Vision Propositional Synthetic Logic PSL proofs PSL completeness Composition Meanings IQAP experiment Conclusion

Synthetic logic characterizations of meanings extracted from large corpora

Alex Djalali and Christopher Potts Stanford Linguistics

Workshop on Semantics for Textual Inference LSA Institute, University of Colorado, August 9-10, 2011

Vision	Propositional Synthetic Logic	PSL proofs	PSL completeness	Composition	Meanings	IQAP experiment	Conclusion
0000	000000	00000000	00000000	000	0000000	00000000000	

Overview

Goals

- Establish new connections between Bill MacCartney's NatLog system and linguistic theory
- Understand Natlog's logical underpinnings
- Use the logic to systematize the heterogenous information we have about word meanings

Plan

- 1 Rethinking NatLog as a logical system (a sequent calculus)
- 2 Completeness via representation (answering the question, What models does the logic characterize?)
- Instantiate the semantics using large corpora
- 4 Evaluate on a novel corpus of indirect question-answer pairs

- Meaning as model-theoretic denotation
- Meaning as relations between forms

PSL completeness

Meanings IQAP experiment

Two conceptions of semantic theory

Jerrold Katz, Semantic Theory: Meaning as relations between forms

Jerrold Katz, *Semantic Theory*: Meaning as relations between forms

• "The arbitrariness of the distinction between form and matter reveals itself [...]"

Jerrold Katz, *Semantic Theory*: Meaning as relations between forms

- "The arbitrariness of the distinction between form and matter reveals itself [...]"
- "makes no distinction between what is logical and what is not"

Jerrold Katz, *Semantic Theory*: Meaning as relations between forms

- "The arbitrariness of the distinction between form and matter reveals itself [...]"
- "makes no distinction between what is logical and what is not"
- What is meaning? broken down:
 - What is synonymy?
 - What is antonymy?
 - What is superordination?
 - What is semantic ambiguity?
 - What is semantic truth (analyticity, metalinguistic truth, etc.)?
 - What is a possible answer to a question?
 - ...

David Lewis, 'General semantics': Meaning as denotation

"Semantic interpretation by means of them [semantic markers] amounts merely to a translation algorithm from the object language to the auxiliary language Markerese.

David Lewis, 'General semantics': Meaning as denotation

"Semantic interpretation by means of them [semantic markers] amounts merely to a translation algorithm from the object language to the auxiliary language Markerese. But we can know the Markerese translation of an English sentence without knowing the first thing about the meaning of the English sentence: namely, the conditions under which it would be true.

David Lewis, 'General semantics': Meaning as denotation

"Semantic interpretation by means of them [semantic markers] amounts merely to a translation algorithm from the object language to the auxiliary language Markerese. But we can know the Markerese translation of an English sentence without knowing the first thing about the meaning of the English sentence: namely, the conditions under which it would be true. Semantics with no treatment of truth conditions is not semantics. [...]

oofs PSL completene

ess Composition

Meanings IQAP experiment Co

Two conceptions of semantic theory

David Lewis, 'General semantics': Meaning as denotation

"Semantic interpretation by means of them [semantic markers] amounts merely to a translation algorithm from the object language to the auxiliary language Markerese. But we can know the Markerese translation of an English sentence without knowing the first thing about the meaning of the English sentence: namely, the conditions under which it would be true. Semantics with no treatment of truth conditions is not semantics. [...] My proposals are in the tradition of *referential*, or *model-theoretic*, semantics descended from Frege, Tarski, Carnap (in his later works), and recent work of Kripke and others on semantic foundations in intensional logic."

Bill MacCartney's natural logic

- Bill MacCartney and Christopher D. Manning. 2007. Natural logic for textual inference. In Proceedings of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing.
- Bill MacCartney and Christopher D. Manning. 2008. Modeling semantic containment and exclusion in natural language inference. Proceedings COLING 2008.
- Bill MacCartney. 2009. Natural Language Inference. PhD thesis, Stanford University.
- Bill MacCartney and Christopher D. Manning. 2009. An extended model of natural logic. In Proceedings of ACL.

Bill MacCartney's natural logic

. . .

1 Ask not what a phrase means, but how it relates to others.

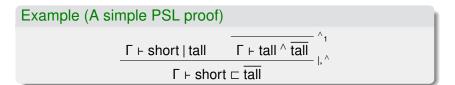
dog	
	is entailed by poodle
	excludes tree
	is consistent with hungry

dance without pants

. . .

entails move without jeans excludes tango in chinos is consistent with tango

- 2 Seamless blending of logical and non-logical operators: everything appears synthetic (as opposed to analytic).
- Solution of the entropy of the en


IBM's Watson

"so you're associating words with other words, and then you can associate those with other words ..."

Propositional Synthetic Logic

- Propositional Synthetic Logic (PSL) is a singly-typed version of MacCartney's natural logic.
- The logic is a theory of the lexicon.
- We will shortly extend the logic with types and composition rules, but our meta-logical results are only for PSL.

Vision	Propositional Synthetic Logic	PSL proofs	PSL completeness	Composition	Meanings	IQAP experiment	Conclusion
0000	00000	00000000	00000000	000	0000000	00000000000	

Syntax

Definition (Syntax of *L*)

Let Φ be a countable set of proposition letters, which we refer to as the set of proper terms. Then,

- **1** If φ is a proper term, then so is $\overline{\varphi}$;
- 2 If φ and ψ are proper terms, then

$$\begin{split} \varphi &\equiv \psi, \quad \varphi \sqsubset \psi, \quad \varphi \sqsupset \psi, \\ \varphi^{\wedge} \psi, \quad \varphi \mid \psi, \quad \varphi \smile \psi \end{split}$$

are synthetic terms. Nothing else is a term of \mathcal{L} .

Examples

- Frenchman | Dutchman
- run ⊏ move
- tall ^ tall

Vision	Propositional Synthetic Logic	PSL proofs	PSL completeness	Composition	Meanings	IQAP experiment	Conclusion
0000	00000	00000000	00000000	000	0000000	00000000000	

Models

Definition (Synthetic models)

Let a synthetic model \mathbb{M} be the pair $\langle D, \llbracket \cdot \rrbracket \rangle$, where

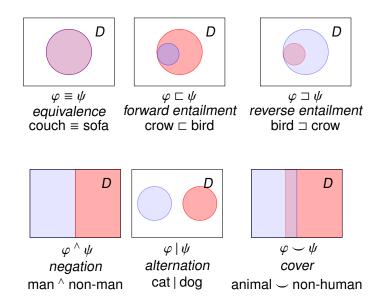
- 1 D is a non-empty set
- ② [[·]] is an interpretation function taking proper terms φ to their denotations in D such that

a.
$$\llbracket \overline{\varphi} \rrbracket = D - \llbracket \varphi \rrbracket$$
 such that

b.

$$\llbracket \varphi \rrbracket \neq \begin{cases} \varnothing & \text{or} \\ D & \end{cases}$$

Vision	Propositional Synthetic Logic	PSL proofs	PSL completeness	Composition	Meanings	IQAP experiment	Conclusion
0000	00000	00000000	00000000	000	0000000	00000000000	


Semantics

Definition (Tarski-style truth conditions)

$$\begin{split} \mathbb{M} &\models \varphi \equiv \psi \quad \Leftrightarrow \quad \llbracket \varphi \rrbracket = \llbracket \psi \rrbracket \\ \mathbb{M} &\models \varphi \sqsubset \psi \quad \Leftrightarrow \quad \llbracket \varphi \rrbracket \subset \llbracket \psi \rrbracket \\ \mathbb{M} &\models \varphi \supset \psi \quad \Leftrightarrow \quad \llbracket \varphi \rrbracket \supset \llbracket \psi \rrbracket \\ \mathbb{M} &\models \varphi \land \psi \quad \Leftrightarrow \quad \llbracket \varphi \rrbracket \supset \llbracket \psi \rrbracket \\ \mathbb{M} &\models \varphi \land \psi \quad \Leftrightarrow \quad (\llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket = \varnothing) \land (\llbracket \varphi \rrbracket \cup \llbracket \psi \rrbracket = D) \\ \mathbb{M} &\models \varphi \mid \psi \quad \Leftrightarrow \quad (\llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket = \varnothing) \land (\llbracket \varphi \rrbracket \cup \llbracket \psi \rrbracket \neq D) \\ \mathbb{M} &\models \varphi \smile \psi \quad \Leftrightarrow \quad (\llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket \neq \varnothing) \land (\llbracket \varphi \rrbracket \cup \llbracket \psi \rrbracket = D) \end{split}$$

ision Propositional Synthetic Logic PSL proofs PSL completeness Composition Meanings IQAP experiment Conclusion

Graphical representation of the semantics

Mutual exclusivity of the relations

Theorem

If \mathbb{M} is a synthetic model then

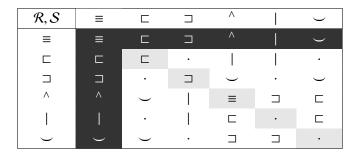
$$\mathbb{M}\models\varphi\mathcal{R}\psi\Rightarrow\mathbb{M}\not\models\varphi\mathcal{S}\psi$$

for $\mathcal{R} \neq \mathcal{S}$.

Vision	Propositional Synthetic Logic	PSL proofs	PSL completeness	Composition	Meanings	IQAP experiment	Conclusion
0000	000000	00000000	00000000	000	0000000	00000000000	

Entailment

Definition (Synthetic entailment)


Let Γ be a set of synthetic terms. Γ entails $\varphi \mathcal{R} \psi$ written, $\Gamma \models \varphi \mathcal{R} \psi$, if, and only if

$$\mathbb{M}\models \Gamma \Rightarrow \mathbb{M}\models \varphi \mathcal{R}\psi$$

Propositional Synthetic Logic proof calculus

- A sequent calculus for reasoning with PSL
- A logical perspective on (the lexical parts of) MacCartney's procedural, matrix-based reasoning

MacCartney rules

M-rules

$$\frac{\Gamma \vdash \varphi \mathcal{R} \psi \qquad \Gamma \vdash \psi \mathcal{S} \chi}{\Gamma \vdash \varphi \mathcal{T} \chi} \mathcal{R}, \mathcal{S}$$

MacCartney rules

\mathcal{R}, \mathcal{S}	≡			٨		$\overline{}$
≡	≡			^)
			•			•
	⊐	•		\smile	•	<u> </u>
^	^	\smile		≡		
		•			•	
	$\overline{}$)	•			•

M-rules: Instantiated with \Box, \Box $\frac{\Gamma \vdash \varphi \Box \psi \qquad \Gamma \vdash \psi \Box \chi}{\Gamma \vdash \varphi \Box \chi} \Box, \Box$

MacCartney rules

\mathcal{R}, \mathcal{S}	≡			Λ		$\overline{}$
≡	≡			^)
			•			•
		•		\smile	•	<u> </u>
^	^	\smile		≡		
		•			•	
	$\overline{}$	$\overline{}$	•			•

M-rules: Instantiated with \sqsubset , ^ $\frac{\Gamma \vdash \varphi \sqsubset \psi \qquad \Gamma \vdash \psi^{\wedge} \chi}{\Gamma \vdash \varphi \mid \chi} \sqsubset, ^{\wedge}$ Vision Propositional Synthetic Logic PSL proofs PSL completeness Composition Meanings IQAP experiment Conclusion

Additional proof rules

Definition (*D*-rules)

$$\frac{\Gamma \vdash \varphi \equiv \psi}{\Gamma \vdash \psi \equiv \varphi} \equiv_{1} \frac{\Gamma \vdash \varphi \equiv \psi}{\Gamma \vdash \psi \equiv \varphi} \equiv_{2} \frac{\Gamma \vdash \varphi \land \overline{\varphi}}{\Gamma \vdash \psi \land \overline{\varphi}} \stackrel{\wedge_{1}}{1} \frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \psi \land \varphi} \stackrel{\wedge_{2}}{2}$$

$$\frac{\Gamma \vdash \varphi \equiv \psi}{\Gamma \vdash \psi \equiv \varphi} \equiv_{1} \frac{\Gamma \vdash \varphi \equiv \psi}{\Gamma \vdash \psi \equiv \varphi} \equiv_{1} \frac{\Gamma \vdash \varphi \mid \psi}{\Gamma \vdash \psi \mid \varphi} \stackrel{\wedge_{1}}{1} \frac{\Gamma \vdash \varphi \smile \psi}{\Gamma \vdash \psi \smile \varphi} \stackrel{\sim_{1}}{=} 1$$

Definition (Reflexivity)

$$\frac{\varphi \mathcal{R} \psi \in \Gamma}{\Gamma \vdash \varphi \mathcal{R} \psi} \text{ Ref}$$

PSL proofs PSL completer

ess Composition

Proofs involving complementation

Theorem (Complementation)1 $\Gamma \vdash \varphi \equiv \psi \Leftrightarrow \Gamma \vdash \varphi \land \overline{\psi}$ 2 $\Gamma \vdash \varphi \land \psi \Leftrightarrow \Gamma \vdash \varphi \equiv \overline{\psi}$ 3 $\Gamma \vdash \varphi \equiv \overline{\varphi}$ (double negation)4 $\Gamma \vdash \varphi \sqsubset \psi \Leftrightarrow \Gamma \vdash \overline{\psi} \sqsubset \overline{\varphi}$ 5 $\Gamma \vdash \varphi \sqcup \psi \Leftrightarrow \Gamma \vdash \overline{\varphi} \sqsubset \overline{\psi}$ 6 $\Gamma \vdash \varphi \mid \psi \Leftrightarrow \Gamma \vdash \varphi \sqsubset \overline{\psi}$ 7 $\Gamma \vdash \varphi \smile \psi \Leftrightarrow \Gamma \vdash \varphi \sqsupset \overline{\psi}$

Vision Propositional Synthetic Logic PSL proofs PSL completeness Composition Meanings IQAP experiment Conclusion

Natural language inference

Definition (*M*-rule: |, ^)

$$\frac{\Gamma \vdash \varphi \mid \psi \qquad \Gamma \vdash \psi^{\wedge} \chi}{\Gamma \vdash \varphi \sqsubset \chi} \mid,^{\wedge}$$

Theorem

$$\Gamma \vdash \varphi \,|\, \psi \Rightarrow \Gamma \vdash \varphi \sqsubset \overline{\psi}$$

Proof.

$$\frac{\Gamma \vdash \varphi \mid \psi \quad \overline{\Gamma \vdash \psi \land \overline{\psi}}}{\Gamma \vdash \varphi \sqsubset \overline{\psi}} \downarrow^{\land_{1}}$$

Vision Propositional Synthetic Logic PSL proofs PSL completeness Composition Meanings IQAP experiment Conclusion

Natural language inference

Definition (*M*-rule: |, ^)

$$\frac{\Gamma \vdash \varphi \mid \psi \qquad \Gamma \vdash \psi^{\wedge} \chi}{\Gamma \vdash \varphi \sqsubset \chi} \mid,^{\wedge}$$

Theorem

$$\Gamma \vdash cat \mid dog \Rightarrow \Gamma \vdash cat \sqsubset \overline{dog}$$

Proof.

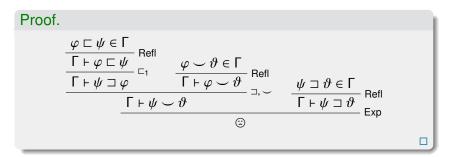
$$\frac{\Gamma \vdash \operatorname{cat} | \operatorname{dog} \qquad \Gamma \vdash \operatorname{dog}^{\wedge} \overline{\operatorname{dog}}}{\Gamma \vdash \operatorname{cat} \sqsubset \overline{\operatorname{dog}}} |,^{\wedge}$$

Vision	Propositional Synthetic Logic	PSL proofs	PSL completeness	Composition	Meanings	IQAP experiment	Conclusion
0000	000000	000000000	00000000	000	0000000	00000000000	

Final proof rule

Definition (Explosion) $\frac{\Gamma \vdash \varphi \mathcal{R} \psi \quad \Gamma \vdash \varphi \mathcal{S} \psi \quad \text{for } \mathcal{R} \neq \mathcal{S}}{\Gamma \vdash \varphi' \mathcal{T} \psi' \text{ for all synthetic terms } \varphi' \mathcal{T} \psi'} \text{Exp}$

Consistency


Definition (Consistency)

 Γ is consistent if, and only if $\Gamma \nvDash \varphi \mathcal{R} \psi$ for some synthetic term $\varphi \mathcal{R} \psi$.

Inconsistency

Theorem (Inconsistent set)

$$\Gamma = \{ \varphi \sqsubset \psi, \psi \sqsupset \vartheta, \varphi \smile \vartheta \} \text{ is inconsistent}$$

Propositional Synthetic Logic completeness

Completeness

 $\Gamma \vdash \varphi \mathcal{R} \psi \Leftrightarrow \Gamma \models \varphi \mathcal{R} \psi$

Soundness proof sketch

Soundness (if provable, then true)

$$\Gamma \vdash \varphi \mathcal{R} \psi \Rightarrow \Gamma \models \varphi \mathcal{R} \psi$$

1 By induction on the height of the derivation.

2 Basic set-theoretic observations.

Example

$$\frac{\Gamma \vdash \varphi \sqsubset \psi \qquad \Gamma \vdash \psi \sqsubset \chi}{\Gamma \vdash \varphi \sqsubset \chi} \sqsubset, \sqsubset$$

The semantics of \sqsubset is strict set-theoretic containment, which is transitive.

Adequacy proof sketch

Adequacy of the Proof Calculus

$$\Gamma \models \varphi \mathcal{R} \psi \Rightarrow \Gamma \vdash \varphi \mathcal{R} \psi \Leftrightarrow \Gamma \nvDash \varphi \mathcal{R} \psi \Rightarrow \Gamma \not\models \varphi \mathcal{R} \psi$$

contraposition

The strategy

The proof is built around a model existence lemma: we show that every consistent Γ has a synthetic model \mathbb{M} such that

 $\Gamma \vdash \varphi \mathcal{R} \psi \Leftrightarrow \mathbb{M} \models \varphi \mathcal{R} \psi \qquad \text{for all } \varphi, \mathcal{R}, \psi$

Model construction via representation

- Every consistent Γ induces an order on the set of proper terms Φ.
- 2 That ordered set can be transformed into an orthoposet.
- 3 Every orthoposet can be represented as a system of sets.
- 4 The system of sets will function as a synthetic model for Γ.

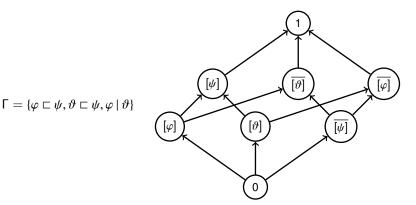
- Cristian Calude, Peter Hertling, and Karl Svozil. 1999. Embedding quantum universes in classical ones. *Foundations of Physics* 29: 349–379.
- Lawrence S. Moss. 2007. Syllogistic logic with complements. Manuscript, Indiana University.
- Nel Zierler and Michael Schlessinger. 1965. Boolean embeddings of orthomodular sets and quantum and logic. *Duke Math Journal* 32: 251–262.

From premise sets to orthoposets

Definition (Orthposets)

An *orthoposet* is a tuple $(P, \leq, 0, -)$ such that

1
$$(P, \leq)$$
 is a partial order;
2 0 is a minimal element, i.e., $0 \leq x$ for all $x \in P$;
3 $x \leq y$ if, and only if $\overline{y} \leq \overline{x}$;
4 $\overline{\overline{x}} = x$
5 If $x \leq y$ and $x \leq \overline{y}$, then $x = 0$.


From arbitrary consistent Γ to orthoposet $(\Phi^*, \leq_{\Gamma}, 0, -)$

- Φ* is a set of equivalence classes under ≡;
- $\varphi \leq_{\Gamma} \psi \iff \Gamma \vdash \varphi \equiv \psi \text{ or } \Gamma \vdash \varphi \sqsubset \psi$
- 0 is a fresh element added not in the original language;
- - is the complementation operator.

Vision Propositional Synthetic Logic PSL proofs PSL completeness Composition Meanings IQAP experiment Conclusion

Example of orthoposet construction

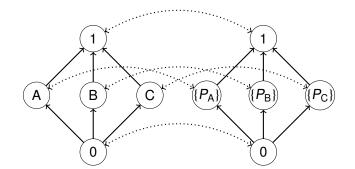
- **1** Define the relation \leq_{Γ} : $\varphi \leq_{\Gamma} \psi \Leftrightarrow \Gamma \vdash \varphi \equiv \psi$ or $\Gamma \vdash \varphi \sqsubset \psi$
- 2 \leq_{Γ} induces an equivalence relation under =
- 3 Let the elements of the orthoposet be those equivalence classes
- 4 Let the equivalence class for φ , written $[\overline{\varphi}]$, be $\overline{[\varphi]}$
- **5** Add elements 0, 1 to Φ , setting $\overline{0} = 1$ and 0 < x < 1:

From orthopsets to systems of sets (models)

Definition (Points)

A *point* of an orthoposet *P* is a subset $S \subseteq P$ such that:

- 1 If $x \in S$ and $x \leq y$, then $y \in S$ (S is upward-closed);
- Por all x, either x ∈ S or x ∈ S (S is complete), but not both (S is consistent).


From orthopsets to systems of sets (models)

Theorem (Representation)

Let $P = (P, \leq, 0, -)$ be an orthoposet. There is a set points(P) and a strict morphism f such that

 $f: P \rightarrow \mathcal{P}(points(P))$

by setting $f(x) = \{S \in points(P) \mid x \in S\}$

Model construction (putting the pieces together)

Recall, $(\Phi^*, \leq, 0, -)$ is an orthoposet. So,

1 Define $g: \Phi \to \Phi^*$ such that

 $\varphi\mapsto [\varphi]_{=_{\mathrm{F}}}$

2 Set
$$f : \Phi^* \to \mathcal{P}(\text{points}(\Phi^*))$$
 such that

 $f(x) = \{S \in \text{points}(\Phi^*) \mid x \in S\}$

3 Let $\llbracket \cdot \rrbracket$ be defined as the *composition* of *f* and *g* (*f* · *g*).

Model existence

Lemma

$$\mathbb{M} \models \varphi \mathcal{R} \psi \Leftrightarrow \Gamma \vdash \varphi \mathcal{R} \psi$$

Proof.

$$\begin{split} \label{eq:g_prod} \ensuremath{\mathsf{\Gamma}} \vdash \varphi \equiv \psi &\Leftrightarrow g(\varphi) = g(\psi) & \ensuremath{\mathsf{\Gamma}} \vdash \varphi \sqsubset \psi \Leftrightarrow g(\varphi) <_{\ensuremath{\mathsf{\Gamma}}} g(\psi) \\ &\Leftrightarrow f(g(\varphi)) = f(g(\psi)) & \Leftrightarrow f(g(\varphi)) \subset f(g(\psi)) \\ &\Leftrightarrow [\![\varphi]\!] = [\![\psi]\!] & \Leftrightarrow [\![\varphi]\!] = [\![\psi]\!] \\ &\Leftrightarrow \mathbb{M} \models \varphi \equiv \psi & \Leftrightarrow \mathbb{M} \models \varphi \sqsubset \psi \end{split}$$

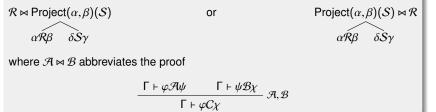
 Vision
 Propositional Synthetic Logic
 PSL proofs
 PSL completeness
 Composition
 Meanings
 IQAP experiment
 Conclusion

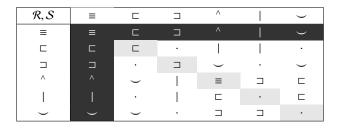
Semantic composition

- We have so far looked only at lexical reasoning, or reasoning within a single type domain.
- We now extend the system, more informally, with a theory of semantic composition.

Projectivity

Every pair of like-typed lexical items has an associated projectivity signature mapping synthetic logic relations into same.

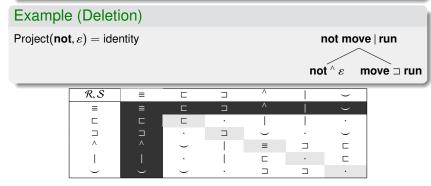

Example (Negation, both inserted and deleted) $Project(not, not) = Project(\varepsilon, not) = \begin{bmatrix} \Box & \mapsto & \Box \\ \Box & \mapsto & \Box \\ | & \mapsto & \smile \\ \Box & \mapsto & \downarrow \\ | & \mapsto & \downarrow \\ | & \vdots & \mapsto & \equiv \\ \land & \mapsto & \land \end{bmatrix}$ Project(not, c) = identify


- $Project(not, \varepsilon) = identity$
 - MacCartney motivates numerous projectivity signatures, for one- and two-place operators, as well as default signatures for inserting and deleting phrases.
 - Thomas lcard is currently exploring the formal properties of the linguistically useful signatures.

Semantic compositon rule

Definition (Semantic composition)

The rule for computing the value of the mother based on its daughter:



Example: negation

Example (Insertion)

 Vision
 Propositional Synthetic Logic
 PSL proofs
 PSL completeness
 Composition
 Meanings
 IQAP experiment
 Conclusion

Lexical meanings

- Instantiating the lexicon using multiple resources
- Balancing high precision (WordNet and hand-built lexicons) with broad coverage (data gathered from the Web)
- Using Synthetic Logic to characterize this information and reason in terms of it

WordNet (roughly as in MacCartney's work)

if WordNet(φ, ψ) = antonym then $\varphi \mid \psi$ else if WordNet(φ, ψ) $\in \begin{cases} \text{entailment, (instance) hypernym,} \\ \text{member|substance|part meronym} \end{cases}$ then $\varphi \sqsubset \psi$ else if WordNet(φ, ψ) $\in \begin{cases} \text{cause, (instance) hyponym,} \\ \text{member|substance|part holonym} \end{cases}$ then $\varphi \sqsupset \psi$ else if WordNet(φ, ψ) $\in \left\{ \begin{array}{c} also see, similar to, synonym \\ derivationally related, pertainym \end{array} \right\}$ then $\varphi \equiv \psi$

else $\varphi \# \psi$

 Vision
 Propositional Synthetic Logic
 PSL proofs
 PSL completeness
 Composition
 Meanings
 IQAP experiment
 Conclusion

 0000
 0000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 0000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 000000000000
 000000000000000000
 00000

Overview of WordNet coverage

	а	n	r	v
hypernyms	0	74389	0	13208
instance hypernyms	0	7730	0	0
hyponyms	0	16693	0	3315
instance hyponyms	0	945	0	0
member holonyms	0	12201	0	0
substance holonyms	0	551	0	0
part holonyms	0	7859	0	0
member meronyms	0	5553	0	0
substance meronyms	0	666	0	0
part meronyms	0	3699	0	0
attributes	620	320	0	0
entailments	0	0	0	390
causes	0	0	0	218
also sees	1333	0	0	325
verb groups	0	0	0	1498
similar tos	13205	0	0	0
antonyms	3872	2120	707	1069
derivationally related	10531	26758	1	13102
pertainyms	4665	0	3220	0

Propositional Synthetic Logic PSL proofs PSL completeness

Meanings IQAP experiment

IMDB user-supplied reviews

User Reviews (Review this title)

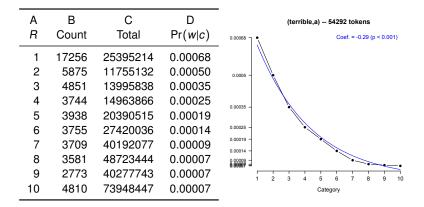
294 out of 454 people found the following review useful.

WALL-E is one of the most cutest, lovable ch

Author: michael11391 from Augusta, Ga

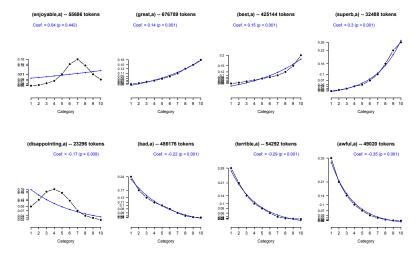
Not only it's Pixar's best film of all-time but it's the b animated films in years and surprisingly, one of the mines. It's so beautiful, moving, hilarious & sad at th E, it's certainly one of his best right behind Finding I WALL-E knocked off Ratatouille of the top spot in w ever seen with Ratatouille right behind and Finding | be remembered as one of the most lovable characte

Was the above review useful to you? Yes

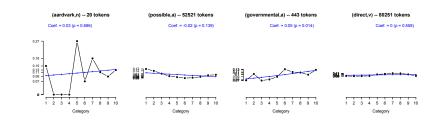

See more (855 total) »


IMDB user-supplied reviews

Rating	Reviews	Words	Vocabulary	Mean words/review
1	124,587 (9%)	25,395,214	172,346	203.84
2	51,390 (4%)	11,755,132	119,245	228.74
3	58,051 (4%)	13,995,838	132,002	241.10
4	59,781 (4%)	14,963,866	138,355	250.31
5	80,487 (6%)	20,390,515	164,476	253.34
6	106,145 (8%)	27,420,036	194,195	258.33
7	157,005 (12%)	40,192,077	240,876	255.99
8	195,378 (14%)	48,723,444	267,901	249.38
9	170,531 (13%)	40,277,743	236,249	236.19
10	358,441 (26%)	73,948,447	330,784	206.31
Total	1,361,796	317,062,312	800,743	232.83


Counting and visualizing: IMDB

 $Pr(terrible, a) = logit^{-1}(7.06 + -0.29 * category)$


Scalars

 $(\Pr(w|c))$ values rescaled to $\Pr(c|w)$ to facilitate comparison.)

Vision	Propositional Synthetic Logic	PSL proofs	PSL completeness	Composition	Meanings	IQAP experiment	Conclusion
0000	000000	00000000	00000000	000	00000000	00000000000	

Duds

Scalar semantics

Definition (coef)

 $\operatorname{coef}(\varphi) \stackrel{\text{def}}{=}$ the coeffecient estimate for Category

Definition (imdb_x)

 $\mathsf{imdb}_{\mathsf{x}}(\varphi) \stackrel{\mathsf{def}}{=} \mathsf{coef}(\varphi) \quad \mathsf{if} \ p \leqslant x$ undefined otherwise

Definition (Scalar relations)

 $\begin{array}{ll} \text{if } \text{sign}(\text{imdb}_{x}(\varphi)) \neq \text{sign}(\text{imdb}_{x}(\psi)) & \text{then } \varphi \mid \psi \\ \text{else if } & \text{imdb}_{x}(\varphi) \approx \text{imdb}_{x}(\psi) & \text{then } \varphi \equiv \psi \\ \text{else if } & \text{abs}(\text{imdb}_{x}(\varphi)) > \text{abs}(\text{imdb}_{x}(\psi)) & \text{then } \varphi \sqsubset \psi \\ \text{else if } & \text{abs}(\text{imdb}_{x}(\varphi)) < \text{abs}(\text{imdb}_{x}(\psi)) & \text{then } \varphi \sqsupset \psi \end{array}$

Lexical semantics

 $\text{if WordNet}(\varphi,\psi) = \text{antonym} \qquad \qquad \text{then } \varphi \,|\, \psi \\$

else if WordNet $(\varphi, \psi) \in \left\{ \begin{array}{l} \text{entailment, (instance) hypernym,} \\ \text{member|substance|part meronym} \end{array} \right\}$ then $\varphi \sqsubset \psi$ else if WordNet $(\varphi, \psi) \in \left\{ \begin{array}{l} \text{cause, (instance) hyponym,} \\ \text{member|substance|part holonym} \end{array} \right\}$ then $\varphi \sqsupset \psi$ else if WordNet $(\varphi, \psi) \in \left\{ \begin{array}{l} \text{also see, similar to, synonym} \\ \text{derivationally related, pertainym} \end{array} \right\}$ then $\varphi \equiv \psi$

else if $coef(\varphi)$ and $coef(\psi)$ are defined then

 $\begin{array}{ll} \text{if } \text{sign}(\text{imdb}_{x}(\varphi)) \neq \text{sign}(\text{imdb}_{x}(\psi)) & \text{then } \varphi \mid \psi \\ \text{else if } & \text{imdb}_{x}(\varphi) \approx \text{imdb}_{x}(\psi) & \text{then } \varphi \equiv \psi \\ \text{else if } & \text{abs}(\text{imdb}_{x}(\varphi)) > \text{abs}(\text{imdb}_{x}(\psi)) & \text{then } \varphi \sqsubset \psi \\ \text{else if } & \text{abs}(\text{imdb}_{x}(\varphi)) < \text{abs}(\text{imdb}_{x}(\psi)) & \text{then } \varphi \sqsupset \psi \\ \text{else } & \varphi \# \psi \end{array}$

(implementation: compprag.christopherpotts.net/iqap-experiments.html)

Hand-built supplementary lexicon

- Our method doesn't learn sensible meanings for most pairs of closed-class lexical items, so we specify those relations by hand.
- Our method doesn't learn projectivity signatures, so we write those by hand (mostly taking them from MacCartney's work).

Indirect question-answer pairs experiment

- A new corpus
- A new experiment, akin to MacCartney's but with more intermingling of semantics and pragmatics
- A: Does the system work?
 - B: It's instructive.

Answers and inferences

Jerrold Katz, *Semantic Theory*: Meaning as relations between forms

- What is meaning? broken down:
 - What is synonymy?
 - What is antonymy?
 - What is superordination?
 - What is semantic ambiguity?
 - What is semantic truth (analyticity, metalinguistic truth, etc.)?
 - What is a possible answer to a question?
 - ...

Example

- A: Was the vacation enjoyable?
- B: It was memorable.

Vision Propositional Synthetic Logic

SL proofs PSL complet

Composition

Meanings IQAP experiment

Conclusion

Collaborators

Marie-Catherine de Marneffe

Scott Grimm

Chris Manning

Marie-Catherine de Marneffe, Scott Grimm & Christopher Potts. 2009. Not a simple yes or no: Uncertainty in indirect answers. Proceedings of SIGDIAL 10.
Marie-Catherine de Marneffe, Christopher D. Manning & Christopher Potts. 2010. Was it good? It was provocative. Learning the meaning of scalar adjectives. Proceedings of ACL 48.

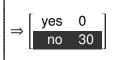
Vision	Propositional Synthetic Logic	PSL proofs	PSL completeness	Composition	Meanings	IQAP experiment	Conclusion
0000	000000	00000000	00000000	000	0000000	00000000000	

IQAP corpus

Source	Dev. set	Eval. set
CNN show transcripts	40	17
From Julia Hirschberg's (1985) thesis	26	12
The Switchboard Dialog Act Corpus	26	11
Yahoo Answers Corpus	58	25
Total	150	65

Available at compprag.christopherpotts.net/iqap.html

Vision	Propositional Synthetic Logic	PSL proofs	PSL completeness	Composition	Meanings	IQAP experiment	Conclusion
0000	000000	00000000	00000000	000	0000000	00000000000	


Annotations

Indi	Indirect Answers to Yes/No Questions								
In the	In the following dialogue, speaker A asks a simple Yes/No question, but speaker B answers with something more indirect and complicated:								
	A: \${Question} B: \${Answer}								
Whic	h of the following best captures what speaker B meant here?								
⊖ B ⊖ B	i definitely meant to convey "Yes". t probably meant to convey "Yes". t definitely meant to convey "No". t probably meant to convey "No".								

30 annotations per IQAP:

- A: Have you mailed that letter yet?
- B: I haven't proofread it.

definite yes 0 probable yes 0 probable no 5 definite no 25

Vision	Propositional Synthetic Logic	PSL proofs	PSL completeness	Composition	Meanings	IQAP experiment	Conclusion
0000	000000	00000000	00000000	000	0000000	00000000000	

Entailment cases

The answer is stronger than the que	estion radical:	def. Y	prob. Y	prob. N	def. N
Did he do a good job?	He did a great job.	30	0	0	0
Is it a comedy?	I think it's a black comedy.	14	16	0	0
Is Cadillac an American company?	It's a division of General Motors.	7	22	1	0
Have you finished the third grade?	I've finished the fourth.	20	9	1	0

The answer is stronger than the negation of the question radical:

Do you think that's a good idea?	It's a terrible idea.	0	0	1	29
Is Santa an only child?	He has a brother named Fred.	1	0	5	24

The question radical is stronger than the negation of the answer:

Have you mailed that letter yet?	I haven't proofread it.	0	0	5	25
Did you buy a house?	We haven't gotten a mortgage yet.	0	2	12	16

Vision	Propositional Synthetic Logic	PSL proofs	PSL completeness	Composition	Meanings	IQAP experiment	Conclusion
0000	000000	00000000	00000000	000	0000000	00000000000	

Implicature cases

The question radical is stronger than the answer:					def. N
Have you mailed that letter yet?	I've typed it.	0	0	15	15
Did you buy a house?	We haven't gotten a mortgage yet.	0	2	16	12
Did you ever get any information on it?	I sent off for stuff on it.	0	4	3	23
Is it a sin to get drunk?	It is a sin to drink to excess.	13	14	2	1
Do you need this?	I want it.	2	15	13	0

The question radical and the answer seem to be independent:

Do you know how to spell it?	It starts with a K.	0	6	20	4
Have you made fondue in this pot yet?	Not chocolate fondue.	1	19	9	1
Do you speak Ladino?	I speak Spanish.	1	9	16	4
Do you have paste?	We have rubber cement.	0	8	18	4
Was he cute?	He wasn't stunning.	2	2	7	19
Have you read the third chapter?	I read the fourth.	3	16	9	2

Vision	Propositional Synthetic Logic	PSL proofs	PSL completeness	Composition	Meanings	IQAP experiment	Conclusion
0000	000000	00000000	00000000	000	0000000	000000000000	

Answerhood

Question ≡ Answer Question ⊐ Answer			(entailed) (entailed)
Question Answer Question ^ Answer			(entailed) (entailed)
Question \smile Answer Question \sqsubset Answer Question $\#$ Answer	\Rightarrow	'No'	(implicated) (implicated) (implicated)

 Vision
 Propositional Synthetic Logic
 PSL proofs
 PSL completeness
 Composition
 Meanings
 IQAP experiment
 Conclusion

Examples

Experiment

Limited to the development set. Hand-alignment of 'contrast' subtrees. Experiment code: code.google.com/p/pynatlog/

	precision	recall
'Yes'	0.63	0.73
'No'	0.82	0.74

Table: Effectiveness results for our approach. Accuracy: 0.74.

	precision	recall
'Yes'	0.71	0.44
'No'	0.66	0.86

Table: Deterministic approach, no semantic composition. Accuracy: 0.67.

micro-averaged				
precision recall				
0.8	0.76			

Table: MaxEnt, no composition, 10 random train/test splits. Average accuracy: 0.77. (0.8 on training data.) Vision Propositional Synthetic Logic PSL proofs OSCOPPORT OSCOPPORTS Composition OSCOPPORTS Conclusion

Discussion

- WordNet is high precision but low coverage: just 22% of the examples rely on WordNet, but accuracy is around 88% for them.
- 2 The IMDB is lower precision, but high coverage: 43% of the examples rely on IMDB, and accuracy is around 71%.
- 3 82/150 examples involve comparing just one word. For these, accuracy is 68%.
- We get a performance boost from the fact that where our algorithm fails to predict a relationship, we infer independence, i.e., a 'No'.
- Implicature inferences correlate with higher variability in the annotations and more use of the 'probable' categories. We should find a way to bring this into the model.

Vision	Propositional Synthetic Logic	PSL proofs	PSL completeness	Composition	Meanings	IQAP experiment	Conclusion
0000	000000	00000000	00000000	000	0000000	00000000000	

Conclusion

Summary

- Developed Propositional Synthetic Logic and proved completeness
- Extended PSL with a theory of composition (inspired by MacCarntney's NatLog procedure)
- Instantiated a broad-coverage lexicon using multiple sources
- Reported on an initial experiment using a new corpus of indirect question-answer pairs

Looking ahead

- Meta-logical results for the theory of composition
- Methods for automatic alignment
- Extend the corpus to include a wider range of examples
- Bring in contextual information