
Monotonicity and Polarity
in Natural Logic

Larry Moss, Indiana University

Workshop on Semantics for Textual Inference, July 10, 2011

1/70

Natural Logic
from Annie Zaenen & Lauri Kartunnen’s Course here at LSA

“Natural Logic is a cover term for a family of formal approaches to
semantics and textual inferencing as currently practiced by
computational linguists.

“They have in common a proof theoretical rather than a
model-theoretic focus
and an overriding concern with feasibility.”

Natural Logic sometimes refers just to work on monotonicity,
but in this talk I’ll be broader.

2/70

Natural logic: my take on what it’s all about

Program

Re-think semantics based on computational linguistics.

Re-work the relation of logic and language, starting with inference.

First step: show that significant parts of natural language inference
can be carried out in decidable logical systems.

Whenever possible, to obtain complete axiomatizations,
because the resulting logical systems are likely to be interesting.

To connect the work to a host of areas in logic and theoretical CS.
But these are all the first step, and they hardly touch upon the
real goals.

3/70

Differences between my projects
and those of others here

Work in the RTE community features

� sentences from life

� actual running systems

� sustained work on knowledge acquisition

4/70

Differences between my projects
and those of others here

Work in the RTE community features

� sentences from life

� actual running systems

� sustained work on knowledge acquisition

In contrast, what I’m doing will look like a toy.

4/70

Differences between my projects
and those of others here

RTE NL now NL, hope

semantics don’t have/want needed, mostly needed, but
classical flexibly so

grammar don’t have/want needed ???
shallow vs. deep shallow: H–T deep deep???
aim ≥ 90% (say) complete complete
logic irrelevant centerpiece ??
algorithm centerpiece implicit running

4/70

Differences between my projects
and those of others here

RTE NL now NL, hope

semantics don’t have/want needed, mostly needed, but
classical flexibly so

grammar don’t have/want needed ???
shallow vs. deep shallow: H–T deep deep???
aim ≥ 90% (say) complete complete
logic irrelevant centerpiece ??
algorithm centerpiece implicit running

community huge, funded tiny and old more than
the union

4/70

Most of the fragments which have been
treated

Arist
otle

Chu
rch

-Turi
ng

Peano-Frege

S

S†

S≥ S≥ adds |p| ≥ |q|
R

RC

RC(tr)
RC(tr , opp)

R†

RC†

RC†(tr)

RC†(tr , opp)

FOL

FO2 + trans

FO2

first-order logic

FO2 + “R is trans”

2 variable FO logic

† adds full N-negation

R + relative clauses

R = relational syllogistic

RC + (transitive)
comparative adjs

RC(tr) + opposites

S + full N-negation

S: all/some/no p are q

5/70

Syllogistic Logic of All and Some

Syntax: Start with a collection of unary atoms (for nouns).
Sentences: All p are q, Some p are q

Semantics: A model M is a set M,
and for each noun p we have an interpretation [[p]] ⊆ M.

M |= All p are q iff [[p]] ⊆ [[q]]
M |= Some p are q iff [[p]] ∩ [[q]] �= ∅

Proof system is based on the following rules:

All p are p

All p are n All n are q

All p are q

Some p are q

Some q are p

Some p are q

Some p are p

All q are n Some p are q

Some p are n

6/70

Semantic and proof-theoretic notions

If Γ is a set of sentences, we write M |= Γ if for all ϕ ∈ Γ, M |= ϕ.

Γ |= ϕ means that every M |= Γ also has M |= ϕ.

A proof tree over Γ is a finite tree T
whose nodes are labeled with sentences,
and each node is either an element of Γ,
or comes from its parent(s) by an application of one of the rules.

Γ � ϕ means that there is a proof tree T for over Γ
whose root is labeled ϕ.

7/70

Example of a derivation
If there is an n, and if all n are p and also q, then some p are q.

Some n are n, All n are p, All n are q � Some p are q.

The proof tree is

All n are q

All n are p Some n are n

Some n are p

Some p are n

Some p are q

8/70

Beyond first-order logic: cardinality

Read ∃≥(X ,Y) as “there are at least as many X s as Y s”.

All Y are X

∃≥(X ,Y)

∃≥(X ,Y) ∃≥(Y ,Z)

∃≥(X ,Z)

All Y are X ∃≥(Y ,X)

All X are Y

Some Y are Y ∃≥(X ,Y)

Some X are X

No Y are Y

∃≥(X ,Y)

The point here is that by working with a weak basic system,
we can go beyond the expressive power of first-order logic.

9/70

The languages S and S† add noun-level
negation

Let us add complemented atoms p on top of
the language of All and Some,
with interpretation via set complement: [[p]] = M \ [[p]].

So we have

S

All p are q

Some p are q

All p are q ≡ No p are q

Some p are q ≡ Some p aren’t q

Some non-p are non-q

S†

10/70

A syllogistic system for S†

All p are p

Some p are q

Some p are p

Some p are q

Some q are p

All p are n All n are q

All p are q

All n are p Some n are q

Some p are q

All q are q

All q are p
Zero

All q are q

All p are q
One

All p are q

All q are p
Antitone

Some p are p

ϕ Ex falso quodlibet

11/70

A fine point on the logic

The system uses

Some p are p

ϕ Ex falso quodlibet

and this is prima facie weaker than reductio ad absurdum.

One of the logical issues in this work is to determine exactly where
various principles are needed.

12/70

Adding transitive verbs

The next language uses “see” or r as variables for transitive verbs.

All p are q

Some p are q

All p see all q

All p see some q

Some p see all q

Some p see some q

All p aren’t q ≡ No p are q

Some p aren’t q

All p don’t see all q ≡ No p sees any q

All p don’t see some q ≡ No p sees all q

Some p don’t see any q

Some p don’t see some q

The interpretation is the natural one, using the subject wide scope
readings in the ambiguous cases.

This is R.
The first system of its kind was Nishihara, Morita, Iwata 1990.

The language R† allows complemented atoms p as head nouns.

13/70

Adding transitive verbs

All p are q ∀(p, q)
Some p are q ∃(p, q)

All p r all q ∀(p,∀(q, r))
All p r some q ∀(p,∃(q, r))
Some p r all q ∃(p,∀(q, r))
Some p r some q ∃(p,∃(q, r))
No p are q ∀(p, q)
Some p aren’t q ∃(p, q)
No p r any q ∀(p,∀(q, r))
No p r all q ∀(p,∃(q, r))
Some p don’t r any q ∃(p,∀(q, r))
Some p don’t r some q ∃(p,∃(q, r))

13/70

Adding transitive verbs

All p are q ∀(p, q)
Some p are q ∃(p, q)

All p r all q ∀(p,∀(q, r))
All p r some q ∀(p,∃(q, r))
Some p r all q ∃(p,∀(q, r))
Some p r some q ∃(p,∃(q, r))
No p are q ∀(p, q)
Some p aren’t q ∃(p, q)
No p r any q ∀(p,∀(q, r))
No p r all q ∀(p,∃(q, r))
Some p don’t r any q ∃(p,∀(q, r))
Some p don’t r some q ∃(p,∃(q, r))

set terms c
positive p ∀(p, r) ∃(p, r)
negative p ∃(p, r) ∀(p, r)

13/70

Reading the set terms

∀(p, r) those who r all p

∃(p, r) those who r some p

∀(p, r) those who fail-to-r all p ≈
those who r no p

∃(p, r) those who fail-to-r some p ≈
those who don’t r some p

14/70

Towards the syntax for R

All p are q ∀(p, q)
Some p are q ∃(p, q)
All p r all q ∀(p,∀(q, r))
All p r some q ∀(p,∃(q, r))
Some p r all q ∃(p,∀(q, r))
Some p r some q ∃(p,∃(q, r))
No p are q ∀(p, q)
Some p aren’t q ∃(p, q)
No p sees any q ∀(p,∀(q, r))
No p sees all q ∀(p,∃(q, r))
Some p don’t r any q ∃(p,∀(q, r))
Some p don’t r some q ∃(p,∃(q, r))

simplifies to

∀(p, c) ∃(p, c)

set terms c
positive p ∀(p, r) ∃(p, r)
negative p ∃(p, r) ∀(p, r)

15/70

Syntax of R and R†

We start with one collection of unary atoms (for nouns)
and another of binary atoms (for transitive verbs).

expression variables syntax

unary atom p, q

binary atom r

positive set term c+ p | ∃(p, r) | ∀(p, r)
set term c , d p | ∃(p, r) | ∀(p, r) |

p | ∃(p, r) | ∀(p, r)
R sentence ϕ ∀(p, c) | ∃(p, c)
R† sentence ϕ ∀(p, c) | ∃(p, c) | ∀(p, c) | ∃(p, c)

16/70

Negations

We need one last concept, syntactic negation:

expression syntax negation

positive set term c p p

p p

∃(p, r) ∀(p, r)
∀(p, r) ∃(p, r)
∃(p, r) ∀(p, r)
∀(p, r) ∃(p, r)

R sentence ϕ ∀(p, c) ∃(p, c)
∃(p, c) ∀(p, c)

Note that p = p, c = c and ϕ = ϕ.

17/70

Results on R and R†

Again, joint work with Ian Pratt-Hartmann

Theorem

There are no finite syllogistic logical systems which are
sound and complete for R.

However, there is a logical system (presented below) which uses
reductio ad absurdum

[ϕ]....
∃(p, p)

ϕ RAA

and which is complete.

18/70

Results on R and R†

Again, joint work with Ian Pratt-Hartmann

Theorem

There are no finite syllogistic logical systems which are
sound and complete for R.

However, there is a logical system (presented below) which uses
reductio ad absurdum

[ϕ]....
∃(p, p)

ϕ RAA

and which is complete.

Theorem

There are no finite, sound and complete syllogistic logical systems
for R†, even ones which allow RAA.

18/70

The Aristotle Boundary

Arist
otle

Chu
rch

-Turi
ng

S

S†

R

R†

FOL

FO2

† adds full N-negation

relational syllogistic

19/70

Relational syllogistic logic

p and q range over unary atoms,
c over set terms, and t over binary atoms or their negations.

∃(p, q) ∀(q, c)

∃(p, c)

∀(p, q) ∀(q, c)

∀(p, c)

∀(p, q) ∃(p, c)

∃(q, c) ∀(p, p)

∃(p, c)

∃(p, p)

∀(q, c̄) ∃(p, c)

∃(p, q̄)

∀(p, p̄)

∀(p, c)

∃(p,∃(q, t))

∃(q, q)

∀(p,∀(n, t)) ∃(q, n)

∀(p,∃(q, t))

∃(p,∃(q, t)) ∀(q, n)

∃(p,∃(n, t))

∀(p,∃(q, t)) ∀(q, n)

∀(p,∃(n, t))

[ϕ]....
∃(p, p)

ϕ RAA

20/70

Example of a proof in the system for R†

What do you think? Sound or unsound?

All X see all Y ,All X see some Z ,All Z see some Y

|= All X see some Y

21/70

Example of a proof in the system for R†

What do you think? Sound or unsound?

All X see all Y ,All X see some Z ,All Z see some Y

|= All X see some Y

The conclusion does indeed follow:
take cases as to whether or not there are X .

We should have a formal proof.

21/70

Example of a proof in this system

All X see all Y ,All X see some Z ,All Z see some Y

|= All X see some Y

Some X see no Y

Some X are X All X see some Z

Some X see some Z

Some Z are Z All Z see some Y

Some Z see some Y

Some Y are Y All X see all Y

All X see some Y Some X see no Y

Some X aren’t X

22/70

But now

[Some X see no Y]

Some X are X All X see some Z

Some X see some Z

Some Z are Z All Z see some Y

Some Z see some Y

Some Y are Y All X see all Y

All X see some Y [Some X see no Y]

Some X aren’t X

All X see some Y
RAA

This shows that

All X see all Y ,All X see some Z ,All Z see some Y � All X see some Y

23/70

Next: relative clauses

Arist
otle

Chu
rch

-Turi
ng

S

S†

R

RC

R†

RC†

FOL

FO2

† adds full N-negation

add relative clauses
= relativized quantifiers

24/70

Inference with relative clauses

What do you think about these?

All skunks are mammals

All who fear all who respect all skunks fear all who respect all mammals

All skunks are mammals

All who fear all who respect some skunks fear all who respect some mammals

All skunks are mammals

Some who fear all who respect some skunks fear some who respect some mammals

25/70

RC and RC†

RC allows sentential subjects to be noun phrases
containing subject relative clauses.

who r all p who r some p

who don’t r all p who don’t r any p

expression syntax

RC sentence ∀(d+, c) | ∃(d+, c)
RC† sentence ∀(d , c) | ∃(d , c)

d+ is a positive set term, and c is an arbitrary set term.

26/70

Syllogistic logic for RC

The main rules are

∀(p, q)

∀(∀(q, r),∀(p, r))

∀(p, q)

∀(∃(p, r),∃(q, r))

∃(p, q)

∀(∀(p, r),∃(q, r))

These rules are based on McAllester and Givan (1992).

27/70

Return of the skunks
Iterated relative clauses

In a variant of this language which
admits iterated relative clauses, we would just have

∀(s,m) � ∀(∀(∀(s, r), f),∀(∀(m, r), f),

∀(s,m)

∀(∀(m, r),∀(s, r))
∀(∀(∀(s, r), f),∀(∀(m, r), f))

28/70

Incorporating inexpressible background
constraints

kissing involves touching

All skunks are mammals

All who fear all who touch all skunks fear all who kiss all skunks

The point is that we incorporate the constraint
into the proof theory, not as a meaning postulate.

29/70

Incorporating inexpressible background
constraints

Suppose that r ⇒ s

∀(d ,∀(c , r))

∀(d ,∀(c , s))

∀(d ,∃(c , r))

∀(d ,∃(c , s))

∃(d ,∀(c , r))

∃(d ,∀(c , s))

∃(d ,∃(c , r))

∃(d ,∃(c , s))

∀(∃(c , r),∃(c , s)) ∀(∀(c , r),∀(c , s))

We again have completeness in the relevant sense.

29/70

Next: comparative adjectives
used for inferences involving phrases like bigger than some kitten

Arist
otle

Chu
rch

-Turi
ng

S

S†

R

RC

RC(tr)

R†

RC†

RC†(tr)

FOL

FO2

† adds full N-negation
∗ adds relative clauses

tr adds comparatives,
requiring transitivity

30/70

Comparative adjectives

Every giraffe is taller than every gnu
Some gnu is taller than every lion
Some lion is taller than some zebra
Every giraffe is taller than some zebra

We extend RC to a language RC(tr) by taking a
set A of comparative adjective phrases in the base.

In the semantics, we would require of a model
that for a ∈ A, [[a]] must be a transitive relation.
(We could also require irreflexivity.)

31/70

Comparative adjectives

Every giraffe is taller than every gnu
Some gnu is taller than every lion
Some lion is taller than some zebra
Every giraffe is taller than some zebra

∀(p,∃(q, r))

∀(∃(p, r),∃(q, r))

∀(p,∀(q, r))

∀(∃(p, r),∀(q, r))

∃(p,∀(q, r))

∀(∀(p, r),∀(q, r))

∃(p,∃(q, r))

∀(∀(p, r),∃(q, r))

31/70

Comparative adjectives

Every giraffe is taller than every gnu
Some gnu is taller than every lion
Some lion is taller than some zebra
Every giraffe is taller than some zebra

∀(gir,∀(gnu, taller)) ∃(gnu,∀(lion, taller))

∀(gir,∀(lion, taller)) ∃(lion,∃(zebra, taller))
∀(giraffe,∃(zebra, taller))

31/70

Next: relational converses
used for inferences relating bigger and smaller

Arist
otle

Chu
rch

-Turi
ng

S

S†

R

RC

RC(tr)
RC(tr , opp)

R†

RC†

RC†(tr)

RC†(tr , opp)

FOL

FO2 + trans

FO2

† adds full N-negation
∗ adds relative clauses

opp adds opposites
of comparative adjectives

32/70

Converses of transitive relations
On top of all the other syllogistic systems we have seen

∀(p,∀(q, t))

∀(q,∀(p, t−1))

∃(p,∀(q, t))

∀(q,∃(p, t−1))
(scope)

∀(p,∃(q, r−1))

∀(∀(q, r),∀(p, r))

∃(∃(p, r−1),∃(q, r))

∃(p,∃(q, r))

∃(∀(p, r),∀(q, r−1))

∀(p,∀(q, r−1))

∃(∀(p, r),∃(q, r−1))

∃(q,∀(p, r−1))

∀(p,∃(q, r)) ∀(∃(p, r−1),∃(n, r))

∀(p,∃(n, r))
(�)

∀(p,∃(q, r)) ∀(∃(p, r−1),∀(n, r))

∀(p,∀(n, r))

(scope): if some p is bigger than all q,
then all q are smaller than some p or other.

(�): if every dog is bigger than some hedgehog,
and everything smaller than some dog is bigger than some cat,
then every dog is bigger than some cat.

33/70

Logic beyond the Aristotle boundary

So far in this talk, all of the systems have been syllogistic
to one degree or another.

R† and RC† lie beyond the Aristotle boundary,
due to full negation on nouns.

It is possible to formulate a logical system with
a restricted notion of variables,
prove completeness,
and yet stay inside the Church-Turing boundary.

34/70

Example of a proof in the system
From all keys are old items,

infer everyone who owns a key owns an old item

[∃(key , own)(x)]2
[own(x , y)]1

[key(y)]1 ∀(key , old–item)

old–item(y)
∀E

∃(old–item, own)(x)
∃I

∃(old–item, own)(x) ∃E 1

∀(∃(key , own),∃(old–item, own)) ∀I
2

35/70

Example of a proof in the system
From all keys are old items,

infer everyone who owns a key owns an old item

1 ∀(key , old–item) hyp

2 ∃(key , own)(x) hyp

3 key(y) ∃E , 2

4 own(x , y) ∃E , 2

5 old–item(y) ∀E , 1, 3

6 ∃(old–item, own)(x) ∃I , 4, 5

7 ∀(∃(key , own),∃(old–item, own)) ∀I , 1–6

35/70

Adding Transitivity to RC†

We begin with the logical system for RC†,
and then we add a rule:

a(x , y) a(y , z)

a(x , z)
trans

This rule is added for all a ∈ A, and all x , y , z .

This gives a language RC†(tr).

36/70

Example of the transitivity rule

Every sweet fruit is bigger than every kumquat
Every fruit bigger than some sweet fruit is bigger than every kumquat

[∃(sw, bigger)(x)]3

[bigger(x , y)]2
[kq(z)]1

[sw(y)]2 ∀(sw,∀(kq, bigger))

∀(kq, bigger)(y)
∀E

bigger(y , z)
∀E

bigger(x , z)
trans

∀(kq, bigger)(x)
∀I 1

∀(kq, bigger)(x)
∃E 2

∀(∃(sw, bigger),∀(kq, bigger))
∀I 3

37/70

The bite of decidability

Transitivity should not be treated as a meaning postulate,
since even stating it would seem to render the logic undecidable.

Instead, it is a proof rule:

a(x , y) a(y , z)

a(x , z)
trans

(I have not proved that one can’t formulate a decidable
logic which can directly express transitivity using variables
and also cover the sentences we’ve seen.
But there are results that suggest it.)

38/70

Review

Arist
otle

Chu
rch

-Turi
ng

Peano-Frege

S

S†

S≥ S≥ adds |p| ≥ |q|
R

RC

RC(tr)
RC(tr , opp)

R†

RC†

RC†(tr)

RC†(tr , opp)

FOL

FO2 + trans

FO2

first-order logic

FO2 + “R is trans”

2 variable FO logic

† adds full N-negation

R + relative clauses

R = relational syllogistic

RC + (transitive)
comparative adjs

RC(tr) + opposites

S + full N-negation

S: all/some/no p are q

39/70

Complexity
(mostly) best possible results on the validity problem

Arist
otle

Chu
rch

-Turi
ng

S

S†

BML(tr)
EXPTIME
Lutz & Sattler 2001

in co-NEXPTIME

R

RC

RC(tr)
RC(tr , opp)

R†

RC†

RC†(tr)

RC†(tr , opp)

FOL

FO2 + trans

FO2

undecidable
Church 1936
Grädel, Otto, Rosen 1999

Co-NEXPTIME
Grädel, Kolaitis, Vardi ’97

EXPTIME
Pratt-Hartmann 2004

Co-NP
McAllester & Givan 1992

lower bounds also open

NLOGSPACE

40/70

What are the simplest forms of reasoning?

� Monotonicity in both mathematics and language

� Equational reasoning

� Syllogistic reasoning

41/70

Example of mathematical reasoning with
monotone and antitone functions

Which is bigger?

�
7 +

1

4

�−3

or

�
7 +

1

π2

�−3

42/70

Example of mathematical reasoning with
monotone and antitone functions

Which is bigger?

�
7 +

1

4

�−3

or

�
7 +

1

π2

�−3

2 ≤ π
1
π ≤

1
2

1/x is antitone

1
π2 ≤ 1

4
x2 is monotone

7 + 1
π2 ≤ 7 + 1

4

7 + x is monotone

(7 + 1
4)−3 ≤ (7 + 1

π2)−3 x−3 is antitone

42/70

A first monotonicity judgment for language

every dog barks

Assume: barks loudly ≤ barks ≤ vociferates
Notice that if we replace barks by a “bigger” word,
we have an inference.
For example:

every dog barks

every dog vociferates

43/70

A first monotonicity judgment for language

every dog barks

Assume: barks loudly ≤ barks ≤ vociferates
Notice that if we replace barks by a “bigger” word,
we have an inference.
For example:

every dog barks

every dog vociferates

Notation

We’ll indicate this by

every dog barks↑

43/70

What goes up, what goes down?

Assume: barks loudly ≤ barks ≤ vociferates
Assume: old dog ≤ dog ≤ animal

We want

every dog↓barks↑

no dog↓barks↓

not every dog↑barks↓

some dog↑barks↑

most dogs× bark↑ no monotonicity in first argument

44/70

Crash review of CG

A categorial lexicon

(Dana, NP)
(Kim, NP)
(smiled, NP\S)
(laughed, NP\S)
(cried, NP\S)
(praised, (NP\S)/NP)
(teased, (NP\S)/NP)
(interviewed, (NP\S)/NP)
(joyfully, (NP\S)\(NP\S))
(carefully, (NP\S)\(NP\S))
(excitedly, (NP\S)\(NP\S))

45/70

A parse tree showing that
Dana smiled joyfully is an S

S

NP

Dana

NP\S

NP\S

smiled

(NP\S)\(NP\S)

joyfully

46/70

The semantics of CG

It works by

� Assigning sets to the base types, here NP, S .

� Using function sets for the slash types

� Giving fixed meanings to the lexical items

� Working up the tree using function application

The previous stuff gives a model.

Overall semantic facts are defined in terms of models,
as we have already seen.

47/70

For this talk, simpler base types will do

pr for “property”, t for “truth value”.

Also, I’ll ignore the directionality of the slash arrows
to make things much simpler,
and to highlight what is new here.

every : (pr , (pr , t))
some : (pr , (pr , t))
no : (pr , (pr , t))
any : (pr , (pr , t))

(Note that we already have a problem in giving the semantics of
“any”.)

48/70

A preorder is a pair = (P ,≤),
where ≤ is reflexive and transitive

Preorders are needed to really discuss upward/downward monotonicity

The proposal is to enrich the basic
semantic architecture of CG by moving from sets to preorders.

49/70

A preorder is a pair = (P ,≤),
where ≤ is reflexive and transitive

Preorders are needed to really discuss upward/downward monotonicity

The proposal is to enrich the basic
semantic architecture of CG by moving from sets to preorders.

A function f : → is

monotone if p ≤ q in implies f (p) ≤ f (q) in .
antitone if p ≤ q in implies f (q) ≤ f (p) in .

49/70

A preorder is a pair = (P ,≤),
where ≤ is reflexive and transitive

Preorders are needed to really discuss upward/downward monotonicity

The proposal is to enrich the basic
semantic architecture of CG by moving from sets to preorders.

A function f : → is

monotone if p ≤ q in implies f (p) ≤ f (q) in .
antitone if p ≤ q in implies f (q) ≤ f (p) in .

From now on, all functions are monotone

− is (Q,≥): it’s upside-down.

−(−) = .

An antitone f : → is exactly a montone f : → − .

49/70

Let’s think about monotonicity in connection
with truth tables

T means “true” and F means “false”.

¬P: not P

P ∧ Q: P and Q.
P ∨ Q: P or Q.
P → Q: P implies Q; or If P, then Q.

P ¬P

T F

F T

P Q P ∧ Q

T T T

T F F

F T F

F F F

P Q P ∨ Q

T T T

T F T

F T T

F F F

P Q P → Q

T T T

T F F

F T T

F F T

50/70

But what are the preorders?

The main preorder here is the tiny preorder I’ll call .

T

F

Notice that F < T .
51/70

But what are the preorders?

But for ∧, ∨, and →, we need to think about pairs of truth values,
so we need a preorder with four elements.

Which should we use?

51/70

But what are the preorders?

(T ,F) (F ,T)

(F ,F)

(T ,T)

×

51/70

Conjunction ∧ as a monotone function

(T ,F) (F ,T)

(F ,F)

(T ,T) T

F

×
52/70

Disjunction ∨ as a monotone function

(T ,F) (F ,T)

(F ,F)

(T ,T) T

F

×
53/70

What about implication →?
Is it a monotone function from × to ?

(T ,F) (F ,T)

(F ,F)

(T ,T) T

F

×
54/70

Is negation monotone?

T

F

T

F

55/70

The opposite of an order

F

T

T

F

−
= upside down

56/70

Negation is antitone
This is the same as a monotone function from − to

T

F

T

F

57/70

Negation is antitone
This is the same as a monotone function from − to

F

T

T

F

−
57/70

Let’s go back to implication →

(T ,F) (F ,T)

(F ,F)

(T ,T) T

F

×
58/70

Question

Find a preorder so that
→ is a monotone function from to .

Hint: it’s not −(×), but this is on the right track.

(T ,F) (F ,T)

(F ,F)

(T ,T)

×

(T ,F) (F ,T)

(T ,T)

(F ,T)

−(×)

59/70

Question

Find a preorder so that
→ is a monotone function from to .

Hint: try the orders below:

(F ,F) (T ,T)

(T ,F)

(F ,T)

− ×

(F ,F) (T ,T)

(F ,T)

(T ,F)

×−

59/70

Now we can settle the matter about
implication →

It is a monotone function from − × to

(F ,F) (T ,T)

(T ,F)

(F ,T) T

F

− ×

60/70

The main fact that we need later

Definition

Let and be preorders. Then

[,]

is the set of all monotone functions f : → ,
made into a preorder by declaring

f ≤ g iff for all p ∈ P, f (p) ≤ g(p) in

Fact

[,−] = −[− ,]

This means that any lexical items typed as → −
could just as well be typed as − → .

However, the orders [,−] and [− ,] are opposites.

61/70

Proposal, briefly
intended as a formalization of Dowty 1994

Take categorial grammar a la

Ajdukiewicz-Bar Hillel-Lambek-van Benthem

and interpret the syntactic types not in sets but in preorders,
adding the ability to use opposite of a preorder as well.

van Benthem had the idea of using categorial grammar in order
to formalize the ↑, ↓ notation which we saw earlier.
His proposal was then worked out by Sanchez-Valencia.

One generates sentences in CG using ordinary words,
and after a sentence is parsed,
the proof tree is decorated with ↑, ↓ notations.

But Dowty noted that it would be useful to have grammars
which directly generate words-plus-polarities.
I’m going to formalize Dowty’s alternative idea.

62/70

Proposal, briefly
intended as a formalization of Dowty 1994

We begin with a set T0 of basic types: for simplicity pr and t.
We then form a set T1 of types as follows:

� T0 ⊆ T1.
� If σ, τ ∈ T1, then also (σ, τ) ∈ T1.
� If σ ∈ T1, then also −σ ∈ T1.

Let ≡ be the smallest equivalence relation on T1 such that the
following hold:

� −(−σ) ≡ σ.
� −(σ, τ) ≡ (−σ,−τ).
� If σ ≡ σ�, then also −σ ≡ −σ�.
� If σ ≡ σ� and τ ≡ τ �, then (σ, τ) ≡ (σ�, τ �).

The set of types

T = T1/≡.

62/70

Examples of typed constants
This is basically what a grammar looks like

Determiners give constants, two each:

every+ : (−pr , (pr , t))
some+ : (pr , (pr , t))
no+ : (−pr , (−pr , t))
any+ : (−pr , (pr , t))

every− : (pr , (−pr ,−t))
some− : (−pr , (−pr ,−t))
no− : (pr , (pr ,−t))
any− : (−pr , (−pr ,−t))

Every intransitive verb such as ‘runs’ (and every plural noun)
also gives two constants:

runs+ : pr runs− : −pr

Every transitive verb such as ‘see’ gives four constants:

see+
1 : ((pr , t), pr)

see−1 : ((−pr ,−t),−pr)
see+

2 : ((−pr , t), pr)
see−2 : ((pr ,−t),−pr)

‘If’ also gives two constants:

if+ : (−t, (t, t)) if− : (t, (−t,−t))

63/70

Proposal: use preorders
is the flat preorder on a set X

For the semantics we use models M.

M consists of an assignment of preorders σ �→ σ on T0,

pr �→ [,] t �→

extended to T1 by

(σ,τ) = [σ, τ] monotone function preorder

−σ = − σ opposite preorder

If σ ≡ τ , then σ = τ .

We use Pσ to denote the set underlying the preorder σ.

The rest of the structure of M consists of an assignment [[c]] ∈ Pσ

for each constant c : σ.
64/70

Some semantic interpretations
is the flat preorder on an arbitrary set X

[,] is in one-to-one correspondence with the set of subsets of X .

Define

every ∈ [−[,], [[,],]] = (−pr ,(pr ,t))

some ∈ [[,], [[,],]]
no ∈ [−[,], [−[,],]]

in the standard way:

every(p)(q) =

�
true if p ≤ q

false otherwise

some(p)(q) = ¬every(p)(¬ ◦ q)

no(p)(q) = ¬some(p)(q)

It follows from the Main Fact above that

every ∈ [[,], [−[,],−]] = (pr ,(−pr ,−t))

some ∈ [−[,], [−[,],−]]
no ∈ [[,], [[,],−]]

65/70

Examples

chase−1 : ((−pr ,−t),−pr)

every− : (pr , (−pr ,−t)) cat+ : pr

every−(cat+) : (−pr ,−t)

chase−1 (every−(cat+)) : −pr

some+(dog+)(chase+
1 (every+(cat−))) : t

some+(dog+)(chase+
2 (no+(cat−))) : t

no+(dog−)(chase−2 (no+(cat+))) : t

Theorem

The +, − signs automatically indicate the monotonicity ↑ and ↓.

66/70

Another
Everything which sees any cat runs

every+ : (−pr , (pr , t))

see−2 : ((−pr ,−t),−pr)

any− : (−pr , (−pr ,−t)) cat− : −pr

any−(cat−) : (−pr ,−t)

see−2 (any−(cat−)) : −pr

every+(see−2 (any−(cat−))) : (pr , t) runs+ : pr

every+(see−2 (any−(cat−))(runs+) : t

Note that any+ and any− should not have the same interpretation!!

any− = some− any+ = every+

Compare

any+(cat−)(see−1 (any+(dog−))) : t.

67/70

Logic

t : σ ≤ t : σ
t : σ ≤ u : σ u : σ ≤ v : σ

t : σ ≤ v : σ

u : σ ≤ v : σ t : (σ, τ)

t(u) : τ ≤ t(v) : τ

u : (σ, τ) ≤ v : (σ, τ) t : σ

u(t) : τ ≤ v(t) : τ

But it’s open to get completeness for this logic,
and in fact there are interesting questions:

every+(see−1 (every−(cat+)))(see+
1 (every+(cat−)))

every+(see−1 (any−(cat+)))(see+
1 (any+(cat−)))

68/70

What is the point of this logic? Any logic?

For me:

� It would be a step towards a complete logic for a significant
language

For those in RTE:

� The sound principles give transformation rules.

� Completeness would be secondary.

� Logical systems are often implemented, and then this could be
useful.

69/70

Living in two worlds
Work in natural logic continues the ideas of Aristotle and Leibniz, but

also hopes to have something to say to Watson

70/70

