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Decisions Under Uncertainty

Decision maker chooses x; u unknown

minimize
x

Cpx,uq

s.t. F px,uq ě 0

Stochastic model:

min
x

Eu

“

Cpx,uq
‰

s.t. Pr F
`

x,u
˘

ě 0 s ě 1´ ε

Distribution for u known

Well-defined objective :
average performance

Good data, future like past, ...

Robust model:

min
x

max
uPU

Cpx,uq

s.t. F px,uq ě 0,@u P U

Uncertainty set U known

Well-defined objective :
worst-case performance

Poor data, non-stationarity, ...

Infinitely many constraints
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Robust Optimization

Robust model:

min
x

max
uPU

Cpx,uq

s.t. F px,uq ě 0,@u P U

For many classes of U, can reformulate as convex optimization

Soyster [1973], Falk [1976], Ben-Tal and Nemirovski [1998, 1999, 2000, 2002], Ben-Tal

et al. [2002], El-Ghaoui and Lebret [1997], El-Ghaoui et al. [1998], Bertsimas and Sim

[2003, 2004], Bertsimas et al. [2004], ...

Focus on tractability, degree of conservatism, probabilistic guarantees

Some decisions adjustable Ñ approach extended to dynamic settings
Ben-Tal et al. [2004]
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Robust Optimization

Robust model:

min
x

max
uPU

Cpx,uq

s.t. F px,uq ě 0,@u P U

Applications...

inventory management e.g., [Ben-Tal et al., 2005, Bertsimas and Thiele, 2006,

Bienstock and Özbay, 2008, ...]

facility location and transportation [Baron et al., 2011, ...]

scheduling [Lin et al., 2004, Yamashita et al., 2007, Mittal et al., 2014, ...]

revenue management [Perakis and Roels, 2010, Adida and Perakis, 2006, ...]

project management [Wiesemann et al., 2012, Ben-Tal et al., 2009, ...]

energy generation and distribution [Zhao et al., 2013, Lorca and Sun, 2015, ...]

portfolio optimization [Goldfarb and Iyengar, 2003, Tütüncü and Koenig, 2004,

Ceria and Stubbs, 2006, Pinar and Tütüncü, 2005, Bertsimas and Pachamanova, 2008, ...]

healthcare [Borfeld et al., 2008, Hanne et al., 2009, Chen et al., 2011, ...]

Book [Ben-Tal et al., 2009]; Review papers: [Bertsimas et al., 2011a, Gabrel et al., 2012]
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Robust Optimization

Robust model:

min
x

max
uPU

Cpx,uq

s.t. F px,uq ě 0,@u P U

Our objectives with this tutorial...

Discuss static versus adjustable decisions

Highlight some tractability issues

Clarify the connection to robust dynamic programming

Provide motivations for simple policies

Illustrate time consistency issues
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A Simple Inventory Problem

Consider the following inventory management problem:

minimize
x,y

T
ÿ

t“1

¨

˚

˝

ordering cost
hkkikkj

ctxt `

holding cost
hkkkkkikkkkkj

htpyt`1q
``

backlog cost
hkkkkkkikkkkkkj

btp´yt`1q
`

˛

‹

‚

s.t. yt`1 “ yt ` xt ´ dt, @ t, (Stock balance)

0 ď xt ďMt, @ t, (Min/max order size)

y1 “ a , (Initial stock level)

where

xt is number of goods ordered at time t and received at t` 1

yt is number of goods in stock at beginning of time t

dt is demand between time t and t` 1

a is the initial inventory
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A Linear Programming Formulation

This problem can be reformulated using the linear program

minimize
x,y,s`,s´

T
ÿ

t“1

`

ctxt ` hts
`
t ` bts

´
t

˘

s.t. s`t ě 0, s´t ě 0 , @ t,

s`t ě yt`1 , @ t,

s´t ě ´yt`1 , @ t,

yt`1 “ yt ` xt ´ dt , @ t,

0 ď xt ďMt , @ t,

where

s`t is amount of goods held in storage during stage t

s´t is amount of backlogged customer demands during stage t
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x,y,s`,s´
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Näıve Robustification Scheme

Given that the vector of demand d is assumed to lie in some uncertainty
set U, let’s consider the robust optimization model:

minimize
x,y,s`,s´

T
ÿ

t“1

`

ctxt ` hts
`
t ` bts

´
t

˘

s.t. s`t ě 0, s´t ě 0 , @ t

s`t ě yt`1 , @ t

s´t ě ´yt`1 , @ t

yt`1 “ yt ` xt ´ dt , @d P U , @ t

0 ď xt ďMt , @ t

Unfortunately, this makes the model infeasible even when |U| “ 2:
#

yt`1 “ yt ` xt ´ d
p1q
t

yt`1 “ yt ` xt ´ d
p2q
t

+

ñ d
p1q
t “ d

p2q
t
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A Less Näıve Robustification Scheme

Robustify an alternate linear programming formulation:

minimize
x,s`,s´

T
ÿ

t“1

`

ctxt ` hts
`
t ` bts

´
t

˘

s.t. s`t ě 0, s´t ě 0, @t,

s`t ě y1 `

t
ÿ

t 1“1

xt 1 ´ dt 1 , @t,

s´t ě ´y1 `

t
ÿ

t 1“1

dt 1 ´ xt 1 , @t,

0 ď xt ďMt @t ,

where we simply replaced yt`1 :“ y1 `
řt
t 1“1 xt 1 ´ dt 1 in order to capture

the fact that stock level evolves according to demand.
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Still two issues remain:
1 the orders should be adjustable w.r.t. the observed demand

2 ps`t , s´t q should be fully adjustable (more subtle)
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Why ps`t , s´t q Should Be Fully Adjustable

Consider the two-stage problem:

Deterministic model:

min.
x1

ordering
hkkikkj

0.5x1 `

holding
hkkkkkikkkkkj

px1 ´ d1q
`

`pd1 ´ x1q
`

looooomooooon

backlog

s.t. 0 ď x1 ď 2 ,

Less näıve robust model:

min.
x1,s`1 ,s´1

0.5x1 ` s
`
1 ` s

´
1

s.t. s`1 ě 0, s´1 ě 0

s`1 ě x1 ´ d1 , @d1 P r0, 2s

s´1 ě d1 ´ x1 , @d1 P r0, 2s

0 ď x1 ď 2 .
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Conclusions:

Less näıve robust model states x˚1 :“ 0, s`˚1 :“ 0, and s´˚1 :“ 2 with
worst-case cost of 2

Alternatively, x˚˚1 :“ 1 achieves a total cost lower than 1.5 for all
d1 P r0, 2s
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Why ps`t , s´t q Should Be Fully Adjustable

Consider the two-stage problem:

Deterministic model:

min.
x1

ordering
hkkikkj

0.5x1 `

holding+backlog
hkkkikkkj
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Less näıve robust model:

min.
x1

0.5x1 ` x1
loomoon

s`˚1

` 2´ x1
loomoon

s´˚1

s.t. 0 ď x1 ď 2 .

Conclusions:
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An Accurate Two-stage Robust Inventory Model

The robust two-stage problem actually takes the form:

minimize
x1

sup
d1Pr0,2s

0.5x1 ` hpx1,d1q

s.t. 0 ď x1 ď 2 ,

where

hpx1,d1q :“ min
s`1 ,s´1

s`1 ` s
´
1

s.t. s`1 ě 0, s´1 ě 0

s`1 ě x1 ´ d1

s´1 ě ´x1 ` d1 .

Note how this form accounts for the fact that s`1 and s´1 might
jointly depend on the realized value of d1.
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Alternate Representation of Less Näıve Robust Model

Comparatively, the less näıve robust model was solving:

minimize
x1,s`1 ,s´1

sup
d1Pr0,2s

0.5x1 ` gpx1, s`1 , s´1 ,d1q

s.t. s`1 ě 0, s´1 ě 0

0 ď x1 ď 2 ,

where

gpx1, s`1 , s´1 ,d1q :“

"

s`1 ` s
´
1 if s`1 ě x1 ´ d1 and s´1 ě d1 ´ x1

8 otherwise
.

Timing characterized by less näıve robust model

x1 d[1]xT d[T]
s+

1:T, 
s-

1:T
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Takeaway Message about Adjustable Decisions

When robustifying decision models that either involve

“implementable” decisions at different time periods (e.g. xt)

“auxiliary” decisions such as ps`t , s´t q that are used to assess overall
performance of implemented decisions

one needs to carefully identify the chronology of decisions and observations
and employ the adjustable robust counterpart framework introduced in
(Ben-Tal et al., 2004)

Accurate timing of decisions and observations in inventory problem

x1 d[1] x2 d[2] d[T]
s+

1:T, 
s-

1:T

Auxiliary decisionsImplementable decisions
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Applying the ARO Framework to Inventory Management

1 Formulate a deterministic model where implementable and auxiliary
decisions can be identified:

minimize
xt,s

`
t ,s´t

T
ÿ

t“1

`

ctxt ` hts
`
t ` bts

´
t

˘

s.t. s`t ě 0, s´t ě 0, @t,

s`t ě y1 `

t
ÿ

t 1“1

xt 1 ´ dt 1 , @ t,

s´t ě ´y1 `

t
ÿ

t 1“1

dt 1 ´ xt 1 , @ t,

0 ď xt ďMt,@ t .

2 Identify an accurate chronology:

x1 Ñ dr1s Ñ x2 Ñ ¨ ¨ ¨ Ñ xT Ñ drT s Ñ ps`1:T , s´1:T q
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Applying the ARO Framework to Inventory Management

3 Describe the adjustable robust counterpart

min.
x1, txtp¨qu

T
t“2,

ts`t p¨q, s
´
t p¨qu

T
t“1

sup
dPU

T
ÿ

t“1

`

ctxtpdrt´1sq ` hts
`
t pdq ` bts

´
t pdq

˘

s.t. s`t pdq ě 0, s´t pdq ě 0 , @d P U, @ t

s`t pdq ě y1 `

t
ÿ

t 1“1

xt 1pdrt 1´1sq ´ dt 1 , @d P U, @ t

s´t pdq ě ´y1 `

t
ÿ

t 1“1

dt 1 ´ xt 1pdrt 1´1sq , @d P U, @ t

0 ď xtpdrt´1sq ďMt , @d P U, @ t .

where

Each xt : Rt´1 Ñ R is adjusted to the observed demand drt´1s

Each s`t : RT Ñ R and s´t : RT Ñ R are adjusted to entire d
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Robust Inventory Management with Noisy Observations

In some situations, the observations that are made are noisy.

x1 v[1] x2 v[2] d[T]
s+

1:T, 
s-

1:T

Auxiliary decisionsImplementable decisions

xT

Noisy observations

where

each s`t : RT Ñ R and s´t : RT Ñ R are still adjusted to entire d

each xt : Rt´1 Ñ R is adjusted to the observations vrts

each vt captures what is observed right before ordering xt
e.g. vt “ dt ´ ξt with ξt P r´dt,dts., with

ř

t |ξt| ď Γ .

See (de Ruiter et al., 2014) for detailed methodology.
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Robust Inventory Management with Noisy Observations

min.
x1, txtp¨qu

T
t“2,

ts`t p¨q, s
´
t p¨qu

T
t“1

sup
pd,vqPU 1

c1x1 `
ÿ

t

`

ctxtpvrtsq ` hts
`
t pdq ` bts

´
t pdq

˘

s.t. s`t pdq ě 0, s´t pdq ě 0 , @d P U, @ t

s`t pdq ě y1 `

t
ÿ

t 1“1

xt 1pvrt 1sq ´ dt 1 , @ pd, vq P U 1, @ t

s´t pdq ě ´y1 `

t
ÿ

t 1“1

dt 1 ´ xt 1pvrt 1sq , @ pd, vq P U 1, @ t

0 ď xtpvrt´1sq ďMt , @ pd, vq P U 1, @ t ,

where

U 1 :“

#

pd, vq P Uˆ RT
ˇ

ˇ

ˇ

ˇ

ˇ

D ξ P RT`, vt “ dt ´ ξt, |ξt| ď dt,
ÿ

t

|ξt| ď Γ

+
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NP-Hardness of Adjustable Robust Optimization

Theorem (Ben-Tal et al., 2004):

Solving a robust multi-stage linear programming model is NP-hard.

Sketch of proof:

Consider the two-stage ARO model where x : Rm Ñ RN:

minimize
xp¨q

sup
uPr0,1sm

N
ÿ

i“1

pxipuq ´ 1q

s.t. xipuq ě a
J
i,ku` bi,k , @u P r0, 1sm ,

"

@ i “ 1, . . . ,N ,

@k “ 1, 2, 3.

Checking if optimal value is ě 0 can be as difficult as a 3-SAT
problem with m variables and N clauses like vj1 _ vj2 _ v̄j3 .

§ E.g., choose pa,bq such that:

x˚i pzq “ max
k
aJi,ku` bi,k “ maxtuj1 ;uj2 ; 1´ uj3u

“ 1 if uj1 “ 1, uj2 “ 1, or uj3 “ 0, otherwise it’s ă 1.
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Connections With Robust Dynamic Programming

Our dynamic decision problem can also be written:

min
0ďx1ďM1

«

c1x1 ` max
d1PU1pHq

„

h1py2q
` ` b1p´y2q

`

` min
0ďx2ďM2

”

c2x2 ` max
d2PU2pd1q

”

h2py3q
` ` b2p´y3q

` ` . . .

` min
0ďxtďMt

”

cTxT ` max
dTPUT pdrT´1sq

rhT pyT`1q
` ` bT p´yT`1q

`s

ı

. . .



ff

where:

yt`1 :“ yt ` xt ´ dt

Utpdrt´1sq :“
!

d P R : D ξ P RT´t such that rdJrt´1s d ξ
JsJ P U

)

nested min-max problems

proper updating rule: projection (analogous to “conditioning”)
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Bellman Principle; Robust DP Recursions

The state of the system at time t:

St :“
“

yt d
J
rt´1s

‰J
“

“

yt d1 d2 . . . dt´1

‰J
P Rt

Value function J˚tpStq given by:

J˚tpStq “ min
0ďxtďMt

”

ctxt` max
dtPUtpdrt´1sq

“

htpyt`1q
``btp´yt`1q

``J˚t`1pSt`1q
‰

ı

Observations:

1 General U −Ñ high-dimensional St −Ñ curse of dimensionality

2 When U has special structure, can reduce state space
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1 General U −Ñ high-dimensional St −Ñ curse of dimensionality

2 When U has special structure, can reduce state space

Uh-cube “ ˆ
T
t“1rdt, d̄ts Ñ St “ yt

Ubudget “

!

d : D z, }z}8 ď 1, }z}1 ď Γ ,dt “ d̄t ` d̂tzt

)

Ñ St “
“

yt,
t´1
ÿ

τ“1

|zτ|
‰T
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Observations:

1 General U −Ñ high-dimensional St −Ñ curse of dimensionality

2 When U has special structure, can reduce state space

Reduce computational burden

Prove structural results, comparative statics

x˚tpyq “ min
`

Mt, maxp0, θt´yq
˘

(modified) base-stock policy
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A More Subtle Point...

Consider this problem:

J˚ “ max
dPrd,d̄s

min
0ďx

fpd, xq

`

y1 Ñ d1 ” dÑ y2 ” ypdq Ñ x2 ” x
˘

DP yields Bellman-optimal policy x˚pdq “ max
`

0, θ˚ ´ ypdq
˘

x˚pdq minimizes fpx,dq for any d

x˚pdq sufficient for achieving J˚, i.e., J˚ “ maxdPrd,d̄s f
`

d, x˚pdq
˘

Is x˚pdq necessary for achieving J˚?
Is Bellman optimality necessary in robust dynamic problems?

30 / 53



A More Subtle Point...

Consider this problem:

J˚ “ max
dPrd,d̄s

min
0ďx

fpd, xq

`

y1 Ñ d1 ” dÑ y2 ” ypdq Ñ x2 ” x
˘

DP yields Bellman-optimal policy x˚pdq “ max
`

0, θ˚ ´ ypdq
˘

x˚pdq minimizes fpx,dq for any d

x˚pdq sufficient for achieving J˚, i.e., J˚ “ maxdPrd,d̄s f
`

d, x˚pdq
˘

Is x˚pdq necessary for achieving J˚?
Is Bellman optimality necessary in robust dynamic problems?

30 / 53



A More Subtle Point...

Consider this problem:

J˚ “ max
dPrd,d̄s

min
0ďx

fpd, xq

`

y1 Ñ d1 ” dÑ y2 ” ypdq Ñ x2 ” x
˘

DP yields Bellman-optimal policy x˚pdq “ max
`

0, θ˚ ´ ypdq
˘

x˚pdq minimizes fpx,dq for any d

x˚pdq sufficient for achieving J˚, i.e., J˚ “ maxdPrd,d̄s f
`

d, x˚pdq
˘

Is x˚pdq necessary for achieving J˚?
Is Bellman optimality necessary in robust dynamic problems?

30 / 53



A More Subtle Point...

Consider this problem:

J˚ “ max
dPrd,d̄s

min
0ďx

fpd, xq

`

y1 Ñ d1 ” dÑ y2 ” ypdq Ñ x2 ” x
˘

DP yields Bellman-optimal policy x˚pdq “ max
`

0, θ˚ ´ ypdq
˘

x˚pdq minimizes fpx,dq for any d

x˚pdq sufficient for achieving J˚, i.e., J˚ “ maxdPrd,d̄s f
`

d, x˚pdq
˘

Is x˚pdq necessary for achieving J˚?
Is Bellman optimality necessary in robust dynamic problems?

30 / 53



A More Subtle Point...

Consider this problem:

J˚ “ max
dPrd,d̄s

min
0ďx

fpd, xq

`

y1 Ñ d1 ” dÑ y2 ” ypdq Ñ x2 ” x
˘

DP yields Bellman-optimal policy x˚pdq “ max
`

0, θ˚ ´ ypdq
˘

x˚pdq minimizes fpx,dq for any d

x˚pdq sufficient for achieving J˚, i.e., J˚ “ maxdPrd,d̄s f
`

d, x˚pdq
˘

Is x˚pdq necessary for achieving J˚?
Is Bellman optimality necessary in robust dynamic problems?

30 / 53



A More Subtle Point...

Consider this problem:

J˚ “ max
dPrd,d̄s

min
0ďx

fpd, xq

`

y1 Ñ d1 ” dÑ y2 ” ypdq Ñ x2 ” x
˘

DP yields Bellman-optimal policy x˚pdq “ max
`

0, θ˚ ´ ypdq
˘

x˚pdq minimizes fpx,dq for any d

x˚pdq sufficient for achieving J˚, i.e., J˚ “ maxdPrd,d̄s f
`

d, x˚pdq
˘

Is x˚pdq necessary for achieving J˚?
Is Bellman optimality necessary in robust dynamic problems?

30 / 53



Is Bellman Optimality Necessary?

J˚ “ max
dPrd,d̄s

min
0ďx

fpd, xq

Is x˚pdq necessary for achieving J˚?

Define the set of worst-case optimal policies:

Xwc :“
 

x : rd, d̄s Ñ R` : f
`

d, xpdq
˘

ď J˚, @d P U
(

.

Xwc non-empty : x˚ P Xwc

Xwc contains other policies:

xaffpdq “ x˚pdq `
x˚pd̄q ´ x˚pdq

d̄´ d
pd´ dq

In fact, Xwc very degenerate: infinitely many policies
(e.g., λx˚ ` p1´ λqxaff, for any λ P r0, 1s )

31 / 53



Is Bellman Optimality Necessary?

J˚ “ max
dPrd,d̄s

min
0ďx

fpd, xq

Is x˚pdq necessary for achieving J˚?

Define the set of worst-case optimal policies:

Xwc :“
 

x : rd, d̄s Ñ R` : f
`

d, xpdq
˘

ď J˚, @d P U
(

.

Xwc non-empty : x˚ P Xwc

Xwc contains other policies:

xaffpdq “ x˚pdq `
x˚pd̄q ´ x˚pdq

d̄´ d
pd´ dq

In fact, Xwc very degenerate: infinitely many policies
(e.g., λx˚ ` p1´ λqxaff, for any λ P r0, 1s )

31 / 53



Is Bellman Optimality Necessary?

J˚ “ max
dPrd,d̄s

min
0ďx

fpd, xq

Is x˚pdq necessary for achieving J˚?

Define the set of worst-case optimal policies:

Xwc :“
 

x : rd, d̄s Ñ R` : f
`

d, xpdq
˘

ď J˚, @d P U
(

.

Xwc non-empty : x˚ P Xwc

Xwc contains other policies:

xaffpdq “ x˚pdq `
x˚pd̄q ´ x˚pdq

d̄´ d
pd´ dq

In fact, Xwc very degenerate: infinitely many policies
(e.g., λx˚ ` p1´ λqxaff, for any λ P r0, 1s )

31 / 53



Is Bellman Optimality Necessary?

J˚ “ max
dPrd,d̄s

min
0ďx

fpd, xq

Is x˚pdq necessary for achieving J˚?

Define the set of worst-case optimal policies:

Xwc :“
 

x : rd, d̄s Ñ R` : f
`

d, xpdq
˘

ď J˚, @d P U
(

.

Xwc non-empty : x˚ P Xwc

Xwc contains other policies:

xaffpdq “ x˚pdq `
x˚pd̄q ´ x˚pdq

d̄´ d
pd´ dq

In fact, Xwc very degenerate: infinitely many policies
(e.g., λx˚ ` p1´ λqxaff, for any λ P r0, 1s )

31 / 53



Worst-Case Optimality and Degeneracy

This degeneracy is typical for robust multi-stage problems
(“If adversary does not play optimally, you don’t have to, either...”)

Critically different from stochastic problems

A blessing: may allow finding policies with simple structure
( Bertsimas et al. [2010], Iancu et al. [2013] )

A curse: may yield inefficiencies in the decision process
( x˚ Pareto-dominates xaff )

Worst-case optimal policies must be implemented with resolving
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Static Policies

Simplest possible policies : static (i.e., non-adjustable)

Very tractable

Optimal for LPs with row-wise uncertainty [Ben-Tal et al., 2009]

min
xpzq

max
z0PZ0

“

cpz0q
Jxpzq ` dpz0q

‰

subject to ajpzjq
Jxpzq ď bjpzjq, @ zj P Zj, @ j “ 1, . . . , J.

Result extended recently [Bertsimas et al., 2015]

Good performance under other uncertainty sets [Bertsimas and Goyal, 2010,

Bertsimas et al., 2011b, ...]
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Affine Decision Rules

Restrict attention to affine decision rules [Ben-Tal et al., 2004]
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Affine Decision Rules

Restrict attention to affine decision rules [Ben-Tal et al., 2004]

Affinely Adjustable Robust Counterpart approximation scheme

min
X

max
dPU

T
ÿ

t“1

ctpx
0
t ` Xtdq ` htps

`
t ` S

`
t dq ` btps

´
t ` S

´
t dq

s.t. s`t ` S
`
t d ě 0, s´t ` S

´
t d ě 0, @d P U

s`t ` S
`
t d ě y1 `

t
ÿ

τ“1

px0
τ ` Xτd´ dτq, @d P U,

s´t ` S
´
t d ě ´y1 ´

t
ÿ

τ“1

px0
τ ` Xτd´ dτq, @d P U,

0 ď xt ` Xtd ďMt , @d P U,

Decision variables: coefficients X “
 

x0
t,Xt, s

`
t ,S`t , s´t ,S´t

(T

t“1
§ Xt P Rt´1 ˆ 0T´t`1 to ensure non-anticipativity
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Two layers of sub-optimality: policy and auxiliary variables
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Affine Decision Rules

Restrict attention to affine decision rules [Ben-Tal et al., 2004]

Affinely Adjustable Robust Counterpart approximation scheme

Tractable under fixed recourse [Ben-Tal et al., 2004]

Excellent performance in a variety of applications [Ben-Tal et al., 2005,

Mani et al., 2006, Adida and Perakis, 2006, Babonneau et al., 2010, ...]

Optimal for linear problems with simplex uncertainty [Ben-Tal et al., 2009]

Optimal for our multi-period inventory model under hypercube
uncertainty set U “ ˆTt“1rdt, d̄ts [ Iancu et al., 2013, Bertsimas et al., 2010 ]
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Piecewise Affine Rules

One can also use piece-wise affine rules, e.g.,

xtpdrt´1sq :“ x
0
t ` Xtdrt´1s `

t´1
ÿ

k“1

θ`tkpdkq
` ` θ´tkp´dkq

`

These policies are actually affine in ξ :“ rd,d`,d´s
§ It would suffice to have a tractable representation for:

ConvexHull
´

 

pd,d`,d´q |d P U, d` “ maxp0;dq, d´ “ maxp0;´dq
(

¯

Such representations known for Uh-cube, Ubudget, and other sets based on
“absolutely symmetric convex functions” [Ben-Tal et al., 2009]

Large literature on other (nonlinear) rules:
§ segregated rules [Chen and Zhang, 2009, Goh and Sim, 2010, ?]

§ piecewise constant [Bertsimas and Caramanis, 2010, Bertsimas et al., 2011b]

§ kernelized [Chatterjee et al., 2011, Skaf and Boyd, 2009]

§ polynomial [Ben-Tal et al., 2009, Bertsimas et al., 2011c]
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What Is Time Consistency?

Definition of time consistency:

Axiomatic property that requires a decision maker’s stated preferences over
future courses of action to remain consistent with the actual preferred
actions when planned-for contingencies arise.
(Refer to Chapter 6 of (Shapiro et al., 2009) for background info.)

Intuitively,

Relates to the way multi-stage decision models are employed to
generate implemented decisions as the future unfolds

Good news: All robust multi-stage decision models naturally express
stage-wise preferences that are time consistent

Bad news: When decisions are implemented in a shrinking horizon
fashion, the uncertainty set must be updated according to the
“proper” update rule in order to give rise to this said consistency
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Time Consistency in Robust “Coffee-vendor” Problem

Robust coffee-vendor problem (Part I):

A coffee stand is operated for one morning in the lobby of two hotels:

hotel #1 during 7am-9am hotel #2 during 9am-11am

possibility to replenish with fresh coffee at 9am

Given that each hotel has two (hundred) guests, the salesman estimates
the following demand:

one (hundred) cups in hotel #1

one (hundred) cups in hotel #2

very unlikely that more than three (hundred) cups of coffee would be
needed overall

This situation seems to motivate the following uncertainty set :

U :“ td P r0, 2s2 |d1 ` d2 ď 3u
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Time Consistency in Robust “Coffee-vendor” Problem

Robust coffee-vendor problem (Part II):

The coffee-vendor signed a contract with the two hotels to serve coffee to
every thirsty guests. Here are some financial facts:

contracts’ revenue = 600$ in total upfront

production cost at 6am = 1$ per cup

production cost at 9am = 4$ per cup

salvage cost = 0$ per cup

contracted penalty for unserved customers = 10$ per cup

This situation seems to motivate the following deterministic model:

minimize
x1ě0,x2ě0

x1 ` 4x2 ` 10pd1 ` d2 ´ x1 ´ x2q
`

loooooooooooooooooooooomoooooooooooooooooooooon

total cost (in hundreds of $)
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Robust Two-stage Coffee-vendor Problem

minimize
x1,x2p¨q

sup
dPU

x1 ` 4x2pd1q ` 10pd1 ` d2 ´ x1 ´ x2pd1qq
`

s.t. x1 ě 0, x2pd1q ě 0 , @d P U ,

where U :“ td P r0, 2s2 |d1 ` d2 ď 3u .

Conclusions that can be drawn based on optimal solution:

Prepare 3 (hundred) cups at 6am

Don’t refresh the coffee at 9am under any circumstances

The expected worst-case cost is 300$ under any circumstances

This gives an anticipated worst-case profit of 600$´ 300$ “ 300$

Is this truly the worst-case profit that will be achieved ?
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Scenario #1: Time Consistent Second-stage Preferences

At 9am, let d1 “ 2 be observed, the coffee-vendor changes hotel

On the way, he updates the uncertainty set using the proper update
rule

d2 P td2 P R | p2,d2q P Uu “ td2 P r0, 2s | 2` d2 ď 3u “ r0, 1s .

He solves the new robust optimization model

minimize
x2

sup
d2Pr0,1s

x1 “ 3
hkkikkj

3 `4x2 ` 10p

d2 ´ x2 ´ 1 ď 0 , @d2 P r0, 1s
hkkkkkkkkikkkkkkkkj

2´ 3` d2 ´ x2 q`

s.t. x2 ě 0 ,

This allows him to confirm that he should not refresh the coffee
§ Worst-case cost stays 300$
§ Worst-case profit stays 600$´ 300$ “ 300$

No surprises.
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Scenario #2: Time Inconsistent Second-stage Preferences

At 9am, let d1 “ 2 be observed, the coffee-vendor changes hotel

Considering that the two hotels have an “independent” number of
thirsty guests, he prefers to be safe by updating the uncertainty set to
d2 P r0, 2s instead of d2 P r0, 1s
He now solves the new robust optimization model

minimize
x2

sup
d2Pr0,2s

3` 4x2 ` 10p

d2 ´ x2 ´ 1 ď 1´ x2 , @d2 P r0, 2s
hkkkkkkkkikkkkkkkkj

2´ 3` d2 ´ x2 q`

s.t. x2 ě 0 ,

This warns him that he should prepare an additional 1 (hundred) cups
§ Worst-case cost is now 700$ instead of 300$
§ Worst-case profit is now 600$´ 700$ “ ´100$

This issue can arise any time a new confidence region is
used to update the uncertainty set dynamically.
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One Possible Fix Using Bi-level Modeling

The following model accounts explicitly for time inconsistency

minimize
x1,x2p¨q

sup
dPU

x1 ` 4x2pd1q ` 10pd1 ` d2 ´ x1 ´ x2pd1qq
`

s.t. x1 ě 0

x2pd1q P arg min
x 12ě0

max
d 12PŨ2pd1q

c2x
1
2 ` bpd1 ` d

1
2 ´ x1 ´ x

1
2q
` , @d1 P U1 ,

where

U1 :“ td1 P R | Dd2, pd1,d2q P Uu

Ũ2pd1q models exactly the type of uncertainty set that is used in
stage #2 when d1 is observed

This model suggests preparing 4 (hundred) cups at 6am, and nothing
later. Under scenario #2, the worst-case profit is 200$!!!

The question remains of how to efficiently resolve these types of models...
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Takeaway Message About Time Consistency

Time consistency can easily become an issue when implementing
decisions obtained from robust multi-stage models

Quality of solution of robust multi-stage decision model is contingent
on the assumption that the “proper” update rule is followed:

Ut:T pd̄rt´1sq :“ tpdt, . . . ,dT q | pd̄1, . . . , d̄t´1,dt, . . . ,dT q P Uu .

Unclear how much can be loss when the uncertainty set is updated
differently

Should one account for inconsistency directly in the decision model?
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Key Insights About Robust Multi-stage Decision Making

Two common “pitfalls” might mislead the decision process
1 treating adjustable decisions as static decisions
2 updating the uncertainty set differently from the “proper” update rule

Correcting these issues requires skilful modeling and, in theory,
significant computational resources

From a practical point of view,
1 there is hope that simple policies might often be sufficient because

they are worst-case optimal
2 it is unclear to us whether time inconsistent updating should be

banished or accounted for in the robust multi-stage model?

In any case, it is important to acknowledge these issues in reporting
decisions that are prescribed by these models
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Future Directions

Full theoretical understanding of quality of simple policies

Development of decomposition schemes for accelerating resolution of
robust multi-stage problems

Identify tractable conservative approximation methods for problems
with integer or random recourse variables

Advanced methods that provide the decision maker with better
control of temporal correlation, level of conservatism, and time
consistency
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Thank you for attending! Questions?...
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