

Decoupling Application and Runtime Data
in Graphical Simulations

Chinmayee Shah, Omid Mashayekhi, Hang Qu, Philip Levis

Nimbus

Graphical simulations are limited to supercomputers
or a HPC cluster. Nimbus is a distributed system for
running graphical simulations in the computing cloud.

Distributed Simulations Today

● Simulations statically partition spatial domain and
map each partition to a fixed worker.

● All steps use same partitioning strategy.
● Workers run in lock-step, and keep CPUs idle or busy
with wasteful computation.

● Simulations assume that resources are uniform &
always available, which may not hold in the cloud.

Why not use current cloud systems?

● Graphical simulations operate over geometric data,
making data and task placement important.

● They use complex and coupled data structures.
● Computation intensity varies across space and time.
● Simulations are iterative, with dynamic job and data
dependencies that are not known in advance.

Application Data Manager

● Translates between logical data objects to contiguous
app objects.

● Constructs an app object that matches a job's app
partition, read and write set, and caches across jobs.

● Ensures that app and copy jobs access data with the
correct version from the right app object.

● Ensures consistency with controller view of data.

● Copies old data from app objects if old versions must
persist for jobs yet to be executed or fault tolerance.

● Reduced time by 50%, but doubled memory usage.

Status

● Ported a Physbam water simulation to Nimbus.

● Run simulations up to 20003 on Amazon EC2.

● Future work includes eliminating double copies,
adding runtime support for trees and chimera grids.

System Design an Programming Model

● Central controller
- assigns jobs
- manages data exchange and versions

● Workers
- manage thread pools
- execute jobs

● Every job has explicit read, write and before set
dependencies to minimize scheduling overhead.

Application and Data Partitions

● Nimbus runtime versions, copies and exchanges
disjoint logical data objects.

● Ghost region bandwidth and application partitioning
determine logical data objects underlying a variable.

● 43 (64) application partitions on just 1 variable in 3D
result in approximately 2700 logical data objects!

● 1 application partition reading share regions from
neighbors operates over 125 logical objects.

43 (64) partitions on
just 1 variable in 3D
result in approximately
2700 logical data
objects!

wasteful
computation

idle
cpus

