
Uniform Load Balancing in PhysBAM’s Fluid

Simulation via Threading

Chinmayee Shah, Hang Qu, Saket Patkar, Daniel Perry

June 10, 2013

1 Introduction

PhysBAM is a physics based simulation library developed at Stanford University
by Prof. Ron Fedkiw’s group. It is capable of simulating a wide range of
phenomenon like compressible and incompressible fluids, rigid and deformable
solids, coupled fluids and solids, fracture and fire.

For this project, we focussed on simulating free surface flows on a single multi-
processor machine. Dividing the simulation domain into partitions, with a pro-
cess per partition (as in the existing PhysBAM’s MPI based implementation)
can result in a skewed work load across processors. For example, one process
may be in charge of regions that mostly contain air, resulting in little actual work
being done, when that process is scheduled. A naive way to overcome this is to
have more partitions and processes, so that work gets distributed more evenly
between processors. However, this can result in large amount of communication
on chip, as all ghost values need to be synchronized. Also, large number of par-
titions does not work well with stages like projection, which use techniques such
as preconditionining to solve implicit equations. We used threading, instead of
MPI, to overcome problems like load imbalance and different requirements for
stages like advection and projection.

Using threading, we divided the domain into small partitions, assigning a thread
to each partition. Once a thread is done with one partition, it moves to another
partition. This allows us to divide work more evenly, while eliminating commu-
nication for synchronization of ghost values. For stages like preconditioning in
projection, which do not perform well with a lot of subdivision, we use fewer
threads to operate on the same data. For advection, we partition the complete
domain, testing for presence of water, thus avoiding wasteful work. For pro-
jection, we partition regions as they are solved, so as to speed up the solve on
each region. We studied the effects of varying the chunk sizes. We also mea-
sured CPU idle time for our method and compared it with PhysBAM’s MPI
implementation to prove the efficacy of our method.

1



In the following sections, we describe the changes that we made to PhysBAM
for some major steps in the water simulation, our observations and conclusions.

2 Advection

Advection performs an update on various field quantities such as velocity, par-
ticle positions, signed distance and density, by moving the quantities over the
velocity field. A field ~q advected over a velocity field ~u is updated as,

∂~q

∂t
+ ~u · ∇~q = 0 (1)

The PhysBAM water simulation that we are studying performs semi-Lagrangian
advection for velocity and signed distance, and second order Runge-Kutta ad-
vection for particles. In all cases, advection of a quantity residing on a face, cell
center or vertex needs access to neighboring values of the same quantity, as well
as velocity.

Figure 1: PhysBAM’s way of dividing work among 4 workers.

2.1 Problems with current implementation

For the purpose of this project, we restrict ourselves to velocity advection. Phys-
BAM’s current implementation performs advection over the entire domain being
simulated. Such a strategy is quite wasteful for free surface flows where a large
portion of the domain is covered by air, since one is interested in advection of
quantities only near and below the fluid surface. We suspect that the main
reason behind using this strategy is the fact that, when running with multiple
processors, the overall speed is determined by the speed of the slowest processor.
So, if one processor’s domain is filled completely with fluid, optimizing other
processors for air does not result in any speedup. On the contrary, additional

2



branches to check for air or fluid, for every cell, will only make the slowest
processor even slower.

The imbalance in work (and fluid) distribution arises from the way PhysBAM di-
vides the simulation domain. Currently, PhysBAM exploits parallelism through
MPI processes, even when running on a single machine. In order to distribute
work to each process, it divides the domain into uniform, fixed disjoint pieces,
equal in number to the number of MPI processes (workers) invoked (see Figure
1). While such a division may be extremely cache coherent, it may result in a
very uneven work distribution. Also, such an allocation scheme is static – once
a region is allocated to a worker, the process stays in charge of the region for
the entire simulation.

Figure 2: Dividing the domain into smaller chunks.

2.2 Work distribution through threading

To alleviate the problem of unbalanced distribution of work, we decided to ex-
ploit multi-core opportunities through threads instead of processes. Threading
allows us to allocate work to processors on the fly – once a thread completes
one piece of work, it can move to the next piece of work in the queue. We
divide the simulation domain into small chunks, such that number of chunks is
much larger than number of threads, or available cores (see Figure 2). We use
the Intel TBB library to split the domain into small pieces, and parallel for

and parallel reduce constructs to schedule these pieces of work. We cannot
perform such dynamic distribution of work with PhysBAM’s current MPI im-
plementation, because a domain once allocated to a process, cannot be changed
for the entire simulation, and large number of small chunks does not work well
for projection, which involves implicit equations.

Once we were able to distribute work dynamically using threads, we eliminated
wasteful work by performing advection only in regions with water. To achieve
this, we pass the signed distance to the advection code. We perform advec-

3



tion only in regions where signed distance is below a positive threshold – thus
restricting the operation to near and below the surface. While this adds an addi-
tional branch to the advection code, the speed-ups that we obtained overshadow
the cost of branching.

2.3 Domain division

PhysBAM lays out the data on the grid into a single 1D array. The index
of a point (x, y, z) in a m × n × k grid is given by (x × m + y) × n + z. We
restricted ourselves to partitioning the data by partitioning this array – resulting
in partitions along the x dimension.

2.4 Results

We performed a series of tests with different initial conditions for water, and
compared the performance of our threaded implementation with PhysBAM’s
MPI implementation. The tests were run on an Intel laptop, equipped with a
i7-2820QM processor, that has 4 cores, with 2 hyperthreads per core. We chose
4 different initial conditions, that we believe are representative of the conditions
in a single-phase fluid simulation. Tests 1 and 2 have water in approximately
half the domain, test 3 has an extremely skewed distribution of water while test
4 has water over almost the entire domain. Figure 3 provides a snap-shot of the
cross section of the initial conditions, for these tests. All tests were run for 3d
domain.

Figure 3: Top left image shows the cross section of the initial condition for test
1, top right for test 2, bottom left for test 3 and bottom right for test 4.

4



To make a fair comparison, we also modified the MPI code to perform advection
only near and below the water surface. We ran tests at various resolutions,
using 1, 2 and 4 workers, results summarized in Table 1. Figure 4 compares the
performance for a 250× 250× 250 grid, for 2 extreme cases (tests 3 and 4).

Test Scale 1 1 2 2 4 4
proc thread procs threads procs threads

150 0.34 0.38 0.18 0.19 0.18 0.11
Test 1 200 0.80 0.87 0.42 0.46 0.41 0.24

250 1.5 1.74 0.8 0.92 0.8 0.49
150 0.55 0.54 0.28 0.30 0.27 0.17

Test 2 200 1.27 1.33 0.70 0.68 0.64 0.39
250 2.45 2.66 1.30 1.38 1.30 0.76
150 0.37 0.40 0.29 0.21 0.18 0.14

Test 3 200 0.86 0.95 0.68 0.49 0.43 0.30
250 1.60 1.88 1.30 0.98 0.80 0.58
150 1.02 1.00 0.55 0.51 0.33 0.30

Test 4 200 2.44 2.40 1.29 1.22 0.77 0.70
250 4.64 4.54 2.42 2.41 1.50 1.33

Table 1: The numbers represent the time for advection, in seconds, averaged
over 3 frames, each consisting of several time steps. Threaded code performs
better than MPI code with 4 workers, for tests 1, 2 and 3. Both codes give
comparable performance for test 4.

Threaded code with 1 worker performs worse, compared to MPI with 1 worker,
for most cases. We believe that this is due to the overhead, added by Intel TBB
library (splitting and scheduling, that is performed even for a single thread). For
most cases, threaded implementation performs comparable to, or better than
MPI version for 2 and 4 workers. When the imbalance in work distribution is
high, as in test 2 and 3, threads performs up to 40% faster than MPI. When
the distribution of water is more uniform, as in test 4, 2 and 4 threads perform
comparable to MPI. We believe that with larger number of cores per machine,
the difference in performance of threaded and MPI code will become even more.

2.5 Remarks

Conceptually, signed distance and particle advection can also be threaded using
the same approach as velocity. However, advecting these quantities requires
modifying certain PhysBAM data structures, and requires a significant amount
of more effort, compared to velocity advection. Hence, we ignore these stages for
the purpose of this project. For instance, particle advection performs several
list operations for updating particle positions. Threading particle advection
requires us to either maintain a separate list per thread and synchronize the
lists, or maintain a global list and use locks to perform updates on the list.
This makes the threaded approach inefficient. MPI implementation eliminates

5



Figure 4: Left plot shows performance for test 3, right plot shows performance
for test 4, for velocity advection.

the need for synchronization by having different processes deal with different
regions, and maintaining a separate list for each region. We feel that we can use
a separate list per chunk, similar to MPI, and still have the benefits of uniform
and dynamic work distribution, by using threads and a reasonable number of
chunks. However, this requires further investigation, and we leave it for future.

3 Projection

Projection is the final stage in a simulation step. It operates on velocity and
pressure fields, and makes the fluid velocity divergence free. To do this, projec-
tion computes a pressure such that applying it to velocity field makes velocity
divergence free, as follows,

~un+1 = ~u− ∆t

ρ
∇p (2)

∇ · ~un+1 = 0 (3)

Applying equation 3 to equation 2 results in a linear system, with as many
equations (or variables) as number of cells. Using the computed pressure, ~un+1

can be updated with equation 2. PhysBAM first performs a flood-fill operation
to find out the number of connected regions, and then solves each region using
preconditioned conjugate gradient method (PCG).

3.1 Limitations with current implementation

With PhysBAM’s MPI implementation, it is not possible to change the regions
allocated to processors, as the simulation progresses. As a result, one processor

6



may contain a large portion of a water component, while another processor may
host only a small portion of the region. This results in an imbalance, both at
the preconditioning stage, and the conjugate gradient stage of PCG. Another
drawback with the current implementation is that, there may be processors that
host no water, which may end up doing no work – when they could have shared
some of the work, if they had access to the data.

3.2 Threading implementation

It turns out that splitting the domain into a large number of chunks does not
work well for the preconditioning part in PCG. If a region is split into n chunks,
PCG first constructs an n block incomplete Cholesky LU factorization, and
then performs forward and backward solve at the beginning of each iteration
using the computed L and U (lower and upper triangular) matrices. Making n
larger results in larger number of blocks, making the preconditioning weak, and
resulting in larger number of iterations. Hence, we decided to keep the number of
blocks, n, equal to the number of workers. For a machine with larger number of
cores, we can make n less than the number of workers too. Although this seems
similar to what PhysBAM currently does, there is one important difference. We
make n blocks of same size, for each region (color). In the MPI implementation,
since a region may be divided across processors, number of blocks and block
size depends on the way the region is divided across processors, and may result
in blocks of extremely different sizes. As mentioned before, some cores that
do not host any water from a solution region may end up wasting CPU cycles,
performing no useful work. We use the task group construct from Intel’s TBB
to run parallel forward and backward solves.

Other operations such as sparse matrix-vector multiplication, dot product, vec-
tor addition and calculating maximum component of a vector are highly par-
allelizable. These operations constitute most of the conjugate gradient part
of PCG. We parallelize these operations by splitting matrices and vectors into
small chunks. This is different from the splitting performed in advection, in the
sense that the matrix and vectors corresponding to each solution region, rather
than the entire domain, are split. We use parallel for and parallel reduce

constructs from Intel’s TBB library to perform splitting and to schedule the
chunks. Splitting the matrices and vectors into chunks, equal to the number
of workers, is sufficient to distribute work evenly across the processors. The
motivation behind splitting these structures into small chunks is to compensate
for certain cores that may be slow due to reasons such as other ongoing tasks.

We did not parallelize some parts of projection due to lack of time. These steps
include setting the boundary conditions, constructing the actual system matrix
and constructing the preconditioner (incomplete Cholesky factorization). These
operations can be parallelized in a manner similar to MPI’s imeplementation,
but require modifying PhysBAM’s data structures. Also, these operations are
outside the main PCG iteration loop, and hence, cause only a small performance

7



Test Scale 1 1 2 2 4 4
proc thread procs threads procs threads

150 1.2 1.46 0.71 1.19 0.76 1.11
Test 1 200 3.0 3.47 1.67 1.97 1.80 1.83

250 5.92 6.81 3.3 3.87 3.63 2.95
150 2.25 2.60 1.26 1.48 1.44 1.38

Test 2 200 5.33 6.15 3.01 3.50 3.47 2.67
250 10.46 12.07 5.83 6.82 7.02 5.31
150 1.08 1.24 1.10 1.13 0.97 1.09

Test 3 200 2.77 3.20 2.65 2.69 2.81 2.59
250 5.90 6.08 5.26 3.98 5.26 3.75
150 4.54 5.24 2.51 2.96 2.14 2.24

Test 4 200 10.77 12.40 6.03 7.03 5.14 5.55
250 22.54 25.26 12.03 14.39 10.55 10.87

Table 2: The numbers represent the time for projection, in seconds, averaged
over 3 frames, each consisting of several time steps.

hit in large systems.

3.3 Domain division

As mentioned before, we have implemented 2 different kinds of division for
projection. First, we split the region being solved into n blocks, where n equals
number of workers, and perform Cholesky factorization on each block. We
then use these n blocks to perform forward and backward solve, in parallel
within the PCG iteration loop. The rest of the loop consists of matrix-vector
multiplication, dot product, vector sum and maximum component calculation.
We calculate chunk size as a function of the number of cells in the solution
region (keeping a fixed, minimum chunk size), pass it to TBB and use TBB’s
built-in range splitting feature, to parallelize the conjugate gradient operations.

3.4 Results

We measured performance for the threaded implementation for the same test
cases as advection in Section 2.4, Figure 3. The tests were run on an Intel
laptop having i7-2820QM processor. The results, averaged over 3 frames, are
summarized in Table 2. Figure 5 compares the performance of threaded code
with the MPI implementation for 2 extreme cases, for a 250× 250× 250 grid.

The presented projection numbers correspond to the total time for Cholesky
factorization (computing preconditioner), forward and backward solve, and the
conjugate gradient operations. We have omitted the time corresponding to
flood-fill operation and construction of A matrix, since these operations are
easily parallelizable, but require touching a lot of PhysBAM data structures.

8



Figure 5: Left plot shows performance for test 3, right plot shows performance
for test 4, for projection.

We can parallelize Cholesky factorization for an n-block diagonal matrix, over
n workers. However, we could not implement the change due to time constraints.
We expect the performance numbers for smaller systems (150× 150× 150 and
200× 200× 200) to improve slightly, with the modification.

With present threaded implementation, we obtain performance comparable to,
or better than MPI, for 4 workers. We obtain a performance improvement
of up to 30% for the test cases that we built. We believe that the threaded
code still suffers a slight performance hit due to overhead from Intel TBB, and
serialized preconditioner computation, resulting in poor performance with 1 and
2 workers.

4 Varying chunk size

We performed several tests with different chunk sizes for advection, and conju-
gate gradient operations in projection, for scale 250× 250× 250. For advection,
we changed the size of chunks along the outermost dimension (x in our case).
For projection, we increased the number of chunks, as a multiple of the total
number of workers. This implies l

k·n size chunks for l-size vector, with n threads,
and where k is an integer. We imposed a minimum limit on the chunk size, to
ensure that we do not split the domain into extremely tiny regions.

We varied k from 1 to 4, and did not see any significant difference in the per-
formance for projection. For advection, we varied the chunk size from 1 to 128,
and saw a performance dip for large sizes. This can be attributed to the fact
that as chunk size increases, number of chunks decreases. When total number
of chunks is less than the number of workers, performance deteriorates, due to
less parallelism. Also, with large chunks, work distribution across threads gets
skewed, in cases where water is not distributed uniformly across the domain.

9



For the test cases that we built, sizes less than 16 were sufficient to distribute
work in a fair manner. Advection performance was insensitive to variation in
chunk size below 16. This number varied slightly for different tests. Tests 1
and 4 were insenitive to any variation in chunk size, as long as enough chunks
were available. We can attribute this to the uniform distribution of water along
x dimension, in these cases. Tests 2 and 3 were more sensitive to chunk size,
due to different distribution of water along x axis, but were insensitive to size
variation below 16.

5 CPU utilization

Uniform distribution of work should improve average CPU utilization, as well
as reduce variance in utilization across different CPUs. To study how threading
affects CPU utilization, we measured CPU idle time for our threaded imple-
mentation and PhysBAM’s MPI implementation. Since we did not parallelize
the entire water simulation, we measured idle time for only the steps we paral-
lelized. However, this still includes serialized incomplete Cholesky factorization
in the threaded code. Since all steps do not require syncrhonization, a CPU
with less amount of work can move ahead to the next step in the MPI code,
giving a false, high utilization number. For instance, a process with little water
may move ahead to the next step, while another process is still advecting ve-
locities. To isolate readings for only the parallelized steps, we inserted an MPI
barrier right before and after advection and projection. We believe this is still
representative of the actual CPU utilization, because the faster process would
eventually have to wait for the slower process during some phase that requires
syncrhonization, such as global reductions or exchange of ghost data.

2 cores(Advect) 4 cores(Advect) 2 cores(Project) 4 cores(Project)0

20

40

60

80

100

CP
U 

ut
ili

za
tio

n 
of

 e
ac

h 
co

re
(%

)

MPI
Threaded

Figure 6: CPU utilization in percentage, for test 3, averaged over all running
cores for each step. The error bars show the standard deviation, averaged over
several points.

10



As shown in Table 3 and Table 4, threaded implementation maintains an average
utilization of over 90% during advection and over 85% for projection, for most
cases. As the number of workers increases to 4, threaded code outperforms
MPI code in terms of utilization. Figure 6 compares utilization during velocity
advection and projection phases, for MPI and threaded code, averaged over
running CPUs. The error bars represent the standard deviation in utilization
of each CPU. CPU utilization and standard deviation are averaged over several
measurements. We see that the standard deviation for CPU utilization is high
for MPI implementation. This is because of the large variation in the amount
of water that each processor hosts, resulting in a large variation in the amount
of work each processor does.

Test 2 2 4 4
procs threads procs threads

Test 1 98 99 66 97
Test 2 100 100 69 96
Test 3 73 99 69 89
Test 4 100 100 93 97

Table 3: CPU utilization % for advection, averaged over several time steps.

Test 2 2 4 4
procs threads procs threads

Test 1 98 92 61 85
Test 2 98 92 66 86
Test 3 72 93 53 64
Test 4 98 93 93 87

Table 4: CPU utilization %, for projection, averaged over several time steps.

Test 3 gives a low CPU utilization for projection for both, threaded and MPI
code. Nevertheless, threaded code still performs better than the MPI code.
We feel that after parallelizing Cholesky factorization, we should be able to get
even better performance, mainly because there are 3 small regions over which
projection occurs.

6 Conclusions and future work

Through this project, we showed that it is possible to achieve better overall
CPU utilization through more uniform work distribution, for fluid simulations
like free surface flows, by dividing work into small chunks. Even with a simple
splitting strategy and a straight-forward scheduler, we obtained up to 30% to
40% improvement over the MPI implementation. In cases with more uniform

11



distribution of water throughout the simulation domain, we obtained perfor-
mance comparable to MPI for large grids and large number of workers. We did
not see much variation in the performance with variation in chunk size, as long
as chunks were small enough to distribute work evenly. We found the overall
CPU utilization to be higher in threaded cases with same number of workers as
MPI, agreeing with the conclusion that we can achieve better work distribution
and CPU utilization through small chunks of work.

Figure 7: A scheduler allocating work to 4 workers.

In future, we would like to implement threading for other parts of PhysBAM like
advection of signed distance and particles, flood-fill, construction of matrix and
computation of pre-conditioner, other particle level-set operations, kinematic
evolution and application of forces, and extrapolation. We should see a further
improvement in projection performance, especially for small systems, with pre-
conditioner computation parallelized. We would like to try a different splitting
strategy (domain-wise, that is, splitting along x, y and z) and investigate if that
affects the performance of advection due to better locality. We would like to
study how our code performs in a heterogeneous environment when all cores are
not of same configuration.

We would also like to use another threading library like pthreads, with our own
scheduler, and see if we can reduce the overhead for fewer workers, thus reducing
the overhead from threading. We would like to build a more sophisticated
scheduler, wherein we can specify a policy based on information about execution
history and data locality, and extend the idea of uniform work distribution to a
cluster of machines, with multiple cores per machine and possibly heterogeneous
machines (see Figure 7). We would like to build in fault tolerance into the
system, where a controller can roll back the simulation if a processor or machine
fails, recovering any lost data.

12


