

Population and Welfare:

The Greatest Good for the Greatest Number

Mohamad Adhami, Mark Bils, Chad Jones, and Pete Klenow

March 2024

Motivation

- Economic growth is typically measured in per capita terms
 - Puts zero weight on having more people extreme!
- Hypothetical: Two countries with the same TFP path. One has constant N but rising c, the other has constant c but rising N.
 - Example: Japan is 6x richer p.c. than in 1960, while Mexico is 3x richer
 But Mexico's population is 3x larger than in 1960 vs. 1.3x for Japan

Key Question:

How much has population growth contributed to aggregate welfare growth?

Examples of how this could be useful

- The Black Death, HIV/AIDS (Young "Gift of the Dying"), or Covid-19
- China's one-child policy
- Population growth over thousands of years
- What fraction of GDP should we spend to mitigate climate change in 2100?
 - How many people are alive today versus in the year 2100?

Outline

- Part I. Baseline calculation with only population and consumption
- Part II. Robustness

• Part III. Incorporating parental altruism and endogenous fertility

Part I. Baseline calculation with only population and consumption

Flow Aggregate Welfare

- Setup
 - c_t consumption per person
 - o $u(c_t) \ge 0$ is flow of utility enjoyed by each person
 - N_t identical people
- Summing over people ⇒ aggregate utility flow

$$W(N_t,c_t)=N_t\cdot u(c_t)$$

• Exist $\Rightarrow u(c)$, not exist \Rightarrow 0 (the 0 is a free normalization)

6

Total utilitarianism

- Critiques
 - Repugnant conclusion (Parfit, 1984)
 - Inalienable rights
- Versus per capita utilitarianism
 - o e.g. Jones and Klenow (2016)
 - Sadistic conclusion
- Zuber et al. (2020), De la Croix and Doepke (2021), MacAskill (2022), Golosov, Jones, Tertilt (2007), Harsanyi (1955)

Growth in consumption-equivalent aggregate welfare

$$\frac{dW_t}{W_t} = \frac{dN_t}{N_t} + \frac{u'(c_t)c_t}{u(c_t)} \cdot \frac{dc_t}{c_t}$$

$$\underbrace{\frac{u(c_t)}{u'(c_t)c_t} \cdot \frac{dW_t}{W_t}}_{\text{CE-Welfare growth}} = \underbrace{\frac{u(c_t)}{u'(c_t)c_t} \cdot \frac{dN_t}{N_t}}_{= v(c_t)} + \underbrace{\frac{dc_t}{c_t}}_{= v(c_t)}$$

- v(c) = value of having one more person live for a year
 - expressed relative to one year of per capita consumption
- \circ 1 pp of population growth is worth v(c) pp of consumption growth

8

Calibrating v(c) in the U.S. in 2006

Using the EPA's VSL of \$7.4m in 2006:

$$v(c) \equiv \frac{u(c)}{u'(c) \cdot c} = \frac{\mathsf{VSLY}}{c} \approx \frac{\mathsf{VSL}/e_{40}}{c} \approx \frac{\$7,400,000/40}{\$38,000} = \frac{\$185,000}{\$38,000} \approx 4.87$$

 \circ 1 pp population growth is worth \sim 5 pp consumption growth

9

Measuring v(c) in other years and countries

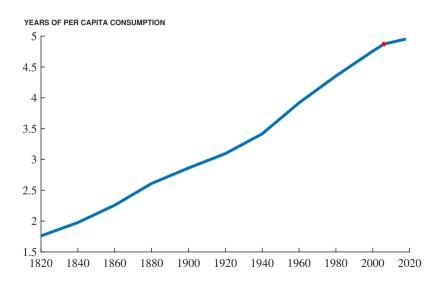
• Baseline: Assume $u(c) = \bar{u} + \log c$

$$v(c) \equiv \frac{u(c)}{u'(c) \cdot c} = u(c) = \bar{u} + \log c$$

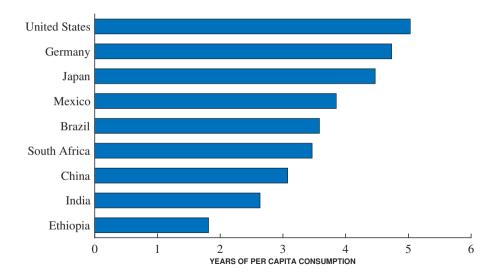
Higher consumption raises the value of a year of life

- Calibration:
 - Normalize units so that $c_{2006, US} = 1$
 - Then $v(c_{2006, US}) = 4.87$ implies $\bar{u} = 4.87$

v(c) over time in the U.S.



v(c) across countries in 2019



Recap

$$g_{\lambda} = v(c) g_N + g_c$$

 λ is consumption-equivalent welfare g_c is the growth rate of per capita consumption g_N is population growth v(c) values lives the way people themselves do

- $v(c) = 0 \Rightarrow g_{\lambda} = g_c$ is an extreme corner
- $\circ \ v(c) = 1 \ \Rightarrow \ \mathsf{CE} ext{-welfare growth is just aggregate consumption growth}$
- o $v(c) = 3 \text{ or } 5 \Rightarrow \text{ much larger weight on population growth}$

13

Baseline samples

Penn World Tables 10.0

Years # of OECD countries		# of non-OECD countries		
1960-2019	38	63		

Maddison (2020), BEA, Barro and Ursua (2008)

Years	Sample		
1840-2018	United States		
1850-2018	The "West"		
1500-2018	The World		

Overview of baseline results for 101 countries from 1960 to 2019

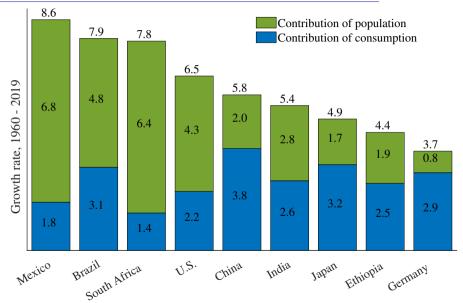
	Unweighted	Pop Weighted
CE-welfare growth, g_{λ}	6.2%	5.9%
Population term, $v(c)g_N$	4.1%	3.1%
Consumption term, g_c	2.1%	2.8%
Population growth, g_N	1.8%	1.6%
Value of life, $v(c)$	2.7	2.3
Pop share of CE-welfare growth	66%	51%

In 77 of the 101 countries, Pop Share of CE-Welfare Growth $\geq 50\%$

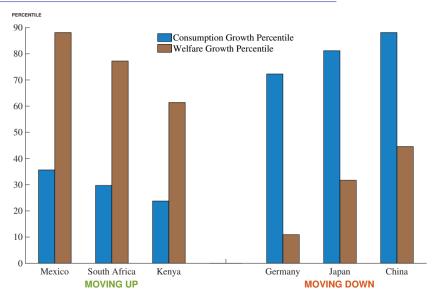
Decomposing welfare growth in select countries, 1960–2019

	g_{λ}	g_c	g_N	v(c)	$v(c) \cdot g_N$	Pop Share
Mexico	8.6	1.8	2.1	3.4	6.8	79%
Brazil	7.9	3.1	1.8	2.8	4.8	61%
South Africa	7.8	1.4	2.1	3.1	6.4	82%
United States	6.5	2.2	1.0	4.4	4.3	66%
China	5.8	3.8	1.3	1.8	2.0	34%
India	5.4	2.6	1.9	1.6	2.8	52%
Japan	4.9	3.2	0.5	3.8	1.7	34%
Ethiopia	4.4	2.5	2.7	0.7	1.9	44%
Germany	3.7	2.9	0.2	4.0	0.8	22%

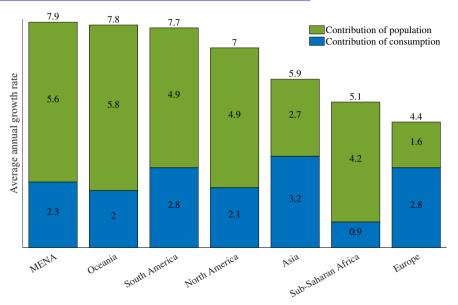
Average CE welfare growth for select countries, 1960–2019



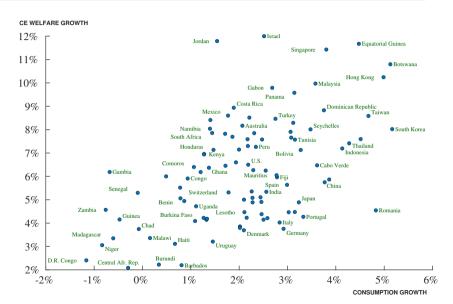
Some big differences in percentiles, 1960–2019 growth



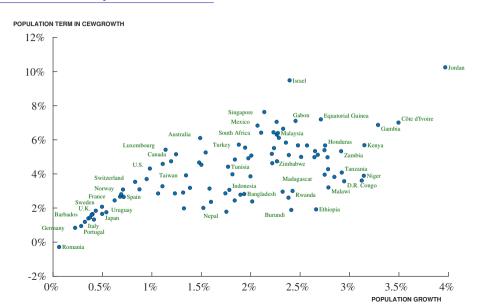
Average CE welfare growth by region, 1960–2019



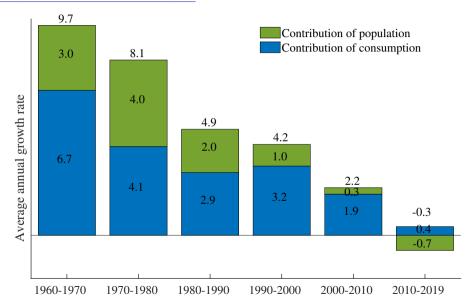
Plot of CE-Welfare growth against consumption growth, 1960-2019



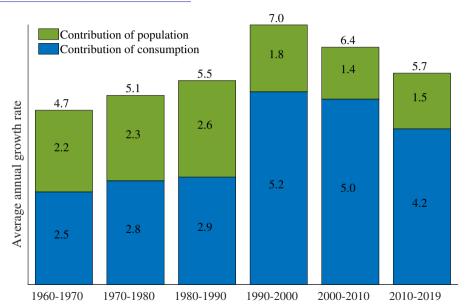
Contribution of Population Growth



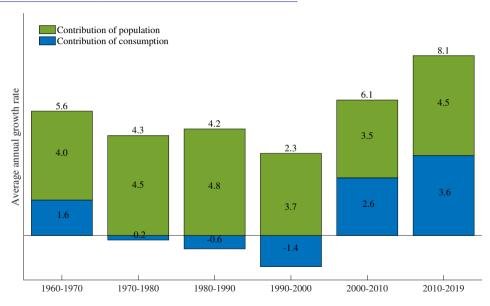
Average annual growth in Japan



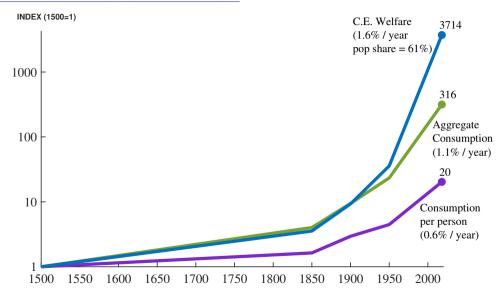
Average annual growth in China



Average annual growth in Sub-Saharan Africa



World cumulative growth, 1500-2018



What we are and are not doing

- We study the MB of people, not the MC
- Answering many interesting questions requires the production side (externalities from ideas, human capital, pollution, costs of fertility)
 - Optimal population?
 - Was the demographic transition good or bad?
- This paper cannot say that people in Japan should have more or fewer kids
 - Beyond the scope...

Part II. Robustness

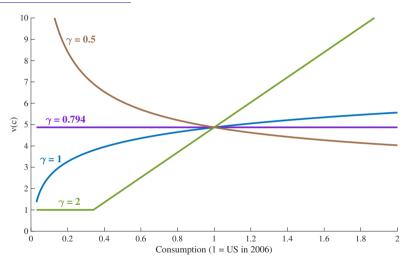
Robustness

- Double or halve the value of life (VSL)
- Alternative values for the CRRA γ
- Relaxing the representative agent assumption
- No decline in mortality rates
- Adjusting for migration

Robustness to values for \overline{u}

- Baseline assumes $\bar{u} = v(c_{US,2006}) = 4.87$
- Consider cutting by half, or increasing by 50%
 - Imply U.S. VSL₂₀₀₆ of \$3.7 mil and \$11.1 mil, vs. \$7.7 mil for baseline
- U.S. Dept. of Transp. (2013) states \$4 to \$10 mil as plausible for VSL_{2001}
 - Encompasses nine studies they consider reliable
 - Range we consider implies values for VSL₂₀₀₁ of \$2.8 to \$8.6 mil

v(c) for different values of γ



Weight on population growth is very high, either in past or future or both!

Robustness: CEW growth

	Mean	U.S.	Japan	Mexico	Ethiopia
1. Per capita consumption	2.8%	2.2%	3.2%	1.8%	2.5%
2. Baseline	5.9%	6.5%	4.9%	8.6%	4.4%
3. Baseline ($v \geq 1$)	6.0%	6.5%	4.9%	8.6%	5.2%
4. VSL $_{US,\ 2006}$ 50% lower ($v\geq 1$)	4.5%	4.1%	3.8%	4.0%	5.1%
5. VSL $_{US,\ 2006}$ 50% higher ($v\geq 1$)	9.8%	8.9%	6.1%	13.6%	10.9%
6. $\gamma=2$ ($v\geq 1$)	4.6%	5.1%	3.7%	3.8%	5.1%
7. Constant $v=4.87$ ($\gamma=0.79$)	10.6%	7.0%	5.7%	11.8%	15.4%
8. Constant $v=$ 2.7 ($\gamma=0.63$)	7.1%	4.8%	4.6%	7.4%	9.7%
9. Constant $v=1$ ($\gamma=0$)	4.4%	3.2%	3.7%	3.8%	5.1%

Note: $v(c_{us,2006}) = \bar{u}$ in all cases.

Moving Beyond the Representative Agent

- N_t individuals indexed by $i \in \{1, \ldots, N_t\}$
- Individual i consumes c_{it} and gets flow utility $u(c_{it})$

Aggregate Flow Welfare

$$W_t = \sum_{i=1}^{N_t} u(c_{it})$$

Assumptions:

- **1** Log utility from consumption: $u(c_{it}) = \tilde{u} + \log(c_{it})$
- 2 Consumption lognormally distributed across individuals with mean c_t and a variance of log consumption of σ_t^2

Calibration of \widetilde{u}

- Target average v(c) of 4.87 in the U.S in 2006
- With log utility, v(c) is concave so

$$v\left(\frac{1}{N_t} \cdot \sum_{i=1}^{N_t} c_{it}\right) > \frac{1}{N_t} \cdot \sum_{i=1}^{N_t} v\left(c_{it}\right)$$

Given assumptions 1 and 2:

$$\frac{1}{N_t} \cdot \sum_{i=1}^{N_t} v\left(c_{it}\right) = \widetilde{u} + \log(c_t) - \frac{1}{2} \cdot \sigma_t^2 \implies \widetilde{u} = \overline{u} + \frac{1}{2} \cdot \sigma_{\mathsf{US}, \ \mathsf{2006}}^2$$

CEW Growth

$$g_{\lambda} = \left(v(c_t) - \frac{1}{2} \cdot \left(\sigma_t^2 - \sigma_{\text{US, 2006}}^2\right)\right) \cdot \frac{dN_t}{N_t} + \frac{dc_t}{c_t} - \sigma_t^2 \cdot \frac{d\sigma_t}{\sigma_t}$$

Introducing heterogeneity affects the calculation in two ways:

- 1 Due to the concavity of v, the weight on pop growth is
 - Lower for country-years with more inequality than the US in 2006
 - Higher for country-years with less inequality than the US in 2006
- 2 Due to concavity of u, there is a term reflecting changes in inequality
 - Faster CEW growth for countries with falling inequality
 - Slower CEW growth for countries with rising inequality

Results

<u>ts</u>		Inequality	
	Baseline	Adjusted	Adjustment
Ethiopia	2.1%	2.4%	0.27%
Brazil	7.1%	7.3%	0.15%
Japan	4.1%	4.1%	-0.05%
Mexico	7.0%	6.9%	-0.09%
United States	7.1%	7.0%	-0.13%
Germany	2.4%	2.2%	-0.13%
China	6.7%	6.6%	-0.15%
India	5.8%	5.7%	-0.16%
South Africa	7.7%	6.8%	-0.83%
All countries – pop. weighted	6.1%	6.0%	- 0.10%
Mean absolute deviation			0.18%

The role of birth and death rates

- Our VSL estimates value longevity, but not being born per se
- How much of our population term is fertility versus longevity?
 - Consider thought experiment of no decline in death rates
- For 24 countries with the requisite data, we find that fertility contributes three-quarters of population growth
 - o Human Mortality Database for $N_a(t)$, $D_a(t)$ and B(t)

Counterfactual: no decline in mortality

$$N_a(t) = \begin{cases} N_{a-1}(t-1) + M_a(t) - D_a(t) = \frac{N_{a-1}(t-1) + M_a(t)}{1 + d_a(t)} & \text{if } a > 0 \\ B(t) + M_a(t) - D_a(t) = \frac{B(t) + M_a(t)}{1 + d_a(t)} & \text{if } a = 0 \end{cases}$$
 where $M_a(t) = \text{age } a$ net migration in year t
$$B(t) = \text{births in year t}$$

$$D_a(t) = d_a(t) \cdot N_a(t) = \text{age } a \text{ deaths in year t}$$

Counterfactual: fix death rates d_a 's at 1960 levels, but B and M_a as in data

Contribution of fertility+migration to population growth

5 select countries	<i>8</i> N	Counterfactual g_N
France	0.61%	0.42%
UK	0.41%	0.25%
Italy	0.33%	0.08%
Japan	0.51%	0.15%
USA	1.03%	0.89%
24 countries – pop. weighted	0.72%	0.53%

 \circ Jones and Klenow (2016): rising LE adds $\approx 1\%$ to CE-welfare growth outside of Sub-Saharan Africa

Other considerations

- Congestion
 - Faster pop. growth correlates with rising density
 - But hedonic estimates of density's impact on real wage typically find density a positive attribute (see review in Ahlfeldt and Pietrostefani, 2019)

Adjusting CE-welfare for migration

- Our baseline credits all immigrants to destination country
- Migration adjustment credits them to source country instead:

$$W_{it} = N_{it} \cdot u(c_{it}) + \sum_{j \neq i} N_{i \rightarrow j,t} \cdot u(c_{jt}) - \sum_{j \neq i} N_{j \rightarrow i,t} \cdot u(c_{it})$$

where

 $N_{i\rightarrow j,t}=$ population born in country i, living in country j in year t

 $N_{j\rightarrow i,t}=$ population born in country j, living in country i in year t

Growth in country welfare adjusted for migration

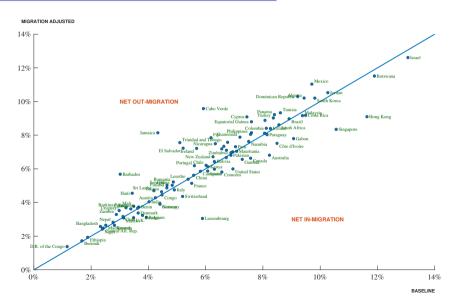
$$\begin{split} g_{\lambda_{it}} &= v(c_{it}) \cdot g_{N_{it}} + g_{c_{it}} \\ &+ \sum_{j \neq i} \frac{N_{i \rightarrow j,t}}{N_{it}} \cdot \frac{u(c_{jt})}{u(c_{it})} \left(v(c_{it}) \cdot g_{N_{i \rightarrow j,t}} + \frac{v(c_{it})}{v(c_{jt})} \cdot g_{c_{jt}} \right) \\ &- \sum_{j \neq i} \frac{N_{j \rightarrow i,t}}{N_{it}} \left(v(c_{it}) \cdot g_{N_{j \rightarrow i,t}} + g_{c_{it}} \right) \end{split}$$

Summary of migration results

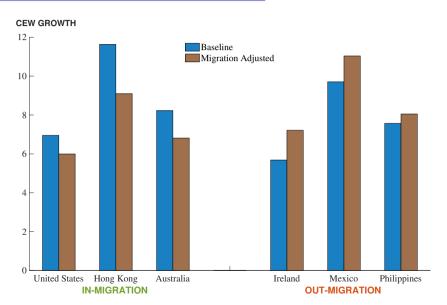
- Have the necessary data for 81 countries from 1960 to 2000
- Results with and without the migration adjustment highly correlated at 0.92
- ullet But the adjustments for individual countries can be large \sim 2pp
- Average absolute adjustment is 0.6pp

Source: The World Bank's Global Bilateral Migration Database

Baseline vs. Migration-Adjusted CEW growth



Countries with Large Migration Adjustments



Parental altruism and endogenous fertility

Parental altruism and fertility

- Parents have kids because they love them missing in our baseline
 - Account for reduced fertility on parental welfare (Cordoba, 2015)
- But falling fertility may be compensated by higher per capita utility:
 - Quantity / quality trade-off ⇒ fewer but "better" kids
- Accordingly, extend framework to incorporate:
 - Broader measure of flow utility, including quantity/quality of kids
 - Privately optimal fertility, consumption, and time use by parents

Flow aggregate welfare

$$W(N_t^p, \, N_t^k, \, c_t, \, l_t, \, c_t^k, \, h_t^k, \, b_t) \; = \; N_t^p \cdot u(c_t, \, l_t, \, c_t^k, \, h_t^k, \, b_t) + N_t^k \cdot \widetilde{u}(c_t^k)$$

- N^p = number of adults
- N^k = number of children
- *b* = number of children per adult

$$\implies N = N^p + N^k = (1+b) \cdot N^p$$

- c = adult consumption
- *l* = adult leisure
- c^k = child consumption
- h^k = child human capital

Consumption equivalent welfare:

$$W(N_t^p,\,N_t^k,\,\lambda_t c_t,\,l_t,\,\lambda_t c_t^k,\,h_t^k,\,b_t) = W(N_{t+dt}^p\,,\,N_{t+dt}^k\,,\,c_{t+dt}\,,\,l_{t+dt}\,,\,c_{t+dt}^k\,,\,h_{t+dt}^k\,,\,b_{t+dt})$$

Parental utility maximization problem

$$\max_{c,\ l,\ c^k,\ h^k,\ b} u(c_t,\ l_t,\ c^k_t,\ h^k_t,\ b_t)$$
 subject to: $c_t + b_t \cdot c^k_t \leq w_t \cdot h_t \cdot l_{ct}$
$$h^k_t = f_t(h_t \cdot e_t) \quad \text{and} \quad l_{ct} + l_t + b_t \cdot e_t \leq 1$$

- w = wage per unit of human capital
- $h = \text{parental human capital, equals inherited } h^k$
- l_c = parental hours worked
- e = parental time investment per child

Parents' vs. Kids' Consumption

- Make two assumptions on preferences:
 - Assumption 1: $u(c_t^p, c_t^k, \vec{x}_t) = \log(c_t^p) + \alpha b_t^{\theta} \log(c_t^k) + g(l_t, b_t, h_t^k)$
 - Assumption 2: $\widetilde{u}(c^k) = \overline{u}_k + \log(c_t^k)$
- With these assumptions: $\frac{c_t^k}{c_t^p} = \alpha b_t^{\theta-1}$
 - \circ For heta < 1, $rac{c_t^k}{c_t^p}$ falls with b_t
 - \circ Conditional on calibrating α and θ , do not need data on trends in $\frac{c_t^K}{c_t^P}$

Consumption-equivalent welfare growth

$$\begin{split} g_{\lambda_t} &= \mathsf{pop_term}_t \\ &+ \pi_t^p \cdot \left(\frac{dc_t^p}{c_t^p} + \frac{u_{l_t}l_t}{u_{c_t}c_t} \cdot \frac{dl_t}{l_t} + \frac{u_{h_t^k}h_t^k}{u_{c_t}c_t} \cdot \frac{dh_t^k}{h_t^k} + \frac{u_{b_t}b_t}{u_{c_t}c_t} \cdot \frac{db_t}{b_t} \right) + (1 - \pi_t^p) \cdot \frac{dc_t^k}{c_t^k}, \\ \mathsf{where} \quad \pi_t^p &= \frac{N_t^p}{(1 + \alpha b_t^\theta)N_t^p + N_t^k} \\ \mathsf{pop_term}_t &= \frac{1 + b_t}{1 + \alpha b_t^\theta + b_t} \left[\frac{N_t^p}{N_t^K + N_t^p} \cdot \frac{dN_t^p}{N_t^p} \cdot v(c_t^p, \ldots) + \frac{N_t^K}{N_t^K + N_t^p} \cdot \frac{dN_t^K}{N_t^K} \cdot \tilde{v}(c_t^k) \right] \end{split}$$

Two differences in the population term relative to baseline calculation:

- 1 Not imposing $\tilde{v}(c_t^k) = v(c_t, \dots)$
- 2 Altruism term $\alpha b_t^{\theta} \implies$ special case on next slide for intuition

Special case – just for intuition

• Let
$$\theta=1\Rightarrow \frac{dc^k}{c^k}=\frac{dc^p}{c^p}$$
 and evaluate at $\tilde{v}(c_t^k)=v(c_t^p,...)=v(c_t)$

$$\implies g_{\lambda_t}=\frac{dc_t}{c_t}+\frac{N_t^p+N_t^k}{N_t^p+2N_t^k}\cdot v(c_t)\cdot \frac{dN_t}{N_t}\qquad \textit{Base terms}$$

$$+\frac{N_t^p}{N_t^p+2N_t^k}\cdot \frac{u_{lt}l_t}{u_{ct}c_t}\cdot \frac{dl_t}{l_t}\qquad \textit{Leisure}$$

$$+\frac{N_t^p}{N_t^p+2N_t^k}\cdot \frac{u_{bt}b_t}{u_{ct}c_t}\cdot \frac{db_t}{b_t}\qquad \textit{Quantity of kids}$$

 $+ \frac{N_t^p}{N_t^p + 2N_t^k} \cdot \frac{u_{h^k t} h_t^k}{u_{c*C*}} \cdot \frac{dh_t^k}{u_k}$

Double counting kids' consumption downweights all non-consumption terms

Quality of kids

Implementing the generalized growth accounting

Parents' FOCs maps relative weights in growth accounting to observables

$$\begin{array}{l} \circ \ l_t \colon \frac{u_{lt}l_t}{u_{ct}c_t} = \frac{w_th_tl_t}{c_t} \\ \circ \ b_t \colon \frac{u_{bt}b_t}{u_{ct}c_t} = \frac{N_t^k}{N_t^p} \frac{(c_t^k + w_th_te_t)}{c_t} \\ \circ \ h_t^k \colon \frac{u_{hkt}h_t^k}{u_{ct}c_t} = \frac{N_t^k}{N_t^p} \frac{1}{\eta_t} \frac{w_th_te_t}{c_t} \text{, where: } \eta_t = \frac{f'(h_te_t)h_te_t}{f(h_te_t)} \end{array}$$

- Calibrating η
 - Set $\eta = 0.24$
 - Sum of Mincer coefficients for parents' schooling, relative to own, for kids' wage (= .0142/.0591, Lee, Roys, Seshadri, 2014)
 - Choose e_t generously (all childcare) and $\frac{dh_t^k}{h_t^k}$ generously (half wage growth from H) \implies generous quality growth

Kids' vs. Parents' Consumption and the Value of Life

- Calibrating α and θ for $\frac{c_t^k}{c_t} = \alpha b^{\theta-1}$
 - USDA (2012) study: spending on kids vs. parents, 2-parent households
 - Spending with 2 kids (b = 1) gives $\alpha = 2/3$
 - o Across 1, 2, or 3 kids suggests $\theta \approx 0.8$ (also consider $\theta = .6$ and $\theta = 1$)
- Calibrate flow utility as same for child and adult in U.S. in 2006
 - Given preferences, implies $\tilde{v}(c_t^k) = v(c_t, ...)$ in 2006 in U.S.
 - $\circ~$ Consider robustness to $\frac{\tilde{v}(c_t^k)}{v(c_t,\ldots)}=0.8$ or 1.2
 - Allow $v(c_t,...)$ and $\tilde{v}(c_t^k)$ to evolve over time

Data to implement generalized growth accounting

- Childcare from time use is main data constraint, restrict to 6 countries:
 - o US (2003–2019)
 - Netherlands (1975–2006)
 - Japan (1991–2016)

- South Korea (1999–2019)
- Mexico (2006–2019)
- South Africa (2000-2010)
- Additional data sources: PWT for per capita consumption and average market hours worked for ages 20-64, World Bank for population by age group
 - o # Children = 0-19 years old
 - # Adults = 20+ years old
 - o $b_t = \text{Children / Adults}$

- l_{ct} = paid work
- o $b_t e_t$ = total child care
- $oldsymbol{l} l_t = 16 \text{ hrs } -l_{ct} b_t \cdot e_t$

CEW Growth: Macro vs Micro

	MACRO			MICRO					
	CEW	pop	cons	CEW	pop	cons	leisure	quality	quantity
	growth	term	term	growth	term	term	term	term	term
USA	5.4	3.9	1.5	4.8	3.2	1.5	0.1	0.2	-0.3
NLD	4.5	2.5	2.1	3.9	2.0	2.1	0.0	0.4	-0.4
JPN	2.3	0.4	1.9	1.9	0.1	1.9	0.0	0.2	-0.4
KOR	4.4	1.7	2.6	3.8	1.0	2.6	0.6	0.4	-0.8
MEX	6.5	4.9	1.6	3.7	3.3	1.5	-0.3	0.1	-0.8
ZAF	6.8	4.3	2.6	5.6	2.8	2.4	1.0	0.3	-1.0

Share of population in CEW growth: Macro vs Micro

		MICRO						
			Robustness					
	MACRO	Baseline	Larger θ	Smaller θ	Larger v_k	Smaller v_k		
USA	72%	68%	69%	66%	68%	67%		
NLD	54%	50%	52%	48%	48%	52%		
JPN	16%	8%	10%	6%	-6%	18%		
KOR	40%	27%	30%	24%	19%	34%		
MEX	76%	87%	90%	85%	87%	88%		
ZAF	63%	51%	53%	48%	49%	52%		

Conclusions

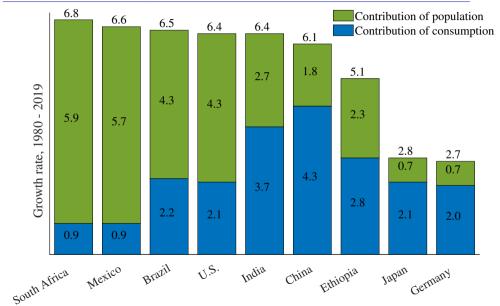
- Each additional point of population growth is worth:
 - 5pp of consumption growth in rich countries today
 - o an average of 2.7pp for the world as a whole
- Population growth:
 - Contributes more than per-capita cons. growth in 77 of 101 countries
 - Weighting by population, contributes comparably to cons. growth
 - Shuffles countries perceived as growth miracles
- Results are robust to adjusting for migration and parental altruism

Extra Slides

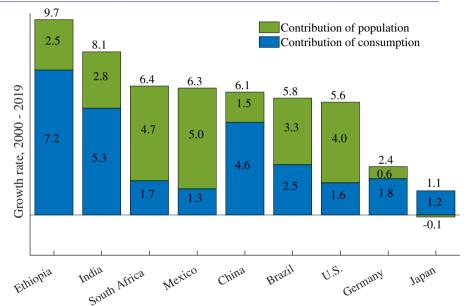
More on Assumptions

- Write: $W_t = \mathsf{Unborn}_t \cdot A + N_t \cdot u(c_t) + \mathsf{Deceased}_t \cdot \Omega$
- Gives: $dW_t = N_t \cdot u'(c_t)dc_t + \text{Births}_t \cdot \left(u(c_t) A\right) \text{Deaths}_t \cdot \left(u(c_t) \Omega\right)$
- Use economic choices/prices to get: $u(c_t) \Omega$
 - Choice of *A* is a normalization (irrelevant)
- But need to assume $A = \Omega$
 - Nonexistence is nonexistence, whether 100 years before birth or 100 years after death and decay
 - $\circ A < \Omega$ means we *underestimate* the value of people
 - \circ $A>\Omega$ means we *overestimate*. But why would people have kids if they believed this?

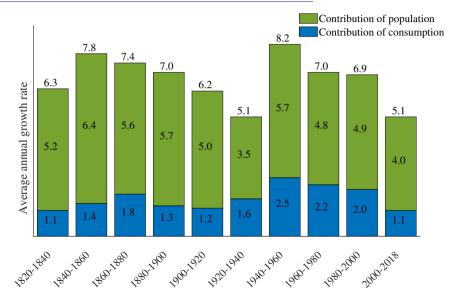
Average CE welfare growth for select countries, only for 1980–2019



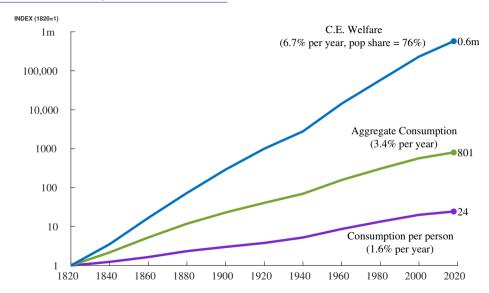
Average CE welfare growth for select countries, only for 2000–2019



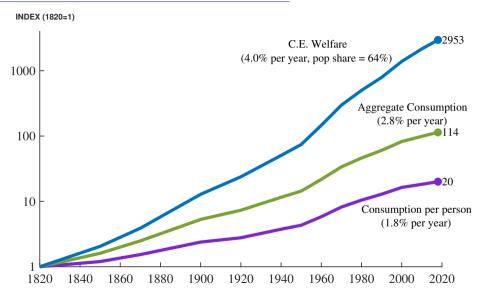
Trends over the long run for the U.S. (1820–2018)



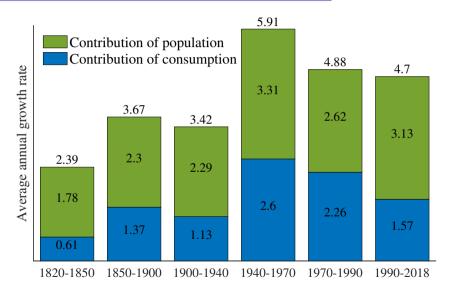
U.S. cumulative growth, 1820-2018



Cumulative growth in "The West", 1820-2018



West CE-Welfare growth over the long run, 1820-2018



World CE-Welfare growth over the long run, 1500-2018

