
Directory

Directory
Blank slide
Introduction
Overview
Outline
I. Baseline Model
Fig. 1: GlobalPF
Simple Model
Fig. 2: Direction of TC
Solution
Result 1. CD
Result 2. LATC
Proving LATC
Intuition
Clarifying the Result
Discussion
II. Microfoundations for the Model

Distribution of Yi

The Global PF
Cobb-Douglas
Remarks
III. Discussion 1. Baseline
2. Houthakker
3. Evidence for Pareto
IV. LATC
V. Simulation Results
Fig. 3: Cobb-Douglas
Parameter Values
Fig. 4: Production
Fig. 5: Output over Time
Fig. 6: Capital Share
Fig. 7: LATC

Conclusions

Production Functions and Technical Change∆ – p.1/38



Production Functions and Technical Change∆ – p.2/38



The Shape of Production Functions and
the Direction of Technical Change

Charles I. Jones

U.C. Berkeley and NBER

Production Functions and Technical Change∆ – p.3/38



Introduction

Macro/growth literatures: strong assumptions on PF
and direction of technical change. Justification?

What is a production function? y = f(k, t)

– Leontief example.
– Switching from low k to high k may involve very

different production techniques/ideas
– A production function is not a single technology, but

rather represents the substitution possibilities across
different techniques

The global shape of the production function is
determined by the distribution of ideas.
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Overview

Kortum (1997) meets Houthakker (1955): Growth and
Pareto Distributions

Results:
1. A production function with

– low EofS for any given technique
– Cobb-Douglas global production function.

2. A theory of LATC
– Possibility of KATC in model, but
– Economy “chooses” LATC only in LR.
– cf Acemoglu (2003)
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Outline

1. Baseline Model

2. Model w/ Microfoundations

3. Discussion: Role of Pareto

4. Embed in a growth model: LATC

5. Simulation Results
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Baseline Model: Preliminaries

Idea = (ai, bi). Production with technique i:

Y = F̃ (biK, aiL) ← the local production function

where F̃ is a neoclassical PF with EofS<1.

Rewrite in per worker terms as

y = aiF̃ (
bi

ai
k, 1),

Define yi = ai and ki = ai/bi. Then

y = yiF̃

(

k

ki
, 1

)

so that k = ki ⇒ y = yi. Production Functions and Technical Change∆ – p.7/38



The Global Production Function
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Simple Model

Firm has a stock of knowledge, N , that generates a
menu of ideas

H(a, b) = N, Ha > 0, Hb > 0. (1)

Associated with any idea (a, b) is a local production
technique, as above.

The global production function gives the highest output
that can be produced using this menu:

Y = F (K, L; N) ≡ max
b,a

F̃ (bK, aL)

subject to the technology menu constraint in (1).
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Fig. 2: Direction of Technical Change

a*

b*

 a

 b

 Y = Y *

 H(a, b) = N
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Solution

First-order condition:

θK

θL
=

ηb

ηa
,

where θK(a, b; K, L) ≡ F̃1bK/Y , θL = 1− θK , ηx ≡
∂H
∂x

x
H .

Key special case: Constant elasticity menu

H(a, b) ≡ aαbβ = N.

⇒ θK = β/α + β.

i.e. Capital share is constant for any K, L, and N .

This leads to two results.
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Result 1. Cobb-Douglas

The capital share is constant for any K, L, N

⇒ The global production function is Cobb-Douglas.

Derive exact form:
yi ≡ ai

ki ≡
ai

bi

Technology menu then implies:

yi = (Nkβ
i )

1

α+β .

The global production function equals this menu:

Y =
(

NKβLα
)

1

α+β

.
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Result 2. LATC

Embed this production setup in a standard neoclassical
growth model

Global Cobb-Douglas implies BGP exists if N grows
exponentially.

Steady-State Growth Theorem: In a steady state, either
– Production is Cobb-Douglas, or
– Technical change is labor augmenting.

Production always occurs with some local PF, and the
local is not Cobb-Douglas. Therefore LATC.
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Proving LATC

Rewrite the FOC as

bKF̃1(bK, aL)

aLF̃2(bK, aL)
=

β

α
.

Define x ≡ bK/aL. F̃ CRS⇒ the marginal products are
HD0:

xF̃1(x, 1)

F̃2(x, 1)
=

β

α
.

⇒ x must be constant.
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Proof (continued)
To show: x constant requires b constant in SS. Recall

Yt = F (Kt, Lt; Nt) = F̃ (btKt, atLt),

where bt and at are the optimal choices of the
technology levels.

Because F̃ exhibits constant returns, we have

Yt

atLt
= F̃

(

btKt

atLt
, 1

)

.

x = bK/aL constant⇒ Y/aL constant⇒ bK/Y

constant.

K/Y is constant in SS⇒ b constant. QED.
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Intuition

Because local PF is not Cobb-Douglas, balanced
growth requires bK and aL to grow at the same rate.
– Y = F̃ (bK, aL) suggests new interpretation of

“balanced”
– bK and aL must balance to keep factor shares

stable.

Can only happen with b constant.
– Recall, b constant means K/aL constant.
– If b grew, so would bK/aL...
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Clarifying the Result

Well-known that with Cobb-Douglas production, the
direction of technical change has no meaning.

So how can we have both?

Recall:

Yt = F (Kt, Lt; Nt)
global pf

= F̃ (btKt, atLt)
local pf

.

Global production function F (K, L; N) is Cobb-Douglas.
Local production function F̃ (bK, aL) has LATC.
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Discussion

Related to World Technology Frontier problem in
Caselli-Coleman (2004).

Early literature on direction of TC chose growth rates:
Kennedy (1964), Samuelson (1965), Drandakis and
Phelps (1966).

Acemoglu (2003) has related results in a Romer-type
model:
– LATC if production function for ideas is “just so”
– Capital share in LR is invariant to policy
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Model with Microfoundations

Assume the local production function is Leontief:

Y = F̃ (biK, aiL) = min{biK, aiL}

Ideas drawn from independent Pareto distributions:

Prob [ai ≤ a] = 1−

(

a

γa

)−α

, a ≥ γa > 0

Prob [bi ≤ b] = 1−

(

b

γb

)−β

, b ≥ γb > 0.

Then, G(b, a) ≡ Prob [bi > b, ai > a] =
(

b
γb

)−β (
a
γa

)−α
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Distribution of Output from Idea i

Let Yi(K, L) denote output with idea i. Since F̃ is
Leontief, the distribution of Yi is

H(ỹ) ≡ Prob [Yi > ỹ] = Prob [biK > ỹ, aiL > ỹ]

= G

(

ỹ

K
,
ỹ

L

)

= γKβLαỹ−(α+β),

where γ ≡ γα
a γβ

b .

That is, the distribution of Yi is also Pareto.
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The Global Production Function

Assume only one technique can be used at a time.

Let N denote the number of ideas, drawn
independently.

The global production function F (K, L; N) is given as

F (K, L; N) ≡ max
i∈{1,...,N}

F̃ (biK, aiL).

Let Y = F (K, L; N). Then

Prob [Y ≤ ỹ] = (1−H(ỹ))N .

=
(

1− γKβLαỹ−(α+β)
)N

.
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(continued)

Prob [Y ≤ ỹ] =
(

1− γKβLαỹ−(α+β)
)N

.

As N gets large, this probability goes to zero.
⇒ normalize to get a stable distribution

zN ≡
(

γNKβLα
)

1

α+β

.

Then,

Prob [Y ≤ zN ỹ] =
(

1− γKβLα(zN ỹ)−(α+β)
)N

=

(

1−
ỹ−(α+β)

N

)N

.
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The Cobb-Douglas Result

Now, let N get large

lim
N→∞

Prob [Y ≤ zN ỹ] = exp(−ỹ−(α+β))

Or,
Y

(γNKβLα)1/α+β

a
∼ Fréchet(α + β).

And therefore, for large N ,

Y ≈
(

γNKβLα
)

1

α+β

ε
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Remarks

Y ≈
(

γNKβLα
)

1

α+β

ε

1. Appendix: Poisson process for discovery of ideas yields
the result for finite N .

2. Cobb-Douglas exponent depends on parameters of
search distributions
– Easier to find ideas→ lower exponent.
– Intuition: EofS< 1.

3. ε is an iid shock drawn from a Fréchet distribution.

4. Higher N implies Higher Y .

5. Obviously Pareto assumption is crucial to result. More
on this shortly.
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Discussion: 1. Baseline Model

Baseline model: constant elasticity in technology menu.

Here, stochastic version. Consider iso-probability curve:

Prob [bi > b, ai > a] ≡ G(b, a) = C.

With Pareto,
bβaα =

γ

C
.

Stochastic version of the baseline technology menu.
– Pareto delivers ηb = β and ηa = α

– 1/C plays the role of N

– Get the same form for the production function.
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2. Comparison to Houthakker (1955)

Pareto+Leontief = Cobb-Douglas is Houthakker

Houthakker’s result is an aggregation result
– Continuum of firms with capacity constraints.
– Firm PF: Leontief, with requirements ∼ Pareto.
– Aggregate PF: Cobb-Douglas with DRS

Result here:
– Result applies for a firm/industry/country
– Applies to global production function, i.e. across

techniques.
– No restriction to Leontief for SR PF (technique)
– Nonrivalry of ideas⇒ CRS
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3. Evidence for Pareto Distributions

Key property: Prob [X ≥ γx | X ≥ x] for γ > 1 is
independent of x.

Empirical evidence for incomes, patent values,
profitability, citations, firm size, stock returns.
– Benchmark in literature is to test Pareto
– Findings: Pareto (sometimes hard to distinguish

from Lognormal)

Kortum (1997):
– Assume a production function and draw ai only
– Iff ideas are from a Pareto distribution, then we get

exponential growth
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(continued)
Why is Pareto so important?
– Steady-state growth requires probability the new

best idea exceeds frontier by 5% is invariant to y.
– Gabaix (1999) shows the reverse. Exponential

growth delivers a Pareto distribution for city sizes
(Zipf).

This suggests that Pareto Distributions and exponential
growth are two sides of the same coin.
- What I add is that this same basic assumption

delivers two additional results:
1. Cobb-Douglas production
2. Labor-augmenting technical change (next).
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The Direction of Technical Change

Embed this setup in a neoclassical growth model

Yt =
(

γNtK
β
t Lα

t

)
1

α+β

εt.

Kt+1 = (1− δ)Kt + sYt

Nt = N0e
gt

Therefore, steady-state growth in Y/L:

E[log
yt+1

yt
] ≈ g/α.

Note: depends on α but not β.
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(continued)
Model exhibits a stable balanced growth path, because
of global Cobb-Douglas production.

However, production at date t occurs with some
technique i(t):

Yt = F̃ (bi(t)Kt, ai(t)Lt).

Now use Steady-State Growth Theorem:
– The production function for a technique is not

Cobb-Douglas,
– so Steady State implies that bi(t) is stationary!

That is, technical change in this model is
(asymptotically) labor-augmenting.
– This is true even though maxi bi →∞.
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Simulating the Model

Relax Leontief and allow multiple techniques

CES production technique:

Yt = F̃ (biKt, aiLt) = (λ(biKt)
ρ + (1− λ)(aiLt)

ρ)1/ρ

First, show Cobb-Douglas.
– N = 500, α = 5, β = 2.5, ρ = −1.
⇒ β

α+β = 1/3.

– Compute convex hull and sample a (k, y) point
randomly.

– Repeat 1000 times and plot the sample.
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Fig. 3: The Cobb-Douglas Result
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Full Dynamic Simulation

Parameter Values: N0 = 50, g = .10, α = 5, β = 2.5,
γa = 1, γb = 0.2, k0 = 2.5, s = 0.2, λ = 1/3, δ = .05, and
ρ = −1.

Growth should average 2 percent

Cobb-Douglas capital share 1/3
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Fig. 4: Production
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Fig. 5: Output per Worker

0 20 40 60 80 100

 2

 3

 4

 7

12

20

Time

Output per
Worker

(log scale)

Production Functions and Technical Change∆ – p.35/38



Fig. 6: The Capital Share over Time
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Fig. 7: Technology Choices

0 5 10 15 20
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Labor−Augmenting Technology,  a

Capital−Aug.
Technology,  b

Production Functions and Technical Change∆ – p.37/38



Conclusions

Houthakker + Kortum =
– Exponential growth
– Cobb-Douglas (global) production function
– Labor-augmenting technical change.

The Pareto distribution buys us a lot!

Extensions and future work:
– Skilled versus unskilled labor?
– What about computers and ISTC? GHK, Whelan,

etc.?
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