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Abstract— We present work on using a domain model to guide 
text interpretation, in the context of a project that aims to 
interpret English questions as a sequence of queries to be 
answered from structured databases. We adapt a broad-coverage 
and ambiguity-enabled natural language processing (NLP) 
system to produce domain-specific logical forms, using 
knowledge of the domain to zero in on the appropriate 
interpretation. The vocabulary of the logical forms is drawn from 
a domain theory that constitutes a higher-level abstraction of the 
contents of a set of related databases. The meanings of the terms 
are encoded in an axiomatic domain theory. To retrieve 
information from the databases, the logical forms must be 
instantiated by values constructed from fields in the database. 
The axiomatic domain theory is interpreted by the first-order 
theorem prover SNARK to identify the groundings, and then 
retrieve the values through procedural attachments semantically 
linked to the database. SNARK attempts to prove the logical 
form as a theorem by reasoning over the theory that is linked to 
the database and returns the exemplars of the proof(s) back to 
the user as answers to the query. The focus of this paper is more 
on the language task; however,  we discuss the interaction that 
must occur between linguistic analysis and reasoning for an end-
to-end natural language interface to databases. We illustrate the 
process using examples drawn from an HIV treatment domain, 
where the underlying databases are records of temporally bound 
treatments of individual patients.  

Keywords: Natural language processing, Natural language 
interfaces to databases,  Deductive question answering, Theorem 
proving, HIV drug resistance database.  

I.  INTRODUCTION  
The dream of the semantic web is to provide access to the 

world’s knowledge.  Google and other search engines have 
made it easy to search for textual documents that are likely to 
contain statements that answer a user’s query—implicit in 
keywords, or even laid out as a question. However, much of 
the information available online is in the form of structured 
databases rather than unstructured text.   

 Users wishing to access information in databases confront 
many barriers. A user may not know what sources exist, or 
how the information is encoded in any given source.  Answers 
may not be present explicitly in any one source but may need 
to be inferred or computed from information obtained from 
several sources. Users must, in any case, be proficient in a 
database query language, such as SQL. As an alternative, 
natural language requires no special training and allows naïve 
users to compactly express complex information that would 
otherwise be hard to express in SQL or other formal query 
languages. Using natural language to access structured 
information has long been the goal of research on Natural 

Language Interfaces to Databases (NLIDB), although work in 
this area has diminished since the mid-1980s, in part because 
of the difficulty of the task [2], [7].  

A major challenge for building an NLIDB is developing a 
high-precision system for linguistic analysis with enough 
coverage to handle a wide range of NL queries.  As a 
workaround, recent work! has limited itself to ‘semantically 
tractable queries’! "22#! or pursued alternative ‘hybrid’ NLP 
approaches [13], [14], [15]. Even within more principled NLP 
approaches [11], [12], it is common to attempt to map natural 
language directly to SQL, in spite of well-known limitations 
on the expressive power of SQL [2, p.22]!and the gap between 
the vocabulary of the query and that of the database.!

In this paper, we describe our work in customizing a broad-
coverage, general-purpose NL system for building an NLIDB. 
The premise is that by limiting the domain of discourse, we 
can use the semantics of the domain to enable interpretation of 
a much wider range of queries in noncontrolled English.  Our 
domain of application is HIV treatment using the Stanford 
HIV Drug Resistance Database [24]. We have built a 
prototype system, called Quadri [3], [27], which answers 
English questions on the basis of the information in the 
Stanford databases. The databases we access are temporal 
[19], and describe drug regimens and tests that have been part 
of the treatment protocol for HIV. These curated databases are 
publicly available, but have seen less use than was expected 
by researchers and clinicians in the field.  By providing an NL 
interface, we hope to significantly reduce the barriers to 
accessing this information and make the databases more 
widely available.   
    The databases provide the grounding for the domain. They 
provide tables of regimens, where a regimen for a given 
patient comprises a set of drugs and has associated with it a 
start date and an end date.  They also specify times and results 
for tests given to the patient (e.g., the number of copies per 
milliliter of the virus in the blood, and characteristics of the 
genotype of the virus).  However, NL questions by clinicians 
are posed at a more abstract level than asking directly for the 
retrieval of specific data. Although these questions can be 
answered with reference to grounded fields in the database, the 
desired information is often described qualitatively instead of 
quantitatively. The output of the linguistic analysis then would 
require extra reasoning to get at the corresponding values, 
since queries often include qualitative notions that need to be 
recast in quantitative terms, which is how the information is 
stored in the database. It is for this reason that we separate out 
the language analysis task from the reasoning and retrieval 
task. The linguistic analysis component is responsible for 



providing a high-level, ‘implementation-independent’ [12] 
description of the domain-specific information provided in the 
NL query. The reasoning and retrieval component is later 
responsible for fully aligning the language with the database 
structure and going into the database and pulling out the 
desired information requested in the NL query. 

For instance, in our selected subject domain, we might have 
the query Find all patients on a failing regimen for at least 30 
weeks. The patients exhibited M184V. Given the domain 
knowledge, we want to expand this to a conjunction of several 
conditions that the retrieved patients must satisfy:  the patients 
must have had a regimen (or drug treatment) which eventually 
failed. Furthermore, we have a temporal constraint: the 
regimen must have a duration of at least 30 weeks. The second 
part of the query is construed as a filter: it seeks those patients 
satisfying the first part who, in addition, had a genotype test 
that indicated the presence of the mutation M184V. While 
some of this analysis can be embedded into the natural 
language component, some of it requires domain knowledge 
that goes beyond natural language understanding.  A failing 
regimen in the domain model, for example, is one where the 
patient has a viral load test whose value is high after a certain 
amount of time from the onset of the regimen. The value for a 
viral load test is, in turn, high if its numerical result exceeds 
some specified threshold. In the data source this is simply 
indicated by a numerical viral load measurement for the 
patient and a time stamp. The fact that the viral load test 
occurred during the regimen has to be computed on the basis 
of the time stamps associated with the test and the regimen. 
The connection between a descriptive classification of 
regimens and the properties with which a regimen must be 
associated in a database in order to fall under a particular 
classification category is not part of the linguistic analysis but 
of the subsequent reasoning phase, carried out by the theorem 
prover.  

The idea of using an underlying specification of the 
database model to zero in on a domain-specific NL 
interpretation is a key part of the Quadri system. We use the 
general-purpose, ambiguity-enabled NLP system BRIDGE 
[4], which parses and maps NL queries to an abstract 
knowledge representation (AKR). By providing an abstract 
specification of the database model, which identifies sortal 
relations in the database, temporal information, and other 
relevant facts, we build a custom component on top of 
BRIDGE that maps queries from AKR to an unambiguous 
domain-specific logical form. This is passed to SRI’s theorem-
prover SNARK [25], which is equipped with an axiomatic 
theory of the HIV drug-resistance domain that serves as our 
data model.  SNARK attempts to prove the theorem (or 
theorems), invoking procedural attachments that provide a 
semantic link to the various data resources.  SNARK also has 
special procedures that accelerate temporal reasoning.  In what 
follows, we describe each component in turn and show how it 
applies to sample problems.  

!

II. LANGUAGE ANALYSIS 
A. Mapping to Domain-Specific Logical Forms 

As an initial step, an English question is linguistically 
analyzed. For the language task, we are using a deep 
understanding system called BRIDGE [4], which provides a 
general-purpose linguistic analysis. In other words, it provides 
generic information about the language and preserves 
ambiguity throughout the parsing and interpretation process. 
Since our goal is to map unrestricted English to a precise 
logical form that can be used by a first-order theorem prover, 
using a robust system like BRIDGE that is already equipped to 
handle a variety of linguistic phenomena is essential. The chief 
challenge then is fitting the system to the target domain, and 
this requires integrating knowledge of the domain and using 
this information to guide the interpretation process.  

To do the fitting, we develop a Language-Use Model 
(LUM). A LUM is an abstract model of the subject domain 
that provides a list of the sorts of objects in the domain, along 
with a specification of how designated expressions in the 
language map to these objects and relations. The 
customization of BRIDGE involves building a LUM, and 
going from a general-purpose semantic representation to a 
domain-specific representation. Crucial to our LUM is a set of 
argument signatures, which are specifications of the relations 
that occur in the domain. These provide frames, loosely 
speaking, for selecting local patterns that support the domain-
specific interpretation. 

Argument signatures are defined in terms of domain 
concepts and domain relations, which include concepts like 
patient, medical-test, treatments, and retroviral-drug, and 
relations such as regimen-contains-drug, and patient-has-test. 
Corresponding to the domain concepts are vocabulary items in 
the domain that must be identified. Relations are defined in 
terms of the sort of their arguments. They might be related to 
other relations and have additional properties. In our domain, 
we are particularly interested in temporal relations. These are 
indicated by linguistic structure, including tense, aspect, 
prepositional phrases, and specific keywords. Implicit 
concepts are also included, allowing limited reasoning to 
occur on the language side, e.g., knowing that M184V 
indicates the existence of a genotype test in the first example. 

The LUM is integrated into the BRIDGE pipeline, as shown 
in Figure 2. The initial component of the pipeline is a finite-
state machine that recognizes named entities [16]. We have 
augmented these entities to include specialized biomedical 
vocabulary and multiword expressions such as M184V 
(mutation) and viral load (medical-test). The general-purpose 
parser then creates a dependency structure that identifies 
linguistic functions and arguments using the LFG language 
engine [18]. All syntactic ambiguities are found and preserved 
using a compact notation. Semantic processing then occurs to 
normalize the dependency structure using an XFR rewrite 
system described in [10]. These structures are later mapped to 
an Abstract Knowledge Representation [5],[9], which has 
facilities for time and date, entailment and contradiction 
detection (ECD), among other features (see [4]). The LUM is  



 
 

Figure 1: An example query with selected patterns 
used on top of the full BRIDGE analysis as a filter. Domain-
specific terms are identified in the analysis, and local syntactic 
patterns that correspond to pairs satisfying domain events are 
selected and rewritten into domain-specific relations. 
Alternative structures are discarded. 
  

 
 

Figure 2: Quadri architecture  
Figure 1 provides an analysis of an example query. 

Particular words in the sentence are identified and associated 
with a domain sort specified in the LUM. Syntactic patterns 
indicated by the blue arrows are chosen, since the sorts of the 
corresponding terms relate to underlying relations in the 
domain listed above. In this case, the system initially produces 
48 analyses, and alternative analyses not interpretable in the 
domain are eliminated. On the edges of the blue arrows are the 
corresponding AKR facts that relate the terms. Note that 
relative clauses and coordination, among other complex 
linguistic phenomena, are independently handled in the 
system, and interpreted appropriately in the AKR. Who, for 
example, is resolved to refer to the patient, and conjunction 
between Norvir and Epivir is recognized to be a group object. 

As another example, in the first query we have the 
fragment patients on a failing regimen, which can be 
syntactically analyzed either as [patients] [on a failing 
regimen] or [patients [on a failing regimen]].   In the LUM,  
there is the relation patient-has-regimen between a patient and 
a treatment. Here regimen is identified as an instance of a 

treatment, and the two terms are linked by the preposition on. 
Alternative analyses, including the possible attachment of 
failing regimen to the verb find, are eliminated, and the 
particular relation is derived since the preposition in this case 
is consistent with the interpretation. Similarly, the LUM might 
indicate that treatments can fail, which has the consequence in 
this example of identifying failing regimen as an instance of 
this relation in the language. 

B. Temporal and Implicit Concepts 
Temporal information plays a critical role in the drug 

resistance domain, since most queries relate to treatment 
intervals and events (loosely speaking) that occur at different 
stages of these intervals. A crucial part of the LUM then is 
information about the temporal properties of these events, 
including whether they are punctual  (i.e., occurring at a point 
in time), durative (i.e., occurring over an interval of time), and 
how events are related to other events in time. Here, too, we 
provide frames that help select the appropriate interpretation. 
These frames come in two varieties. Some relate explicit 
events and temporal concepts expressed in the language. 
Others relate events with temporal concepts left implicit by the 
language but overtly represented in the logical form. 

An example of the first type is illustrated in the fragment 
patients on a failing regimen for at least 30 weeks. A regimen 
(treatment) is a durative event that has a start date and an end 
date in the database. Since it is durative, the LUM indicates 
that it can be associated with a time interval that specifies the 
duration of the desired treatment. The system therefore looks 
for a pattern in the language between a treatment and a time 
interval, and finds an analysis that links the regimen with the 
interval week via the preposition for. Alternative analyses are 
eliminated, and the preposition for is interpreted as indicating 
the duration of the regimen. The modified numeral at least 30 
is independently interpreted in the BRIDGE system as a 
complex cardinality on week, and is normalized to be ‘greater 
than or equal to’. This allows us to conclude in the analysis 
that the treatment occurred over some time period, and that the 
duration of this period is greater than or equal to 30 weeks.  

Punctual events have implicit time points associated with 
them. Having a medical test, for example, is associated with a 
date stamp in the database. In order to bring out this fact, we 
expand the relation to have a time variable. The time of the 
test might also relate to a specified point in a given time 



period. The intended meaning of the query The patient had a 
high viral load after 24 weeks on the regimen is that the 
patient had a medical test measuring viral load shortly after the 
first 24 weeks of the regimen. The frame indicates a relation 
between a medical test and a time period, and the system 
attempts to find an instance of this pattern. The generated time 
point associated with the test is then placed in relation with the 
interval. We also want to conclude that the 24 weeks is part of 
the total duration of the regimen. This fact is derived 
independently in the BRIDGE system in a special module that 
handles data and time specification. Figure 3 gives a portion of 
the AKR analysis with this information. In bold are the 
selected role relations [5] in the AKR that provide the basis for 
the domain relations, which are indicated in blue.  Alternative 
analyses are struck through to indicate that they are 
eliminated.  
 
Query: Find patients with a high viral load after 24 weeks on a regimen.  
Choice Space: xor(A1,A2,A3,…,A45) iff 1 (45 analyses or ‘choices’)  
(or(A32,or(or(or(or(A33,A34),A27,A25),A26….)…. (place in ‘choice space’ ) 
      role(cardinality_restriction,week-26,24) (Time-Period, Cardinality)  
               !  interval-has-duration(week-26,24 weeks)  
or(or(or(A45,or(A41,A42),A39)….)…. 
      role(nn_element,viral_load_test-16,high-11,1) (Medical-Test, Test-Value)  
                !  medical-test-has-value(viral_load_test-16, high-11) 
or(or(or(A28,A29),A24),A23):  
      role(prep(after),patient-7,24-22) 
or(or(or(A42,A43),or(A38,A39),A33,A32),A10,A9): 
      role(prep(after),patient-7,week-26) 
or(or(A30,A31),A22,A21): 
      role(prep(after),viral_load_test-16,24-22) 
or(or(or(A41,or(A44,A45)),A40,or(A35,A36,A37),A34)… 
      role(prep(after),viral_load_test-16,week-26) (Viral-load, Time-Period)  
                ! medical-test-has-time(viral_load_test-16, time_point-1) 
                !  occurs-after(time_point-1, week-26) 
or(A36,or(or(or(A27,A28,A29),…) 
      role(prep(during),week-26,regimen-37) (Time-period, Treatment)  
                !  occurs-during(week-26,regimen-37) 
or(or(A17,A18),or(or(A13,A14),A11,A12),A4,or(A1,A2,A3)): 
      role(prep(with),find-1,viral_load_test-16) 
or(or(or(or(A28,A29),A24,….) 
      role(prep(with),patient-7,viral_load_test-16)  (Patient, Medical-Test)  
               !  patient-has-test(patient-7, viral_load_test-16) 
…) 

 
Figure 3.  AKR analysis of a query 

   Temporal prepositions such as after and before are 
interpreted as particular places in time relative to the intervals 
they modify. More complex modifiers include at the end of X, 
or at the start of X, and pinpoint particular places within 
interval X. Combinations of these types of modifiers also 
occur, such as after the end of X, near the start of X, and so on. 
The LUM provides a schema for how to represent this 
information (similar in spirit to [20]). In The patient had a 
viral load after the end of 24 weeks, we are trying to identify a 
place in time that is after an interval of 24 weeks. As before, 
we know that it is the time point of the genotype test that is 
located at this particular space in time given the frame that 
relates the medical test with the time period.  

The language analysis is filled out in other ways using the 
LUM. For example, some events expressed in the language 
are part of larger events that we want to identify. Having a 
mutation M184V means having a genotype test that indicates 
the M184V mutation. This is detectable in the database, since 
the field corresponding to the test result or mutation is 

embedded into the larger medical-test table. The same is true 
for drugs, which always have a related treatment. If the query 
does not explicitly mention a treatment, we generate a 
treatment variable in order to make this explicit. In The patient 
failed norvir after 24 weeks, we assume that there is an 
implicit treatment variable containing the drug Norvir and that 
the treatment is at least 24 weeks long. In general, these 
expansions are done in order to align as closely as possible the 
language with the database structure, which the LUM 
ultimately models.        

C. Quantifiers and Multiple Sentences 
Quantifiers and logical connectives are an important part of 

doing a high-precision analysis, and quantifier scope must be 
specified in order to do the subsequent theorem-proving. We 
must be able to distinguish Patients not all of whose regimens 
contain Norvir from Patients all of whose regimens do not 
contain Norvir, for example.  

In the AKR analysis, semantic facts are represented as 
“flattened” clauses [9], [10]. The scope of operators like 
negation that is grammatically fixed is specified in the flat 
representation, but the relative scope of quantifiers that is not 
grammatically fixed is not specified. The nesting information 
therefore needs to be built out of these structures. Figure 4 
shows the AKR for the example Every patient is on some 
regimen with Norvir, and the full domain-specific 
interpretation with quantifier structures is displayed. 

In the AKR, quantifiers are specified as cardinality 
restrictions on the terms.  Terms that do not have overt 
quantifiers are treated by default as existential. From the 
cardinality relation, a quantifier structure is built that relates 
each quantifier with its term, and specifies the type of the 
term. “Scopes-over” relations are created that describe nesting 

 
Every patient is on some regimen with norvir.  
 
AKR 
      role(cardinality_restriction,norvir-1,mass) 
      role(cardinality_restriction,patient-2,all(pl)) 
      role(cardinality_restriction,regimen-3,some(sg)) 
      role(copula_subj,be-3,patient-2) 
A1: 
      role(prep(with),be-3,norvir-1)  
A2: 
      role(prep(with),regimen-3,norvir-1) 
      role(tprep(on),patient-2,regimen-3) 
 
DOMAIN-INTERPRETATION  
((top_level patient_2 2) 
(quant exists norvir_1 sort drug) 
(quant all patient_2 sort patient) 
(quant exists regimen_3 sort treatment) 
(exists_group ex_grp_4 (regimen_3 norvir_1)) 
(scopes_over nscope patient_2 ex_grp_4) 
(in nscope ex_grp_4 (patient-has-regimen patient_2 regimen_3)) 
(in nscope ex_grp_4 (regimen-has-drug regimen_3 norvir_1))….) 
 

Figure 4. Domain interpretation from AKR 
between the quantified terms. Scope ambiguity is resolved by 
the domain information. In the relation patient-has-regimen, 
patient is treated as the head of the relation in the frame, and is 
therefore assumed to outscope whatever its modifier is. This 
leads to the interpretation that each patient had that patient’s 



own drug, as opposed to there being a unique drug that each 
patient has, which is not the intended meaning.  Since the 
different orderings of existentials does not cause ambiguity, 
we place all the existential variables into a list, which the 
patient variable scopes over in this case. The relations are 
placed within the nscope (nuclear scope) over the existential 
list.  

Quantifier scope ambiguity continues to be a major area of 
research in computational semantics, and underspecification 
formalisms, such as Minimal Recursion Semantics (MRS, [8]), 
have become the standard approach. The basic idea is to rely 
on a single compact and underdetermined semantic 
representation, rather than having to enumerate each fully 
specified interpretation [21]. From these underspecified 
representations, particular interpretations can be selected (or 
constraint solved, [6]) in accordance with the context. Our 
approach is distinct, in that we avoid having any information 
about quantifier scope in the AKR, which eliminates the need 
for developing an underspecified representation altogether. 
Quantifier information is represented uniformly throughout 
each AKR analysis, and nesting structures are built later using 
the domain model directly. Depending on the domain, 
quantifier scope for a single sentence can still be interpreted 
differently.  

Scopes-over assertions are also used to specify the scope of 
negation, and detect definiteness. Definiteness is an important 
feature in doing multi-sentence queries, which our system can 
handle. Multi-sentence queries allow a user to incrementally 
specify constraints on the answers that user wants to see.  
Definite reference (e.g. saying the patients, or those regimens) 
is used to link later elements to those mentioned earlier. 
Quantified concepts mentioned in a first sentence are 
remembered as possible targets for definite reference.  

Definite references create a new quantified variable, but 
because it is indicated as definite (referring to a previously 
known element), a search is made backward to find the most 
recent mention of a variable of the same sort.  In the linguistic 
analysis, we create an expression equal(target-variable, 
definite-variable).  The meaning of this is that the target 
variable must satisfy all the constraints specified for the 
definite variable.  In the description about the theorem prover, 
we explain how we implement this. 

D. Portability and Future Work   
Porting to a new domain requires being able to create a 

LUM for that domain. Since the LUM is largely an abstraction 
of the data source, many argument signatures can be inferred 
from the database schema. For example, the relation patient-
has-regimen can be inferred from there being a join relation 
between the patient and treatment tables (see [14] for details 
on how to generate queries in this way). However, the domain 
vocabulary must be identified, and in specialized domains 
such as medicine, many of the words (e.g, M184V) do not 
occur in the basic WordNet ontology and must be manually 
added or learned from a corpus of documents.  

We have done an experiment in porting our system to a new 
domain [23]. In the DARPA-sponsored Machine Reading 
project, an ontology has been provided (encoded in RDF) 
dealing with terrorists and events in which they may be 
involved (demonstrations, bombings and killings). We used 
the RDF class definition triples that provide a specification of 
the domain relations and their arguments, to construct relation-
argument signatures for this new LUM. The concepts in this 
domain are more common and most have corresponding 
elements in our WordNet-based taxonomy (e.g., for Geo-
Political-Entity, Person, Human-Organization). The event 
hierarchy was more specialized, with events such as 
HumanKillingEvent, with roles of AgentKilling and 
PersonKilled. Using the Quadri system with minimal 
modifications except for the change of ontology (and adding 
39 new relation-argument signatures) we successfully ran a 
number of examples.  

Figure 5 provides an example query in this domain with the 
RDF entries. In the RDF template, relations are specified with 
their argument types. A HumanInjuryEventPersonInjured 
relation, for example, occurs between a Person and a 
HumanInjuryEvent. By including this information in 
BRIDGE, our system finds local patterns that link these two 
concepts together.  In the example query, “Which member of 
… injured of the president’s daughter …” the word injure is 
recognized as indicating a HumanInjuryEvent, and daughter is 
a person, which fits the RDF signature.  

Relations in the domain often have associated restrictions. 
A person-has-daughter relation is keyed by a possessive 

 
 

 
 

Figure 5. Information extracted from an RDF specification of another domain 
 



relation in the parsed structure (i.e., a possessive verb, or 
genitive). It is not keyed by just having a local pattern between 
two words in the sentence.  If you say John knows the 
daughter, it does not follow that John has a daughter. In this 
case, the RDF naming conventions were uniform enough to 
give clues into what the restrictions are in the language. If a 
relation has the word have in it, we assume that in the 
language we need to look for a possessive pattern between the 
concepts. So, in addition to providing information about 
domain relations, we were able to extract some information 
about the language structure, which is a key part of the LUM. 
Further work will look at other ways of inferring the 
restrictions on relations in the language from domain corpora, 
and in general on learning LUMs from other sources.  

III. REASONING COMPONENT  
The deductive component of Quadri consists of the 

theorem-proving system SNARK, equipped with an axiomatic 
theory of the HIV drug-resistance domain.  Although in 
principle any sufficiently powerful theorem prover can play 
this kind of role, SNARK [25], a first-order theorem prover 
specially intended for applications in software engineering and 
artificial intelligence, is particularly appropriate. It contains 
many of the most successful features of automatic theorem 
provers, including resolution (for general reasoning), 
paramodulation (for reasoning about equality), and term 
rewriting (for representing definitions and simplifications), as 
well as procedures that perform accelerated inference for 
selected concepts (e.g., numerical computation, temporal and 
spatial reasoning).  We rely on SNARK’s mechanisms for 
answer extraction (obtaining answers to questions from 
proofs) and procedural attachment. A sort mechanism keeps 
track of the sorts of all terms and prevents a sorted variable 
from being replaced by a term of an incompatible sort; this 
rules out many dead ends in the search.  SNARK has strategic 
control features that allow us to tailor it to exhibit high 
performance in a selected subject domain.  It is mature 
software that has been applied in a number of successful 
systems (e.g., NASA’s Amphion [17],  and SRI’s Quark [28]) 

Temporal reasoning is of particular importance in medical 
subject domains.  SNARK has a version of the Allen calculus 
[1] for reasoning about temporal relations between entities.  
While the original Allen calculus deals only with temporal 
intervals, SNARK’s version deals with both time points and 
time intervals.  Time points can be dates and times, and a 
procedural attachment can perform date and time arithmetic.  
This is quite a bit faster than if the computation were carried 
out axiomatically.  Let us examine the behavior of the 
reasoning component of Quadri on a simple example.  Then 
we can turn to a multisentence example. 

A.  Simple Example. 
Consider the query What patients had a high viral load?  

(This question is simpler than a researcher is likely to ask; 
virtually all patients in the database have a high viral load at 
some point.) The semantic representation for this sentence 
includes the following:  

 

top_level(patient_5, 1) 
quant(exists patient_5 sort patient) 
quant(exists viral_load_test_2 sort viral_load_test) 
exists_group (ex_grp_6 (patient_5 viral_load_2 …)) 
in nscope (ex_grp_6 
  patient-has-test(patient_5, viral_load_test_2)) 
in nscope (ex_grp_6 
  test-has-value(viral_load_test_2, high_3))) 

 
This tells us that patient_5 and viral_load_test_2 are both 
existentially quantified and have the relations patient-has-
test and test-has-value within their scope.  

From this and other components of the semantic 
representation, Quadri constructs a conjecture:  
 

  exists(patient_5 sort patient) 
     exists(viral_load_test_2 sort viral_load_test) 
        exists(high_3 sort test_result) 
          patient-had-test(patient_5, viral_load_test_2) & 
          test-has-value(viral_load_test_2, high_3) & 
          within-range(high_3, high) 

 
In other words, we must show the existence of a patient, a 
viral load medical test, and a test value such that the patient 
had the viral-load-test with a numerical value that was 
within the range regarded as high.  This is the conjecture that 
is passed to SNARK. 

SNARK employs its axiomatic theory for the HIV-drug-
resistance subject domain with appropriate procedural 
attachments to prove that the conjecture is a theorem in this 
theory.  The answer-extraction mechanism keeps track of the 
substitutions made for all the existentially quantified variables 
in the conjecture necessary to complete the proof; these 
constitute the answer that is extracted.  In general, there will 
be many proofs for the same theorem, each of which may 
yield a different answer.  

In particular, the relation patient-has-test has a 
procedural attachment to the Stanford HIV Drug Resistance 
Database.  This database knows the list of medical tests for 
each patient; the procedural attachment yields an identifier for 
each patient and that patient’s corresponding medical tests. 

One procedural attachment reveals that patient Mr. A had a 
viral load test AV881130 (the data in this discussion is not 
real).   Another indicates that the result of this test was a viral 
load of 5, on the logarithmic scale. The proof, however, is not 
completed by procedural attachment alone; it requires the use 
of axioms in the HIV drug resistance theory.  The axiom 
 

in-range(viral-load, log-scale(?number)) !  ?number >= 4 
   
tells us that, in the logarithmic scale, 5 is regarded as high, 
since it is more than 4. (Note that symbols with question 
marks are variables, which can be replaced by other terms 
during the proof.  The name of the variable indicates its sort; 
e.g. ?number is a variable of sort number and can be replaced 
only by a term, such as 5, which is also of sort number.) 

When the proof is complete, SNARK can extract an answer.  
For this proof, the desired answer is Mr. A.  SNARK will also 
report the values found for the other existentially quantified 
variables in the theorem, i.e., the identifier of the test, 



AV881130, and its result, 5 on the logarithmic scale. Other 
proofs will yield different answers. Most of these correspond 
to other patients, but some will correspond to other viral load 
tests that Mr. A has taken. 

B. Multipart Example. 
Consider the multipart query we have used as an example: 

Find all patients on a failing regimen for at least 30 weeks. 
The patients exhibited M184V. The sentence is transformed by 
Bridge into a semantic representation, which is a flat, 
unordered set of conditions that describe the logical form(s). 

The initial set of forms for the query is: 
 

top_level(patient_3, 5) 
top_level(patient_2, 45) 
quant(exists patient_3 sort patient) 
quant(exists patient_2 sort patient) 
definite(patient_2) 
equal(patient_3, patient_2) 

 
This initial set tells Quadri that, corresponding to the two 

parts of the query, there are two logical forms, one with top-
level quantifier exists(patient_3) and the other with top-level 
quantifier exists(patient_2), each of sort patient.  The indexes 
on the top-level variables, 5 and 45, respectively, tell Quadri 
that the logical form for patient_3 must be solved before the 
logical form for patient_2, because its index is less.   Another 
condition in the representation, definite(patient_2), tells us 
that variable patient_2 is the same as an earlier variable in the 
query, and the condition equal(patient_3, patient_2) says 
that patient_2 is actually the same as patient_3.  This 
corresponds to the linguistic intuition that the patients referred 
to in the second part of the query, The patients exhibited 
M184V, are the same as those mentioned in the first part, Find 
all patients on a failing regimen for at least 30 weeks. 

Other conditions describe the scoping of the quantifiers and 
their relationship to the atomic propositions of the logical 
form.  For instance, the condition 

 
in scope(ex_group_10,  
                  patient-has-regimen(patient_3, regimen_4)) 
 
tells us that a certain group of quantifiers (defined elsewhere) 
has the proposition patient-has-regimen in its scope. 

From this information, Quadri pieces together the first 
logical form, 

 
exists(patient_3 sort patient) 
    exists(regimen_4 sort regimen) 
       exists(week_5 sort time-interval) 
          patient-has-regimen(patient_3, regimen_4) & 
          failing(regimen_4) & 
          duration(regimen_4, week_5) & 
time_measure(week_5,complex_card(>=,30), week) 

 
In other words, we must seek a patient with a failing regimen 
whose duration is at least 30 weeks.  This logical form is 
passed as a conjecture to be proved by SNARK. 
 For instance, Mr. A has two regimens, Regimen A.1 
and Regimen A.2.  Each of these is returned to SNARK, 

which will resume two separate branches of the proof search, 
with regimen_4 replaced by Regimen A.1 and Regimen A.2, 
respectively. The relation time_measure has no procedural 
attachment itself, but the condition  
 

time_measure(week_5, complex_card(>=, 30), week)) 
 
can be transformed according to the following axiom (a 
rewrite rule) in the domain theory: 
 

 time_measure(?time-interval,  
                            complex_card(>=, ?number),   ?unit) 
     ! 
   duration(?time-interval) >= ?unit(?number) 

 
taking ?time-interval to be week_5, ?number to be 30, and 
?unit  to be week.  The resulting formula is 
 

duration(week_5) >= week(30) 
    
i.e., the duration of time interval week_5 must be at least 30 
weeks.  This formula is transformed by other axioms in the 
axiomatic theory; for instance the duration of a time interval is 
the arithmetic difference between its finish point and its start 
point, i.e., 
 

duration(?time-interval) = 
   finish-time(?time-interval) – start-time(?time-interval) 

 
While the database does not store the duration of each regimen 
explicitly, it does know its start date and finish date.  Once the 
time interval week_5 is replaced by a concrete time interval, 
with dates as its end points, procedural attachments will find 
its endpoints, compute its duration, and check if it is greater 
than 30 weeks.  As it turns out, Regimen A.1 is less than 30 
weeks long, but Regimen A.2 is longer.   

As a result, Patient Mr. A is returned by SNARK as one of 
many answers to the first part of the query, with Regimen A.2 
as the specified failing regimen.  

The second part of the query requires us to discard from the 
set of answers patients who do not exhibit the mutation 
M184v, corresponds to the second logical form, 
 

exists(patient_2 sort patient) 
     exists(genotype_test_7 sort genotype_test) 
       exists(time_point_8 sort time-point) 
          exists(m184v_1 sort mutation) 
             patient-has-test(patient_2, genotype_test_7) & 
             test-has-value(genotype_test_7, m184v_1) & 
             m184v_1 = m184v & 
             test-has-time(genotype_test_7, time-point_8) & 
             patient_2 = patient_3. 

 
In other words, we seek a patient who has had a genotype test 
on a certain date that revealed the presence of a mutation 
M184v. 

Note that the logical form specifies that patient_2  = 
patient_3, because the semantic representation told us that 
patient_2 must be equal to patient_3. Note that the variable 
patient_3 is outside the scope of the quantifier 



exists(patient_3… from the first logical form. This second 
logical form is conjoined with the first logical form and 
submitted to SNARK. Special treatment is given to the 
quantifiers during this conjunction to ensure that the variable 
is pushed within the scope of the appropriate quantifier.  

The list of answers for the multipart query includes Mr. A, 
along with his failing regimen (A.2) and the date for his 
genetic test.  The user may then ask further questions, to 
restrict the set of answers still further or to request additional 
information.  

IV. CURRENT STATUS 
The Quadri prototype is now capable of handling queries at 

the level of the examples in this paper, which includes limited 
anaphoric reference and multi-sentence questions. It provides 
feedback to the user of the translation of the logical form, can 
prove the associated theorems, and can query a snapshot of the 
database to identify cohorts of patients that satisfy stated user 
criteria. Next steps include enabling users to provide feedback 
to choose among alternative interpretations, and querying the 
databases in full. 

Our planned evaluation of the Quadri system encompasses 
multiple dimensions. The first is the scope of queries that can 
be handled, and how these cover what potential users would 
want to ask. For this purpose, we have gathered questions 
from researchers at the Stanford Biomedical Informatics 
Research group. We have also collected statements from 
articles that described HIV cohorts being used for clinical 
trials, and adapted them so that they could be answered from 
the database set.  The second dimension is the language 
coverage, that is, how easy it is to use language that the system 
would understand. For this we had people create different 
paraphrases of a number of the queries on our first list.  The 
third dimension is correctness – that is, did the system return 
all and only those patients specified in the query. For this we 
have created a gold standard based on an expert creating and 
running an SQL query for some of the queries.  

ACKNOWLEDGMENTS 

We thank Robert Shafer and Soo-Yon Rhee for consultation 
on HIV Drug Resistance in general and for information about 
the Stanford HIV Drug Resistance Database in particular; 
Mark Stickel for sharing expertise on the use of the SNARK 
theorem proving system; Will Bridewell for comments, 
suggestions, and discussion. This work was supported by 
Award Number RC1LM010583 from the National Library of 
Medicine. The content is soley the responsibility of the authors 
and does not necessarily represent the official views of the 
National Library of Medicine or the National Institutes of 
Health. 

REFERENCES 
[1] Allen, J. “Maintaining knowledge about temporal intervals,” 

Communications of the ACM. 1983.  

[2] Androutsopoulos, I. et al. “Natural language interfaces to databases,” 
Natural Language Engineering, 2(1):29-81, 1995.  

[3] Bobrow, D.G. et al. “Deducing answers to English questions from 
structured data,” in Proc. IUI’11, 2011.  

[4] Bobrow, D.G. et al. “PARC’s BRIDGE and question answering system,” 
in Proc. GEAF ‘07, 2007.  

[5] Bobrow, D.G. et al. “A basic logic for textual entailment,” in Proc. AAAI 
Workshop on Inference for Textual Question Answering, 2005.  

[6] Burchardt, A. et al. “Computational Semantics,” course text, ESSLLI 
2004. http://www.coli.uni-saarland.de/projects/milca/courses/esslli04/ 

[7] Copestake, A. et al. “Natural language interfaces to databases,” The 
Knowledge Engineering Review. 5:225-249. 1990.  

[8] Copestake, A. et al. “Minimal recursion semantics: an introduction,” 
Research on Language and Computation. 3:281-332. 2005.  

[9] Crouch, R. “Packed rewriting for mapping semantics to KR,” in Proc. 
Sixth International Workshop on Computational Semantics, 2005.  

[10] Crouch, R. et al. “Semantics via f-structure rewriting,” in Proc. LFG06, 
2006.  

[11] Frank, A. et al. “Question answering from structured knowledge 
sources,” Journal of Applied Logic, 5, 20-48. 2007.  

[12] Frank, A. et al. “Querying structured knowledge sources,” in Proc. AAAI 
Workshop on Question Answering in Restricted Domains, 2005.  

[13] Hallett, C. et al. “Composing questions through conceptual authoring,” 
Computational Linguistics, 33(1):105-133, 2007 

[14] Hallett, C. “Generic querying of relational databases using natural 
language generation techniques,” in Proc. 4th International Natural 
Language Generation Conference, 2006.  

[15] Kang, I. et al. “Lightweight natural language database interfaces,” in 
Proc. NLDB’04, 2004.  

[16] Kaplan, R. et al. “Integrating finite-state technology with deep LFG 
grammars,” in Proc. Workshop on Combining Shallow and Deep 
Processing for NLP (ESSLI), 2004.  

[17] Lowry, M.R. et al. “AMPHION: automatic programming for scientific 
subroutine libraries,” in Proc. ISMIS’94, 1994.  

[18] Maxwell, J.T. et al. “An efficient parser for LFG,” in Proc. LFG’96, 
1996.  

[19] O’Connor, M. et al. “The Chronus II temporal database mediator,” in 
Proc. AMIA02, 2002.  

[20] Pratt, I. et al. “The expressive power of the English prepositional 
system,” in Proc. Time-94' 

[21] Pinkal, M. “On semantic underspecification” in H. Bunt and R. Muskens 
(eds) Computing Meaning. Kluwer Academic Publishers. 1999.  

[22] Popescu, A. et al. “Towards a theory of natural language interfaces to 
databases,” in Proc. IUI’03, 2003.   

[23] Richardson, K. et al. “Using a general-purpose NLP system for mapping 
English to RDF,” poster, DARPA Machine Reading Phase III Kickoff 
Meeting. 2011.  

[24] Shafer, R.W. “Rationale and uses of a public HIV drug-resistance 
database,” Journal of Infectious Disease, 194 Suppl 1:S51-8. 2006.  

[25] Stickel, M. et al. “A guide to SNARK,”  
www.ai.sri.com/snark/tutorial.html, 2000.  

[26] Stickel, M. et al. “Deductive composition of astronomical software from 
subroutine libraries,” Automated Deduction, 12, 1994.  

[27] Waldinger, R. et al. “Accessing structured health information through 
English queries and automatic deduction,” in Proc. of AAAI Spring 
Symposium on Health Communications,  2011.  

[28] Waldinger, R. et al. “Deductive question answering from multiple 
resources,” in New Directions in Question Answering. Maybury, M (ed) 
MIT Press. 2004.  

 


