a fractional linear program, the maximum is reached at an extreme point
of @; (Boyd and Vandenberghe [12]). Note also that the objective is increasing in any g;, j € Dy, and decreasing in any
4.5 € D\Dy,.

Recalling the expression for ext(@;) in Proposition 7,

Goty = (U o)) - (U o®)). viell. 0]

k=1 k=1
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let v7 € ext(@,;) be the extreme point corresponding to o € ITI(€2;). We claim that there exists an optimal solution in (C3) such
that the permutation o is of the form

Dy ={a(l),---,a(|Dy))}.
DA\Dy ={o(IQ\D,UDy|+1),...,0(1Q)};

i.e., the elements of 2, appear in the first | D, | positions of o, and the elements of D,\D,, appear in the last positions of o.

The proof involves a repeated interchange argument. We first argue that there exists an optimal permutation o such that the
elements of D, appear before those of D\D,,.

To see this, consider any permutation ¢ such that v” is optimal in (C3), yet there exist j € D, and s € D,\D,, such that
j=o(k), s=o(k), and k < k. In fact, let k be the smallest, and k the largest such index among all indices satisfying the
property (this ensures that there are no indices from 2, appearing in o between k and k). Consider a new permutation 77 where
the positions k and k are interchanged, and let v denote the corresponding vertex of @,. By submodularity of ¢,

o7 c<LkJ a(e)> - C<U U(Z)) > C(CJ 0(6)) - c(U a(e)> e,

=1 =1 =1 =1

(C4)

By a similar argument, v7 < v?. Furthermore, by construction, v7 =v?, Vr € D;\{j, s} since no indices from 2D, appear
between k and k. Therefore, we have v7 (D) > v7 (D), and v (D\Dy) < v’ (D,\D,,), so that the objective at v7 is at least
as large as at v’. Repeating the argument as often as needed, we obtain an optimal permutation satisfying the desired property.

Having argued that (without loss of generality) o contains the elements of D, before those of D,\D,,, a similar interchange
argument can be done with respect to Q;\D;, to reach the conclusion (C4). The final result of the lemma exactly denotes the
value corresponding to such a configuration (it follows immediately by recognizing the telescoping sums appearing in the
expressions). [

PROPOSITION 9.  Consider any distortion risk measure ;. %, — R, and the time-consistent, comonotonic measures [u; oE
and Eo w,;, where E denotes the conditional expectation operator. Then for any cost Y € %,,

(o B)(Y) =y (Y) and  (Eou)(Y) = p(Y).

ProoF. First note that both measures are readily time-consistent and comonotonic. The proof entails arguing that these
choices correspond to Choquet capacities that verify the first set of conditions in Corollary 4.

To this end, let ¥ denote the distortion function corresponding to the (distortion) measure w,; i.e., the Choquet capacity is
given by ¢(S) = V(P(S)), VS € Q,, where V¥: [0, 1] — [0, 1] is concave, nondecreasing, with ¥(0) =0, ¥ (1) = 1. Recall from
§4.2 that the (compositional) risk measure u; o E (or, more correctly, u,' o E) exactly corresponds to the following choice of
Choquet capacities for the first and second stage, respectively:

c;: 2% 5 R, (8) = W(ZP((‘,’J), VSCOm
i€S
P)
P’
Note that the same distortion function W (yielding the risk measure w,) is applied in the first stage, but to the appropriate
conditional probability measure. The second stage is simply a standard conditional expectation.
With p, £P(€,) and u, £ [P(U,), the desired condition in Corollary 4 becomes
0 i i-1
‘Z“ V(Zei Powy) = V(E i Pow) |
i=1 P

Calit 2% >R, Cz\i(Ui) =

VU, CC, VieQ,.

1

1]
o) 5‘1’(2 uu_(l-)), Voell(Q,), Yu,€[0,p], YVieQ,. *)

i=1
To see this, one can use the decreasing marginal returns property of V; i.e.,
W(y,) —¥() < W(x) —V(xy)
Y2—=0 B Xy =X
to argue that (‘I’(Zj.:1 Po(j) — \P(Z;;ll Pey))/ (Poi) < (‘I’(Z;-:1 Ug(j)) — ‘P(Z;;'l Uyy))/ Uy ;) Replacing this in the
left-hand side of (*) and telescoping the sum directly yields the desired result.
In a similar fashion, the risk measure Eo u,; corresponds to a choice of capacities

cp 2!21 — R, CI(S) =Z|P(@,), VSg Ql’
ieS

s VX <Xy, X Sy, %Y, Y <Vas

it 26'—>[R2,c2|i(U,-)=\If< ) YU, CGC;, VieQ,.

def

With the same notation p; £ P(€,) and u; £ P(U,), the conditions to test become

| U .. 1]
Zpa(i)‘lf< 0(’)> 5‘1’(2 u,-), Voell(Q,), Yu,€[0,p;], VieQ,.
i=1 1240) i=1

These are readily true since {p;};cq, are convex combination coefficients and W is concave. [
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THEOREM 6. Consider a uniform scenario tree, i.e., |Q;|=N,|C;| =N, Vi€ Q,, under a uniform reference measure. Then

for any distortion risk measure u;, we have

N - max

s — s —
Hpjok. pp = CEopypy =

{\If(l/NZ) W (2/N?)

W(I/N) " W(2/N) ""’W(l/N)}‘

Before presenting the proof, we introduce two lemmas that outline several relevant properties for the two expressions that need
to be compared. To fix ideas, assume the distortion risk measure w; is given by a concave distortion function ¥: [0, 1] — [0, 1].
To this end, by applying the result in Theorem 3, our goal is to argue that

e Yiemaxyee @(UD)/(VEW)/PE))

Boup g ™ qeext(@;) SCQ ZieS P(@z)
o T matyee U)W/ PE)) b )
™ aden(e) SEh, V(T P(E) BRCLE

The following lemma discusses the factor «f,, . in the expression above.

LEmMA 4. Consider the maximization problems yielding of,,, . in (CS). We claim the following:
1. For any given q € @,, the inner maximization over S C Q, is reached at a singleton set S = {i} for some i € .
2. The optimal q € @, in the outer maximization always corresponds to a permutation o € I1(Q),) satisfying the property

{o(),....o(N)}=¢C;, (C6)

for some i € Q. That is, the first N elements in the permutation belong to the same subtree C,.
3. For any fixed i € ()},

max max q([Jl) = max \I’(P([][))
aceiten <6, W(P(U)/(B(©)) — tee, W(PU)/ @)’
4 af,, = MaXica, maxgce (Y PU))/(PE)YPU)/PE))).

PrOOF OF LEMMA 4. Claim 1 follows from the mediant inequality. To see this, for a fixed q, let

gl U)o
" uce, W(P(U)/P(C))

VieQ,,

and note that the maximum over S C ), is achieved at any singleton {i} C argmax{v,/P(C,): £ € Q,}.

To see Claim 2, first recall that the set ext(@;) corresponds to all possible permutations of €, (Proposition 7). By Claim 1,
since the inner maximum always occurs at a singleton i*(q), the optimal q* must be such that components in €., are “as
large as possible.” Because of the concavity of W, this occurs when they appear in the first N positions in the permutation o
(also see the proof of Corollary 4).

Claim 3 follows directly from Claim 2, by switching the order of the two maximizations and using the expression for the
extreme points of @, from Proposition 7.

Claim 4 follows from Claims 1 and 3 after switching the order of the maximizations over S and q. [

*

The following lemma similarly summarizes properties of the second quantity of interest, a;, . .-

LEMMA 5. Consider the maximization problems yielding o, ¢, in (C5). We claim that

1. For any given q € @; and any i € Q,, the inner maximization over U; C C; is reached at a singleton set U; = {j} for some
jecl.
2. Fix S CQ,. The optimal q*(S) € @, corresponds to a permutation o5 € I1(Q,) such that

iﬂjlyze{l,...,|S|} such that o (j,), 0(j,) €C;, for some i€ Q,.

In other words, the first |S| elements in the permutation o belong to distinct subtrees C,.
3. Under the same setup as (2), the first |S| elements in o5 € T1(Q,) correspond to the minimum-probability in their
respective subtree; i.e.,

Vkel[l,|S

. o8(k)e argminP;,  where i is such that o(k) € C,.
JeCi

4. Let m(i) & argmin; e, P;. Then

N i i—1
o . — max max Zi:l Uj)(ij((r(t)))(\II(X:k:I Ipm((r(k))) - \P(Zkzl Ipm(rr(k))))/(lpm(a'(t))) )
M sy eSils) V(L PCoioi)

i=
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ProOF. Claim 1 follows, again, by the mediant inequality. The logic is the same as in Claim 1 of Lemma 4 and is omitted.

Claim 2 follows from Claim 1 and by recognizing again that q should have components “as large as possible” in the
singletons j that yield the maximums.

To see Claim 3, first note that Claim 2 allows restricting attention to permutations ¢ that have elements from distinct

subtrees in the first |S| components. For any such o (j), with je{1,...,|S]|},
oo = VP, + Z'/Z: Pow) — ‘I’(Z}Z: Pow))
v Pog) /P(C) ’

where ¢ (j) € C,. By the concavity of ¥, the above expression is decreasing in [P which implies that o (j) always corresponds
to the element in €; with smallest probability.

Claim 4 follows from the previous three. [J

a(j)

With the previous results, we are now ready to provide a complete proof for our desired result, namely, that under a uniform

* Ak
reference measure, af,, . =, o . -

PrOOF OF THEOREM 6. By Lemma 4, ag,, , =max,.q maxy.ce, V(P(U))/(P(C)¥(P(U;))/(P(C}))). For a uniform
reference measure, because of the symmetry, this expression becomes

{«1/(1/1\72) V(2/N?)
=N- , ..
V(1/N)’ W(2/N)

*
Qkopy, p

.. ,\If(l/N)}.
Similarly, by Lemma 5,

IS] i i-1
i= P em a(i v = H:Dm T -v = Ipm a I]j)m a(i
o o — max max Zl—l ( ( ()))(( (Zk_l ( (k))) (Zk_l ( (k))))/ ( ())),
M st oelis) V(ZE PCoioin))

i=

which becomes, under uniform reference measure,

N - max

* p—
QproEpy =

{\m/z\ﬂ) W(2/N?)

W(/N) " TN ""’W(I/N)}'

Comparing the two expressions above immediately yields the desired equality. O

ProprosITION 10.  Consider any distortion risk measure (;, and the time-consistent, comonotonic measures |4; o max and
max o u;, where max denotes the worst-case operator. Then

(1) For any cost Y € %,, u;(Y) < (u; omax)(Y).

(ii) There exists a choice of u; and of random costs Y, , € %X, such that (maxopu;)(Y,) < u;(Y,) and (maxou,;)(Y,) > u,(¥,).

ProoOF. (i) Let the Choquet capacity yielding the distortion measure u; be of the form ¢(S) = V(P(S)), VS C Q,. We
show part (i) of the corollary by checking the conditions of Corollary 4. Recall that the risk measure w;' o max corresponds to
a choice of capacities

c;: 2 S R, ¢ (S) :W(ZP(C’,.)>, VS cCQ,

ieS

e 25 >R,y (U) =1, YU, #0CC,;, VieQ,.

The conditions to check from Corollary 4 are

xp(u»(u e,)) < w(zp(ei)) vscQ,

ieS ieS

v®w)) .
TP T wE@OCuDy) = YUSE Viel.

The first inequality holds since P(U;cs C;) =X ;cs P(C;). The second inequality readily follows since ¥ is upper bounded by 1.

(ii) Consider a uniform scenario tree with |Q;| = |C;| =2, Vi € Q,, and let the reference measure be P =[0.1,0.5,0.2,0.3]".
For simplicity, assume the first two components of [® correspond to nodes in the same child. Then for the risk measure u, =
AVaR, », and the costs Y, =[1,0,0,0.4]" and Y, =[0,0,0, 1], it can be checked that u,(¥,) =0.44 > (maxopu,)(¥;) =0.4,
but u;(¥,) =0.3 < (maxopu,)(¥,)=1. O

PROPOSITION 11.  Consider a uniform scenario tree, i.e., |Q| =N, |C;| =N, Vi€ Q,, under a uniform reference measure.

Then for any distortion risk measure w;, we have

. B W(1/N) W(2/N) 1
m,momax—max{ W(1/N?)" W(2/N?)" """ W(1/N) }
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PrOOF. Recall that the risk measure p = u; o max (or, more correctly, i;! o max) corresponds to a choice of capacities

c;: 2N SR, ¢(S) =\P(Zﬂj’(€i)> E‘P(%), vVScQ,,
ieS

01 25 >R, oy (U) =1, VU #BCEC;, VieQ,.

By Theorem 3, the optimal scaling factor is given by «;, , . =maXge MaXscq, q(S)/W(|S|/N?). Let us switch the order of
the maximizations, and fix an arbitrary § = ;cq, U; € €2,. Using the representation of @, provided by Proposition 6, it can be

readily seen that q(U;) =0 if U, =@, and q(U;) < p;, otherwise, where p(S) < ¢,(S), VS C Q,. Therefore,

51
S)=c,(5)=w(2),
maxa($) = ,(5) (N

*

which, when used in the expression for « o e?

immediately leads to the desired result.
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