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Abstract—Co-operative communication with relay assistance
helps in enhancing the capacity of point to point links. The
capacity of relay networks has been known to be upper bounded
by the cut-set bound. Recently, the authors of [1] showed that it
is possible to achieve the upper bound up to a constant additive
gap, independent of the channel parameters. Presence of multiple
relays provides multiple paths from the source to the destination.
With no channel state information at the transmitter, these paths
can be used to either obtain a high communication rate or a low
probability of error. We can trade off one of these quantities
for the other. This diversity multiplexing trade off has been
studied extensively for MIMO systems. However, the trade off
for full duplex Gaussian relay networks is not well understood.
We shall study the diversity multiplexing trade off for multiple
relay networks. This work provides a lower bound on the error
probability at the destination as a function of the communication
rate, assuming a finite time for communication. We see that if
we choose block length corresponding to the optimal DMT for
the min-cut, the probability of error is governed by one of the
cuts with diversity gain less than the min-cut diversity gain. The
error probability is exactly equal to the one obtained from the
optimal DMT for the corresponding cut.

I. INTRODUCTION

Recently, there has been a growing interest in analyzing the
performance and trade offs such as the diversity multiplexing
trade off (DMT) in multi-terminal wireless networks. DMT
has been extensively studied for single transmitter, single
receiver MIMO channels. Similar to a MIMO channel, a multi-
terminal network provides multiple communication paths from
the source to the destination. With additional degrees of
freedom from these independent paths, we would expect to
communicate at a rate higher than that achievable on any single
path.

We know that the ergodic capacity of a fast fading MIMO
channel with m transmitters and n antennas can be approxi-
mated by min{m,n} log(SNR) for large SNR[2]. On the other
hand, we cannot achieve reliable communication over a slow
fading MIMO channel when the channel state is not known
at the transmitter. For any communication rate R, there exists
a non-zero probability of channel outage, which induces an
error at the receiver. Zheng and Tse have derived the trade
off between the rate R and the probability that a message
is received in error at the receiver [3]. The DMT gives the
amount of multiplexing gain (an increase in the communica-
tion rate) that one can obtain for a certain diversity gain (a
decrease in the error probability at the receiver). Additionally,
they have shown that the optimal trade off can be achieved

using codewords of length l = m+n− 1 at the receiver. This
is an interesting result from the designer’s perspective, since
we cannot achieve any significant improvement in the system
performance by using codes with words longer than l.

This work explores the following question - can we define
a similar DMT result for multi-terminal networks, in a block
fading setup and in the large SNR regime? The authors of [4]
have studied the trade off for half duplex relay networks. How-
ever, the approach does not extend to full duplex networks.
To study the DMT for full duplex relay networks, we first
need to understand the capacity of these networks. Cover et
al. established the information theoretic cut-set upper bound on
the unicast and multi-cast capacity of wireless multi-terminal
networks [5]. This bound is an extension of the max-flow
min-cut theorem for flow networks. Avestimehr, Diggavi and
Tse showed that it is possible to achieve the cut-set bound
within a constant additive gap in Gaussian relay networks,
using the Quantize-Map-Forward (QMF) strategy [1]. The gap
depends only on the number of terminals in the network and is
independent of the channel parameters. If we study the QMF
strategy as the destination SNR→∞, the finite, additive gap
becomes insignificant.

The QMF strategy involves coding over blocks of infinite
length. We are interested in communicating over a finite time.
As a result, we will face a non-zero probability of error at
the receiver. However, since QMF approximately achieves the
cut-set bound in the large SNR regime, it will also achieve the
optimal DMT for finite block lengths. We will try to bound
the length of the codes that can achieve the DMT.

The rest of this article is organized as follows. Section II
describes the system model and the problem in detail. Section
III describes a few ways to approach these questions, and
provides a lower bound on the diversity-multiplexing trade off.
Section IV concludes with some observations and directions
for the future.

II. SYSTEM MODEL AND ASSUMPTIONS

The wireless network is defined by a set of vertices V and
edges E that represent the nodes and the links between the
nodes. Broadcast and superposition are inherent properties of a
wireless network, but we restrict these to the links represented
by E . The received signal yj at a node j is given by,

yj =
∑
i

hijxi + zj (1)



Fig. 1. The diamond relay network with 2 relays. R1 and R2 help in
transmitting message from S to D. Due to the presence of two different
paths, we expect diversity and multiplexing gain for this channel.

Here, hij ∼ CN (0, 1) are the fading co-efficients for the links
between nodes i and j and xi represents the signal transmitted
by the node i. We assume a block fading model so that each
hij stays constant over an entire block of communication. The
channel state information is not known at any transmitters. The
noise zj at each node is assumed to be white and Gaussian
with variance σ2, i.e., CN (0, σ2). All transmitted signals have
the same average power constraint E[|xi|2] ≤ P. Define SNR
as,

SNR =
P
σ2

(2)

Taking a cue from [1], we will first study networks with
layered structure where all paths from the source to the
destination have equal lengths. The analysis can be extended
to non-layered networks. We will restrict attention to cases
with only one transmitter and one receiver and use the sim-
plified two relay diamond network of Figure 1 for illustration
purposes. If the source S is transmitting information at a rate
R, we define the multiplexing gain r as,

r = lim
SNR→∞

R

log(SNR)
(3)

The diversity gain d(r), in terms of the probability of error
Pe at the destination D, is defined as,

d = − log(Pe)

log(SNR)
(4)

The relay nodes are causal with delay one. The transmitted
signal at each node is a function of the received signal.
Some of the analysis and conclusions in the next section
will be based on the QMF strategy, which works as follows.
Divide the communication period into blocks of length T . The
source S maps each block of RT message bits to a random
Gaussian code word of length T and transmits the word over
T channel uses. There are 2RT such messages and hence,
possible code words. The relays receive yRi , the attenuated
message corrupted by noise, and quantize them to [yRi

] at the
noise level σ. Each relay then maps the quantized versions
of the received vector to a new random Gaussian codeword
of length T , and transmits it in the next time block. In a

multi-layered network, this process continues till the message
reaches the destination D. Given the random mapping at
each relay node, D then attempts to decode the transmitted
message.

III. BOUNDS ON TRADE OFF FOR FULL DUPLEX RELAY
NETWORKS

Consider a cut of the layered network that divides the nodes
into two parts – Ω denoting the set which contains the the
source and Ωc, the set which contains the destination. This is
illustrated in Figure 1. The vector of transmitted signals by
the nodes in Ω and Ωc is denoted by xΩ and xΩc

, and the
received signals are represented by yΩ and yΩc respectively.
We know that the information theoretic cut-set bound for the
capacity of this network, C̄ is given by,

C̄ = max
p({xi}i∈V)

min
Ω∈ΛD

I(xΩ; yΩc
|xΩc

) (5)

Here, the maximization is over all the joint distributions of
the transmitted signals and ΛD represents the set of Ω for all
possible cuts. Since QMF employs a random coding strategy
with transmitted signals drawn from a Gaussian distribution,
xi are uncorrelated, and hence independent. We assume each
xi ∼ i.i.d. CN (0, P ). It has specifically been proved in [1]
that the gap between the cut-set bound and the rate from the
i.i.d. Gaussian assumption is a constant, and hence becomes
insignificant for high SNR analysis.

A. Rate in terms of MIMO capacity

Defining RΩ as I(xΩ; yΩc
|xΩc

) and taking the transmitted
signals xi ∼ i.i.d. CN (0, P ), we have,

RΩ = I(xΩ; yΩc
|xΩc

) = I(xΩ; yΩc
) (6)

The above expression says that we can calculate RΩ for each
cut by treating the network as a MIMO channel with |Ω|
transmitters and |Ωc| receivers. This can be justified as follows,

I(xΩ; yΩc
|xΩc

) = H(xΩ|xΩc
)−H(xΩ|yΩc

, xΩc
)

(a)
= H(xΩ)−H(xΩ|yΩc , xΩc)
(b)
= H(xΩ)−H(xΩ|yΩc

)

= I(xΩ; yΩc
)

Step (a) follows from the independence of xΩ and xΩc
,

and (b) from the fact that xΩ → yΩc
→ xΩc

forms a
Markov chain. Using the result for MIMO channels in [2] and
Equation 5, 6, we can then approximate C̄ as minΩ∈ΛD

RΩ u
(minΩ∈ΛD

min{|Ω|, |Ωc|}) log(SNR) for large SNR. These
rates are achieved reliably, i.e., with diminished small error
probability, only when we are willing to communicate over
large blocks of time.

B. Lower Bound on the Probability of Error

We now restrict communication to blocks of length T . We
are interested in finding the probability that a message ui
sent by S is confused for another message uj 6= ui. The
message consists of RT bits, and the corresponding code word



consists of T channel uses. Thus, if yD represents the received
signal over T channel uses and Û , the decoding function,
we are interested in P (Û(yD(ui)) 6= ui). Define PeΩ

as the
probability of error for a MIMO system corresponding to a cut
Ω. The error probability Pe corresponding to the relay network
can only be greater than each PeΩ

. This is because while the
nodes (in sets Ω and Ωc) in the relay network in each cut are
constrained to communicate in a particular manner, the nodes
on a MIMO transmitter or a MIMO receiver can completely
co-operate and hence, communicate in any manner they want.
Additionally, there is also some outage associated with the
each channel in the relay network, which gets eliminated when
we make the nodes in each set one entity. Let dΩ(r) represent
the diversity gain, and rΩ the multiplexing gain, for the MIMO
system corresponding to the cut Ω.

Pe ≥ max
Ω∈ΛD

PeΩ

.
= max

Ω∈ΛD

SNR−dΩ(r) (7)

Consider the network in Figure 1. There are 4 possible cuts,
corresponding to 4 different MIMO channels – 1 × 2, 2 ×
2, 2×2 and 2×1. If we constrain T by the length of the code
corresponding to the optimal DMT of the min-cut (1×2 or 2×
1), we have T = 2. For this length, the error probability is
dominated by the min-cut (1×2 or 2×1). For a multiplexing
gain r ≤ 1, maxΩ d(r) = (1 − r)(2 − r). The 2 × 2 MIMO
channels always perform better than the other 2 channels and
hence, never play a role in the trade off obtained from Equation
7.

Motivated by this example, let us study what happens when
we constrain the communication time for a general layered
network by the length corresponding to the min-cut. Let Ωi

and Ωic represent various cuts of the network. Let |Ωi| = mi

and |Ωic | = ni. Let i = 0 correspond to the min-cut as in Sec-
tion III-A. This implies that min{m0, n0} ≤ min{mi, ni} ∀ i.
Let i = 1 correspond to the cut with minimum mini so that
m1n1 ≤ mini ∀ i. Represent other cuts by other values of i.
If we choose to transmit at r log(SNR) using code words of
length T = m0 +n0−1, how does the dominating term in the
expression for error probability (Equation 7) vary? To study
this, let us consider the following 2 cases – mini ≤ m0n0

and mini ≥ m0n0.
Claim: If mini ≤ m0n0, then li = mi + ni − 1 ≤ l0 =

m0+n0−1. Hence, with T = l0, the DMT is achieved for each
of these i cuts. Therefore, if the dominating term in Equation
7 comes from one of these terms, then the diversity gain is
exactly equal to (mi − r)(ni − r).

Justification: Assume that li ≥ l0. Without loss of gener-
ality, we can assume that n0 < m0. We have,

mini ≤ m0n0 and mi + ni > m0 + n0

Assume n0 = 1. If n0 6= 1, we can always make it 1
by dividing first expression by n2

0 and the second by n0.

Therefore, mi, ni,m0 ≥ 1. Substituting n0 = 1,

ni ≤ m0

mi

mi + ni ≤ mi + m0

mi

∴ mi + m0

mi
> m0 + 1

∴ m2
i − (m0 + 1)mi +m0 > 0

Solving the above quadratic, we get mi < 1 or mi > m0. Dis-
carding the first solution since it contradicts our assumption,
we have ni ≤ m0

mi
< 1. This again contradicts our assumption.

Hence, we cannot have li > l0 ⇒ li ≤ l0.
Claim: If mini ≥ m0n0, and if we choose T = m0+n0−1,

then the dominating term in the expression for error probability
in Equation 7, or the least diversity gain corresponds to the
min-cut, i.e., dΩi(r) ≥ dΩ0(r).

Justification: If m0 = n0, we can always build a m0 × n0

MIMO system from the mi × ni system, since mi, ni ≥ n0.
WLOG, take m0 > n0, and m0 +n0 = a. If mi +ni = b ≤ a,

mini ≥ m0n0

mi + n+ i ≤ m0 + n0

∴ mini − (mi + ni)r ≥ m0n0 − (m0 + n0)r

∴ (mi − r)(ni − r) ≥ (m0 − 2)(n0 − r)

Hence, if we set T = a, the term corresponding to the min-
cut dominates. Now, if b ≥ a, we can always take a b′ = a,
such that, m′i ≤ mi, n′i ≤ ni (consider only m′i transmitter
nodes in Ωi and n′i receiver nodes in Ωci ), m

′
i, n
′
i ≥ n0 and

m′in
′
i ≥ m0n0. This is because we assumed n0 < m0, and the

fact that x(a− x) increases as we increase x towards x
2 . The

case now reduces to the previous case of b ≤ a, and hence,
the term corresponding to the min-cut dominates.

Result: From the above 2 claims, we see that if we
transmit at r log(SNR) and choose T = m0 + n0 − 1, then
minΩi∈ΛD

dΩi(r) is exactly equal to minΩi∈ΛD
(mi−r)(ni−

r). This worst cut, in terms of error probability, comes from the
set of cuts with maximum diversity gain mini ≤ m0n0. The
maximum multiplexing gain for the complete relay network is
constrained to min{m0, n0}, while the maximum diversity is
constrained to m1n1.

This agrees with the intuition that if mi +ni−1 is large for
any MIMO link, with large diversity and multiplexing gain,
the system will do at least as good as a system with a lower
diversity and multiplexing gain, when smaller code lengths
are used. If a system has a low diversity gain but a high
multiplexing gain, then the code length required to achieve
the corresponding DMT is small, compared to a system with
high diversity gain but low multiplexing gain.

IV. FUTURE DIRECTIONS AND CONCLUSIONS

We derived a lower bound on the error probability in a relay
network, by treating each cut as a MIMO link, and finding
the worst such MIMO link. This is motivated by the cut-set
bound achieving property of the QMF strategy in the high SNR
regime. Modeling the cuts as MIMO links, to get a bound on
the error probability is motivated from random coding and



a similar modeling to get the capacity bound for the relay
network. With tranmissions of length m0 + n0 − 1, the error
probability is lower bounded by optimal DMT for the worst
cut. The worst cut comes from the set of cuts which have
maximum diversity gain mini less than m0n0.

We can see if there is a better lower bound on the error
probability. Also, a lower bound, without an upper bound, is
not very meaningful. The authors of [1] have found a capacity
bound for the QMF strategy by finding the mutual information
between the transmitted and the quantized, received signal.
They have done this by writing the total mutual information
term as the mutual information expression for a deterministic
network (conditioning the noise), plus an entropy term which
considers the effect of noise. The mutual information for the
relay network, conditioned on noise, comes from an error
analysis for deterministic networks. With codes of finite block
lengths, we cannot apply same analysis to upper bound the
error probability for Gaussian relay networks, since we need
to consider the effect of noise. The upper bound should include
the effect of both, the noise, and the interference.

One way to get an upper bound is to treat the cut as a set of
MISO systems – the nodes in Ω represent a single transmitter,
as in our analysis of lower bound. However instead of taking
all nodes in Ωc as one receiver with multiple antennas, we
can take each node in Ωc as a single receiver. Assuming no
error at the nodes in Ω, we can find the probability of error
at all nodes in Ωc. We can find the probability of such an
event by treating the transmissions from nodes in Ωc as noise.
We can than add up such events corresponding to all valid
cuts. However, the bound from this may be very weak. The
upper and lower bounds should be tight so that we have an
approximate expression for the error probability.

Another question that can be considered, is finding a bound
on probability when we choose T ≤ m0 + n0 − 1. How does
the DMT change, when the codes have lengths less than mi +
ni − 1 for some i.

Also, can we say something specific about the minimum d,
more than what is mentioned in the claims? For example, we
can show how the diversity gain d(r) transitions occur as the
multiplexing gain r is varied. Does the term with least mini
always dominate d, or is the dominance only for small values
of r? We can study this specifically for a few realizations of
relay networks and compare the analytical lower bound to the
bound obtained from QMF scheme with finite block lengths,
through simulations.
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