
CS255: Cryptography and Computer Security Winter 2012

Assignment #2
Due: 5pm Friday, Feb. 17, 2012.

Problem 1. Merkle hash trees.
Merkle suggested a parallelizable method for constructing hash functions out of com-
pression functions. Let f be a compression function that takes two 512 bit blocks
and outputs one 512 bit block. To hash a message m one uses the following tree
construction:

Block 1 Block 2 Block 3 Block 4 Block 15Message Block 16

msg-len

Hash

f f f

ff

f

f

For similicity, let’s assume that the number of blocks in m is always a power of 2.

a. Prove that if one can find a collision for the resulting hash function then one can
find collisions for the compression function.

b. Show that if the msg-len block is eliminated (e.g. the contents of that block is
always set to 0) then the construction is not collision resistant.

Problem 2. In the lecture we saw that Davies-Meyer is often used to convert an ideal block
cipher into a collision resistant compression function. Let E(k,m) be a block cipher
where the message space is the same as the key space (e.g. 128-bit AES). Show that
the following methods do not work:

f1(x, y) = E(y, x)⊕ y and f2(x, y) = E(x, x)⊕ y ⊕ x

1

That is, show an efficient algorithm for constructing collisions for f1 and f2. Recall
that the block cipher E and the corresponding decryption algorithm D are both known
to you.

Problem 3. Suppose we implement the CBC-MAC using a PRP (E,D). Show that for any
key k the function H(m) := rawCBCE(k,m) is not collision resistant. That is, for an
arbitrary key k show how to construct distinct m and m′ such that rawCBCE(k,m) =
rawCBCE(k,m′). Note that here k is public.

Problem 4. Suppose user A is broadcasting packets to n recipients B1, . . . , Bn. Privacy is
not important but integrity is. In other words, each of B1, . . . , Bn should be assured
that the packets he is receiving were sent by A. User A decides to use a MAC.

a. Suppose user A and B1, . . . , Bn all share a secret key k. User A MACs every packet
she sends using k. Each user Bi can then verify the MAC. Using at most two
sentences explain why this scheme is insecure, namely, show that user B1 is not
assured that packets he is receiving are from A.

b. Suppose user A has a set S = {k1, . . . , km} of m secret keys. Each user Bi has some
subset Si ⊆ S of the keys. When A transmits a packet she appends m MACs
to it by MACing the packet with each of her m keys. When user Bi receives a
packet he accepts it as valid only if all MAC’s corresponding to keys in Si are
valid. What property should the sets S1, . . . , Sn satisfy so that the attack from
part (a) does not apply? We are assuming all users B1, . . . , Bn are sufficiently far
apart so that they cannot collude.

c. Show that when n = 10 (i.e. ten recipients) the broadcaster A need only append
5 MAC’s to every packet to satisfy the condition of part (b). Describe the sets
S1, . . . , S10 ⊆ {k1, . . . , k5} you would use.

Problem 5. CBC padding attack. Recall that when using CBC mode, TLS pads messages
to a multiple of the block length by appending a t byte pad for a suitable value of t
and all bytes of the pad are set to t − 1. For example, if a 2 byte padded is needed,
TLS appends (1, 1) to the plaintext prior to CBC encryption. The recipient, after
decrypting the CBC chain, checks that the pad has the correct format and if not
rejects the ciphertext. A bug in older versions of OpenSSL let the attacker learn if
ciphertext rejection happened due to a bad pad.

Now, suppose an attacker intercepts a target ciphertext cfull. The attacker deletes the
last block of cfull thereby deleting any padding blocks. Let c be the resulting truncated
ciphertext and let m be the result of decrypting this c using CBC decryption. Your
goal is to show that this OpenSSL bug can let the attacker test if the last of byte of m
is equal to some byte g of the attacker’s choosing. Using c, construct a ciphertext c′

that has the following property: when c′ is sent to the server, the decryption of c′ will
end with a valid pad if the last byte of m is equal to g and will end with an invalid
pad (w.h.p) otherwise. By sending c′ to the server, the attacker can therefore learn if
m ends with g.

2

note: In principle, the attacker can repeat this experiment for all 256 values of g
until a match is found. He then learns the last byte of m. However, TLS tears down
the connection and renegotiates a new key when a pad error occurs and therefore
this typically cannot be applied to TLS. Nevertheless, when using IMAP over TLS,
the IMAP server repeatedly sends the user’s password to the IMAP server giving the
attacker a perfect opportunity to mount a repeated attack and learn the user’s password
one byte at a time.

Problem 6. In this problem, we see why it is a really bad idea to choose a prime p = 2k +1
for discrete-log based protocols: the discrete logarithm can be efficiently computed for
such p. Let g be a generator of Z∗p.

a. Show how one can compute the least significant bit of the discrete log. That is,
given y = gx (with x unknown), show how to determine whether x is even or odd
by computing y(p−1)/2 mod p.

b. If x is even, show how to compute the 2nd least significant bit of x.
Hint: consider y(p−1)/4 mod p.

c. Generalize part (b) and show how to compute all of x.
Hint: let b ∈ {0, 1} be the LSB of x obtained using part (a). Try setting y1 ← y/gb

and observe that y1 is an even power of g. Then use part (b) to deduce the second
least significant bit of x. Show how to iterate this procedure to recover all of x.

d. Briefly explain why your algorithm does not work for a random prime p.

Problem 7. Conference key setup.
Parties A1, . . . , An and B wish to generate a secret conference key. All parties should
know the conference key, but an eavesdropper should not be able to obtain any in-
formation about the key. They decide to use the following variant of Diffie-Hellman:
there is a public prime p and a public element g ∈ Z∗p of order q for some large prime q
dividing p− 1. User B picks a secret random b ∈ [1, q − 1] and computes y = gb ∈ Z∗p.
Each party Ai picks a secret random ai ∈ [1, q − 1] and computes xi = gai ∈ Z∗p. User
Ai sends xi to B. User B responds to party i by sending zi = xb

i ∈ Z∗p.

a. Show that party i given zi (and ai) can determine y.

b. Explain why (a hash of) y can be securely used as the conference key. Namely,
explain why at the end of the protocol all parties A1, . . . , An and B know y and
give a brief informal explanation why an eavesdropper cannot determine y.

c. Prove part (b). Namely, show that if there exists an efficient algorithm A that
given the public values in the above protocol, outputs y, then there also exists an
efficient algorithm B that breaks the Computational Diffie-Hellman assumption
in the subgroup of Z∗p generated by g. Use algorithm A as a subroutine in your
algorithm B. Note that algorithm A takes as input a triple (g, gx, gy) and outputs
gx/y while algorithm B takes as input a triple (g, gx, gy) and outputs gxy

3

