
 English Access to Structured Data
Kyle D. Richardson1, Daniel G. Bobrow1, Cleo Condoravdi1, Richard Waldinger2, Amar Das3

1Palo Alto Research Center, Palo Alto, CA; {krichard, bobrow, condorav}@parc.com
2SRI International, Menlo Park, CA; waldinger@ai.sri.com

3Stanford University, Stanford, CA; das@stanford.edu

Abstract— We present work on using a domain model to guide
text interpretation, in the context of a project that aims to
interpret English questions as a sequence of queries to be
answered from structured databases. We adapt a broad-coverage
and ambiguity-enabled natural language processing (NLP)
system to produce domain-specific logical forms, using
knowledge of the domain to zero in on the appropriate
interpretation. The vocabulary of the logical forms is drawn from
a domain theory that constitutes a higher-level abstraction of the
contents of a set of related databases. The meanings of the terms
are encoded in an axiomatic domain theory. To retrieve
information from the databases, the logical forms must be
instantiated by values constructed from fields in the database.
The axiomatic domain theory is interpreted by the first-order
theorem prover SNARK to identify the groundings, and then
retrieve the values through procedural attachments semantically
linked to the database. SNARK attempts to prove the logical
form as a theorem by reasoning over the theory that is linked to
the database and returns the exemplars of the proof(s) back to
the user as answers to the query. The focus of this paper is more
on the language task; however, we discuss the interaction that
must occur between linguistic analysis and reasoning for an end-
to-end natural language interface to databases. We illustrate the
process using examples drawn from an HIV treatment domain,
where the underlying databases are records of temporally bound
treatments of individual patients.

Keywords: Natural language processing, Natural language
interfaces to databases, Deductive question answering, Theorem
proving, HIV drug resistance database.

I. INTRODUCTION
The dream of the semantic web is to provide access to the

world’s knowledge. Google and other search engines have
made it easy to search for textual documents that are likely to
contain statements that answer a user’s query—implicit in
keywords, or even laid out as a question. However, much of
the information available online is in the form of structured
databases rather than unstructured text.

 Users wishing to access information in databases confront
many barriers. A user may not know what sources exist, or
how the information is encoded in any given source. Answers
may not be present explicitly in any one source but may need
to be inferred or computed from information obtained from
several sources. Users must, in any case, be proficient in a
database query language, such as SQL. As an alternative,
natural language requires no special training and allows naïve
users to compactly express complex information that would
otherwise be hard to express in SQL or other formal query
languages. Using natural language to access structured
information has long been the goal of research on Natural

Language Interfaces to Databases (NLIDB), although work in
this area has diminished since the mid-1980s, in part because
of the difficulty of the task [2], [7].

A major challenge for building an NLIDB is developing a
high-precision system for linguistic analysis with enough
coverage to handle a wide range of NL queries. As a
workaround, recent work! has limited itself to ‘semantically
tractable queries’! "22#! or pursued alternative ‘hybrid’ NLP
approaches [13], [14], [15]. Even within more principled NLP
approaches [11], [12], it is common to attempt to map natural
language directly to SQL, in spite of well-known limitations
on the expressive power of SQL [2, p.22]!and the gap between
the vocabulary of the query and that of the database.!

In this paper, we describe our work in customizing a broad-
coverage, general-purpose NL system for building an NLIDB.
The premise is that by limiting the domain of discourse, we
can use the semantics of the domain to enable interpretation of
a much wider range of queries in noncontrolled English. Our
domain of application is HIV treatment using the Stanford
HIV Drug Resistance Database [24]. We have built a
prototype system, called Quadri [3], [27], which answers
English questions on the basis of the information in the
Stanford databases. The databases we access are temporal
[19], and describe drug regimens and tests that have been part
of the treatment protocol for HIV. These curated databases are
publicly available, but have seen less use than was expected
by researchers and clinicians in the field. By providing an NL
interface, we hope to significantly reduce the barriers to
accessing this information and make the databases more
widely available.
 The databases provide the grounding for the domain. They
provide tables of regimens, where a regimen for a given
patient comprises a set of drugs and has associated with it a
start date and an end date. They also specify times and results
for tests given to the patient (e.g., the number of copies per
milliliter of the virus in the blood, and characteristics of the
genotype of the virus). However, NL questions by clinicians
are posed at a more abstract level than asking directly for the
retrieval of specific data. Although these questions can be
answered with reference to grounded fields in the database, the
desired information is often described qualitatively instead of
quantitatively. The output of the linguistic analysis then would
require extra reasoning to get at the corresponding values,
since queries often include qualitative notions that need to be
recast in quantitative terms, which is how the information is
stored in the database. It is for this reason that we separate out
the language analysis task from the reasoning and retrieval
task. The linguistic analysis component is responsible for

providing a high-level, ‘implementation-independent’ [12]
description of the domain-specific information provided in the
NL query. The reasoning and retrieval component is later
responsible for fully aligning the language with the database
structure and going into the database and pulling out the
desired information requested in the NL query.

For instance, in our selected subject domain, we might have
the query Find all patients on a failing regimen for at least 30
weeks. The patients exhibited M184V. Given the domain
knowledge, we want to expand this to a conjunction of several
conditions that the retrieved patients must satisfy: the patients
must have had a regimen (or drug treatment) which eventually
failed. Furthermore, we have a temporal constraint: the
regimen must have a duration of at least 30 weeks. The second
part of the query is construed as a filter: it seeks those patients
satisfying the first part who, in addition, had a genotype test
that indicated the presence of the mutation M184V. While
some of this analysis can be embedded into the natural
language component, some of it requires domain knowledge
that goes beyond natural language understanding. A failing
regimen in the domain model, for example, is one where the
patient has a viral load test whose value is high after a certain
amount of time from the onset of the regimen. The value for a
viral load test is, in turn, high if its numerical result exceeds
some specified threshold. In the data source this is simply
indicated by a numerical viral load measurement for the
patient and a time stamp. The fact that the viral load test
occurred during the regimen has to be computed on the basis
of the time stamps associated with the test and the regimen.
The connection between a descriptive classification of
regimens and the properties with which a regimen must be
associated in a database in order to fall under a particular
classification category is not part of the linguistic analysis but
of the subsequent reasoning phase, carried out by the theorem
prover.

The idea of using an underlying specification of the
database model to zero in on a domain-specific NL
interpretation is a key part of the Quadri system. We use the
general-purpose, ambiguity-enabled NLP system BRIDGE
[4], which parses and maps NL queries to an abstract
knowledge representation (AKR). By providing an abstract
specification of the database model, which identifies sortal
relations in the database, temporal information, and other
relevant facts, we build a custom component on top of
BRIDGE that maps queries from AKR to an unambiguous
domain-specific logical form. This is passed to SRI’s theorem-
prover SNARK [25], which is equipped with an axiomatic
theory of the HIV drug-resistance domain that serves as our
data model. SNARK attempts to prove the theorem (or
theorems), invoking procedural attachments that provide a
semantic link to the various data resources. SNARK also has
special procedures that accelerate temporal reasoning. In what
follows, we describe each component in turn and show how it
applies to sample problems.

!

II. LANGUAGE ANALYSIS
A. Mapping to Domain-Specific Logical Forms

As an initial step, an English question is linguistically
analyzed. For the language task, we are using a deep
understanding system called BRIDGE [4], which provides a
general-purpose linguistic analysis. In other words, it provides
generic information about the language and preserves
ambiguity throughout the parsing and interpretation process.
Since our goal is to map unrestricted English to a precise
logical form that can be used by a first-order theorem prover,
using a robust system like BRIDGE that is already equipped to
handle a variety of linguistic phenomena is essential. The chief
challenge then is fitting the system to the target domain, and
this requires integrating knowledge of the domain and using
this information to guide the interpretation process.

To do the fitting, we develop a Language-Use Model
(LUM). A LUM is an abstract model of the subject domain
that provides a list of the sorts of objects in the domain, along
with a specification of how designated expressions in the
language map to these objects and relations. The
customization of BRIDGE involves building a LUM, and
going from a general-purpose semantic representation to a
domain-specific representation. Crucial to our LUM is a set of
argument signatures, which are specifications of the relations
that occur in the domain. These provide frames, loosely
speaking, for selecting local patterns that support the domain-
specific interpretation.

Argument signatures are defined in terms of domain
concepts and domain relations, which include concepts like
patient, medical-test, treatments, and retroviral-drug, and
relations such as regimen-contains-drug, and patient-has-test.
Corresponding to the domain concepts are vocabulary items in
the domain that must be identified. Relations are defined in
terms of the sort of their arguments. They might be related to
other relations and have additional properties. In our domain,
we are particularly interested in temporal relations. These are
indicated by linguistic structure, including tense, aspect,
prepositional phrases, and specific keywords. Implicit
concepts are also included, allowing limited reasoning to
occur on the language side, e.g., knowing that M184V
indicates the existence of a genotype test in the first example.

The LUM is integrated into the BRIDGE pipeline, as shown
in Figure 2. The initial component of the pipeline is a finite-
state machine that recognizes named entities [16]. We have
augmented these entities to include specialized biomedical
vocabulary and multiword expressions such as M184V
(mutation) and viral load (medical-test). The general-purpose
parser then creates a dependency structure that identifies
linguistic functions and arguments using the LFG language
engine [18]. All syntactic ambiguities are found and preserved
using a compact notation. Semantic processing then occurs to
normalize the dependency structure using an XFR rewrite
system described in [10]. These structures are later mapped to
an Abstract Knowledge Representation [5],[9], which has
facilities for time and date, entailment and contradiction
detection (ECD), among other features (see [4]). The LUM is

Figure 1: An example query with selected patterns
used on top of the full BRIDGE analysis as a filter. Domain-
specific terms are identified in the analysis, and local syntactic
patterns that correspond to pairs satisfying domain events are
selected and rewritten into domain-specific relations.
Alternative structures are discarded.

Figure 2: Quadri architecture
Figure 1 provides an analysis of an example query.

Particular words in the sentence are identified and associated
with a domain sort specified in the LUM. Syntactic patterns
indicated by the blue arrows are chosen, since the sorts of the
corresponding terms relate to underlying relations in the
domain listed above. In this case, the system initially produces
48 analyses, and alternative analyses not interpretable in the
domain are eliminated. On the edges of the blue arrows are the
corresponding AKR facts that relate the terms. Note that
relative clauses and coordination, among other complex
linguistic phenomena, are independently handled in the
system, and interpreted appropriately in the AKR. Who, for
example, is resolved to refer to the patient, and conjunction
between Norvir and Epivir is recognized to be a group object.

As another example, in the first query we have the
fragment patients on a failing regimen, which can be
syntactically analyzed either as [patients] [on a failing
regimen] or [patients [on a failing regimen]]. In the LUM,
there is the relation patient-has-regimen between a patient and
a treatment. Here regimen is identified as an instance of a

treatment, and the two terms are linked by the preposition on.
Alternative analyses, including the possible attachment of
failing regimen to the verb find, are eliminated, and the
particular relation is derived since the preposition in this case
is consistent with the interpretation. Similarly, the LUM might
indicate that treatments can fail, which has the consequence in
this example of identifying failing regimen as an instance of
this relation in the language.

B. Temporal and Implicit Concepts
Temporal information plays a critical role in the drug

resistance domain, since most queries relate to treatment
intervals and events (loosely speaking) that occur at different
stages of these intervals. A crucial part of the LUM then is
information about the temporal properties of these events,
including whether they are punctual (i.e., occurring at a point
in time), durative (i.e., occurring over an interval of time), and
how events are related to other events in time. Here, too, we
provide frames that help select the appropriate interpretation.
These frames come in two varieties. Some relate explicit
events and temporal concepts expressed in the language.
Others relate events with temporal concepts left implicit by the
language but overtly represented in the logical form.

An example of the first type is illustrated in the fragment
patients on a failing regimen for at least 30 weeks. A regimen
(treatment) is a durative event that has a start date and an end
date in the database. Since it is durative, the LUM indicates
that it can be associated with a time interval that specifies the
duration of the desired treatment. The system therefore looks
for a pattern in the language between a treatment and a time
interval, and finds an analysis that links the regimen with the
interval week via the preposition for. Alternative analyses are
eliminated, and the preposition for is interpreted as indicating
the duration of the regimen. The modified numeral at least 30
is independently interpreted in the BRIDGE system as a
complex cardinality on week, and is normalized to be ‘greater
than or equal to’. This allows us to conclude in the analysis
that the treatment occurred over some time period, and that the
duration of this period is greater than or equal to 30 weeks.

Punctual events have implicit time points associated with
them. Having a medical test, for example, is associated with a
date stamp in the database. In order to bring out this fact, we
expand the relation to have a time variable. The time of the
test might also relate to a specified point in a given time

period. The intended meaning of the query The patient had a
high viral load after 24 weeks on the regimen is that the
patient had a medical test measuring viral load shortly after the
first 24 weeks of the regimen. The frame indicates a relation
between a medical test and a time period, and the system
attempts to find an instance of this pattern. The generated time
point associated with the test is then placed in relation with the
interval. We also want to conclude that the 24 weeks is part of
the total duration of the regimen. This fact is derived
independently in the BRIDGE system in a special module that
handles data and time specification. Figure 3 gives a portion of
the AKR analysis with this information. In bold are the
selected role relations [5] in the AKR that provide the basis for
the domain relations, which are indicated in blue. Alternative
analyses are struck through to indicate that they are
eliminated.

Query: Find patients with a high viral load after 24 weeks on a regimen.
Choice Space: xor(A1,A2,A3,…,A45) iff 1 (45 analyses or ‘choices’)
(or(A32,or(or(or(or(A33,A34),A27,A25),A26….)…. (place in ‘choice space’)
 role(cardinality_restriction,week-26,24) (Time-Period, Cardinality)
 ! interval-has-duration(week-26,24 weeks)
or(or(or(A45,or(A41,A42),A39)….)….
 role(nn_element,viral_load_test-16,high-11,1) (Medical-Test, Test-Value)
 ! medical-test-has-value(viral_load_test-16, high-11)
or(or(or(A28,A29),A24),A23):
 role(prep(after),patient-7,24-22)
or(or(or(A42,A43),or(A38,A39),A33,A32),A10,A9):
 role(prep(after),patient-7,week-26)
or(or(A30,A31),A22,A21):
 role(prep(after),viral_load_test-16,24-22)
or(or(or(A41,or(A44,A45)),A40,or(A35,A36,A37),A34)…
 role(prep(after),viral_load_test-16,week-26) (Viral-load, Time-Period)
 ! medical-test-has-time(viral_load_test-16, time_point-1)
 ! occurs-after(time_point-1, week-26)
or(A36,or(or(or(A27,A28,A29),…)
 role(prep(during),week-26,regimen-37) (Time-period, Treatment)
 ! occurs-during(week-26,regimen-37)
or(or(A17,A18),or(or(A13,A14),A11,A12),A4,or(A1,A2,A3)):
 role(prep(with),find-1,viral_load_test-16)
or(or(or(or(A28,A29),A24,….)
 role(prep(with),patient-7,viral_load_test-16) (Patient, Medical-Test)
 ! patient-has-test(patient-7, viral_load_test-16)
…)

Figure 3. AKR analysis of a query

 Temporal prepositions such as after and before are
interpreted as particular places in time relative to the intervals
they modify. More complex modifiers include at the end of X,
or at the start of X, and pinpoint particular places within
interval X. Combinations of these types of modifiers also
occur, such as after the end of X, near the start of X, and so on.
The LUM provides a schema for how to represent this
information (similar in spirit to [20]). In The patient had a
viral load after the end of 24 weeks, we are trying to identify a
place in time that is after an interval of 24 weeks. As before,
we know that it is the time point of the genotype test that is
located at this particular space in time given the frame that
relates the medical test with the time period.

The language analysis is filled out in other ways using the
LUM. For example, some events expressed in the language
are part of larger events that we want to identify. Having a
mutation M184V means having a genotype test that indicates
the M184V mutation. This is detectable in the database, since
the field corresponding to the test result or mutation is

embedded into the larger medical-test table. The same is true
for drugs, which always have a related treatment. If the query
does not explicitly mention a treatment, we generate a
treatment variable in order to make this explicit. In The patient
failed norvir after 24 weeks, we assume that there is an
implicit treatment variable containing the drug Norvir and that
the treatment is at least 24 weeks long. In general, these
expansions are done in order to align as closely as possible the
language with the database structure, which the LUM
ultimately models.

C. Quantifiers and Multiple Sentences
Quantifiers and logical connectives are an important part of

doing a high-precision analysis, and quantifier scope must be
specified in order to do the subsequent theorem-proving. We
must be able to distinguish Patients not all of whose regimens
contain Norvir from Patients all of whose regimens do not
contain Norvir, for example.

In the AKR analysis, semantic facts are represented as
“flattened” clauses [9], [10]. The scope of operators like
negation that is grammatically fixed is specified in the flat
representation, but the relative scope of quantifiers that is not
grammatically fixed is not specified. The nesting information
therefore needs to be built out of these structures. Figure 4
shows the AKR for the example Every patient is on some
regimen with Norvir, and the full domain-specific
interpretation with quantifier structures is displayed.

In the AKR, quantifiers are specified as cardinality
restrictions on the terms. Terms that do not have overt
quantifiers are treated by default as existential. From the
cardinality relation, a quantifier structure is built that relates
each quantifier with its term, and specifies the type of the
term. “Scopes-over” relations are created that describe nesting

Every patient is on some regimen with norvir.

AKR
 role(cardinality_restriction,norvir-1,mass)
 role(cardinality_restriction,patient-2,all(pl))
 role(cardinality_restriction,regimen-3,some(sg))
 role(copula_subj,be-3,patient-2)
A1:
 role(prep(with),be-3,norvir-1)
A2:
 role(prep(with),regimen-3,norvir-1)
 role(tprep(on),patient-2,regimen-3)

DOMAIN-INTERPRETATION
((top_level patient_2 2)
(quant exists norvir_1 sort drug)
(quant all patient_2 sort patient)
(quant exists regimen_3 sort treatment)
(exists_group ex_grp_4 (regimen_3 norvir_1))
(scopes_over nscope patient_2 ex_grp_4)
(in nscope ex_grp_4 (patient-has-regimen patient_2 regimen_3))
(in nscope ex_grp_4 (regimen-has-drug regimen_3 norvir_1))….)

Figure 4. Domain interpretation from AKR
between the quantified terms. Scope ambiguity is resolved by
the domain information. In the relation patient-has-regimen,
patient is treated as the head of the relation in the frame, and is
therefore assumed to outscope whatever its modifier is. This
leads to the interpretation that each patient had that patient’s

own drug, as opposed to there being a unique drug that each
patient has, which is not the intended meaning. Since the
different orderings of existentials does not cause ambiguity,
we place all the existential variables into a list, which the
patient variable scopes over in this case. The relations are
placed within the nscope (nuclear scope) over the existential
list.

Quantifier scope ambiguity continues to be a major area of
research in computational semantics, and underspecification
formalisms, such as Minimal Recursion Semantics (MRS, [8]),
have become the standard approach. The basic idea is to rely
on a single compact and underdetermined semantic
representation, rather than having to enumerate each fully
specified interpretation [21]. From these underspecified
representations, particular interpretations can be selected (or
constraint solved, [6]) in accordance with the context. Our
approach is distinct, in that we avoid having any information
about quantifier scope in the AKR, which eliminates the need
for developing an underspecified representation altogether.
Quantifier information is represented uniformly throughout
each AKR analysis, and nesting structures are built later using
the domain model directly. Depending on the domain,
quantifier scope for a single sentence can still be interpreted
differently.

Scopes-over assertions are also used to specify the scope of
negation, and detect definiteness. Definiteness is an important
feature in doing multi-sentence queries, which our system can
handle. Multi-sentence queries allow a user to incrementally
specify constraints on the answers that user wants to see.
Definite reference (e.g. saying the patients, or those regimens)
is used to link later elements to those mentioned earlier.
Quantified concepts mentioned in a first sentence are
remembered as possible targets for definite reference.

Definite references create a new quantified variable, but
because it is indicated as definite (referring to a previously
known element), a search is made backward to find the most
recent mention of a variable of the same sort. In the linguistic
analysis, we create an expression equal(target-variable,
definite-variable). The meaning of this is that the target
variable must satisfy all the constraints specified for the
definite variable. In the description about the theorem prover,
we explain how we implement this.

D. Portability and Future Work
Porting to a new domain requires being able to create a

LUM for that domain. Since the LUM is largely an abstraction
of the data source, many argument signatures can be inferred
from the database schema. For example, the relation patient-
has-regimen can be inferred from there being a join relation
between the patient and treatment tables (see [14] for details
on how to generate queries in this way). However, the domain
vocabulary must be identified, and in specialized domains
such as medicine, many of the words (e.g, M184V) do not
occur in the basic WordNet ontology and must be manually
added or learned from a corpus of documents.

We have done an experiment in porting our system to a new
domain [23]. In the DARPA-sponsored Machine Reading
project, an ontology has been provided (encoded in RDF)
dealing with terrorists and events in which they may be
involved (demonstrations, bombings and killings). We used
the RDF class definition triples that provide a specification of
the domain relations and their arguments, to construct relation-
argument signatures for this new LUM. The concepts in this
domain are more common and most have corresponding
elements in our WordNet-based taxonomy (e.g., for Geo-
Political-Entity, Person, Human-Organization). The event
hierarchy was more specialized, with events such as
HumanKillingEvent, with roles of AgentKilling and
PersonKilled. Using the Quadri system with minimal
modifications except for the change of ontology (and adding
39 new relation-argument signatures) we successfully ran a
number of examples.

Figure 5 provides an example query in this domain with the
RDF entries. In the RDF template, relations are specified with
their argument types. A HumanInjuryEventPersonInjured
relation, for example, occurs between a Person and a
HumanInjuryEvent. By including this information in
BRIDGE, our system finds local patterns that link these two
concepts together. In the example query, “Which member of
… injured of the president’s daughter …” the word injure is
recognized as indicating a HumanInjuryEvent, and daughter is
a person, which fits the RDF signature.

Relations in the domain often have associated restrictions.
A person-has-daughter relation is keyed by a possessive

Figure 5. Information extracted from an RDF specification of another domain

relation in the parsed structure (i.e., a possessive verb, or
genitive). It is not keyed by just having a local pattern between
two words in the sentence. If you say John knows the
daughter, it does not follow that John has a daughter. In this
case, the RDF naming conventions were uniform enough to
give clues into what the restrictions are in the language. If a
relation has the word have in it, we assume that in the
language we need to look for a possessive pattern between the
concepts. So, in addition to providing information about
domain relations, we were able to extract some information
about the language structure, which is a key part of the LUM.
Further work will look at other ways of inferring the
restrictions on relations in the language from domain corpora,
and in general on learning LUMs from other sources.

III. REASONING COMPONENT
The deductive component of Quadri consists of the

theorem-proving system SNARK, equipped with an axiomatic
theory of the HIV drug-resistance domain. Although in
principle any sufficiently powerful theorem prover can play
this kind of role, SNARK [25], a first-order theorem prover
specially intended for applications in software engineering and
artificial intelligence, is particularly appropriate. It contains
many of the most successful features of automatic theorem
provers, including resolution (for general reasoning),
paramodulation (for reasoning about equality), and term
rewriting (for representing definitions and simplifications), as
well as procedures that perform accelerated inference for
selected concepts (e.g., numerical computation, temporal and
spatial reasoning). We rely on SNARK’s mechanisms for
answer extraction (obtaining answers to questions from
proofs) and procedural attachment. A sort mechanism keeps
track of the sorts of all terms and prevents a sorted variable
from being replaced by a term of an incompatible sort; this
rules out many dead ends in the search. SNARK has strategic
control features that allow us to tailor it to exhibit high
performance in a selected subject domain. It is mature
software that has been applied in a number of successful
systems (e.g., NASA’s Amphion [17], and SRI’s Quark [28])

Temporal reasoning is of particular importance in medical
subject domains. SNARK has a version of the Allen calculus
[1] for reasoning about temporal relations between entities.
While the original Allen calculus deals only with temporal
intervals, SNARK’s version deals with both time points and
time intervals. Time points can be dates and times, and a
procedural attachment can perform date and time arithmetic.
This is quite a bit faster than if the computation were carried
out axiomatically. Let us examine the behavior of the
reasoning component of Quadri on a simple example. Then
we can turn to a multisentence example.

A. Simple Example.
Consider the query What patients had a high viral load?

(This question is simpler than a researcher is likely to ask;
virtually all patients in the database have a high viral load at
some point.) The semantic representation for this sentence
includes the following:

top_level(patient_5, 1)
quant(exists patient_5 sort patient)
quant(exists viral_load_test_2 sort viral_load_test)
exists_group (ex_grp_6 (patient_5 viral_load_2 …))
in nscope (ex_grp_6
 patient-has-test(patient_5, viral_load_test_2))
in nscope (ex_grp_6
 test-has-value(viral_load_test_2, high_3)))

This tells us that patient_5 and viral_load_test_2 are both
existentially quantified and have the relations patient-has-
test and test-has-value within their scope.

From this and other components of the semantic
representation, Quadri constructs a conjecture:

 exists(patient_5 sort patient)
 exists(viral_load_test_2 sort viral_load_test)
 exists(high_3 sort test_result)
 patient-had-test(patient_5, viral_load_test_2) &
 test-has-value(viral_load_test_2, high_3) &
 within-range(high_3, high)

In other words, we must show the existence of a patient, a
viral load medical test, and a test value such that the patient
had the viral-load-test with a numerical value that was
within the range regarded as high. This is the conjecture that
is passed to SNARK.

SNARK employs its axiomatic theory for the HIV-drug-
resistance subject domain with appropriate procedural
attachments to prove that the conjecture is a theorem in this
theory. The answer-extraction mechanism keeps track of the
substitutions made for all the existentially quantified variables
in the conjecture necessary to complete the proof; these
constitute the answer that is extracted. In general, there will
be many proofs for the same theorem, each of which may
yield a different answer.

In particular, the relation patient-has-test has a
procedural attachment to the Stanford HIV Drug Resistance
Database. This database knows the list of medical tests for
each patient; the procedural attachment yields an identifier for
each patient and that patient’s corresponding medical tests.

One procedural attachment reveals that patient Mr. A had a
viral load test AV881130 (the data in this discussion is not
real). Another indicates that the result of this test was a viral
load of 5, on the logarithmic scale. The proof, however, is not
completed by procedural attachment alone; it requires the use
of axioms in the HIV drug resistance theory. The axiom

in-range(viral-load, log-scale(?number)) ! ?number >= 4

tells us that, in the logarithmic scale, 5 is regarded as high,
since it is more than 4. (Note that symbols with question
marks are variables, which can be replaced by other terms
during the proof. The name of the variable indicates its sort;
e.g. ?number is a variable of sort number and can be replaced
only by a term, such as 5, which is also of sort number.)

When the proof is complete, SNARK can extract an answer.
For this proof, the desired answer is Mr. A. SNARK will also
report the values found for the other existentially quantified
variables in the theorem, i.e., the identifier of the test,

AV881130, and its result, 5 on the logarithmic scale. Other
proofs will yield different answers. Most of these correspond
to other patients, but some will correspond to other viral load
tests that Mr. A has taken.

B. Multipart Example.
Consider the multipart query we have used as an example:

Find all patients on a failing regimen for at least 30 weeks.
The patients exhibited M184V. The sentence is transformed by
Bridge into a semantic representation, which is a flat,
unordered set of conditions that describe the logical form(s).

The initial set of forms for the query is:

top_level(patient_3, 5)
top_level(patient_2, 45)
quant(exists patient_3 sort patient)
quant(exists patient_2 sort patient)
definite(patient_2)
equal(patient_3, patient_2)

This initial set tells Quadri that, corresponding to the two

parts of the query, there are two logical forms, one with top-
level quantifier exists(patient_3) and the other with top-level
quantifier exists(patient_2), each of sort patient. The indexes
on the top-level variables, 5 and 45, respectively, tell Quadri
that the logical form for patient_3 must be solved before the
logical form for patient_2, because its index is less. Another
condition in the representation, definite(patient_2), tells us
that variable patient_2 is the same as an earlier variable in the
query, and the condition equal(patient_3, patient_2) says
that patient_2 is actually the same as patient_3. This
corresponds to the linguistic intuition that the patients referred
to in the second part of the query, The patients exhibited
M184V, are the same as those mentioned in the first part, Find
all patients on a failing regimen for at least 30 weeks.

Other conditions describe the scoping of the quantifiers and
their relationship to the atomic propositions of the logical
form. For instance, the condition

in scope(ex_group_10,
 patient-has-regimen(patient_3, regimen_4))

tells us that a certain group of quantifiers (defined elsewhere)
has the proposition patient-has-regimen in its scope.

From this information, Quadri pieces together the first
logical form,

exists(patient_3 sort patient)
 exists(regimen_4 sort regimen)
 exists(week_5 sort time-interval)
 patient-has-regimen(patient_3, regimen_4) &
 failing(regimen_4) &
 duration(regimen_4, week_5) &
time_measure(week_5,complex_card(>=,30), week)

In other words, we must seek a patient with a failing regimen
whose duration is at least 30 weeks. This logical form is
passed as a conjecture to be proved by SNARK.
 For instance, Mr. A has two regimens, Regimen A.1
and Regimen A.2. Each of these is returned to SNARK,

which will resume two separate branches of the proof search,
with regimen_4 replaced by Regimen A.1 and Regimen A.2,
respectively. The relation time_measure has no procedural
attachment itself, but the condition

time_measure(week_5, complex_card(>=, 30), week))

can be transformed according to the following axiom (a
rewrite rule) in the domain theory:

 time_measure(?time-interval,
 complex_card(>=, ?number), ?unit)
 !
 duration(?time-interval) >= ?unit(?number)

taking ?time-interval to be week_5, ?number to be 30, and
?unit to be week. The resulting formula is

duration(week_5) >= week(30)

i.e., the duration of time interval week_5 must be at least 30
weeks. This formula is transformed by other axioms in the
axiomatic theory; for instance the duration of a time interval is
the arithmetic difference between its finish point and its start
point, i.e.,

duration(?time-interval) =
 finish-time(?time-interval) – start-time(?time-interval)

While the database does not store the duration of each regimen
explicitly, it does know its start date and finish date. Once the
time interval week_5 is replaced by a concrete time interval,
with dates as its end points, procedural attachments will find
its endpoints, compute its duration, and check if it is greater
than 30 weeks. As it turns out, Regimen A.1 is less than 30
weeks long, but Regimen A.2 is longer.

As a result, Patient Mr. A is returned by SNARK as one of
many answers to the first part of the query, with Regimen A.2
as the specified failing regimen.

The second part of the query requires us to discard from the
set of answers patients who do not exhibit the mutation
M184v, corresponds to the second logical form,

exists(patient_2 sort patient)
 exists(genotype_test_7 sort genotype_test)
 exists(time_point_8 sort time-point)
 exists(m184v_1 sort mutation)
 patient-has-test(patient_2, genotype_test_7) &
 test-has-value(genotype_test_7, m184v_1) &
 m184v_1 = m184v &
 test-has-time(genotype_test_7, time-point_8) &
 patient_2 = patient_3.

In other words, we seek a patient who has had a genotype test
on a certain date that revealed the presence of a mutation
M184v.

Note that the logical form specifies that patient_2 =
patient_3, because the semantic representation told us that
patient_2 must be equal to patient_3. Note that the variable
patient_3 is outside the scope of the quantifier

exists(patient_3… from the first logical form. This second
logical form is conjoined with the first logical form and
submitted to SNARK. Special treatment is given to the
quantifiers during this conjunction to ensure that the variable
is pushed within the scope of the appropriate quantifier.

The list of answers for the multipart query includes Mr. A,
along with his failing regimen (A.2) and the date for his
genetic test. The user may then ask further questions, to
restrict the set of answers still further or to request additional
information.

IV. CURRENT STATUS
The Quadri prototype is now capable of handling queries at

the level of the examples in this paper, which includes limited
anaphoric reference and multi-sentence questions. It provides
feedback to the user of the translation of the logical form, can
prove the associated theorems, and can query a snapshot of the
database to identify cohorts of patients that satisfy stated user
criteria. Next steps include enabling users to provide feedback
to choose among alternative interpretations, and querying the
databases in full.

Our planned evaluation of the Quadri system encompasses
multiple dimensions. The first is the scope of queries that can
be handled, and how these cover what potential users would
want to ask. For this purpose, we have gathered questions
from researchers at the Stanford Biomedical Informatics
Research group. We have also collected statements from
articles that described HIV cohorts being used for clinical
trials, and adapted them so that they could be answered from
the database set. The second dimension is the language
coverage, that is, how easy it is to use language that the system
would understand. For this we had people create different
paraphrases of a number of the queries on our first list. The
third dimension is correctness – that is, did the system return
all and only those patients specified in the query. For this we
have created a gold standard based on an expert creating and
running an SQL query for some of the queries.

ACKNOWLEDGMENTS

We thank Robert Shafer and Soo-Yon Rhee for consultation
on HIV Drug Resistance in general and for information about
the Stanford HIV Drug Resistance Database in particular;
Mark Stickel for sharing expertise on the use of the SNARK
theorem proving system; Will Bridewell for comments,
suggestions, and discussion. This work was supported by
Award Number RC1LM010583 from the National Library of
Medicine. The content is soley the responsibility of the authors
and does not necessarily represent the official views of the
National Library of Medicine or the National Institutes of
Health.

REFERENCES
[1] Allen, J. “Maintaining knowledge about temporal intervals,”

Communications of the ACM. 1983.

[2] Androutsopoulos, I. et al. “Natural language interfaces to databases,”
Natural Language Engineering, 2(1):29-81, 1995.

[3] Bobrow, D.G. et al. “Deducing answers to English questions from
structured data,” in Proc. IUI’11, 2011.

[4] Bobrow, D.G. et al. “PARC’s BRIDGE and question answering system,”
in Proc. GEAF ‘07, 2007.

[5] Bobrow, D.G. et al. “A basic logic for textual entailment,” in Proc. AAAI
Workshop on Inference for Textual Question Answering, 2005.

[6] Burchardt, A. et al. “Computational Semantics,” course text, ESSLLI
2004. http://www.coli.uni-saarland.de/projects/milca/courses/esslli04/

[7] Copestake, A. et al. “Natural language interfaces to databases,” The
Knowledge Engineering Review. 5:225-249. 1990.

[8] Copestake, A. et al. “Minimal recursion semantics: an introduction,”
Research on Language and Computation. 3:281-332. 2005.

[9] Crouch, R. “Packed rewriting for mapping semantics to KR,” in Proc.
Sixth International Workshop on Computational Semantics, 2005.

[10] Crouch, R. et al. “Semantics via f-structure rewriting,” in Proc. LFG06,
2006.

[11] Frank, A. et al. “Question answering from structured knowledge
sources,” Journal of Applied Logic, 5, 20-48. 2007.

[12] Frank, A. et al. “Querying structured knowledge sources,” in Proc. AAAI
Workshop on Question Answering in Restricted Domains, 2005.

[13] Hallett, C. et al. “Composing questions through conceptual authoring,”
Computational Linguistics, 33(1):105-133, 2007

[14] Hallett, C. “Generic querying of relational databases using natural
language generation techniques,” in Proc. 4th International Natural
Language Generation Conference, 2006.

[15] Kang, I. et al. “Lightweight natural language database interfaces,” in
Proc. NLDB’04, 2004.

[16] Kaplan, R. et al. “Integrating finite-state technology with deep LFG
grammars,” in Proc. Workshop on Combining Shallow and Deep
Processing for NLP (ESSLI), 2004.

[17] Lowry, M.R. et al. “AMPHION: automatic programming for scientific
subroutine libraries,” in Proc. ISMIS’94, 1994.

[18] Maxwell, J.T. et al. “An efficient parser for LFG,” in Proc. LFG’96,
1996.

[19] O’Connor, M. et al. “The Chronus II temporal database mediator,” in
Proc. AMIA02, 2002.

[20] Pratt, I. et al. “The expressive power of the English prepositional
system,” in Proc. Time-94'

[21] Pinkal, M. “On semantic underspecification” in H. Bunt and R. Muskens
(eds) Computing Meaning. Kluwer Academic Publishers. 1999.

[22] Popescu, A. et al. “Towards a theory of natural language interfaces to
databases,” in Proc. IUI’03, 2003.

[23] Richardson, K. et al. “Using a general-purpose NLP system for mapping
English to RDF,” poster, DARPA Machine Reading Phase III Kickoff
Meeting. 2011.

[24] Shafer, R.W. “Rationale and uses of a public HIV drug-resistance
database,” Journal of Infectious Disease, 194 Suppl 1:S51-8. 2006.

[25] Stickel, M. et al. “A guide to SNARK,”
www.ai.sri.com/snark/tutorial.html, 2000.

[26] Stickel, M. et al. “Deductive composition of astronomical software from
subroutine libraries,” Automated Deduction, 12, 1994.

[27] Waldinger, R. et al. “Accessing structured health information through
English queries and automatic deduction,” in Proc. of AAAI Spring
Symposium on Health Communications, 2011.

[28] Waldinger, R. et al. “Deductive question answering from multiple
resources,” in New Directions in Question Answering. Maybury, M (ed)
MIT Press. 2004.

