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~ Population and Ideas:
A Theory of Endogenous Growth

CHARLES 1. JONES

1. INTRODUCTION

Can exponential growth be sustained forever? How do we understand the expo-
nential increase in per capita income observed over the last 150 years?

The growth literature provides a large number of candidate theories to address
these questions, and such theories are nearly always constructed so as to generate
a steady state, also known as a balanced growth path. That is, the growth rate
of per capita income settles down eventually to a constant. In part, this reflects
modeling convenience. However, it is also a desirable feature of any model that
is going to fit some of the facts of growth. For example, as noted by Barro and
Sala-i-Martin (1995, p. 34):

[O]ne reason to stick with the simpler framework that possesses a steady
state is that the long-term experiences of the United States and some other
developed countries indicate that per capita growth rates can be positive
and trendless over long periods of time. . . . This empirical phenomenon
suggests that a useful theory would predict that per capita growth rates
approach constants in the long run; that is, the model would possess a steady
state.

Clearly there are many examples of countries that display growth rates that are ris-
ing or falling for decades at a time. However, there are also examples of countries,
such as the United States over the last 125 years, that exhibit positive growth for
long periods with no noticeable trend. It seems reasonable, then, that a successful
theory of growth should at least admit the possibility of steady-state growth.
Models with this property, however, are very special and require strong as-
sumptions. One of these assumptions is that technical change, at least in the long
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run, should not be capital augmenting. Another is the presence of a differential
equation that is exactly linear in a sense we will define shortly.

Now that growth theorists understand the kind of assumptions that have to
be made to generate sustained exponential growth, it is possible to construct a
large number of models with different “engines” of growth, ranging from physical
capital accumulation to human capital accumulation to the discovery of new ideas
to population growth to various combinations of these factors. Indeed, the problem
now confronting growth economists is how to choose among the abundance of
competing explanations. Empirical work provides some guidance, but a number
of difficulties such as the accurate measurement of ideas or human capital or even
growth itself lead this research to be less than conclusive.

This chapter proposes a complementary approach to judging growth models by
“raising the hurdle” to which our models aspire. Specifically, the suggestion is that
a successful theory of economic growth should provide an intuitive and compelling
justification for the crucial assumptions that are a requirement of suchatheory. That
“crucial” assumptions should be justified is a time-honored strategy for making
progress in the growth literature. This kind of reasoning is discussed explicitly
in the introduction in Solow (1956) and is partly responsible for the discovery of
the neoclassical growth model.! Another example relates to the requirement that
technical change should not be capital augmenting in the long run. At first, this
seems like a very ad hoc assumption. However, research several decades ago by
Kennedy (1964) and Drandakis and Phelps (1966) and more recently by Acemo glu
(2001) explains how this can be the natural outcome ina model in which researchers
choose the direction of technical progress.

Just as these previous authors made progress by questioning the justification
for ad hoc but crucial assumptions, I propose that additional progress toward un-
derstanding long-run growth can be made by seeking a justification for the kind of
linearity that is needed in models that generate sustained growth over long periods
of time. Existing growth models fall short of this ideal, providing essentially no
justification for why a key differential equation should be linear. This was surely
appropriate when we were searching for the first several candidate explanations
of long-run growth, but perhaps it is now time to ask more of our models.

The final result of any model that exhibits long-run growth is an equation of
the form y/y = g, where y is per capita income and g > 0 is a constant. Not
surprisingly, then, the key to obtaining such a result is for the model to include a
differential equation that is “linear” in a particular sense, as in

X= X 1

1. “All theory depends on assumptions that are not quite true. That is what makes it theory. The
art of successful theorizing is to make the inevitable simplifying assumptions in such a way that the
final results are not very sensitive. A ‘crucial’ assumption is one on which the conclusions do depend
sensitively, and it is important that crucial assumptions be reasonably realistic. When the results of
a theory seem to flow specifically from a special crucial assumption, if the assumption is dubious,
the results are suspect. I wish to argue that something like this is true of the Harrod-Domar model of
economic growth” (Solow, 1956, p. 65).
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Growth models differ according to the way in which they label the X variable and
the story they tell in order to fill in the blank.?

Much of the work in both new and old growth theory can be read as the search for
the appropriate characterization of equation (1). For example, the original models
in Solow (1956) and Swan (1956) without exogenous technical change focused
our attention on the differential equation for capital accumulation. However, with
diminishing returns to capital, that equation was less than linear, and there was no
long-run growth in per capita income. When Solow and Swan added exogenous
technical change in the form of an equation that was assumed to be linear, A=gA,
long-run growth emerged.

The so-called “AK” growth models departed from Solow and Swan by eliminat-
ing the diminishing returns to capital accumulation. Linearity in the accumulation
of physical capital or human capital (or some combination of these two) became
the engine of growth.? Idea-based growth models by Romer (1990), Grossman and
Helpman (1991), Aghion and Howitt (1992), and others returned the linearity to the
differential equation for technological progress and filled the blank in equation (1)
with resources devoted to research by profit-maximizing entrepreneurs.

Note that exact linearity of the key differential equation is critical to generating
sustained exponential growth in the long run. If the exponent on X in equation (1)
is slightly larger than one, then growth rates will explode over time, with the level
of X (and hence income) becoming infinite in a finite amount of time. On the other
hand, if the exponent on X is slightly less than one, then growth rates will fall to
zero asymptotically. In other words, the growth theorist is in the strange situation
of requiring a knife-edge restriction.

One can argue that too much emphasis is placed on exact linearity in the previous
paragraph. The U.S. evidence suggests that trendless growth is possible for at least
125 years, at a rate of about 1.8 percent per year. Matching this kind of evidence
requires a differential equation that is close to linear. For example, if the differential
equation takes the form y, = ay,‘b, acceptable values for ¢ fall approximately into
the range 0.95—1.05.* If one wants balanced growth forever at a positive rate, exact
linearity is a requirement. If one only desires to match the empirical evidence

2. This way of summarizing growth models is taken from Romer (1995). It is important to recognize,
as documented by Mulligan and Sala-i-Martin (1993), that this linearity can be hidden in models with
multiple state variables. Linearity is also an asymptotic requirement rather than something that must
hold at all points in time, as pointed out by Jones and Manuelli (1990).

3. The models of Romer (1987), Lucas (1988), and Rebelo (1991) fit this category.

4. Integrating the differential equation in the text for ¢ # 1 and calculating the average growth

rate leads to

. 1 11 1ogl1 T

gr = (logyr — logyo) = Ti-9 ogll + go(1 - ¢)T],
where g is the growth rate j/y at time 0 (corresponding here to the year 1870). Setting gr = 0.018
and T = 125, one can solve this equation for the value of ¢ associated with any initial value of go.
If ¢ < 1, then growth rates are declining; a value of go = 0.019 iniplies a value of ¢ = 0.952 and
a 1995 growth rate of g7 = 0.0171. What we know of U.S. history suggests that growth rates were
rising prior to the 125 year period, and setting go = 0.017 leads to a value of ¢ = 1.051 and a 1995
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for the United States, this requirement can be relaxed slightly. In either case, a
crucial assumption of such a model is that it deliver a differential equation that is
approximately linear.

A natural requirement of a ‘successful theory of economic growth, then, is that
it provide a compelling and intuitive justification for linearity; such an assumption
is crucial to the result so we might require a good explanation for why it holds. On
this basis, existing models are clearly deficient. The linearity in existing models
is assumed ad hoc, with no motivation other than that we must have linearity
somewhere to generate endogenous growth.

That a theory of endogenous growth assumes this kind of knife-edge linearity
has long been known. Stiglitz (1970) and Cannon (1998) note that this requirement
made growth theorists uncomfortable with models of endogenous growth in the
1960s. Solow (1994) appeals to this same criticism in arguing against recent models
of endogenous growth. What is sometimes not sufficiently well appreciated is that
any model that is going to generate sustained exponential growth requires such an
assumption. A productive response to the criticism, then, is to provide justifications
for our crucial assumptions.

This chapter develops a new theory of endogenous growth in which linearity
is motivated from first principles. The process illustrates the potential gains from
forcing ourselves to jump over a higher hurdle—the model has predictions that are
different from those of other endogenous growth models. The first key ingredient of
this model is endogenous fertility. At an intuitive level, the reason why endogenous
fertility helps is straightforward. Consider a standard Solow-Swan model. With the
labor force as a factor that cannot be accumulated endogenously, one has to look
for a way—typically arbitrary—to eliminate the diminishing returns to physical
capital. In contrast, with an endogenously accumulated labor force, both capital
and labor are accumulable factors, and a standard constant-returns-to-scale setup
can easily generate an endogenously growing economy.

However, endogenous fertility in a model with constant returns to scale in all
production functions will not generate endogenous growth in per capita variables.
This leads to the second key ingredient of the model: increasing returns to scale.
Endogenous fertility leads to endogenous growth in the scale of the economy.
Increasing returns to scale in the production function for aggregate output translates
the endogenous growth in scale into endogenous growth in per capita output.

Research on idea-based growth models provides a justification for increasing
returns that is based on first principles. At least since Shell (1966), Phelps (1968),
and Nordhaus (1969), economists have recognized that the nonrivalry of knowl-
edge implies that aggregate production is characterized by increasing returns to
scale. This argument has been clarified and elevated to a very prominent place
in our thinking about economic growth by Romer (1990). Ideas are nonrivalrous;
they can be used at any scale of production after being produced only once. For
example, consider the production of any new product, say the digital videodisc
player or the latest worldwide web browser. Producing the very first unit may

growth rate of gr = 0.0191. The growth rates in this last experiment are roughly consistent with those
estimated by Ben-David and Papell (1995).
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require considerable resources: The product must be invented or designed. How-
ever, once the product is invented, it never needs to be invented again, and the
standard replication argument implies that subsequent production occurs with
constant returns to scale. Including the production of the “idea,” or the design
of the product, production is characterized by increasing returns. This property,
rather than the assumption that the differential equation governing technological
progress is linear, is the key contribution we need from the idea-based growth
literature.’

This chapter builds on a number of earlier insights. Several papers in the 1960s
contain key results that are further developed here. Phelps (1966) and Nordhaus
(1969) present models in which the nonrivalry of knowledge leads to increasing
returns and derive the result that long-run growth in per capita income is driven by
exogenous population growth.® Still, neither of these papers seems to know how
seriously to take this prediction, with Nordhaus calling it a “peculiar result” (p. 23).
Two years later, however, Phelps (1968, pp. 511—12) stresses the implications of
population for growth:

One can hardly imagine, I think, how poor we would be today were it not
for the rapid population growth of the past to which we owe the enormous
number of technological advances enjoyed today. . . . If I could re-do the
history of the world, halving population size each year from the beginning
of time on some random basis, I would not do it for fear of losing Mozart in
the process.

More recently, Jones (1995) modified the Romer (1990) model to eliminate
the apparently counterfactual prediction that the growth rate of the economy is
proportional to the size of the population. In the modified model, the growth
rate of the economy depends on the growth rate of the population, as in the
earlier models.” Because the population growth rate is assumed to be exogenously
given, however, the long-run growth rate of the economy is invariant to policy
changes.?

Here, the population growth rate is endogenized, and policy changes can affect
the long-run growth rate of the economy through their effects on fertility. However,
as the channel through which policy affects growth is fertility, the nature of the

5. Alternative methods for introducing increasing returns to scale in the model, such as a Marshallian
externality associated with capital accumulation, will also lead to endogenous growth. [ focus on the
idea-based theory of increasing returns because it can be motivated from first principles.

6. The learning-by-doing models of Arrow (1962) and Sheshinski (1967) also obtain this result.

7. A large body of related research includes Simon (1981), Judd (1985), Grossman and Helpman
(1989), Kremer (1993), Raut and Srinivasan (1994), Kortum (1997), and Segerstrom (1998).

8. Subsequent papers by Dinopoulos and Thompson (1998), Peretto (1998), Young (1998), and
Howitt (1999) have found clever ways to eliminate the effects of scale on growth in idea-based
models without eliminating long-run policy effects. These models maintain linearity in the equation
for technical progress but assume that the number of sectors grows exactly with population, so that
research effort per sector does not grow. See Jones (1999) for a discussion of these issues.
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effects of policy on long-run growth is often counter to conventional wisdom. For
example, subsidies to R&D and capital accumulation, even though they may be
welfare improving, will reduce long-run growth in the model.

Section 2 of the chapter presents an extremely simple growth model that
illustrates the role of population growth and increasing returns. The basic claim
in this section is that if one takes the historical presence of population growth as
given, then one can understand growth in per capita income without introducing
any arbitrary linearity into the model.

The remainder of the chapter then examines the deeper issue of how we can
understand growth more generally, both in per capita terms and in population, as an
endogenous phenomenon. Section 3 explores in detail the claim that endogenous
fertility can provide the linearity needed to understand per capita growth. Section
4 develops the decentralized dynamic general equilibrium model in the context of
“basic science.” That is, the model is based on the assumption that not only are the
ideas underlying growth nonrivalrous, they are pure public goods. This assumption
is employed almost entirely because it simplifies the analysis considerably. Still,
it may also be of independent interest. For example, it is sometimes conjectured
that basic science should be modeled as an exogenous process, like exogenous
technical progress in a Solow model. The analysis here suggests that insight is
gained by moving beyond this view. Even if the ideas of basic science fall from
above like apples from trees, the fertility channel and increasing returns are crucial:
The number of Isaac Newtons depends on the the size of the population that is
available to sit under trees.

Section 5 explores the welfare properties of the model. Section 6 contains a
general discussion of the model’s predictions and discusses its interpretation. One
point worth emphasizing from the beginning is that the model is best thought of as
describing the OECD or even the world as a whole. Care is required when testing
the model with a cross section of countries because countries share ideas.

2. THE ISAAC NEWTON GROWTH MODEL

The first claim in this chapter is that the growth in per capita income that has
occurred in recent centuries can be understood without appealing to any extra
linearity of the kind assumed in recent growth models. To make this claim, we
construct an extremely simple toy economy and show how it exhibits per capita
income growth. '

There are two key ingredients that drive per capita growth in the toy model, both
of which are readily justified. The first is population growth. For the moment, we
simply take constant exogenous population growth as a given. Letting L, represent
the population or labor force at time ¢,

L./L;=n>0, Lo > 0 given. (2)

The second key ingredient is increasing returns to scale. Let Y, be the quantity
of a single consumption/output good produced, and let A, be the stock of ideas
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that the economy has discovered in the past. The production function in our toy
model is

Y; = AJ Ly, (3)

where Ly is the number of people working to produce the output good and o > 0
imposes the assumption of increasing returns to scale. Holding the stock of ideas
constant, there are constant returns to scale: Doubling the quantity of rivalrous
inputs (here only Ly) will double output. Because ideas are nonrivalrous, the
existing stock A can be used at any scale of production, leading to increasing
returns in A and Ly together.

Finally, we need a production function for ideas. This part of the model can be
set up in a number of different ways. To keep the model simple, however, assume
the following production function:

A, =68Ly, Ao >Ogiven, )

where L 4 is the number of people working to produce new ideas (the number of
Isaac Newtons) and § > O represents the number of new ideas that each researcher

discovers per unit of time.
The resource constraint for this economy is

Ly, + Ly = L,. (5>

As part of our simplifying assumptions, we assume that a constant fraction s of
the labor force works as researchers so that L4, = sL; and Ly, = (1 —s)L,, with
0 < s < 1. This is the only allocative decision that needs to be made in this simple

model.
From the production function in equation (3), consumption (or output) per
worker is given by

yo=Y/L = A7 (1 —3),

and therefore the growth of consumption per worker, gy, is equal to og4, where
g. = x/x for any variable x.
From the production function for ideas in equation (4),

AJA, =685 (L/A). (6)

Ttis then easy to show that there exists a stable balanced growth path for this model
where g4 = n. For example, in order for A/ A to be constant in equation (6), the
ratio L/ A must be constant. Therefore, the long-run per capita growth rate in this
economy is given by

gy =on. ~ @]
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This result nicely illustrates the central roles of population growth and increas-
ing returns. Per capita growth is proportional to the rate of population growth,
where the factor of proportionality measures the degree of increasing returns in
the economy.

According to this model, sustained, long-run per capita growth results from
population growth and increasing returns. The inherent nonrivalry of ideas means
that the economy is characterized by increasing returns to scale. Economic growth
ocecurs because the economy is repeatedly discovering newer and better ways to
transform labor into consumption. However, the creation of new ideas by itself
is not sufficient to generate sustained growth. For example, suppose an economy
invents 100 new ideas every year. As a fraction of the (ever-evolving) existing
stock of ideas, these 100 new ideas become smaller and smaller. Sustained growth
requires that the number of new ideas itself grow exponentially over time. This
in turn requires that the number of inventors of new ideas grow over time, which
requires population growth.

If population growth is taken as given, this model suggests that per capita
income growth is not a puzzle at all. More people means more Isaac Newtons and
therefore more ideas. More ideas, because of nonrivalry, mean more per capita
income. Therefore, population growth, combined with the increasing returns to
scale associated with ideas, delivers sustained long-run growth.’

3. LINEARITY AND GROWTH

The previous section shows how two basic ingredients, population growth and
increasing returns, can help us make sense of the presence of per capita income
growth. In the remainder of the chapter, we consider a deeper question. How do
we understand past and possibly future growth, both in per capita terms and in
population itself, as an endogenous phenomenon?

Motivated by the discussion in the introduction, the answer must involve a
differential equation that is linear. In this section, I argue that the law of motion
for population is intimately tied to a linear differential equation in a way that the
law of motion for physical capital or human capital or ideas is not.

9. The model clearly indicates that growth occurs because the effective resources devoted to pro-
ducing new ideas increase over time. Jones (2002) applies a more general version of this model that
incorporates both physical and human capital to uncover empirically the sources of twentieth-century
U.S. economic growth. A key factin the application is that resources devoted to research have increased
for three reasons. In addition to basic population growth, the share of the labor force devoted to research
and the educational attainment of the researchers have increased as well. I document that roughly 80
percent of postwar U.S. growth is due to increases in human capital investment rates and research in-
tensity and only 20 pefcent is due to the general increase in population. However, the intensity effects
cannot lead to sustained exponential growth—aeither educational attainment nor the share of the labor
force devoted to research can increase forever. So unless there is an ad hoc Lucas-style linearity in
hurman capital accumulation, population growth remains the only possible source of long-run growth,
leading that paper to predict that growth rates may slow considerably in the future. These results confirm
that substantial progress in understanding growth can be made using the basic framework given earlier.
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To understand this claim, imagine a world consisting of N, (representative) indi-
viduals at time . Each individual in this economy chooses to have a certain number
of children, denoted by 7i;. At each point in time, some constant, exogenously given
fraction d of the population dies, as in the Blanchard (1985) constant-probability-
of-death model. The law of motion for the aggregate population in a continuous
time environment is then given by

Nt = (ﬁ: —d)Nu
= n;Ng. (8)

Therefore, by deciding on the number of children to have, individuals chcose the
proportional rate of increase in the population. The linearity of the law of motion
for population is a biological fact of nature: People reproduce in proportion to their
number.

This is not to say that such an equation automatically delivers sustained ex-
ponential population growth. Indeed, n may depend on the aggregate state of the
economy. In the model, for example, it will depend on the wage rate and other
endogenous variables. In fact, in a model with decreasing returns to scale (e.g.,
because of a constant technology level and a fixed supply of land), a subsistence
requirement for consumption, and endogenous fertility, one easily arrives at a
Malthusian result in which the size of the population is asymptotically constant—
people endogenously choose 7 = d, delivering zero population growth.

Instead, the point of this exercise is simply that thinking about fertility delivers
an equation that is linear in a way that thinking about physical or human capital
accumulation or the production function for knowledge does not. To see this
more clearly, consider a very rough comparison of this equation to the key linear
differential equation in other growth theories:

1. AK model: K =sK?

2. Lucas model: h = uh?

3. Romer model: A = H,A®

4. Fertility model: N = (7 — d)N?

Each of the models maintains the assumption that ¢ = 1 (which may be viewed
as an analytically useful approximation for the crucial assumption of ¢ & 1).
What does it mean for these equations to be linear? Hold constant the control
or choice variable of individual agents and consider whether doubling the state
variable will double, more than double, or less than double the change in the state
variable. For example, in the*AK model, hold constant the saving rate chosen
by individuals. What happens to net investment when the stock of capital in the
economy is doubled? In a neoclassical model with the usual diminishing returns,
net investment is less than doubled, so the neoclassical model is less than linear.
The AK model, however, eliminates these diminishing returns through an ad hoc
assumption. In the Lucas-style model, hold constant the fraction of time u that
individuals spend accumulating skills and double the stock of human capital. If
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a seventh grader and a high school graduate both go to school for 8 hours a day,
does the high school graduate learn twice as much?

In the Romer-style model, let A denote the stock of ideas or designs and H, be
the total level of resources the economy devotes to research. Holding Hy4 constant,
suppose we double the existing stock of ideas. What happens to the output of new
ideas? A benchmark case of constant returns would be ¢ = 0: The number of new
ideas created by 100 units of research effort is independent of the total stock of
ideas discovered in the past. One might suppose that ¢ > O—the productivity of
research is higher because of the discovery of calculus or the semiconductor. Or
one might suppose that ¢ < 0—the most obvious ideas are discovered first, and it
becomes more and more difficult to discover new ideas because of “fishing out.”
What one sees from this example is that the case of ¢ = 1 is clearly ad hoc. There
is no intrinsic justification for linearity in the production function for new ideas.

In contrast, consider finally the fertility model. Hold constant the choice variable
of individuals—the number of children per person, 7. What happens to the total
number of offspring if we double the population? Of course the total number
of offspring doubles. Linearity in the fertility equation results from the standard
replication argument.'®

One can endogenize the fertility rate 7i by following the endogenous fertility
literature associated with Dasgupta (1969), Pitchford (1972), Razin and Ben Zion
(1975), and Becker and Barro (1988), among others. Individuals care not only
about their own consumption, but also about the number of their descendants and
the consumption of their descendants. This literature, especially Barro and Becker
(1989), shows that the population can grow endogenously at a constant exponential
rate in a neoclassical-style growth model.

This result depends in part on the production technology for children. Suppose

i =blY, Q)

where 0 < [ < 1is the time an individual with a fixed labor endowment of one unit
spends producing offspring, and 0 < ¥ < 1. The parameter b > d (for “births”)
represents the maximum number of children that an individual can have inagiven
period (i.e., if | = 1). With these properties, as we will see below, it is easy to get
the result of positive, steady-state population growth. For example, all we need is
that b be sufficiently large.

Now consider the possibility that instead of being a parameter, b depends
directly on the state variables of the economy. For example, new ideas in health care
might allow children to be produced with less labor effort; technological progress
might increase b, although one might suspect that fertility remains bounded from
above. What is critical, however, is that asymptotically b does not decrease with

10. One migkt wonder about a dependence of 4 on N, which could destroy the linearity. It seems most
natural to think of the mortality rate d as depending on per capita consumption and on the technological
sophistication of the economy. Increases in consumption or medical technology, for example, may
reduce the mortality rate, perhaps leading it to asymptote to some constant level (perhaps even to zero).
Incorporating these features into the model would not destroy the linearity of the fertility equation.
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N. For example, to get sustained population growth, we must rule out a case like
b = N9 with 6 > 0. Clearly, this would eliminate the linearity of the model.

Is it reasonable to believe that 6 is not too far from zero? I think so. To see why,
note first that people are a primary input into nearly all production functions. People
are needed to produce output, people are needed to produce ideas, and people are
needed to produce new people. At least so far, the AK assumption that machines by
themselves can produce new machines does not seem tenable. With an exogenously
given population, one needs an exact but ad hoc degree of increasing returns to
scale to get constant returns to “reproducible” inputs. Thus, for example, the simple
Romer equation given above requires a returns to scale of approximately two,
which is difficult to justify. However, once population is itself an endogenously
reproducible input, then a standard constant-returns-to-scale production function
already exhibits constant returns to reproducible inputs; the two coincide so that
the standard replication argument provides the key justification for linearity.

This is the situation that applies here. The standard constant-returns-to-scale
benchmark in the production of offspring corresponds to 6 = 0. It is possible, of
course, for 6 to be substantially larger or smaller than zero, but this would require
a departure from constant returns through some kind of arbitrary and difficult-to-
justify external effect: As the population gets larger, why should the maximum
number of children that an individual can produce decline?

4. THE DECENTRALIZED MODEL

The remainder of this chapter should be read as an extended example. We embed
an endogenous fertility setup into an idea-based growth model and examine the
kind of results that can arise. I have chosen a particular theory and made particular
assumptions to get to the basic results easily. I will indicate in the appropriate
places how the results generalize.

4.1. Preferences

One of the key insights of Barro (1974) was to think about utility-maximizing
individuals who care not only about their own consumption but also about their
children’s consumption. This reasoning was extended by Razin and Ben-Zion
(1975) and Becker and Barro (1988) to model endogenous fertility: Parents also
care about the number of children that they have, and there may be costs to
increasing the number of offspring.

Following Becker and Barro (1988), we assume that the time s utility of the
head of a dynastic family is given by

00
UO,s = / e""("’)u(c,, ]\70,,) dt, (10)
s ,

where ¢, is the consumption of a representative member of the dynastic family at
time 7, and p > 0 is the rate of time preference. Ny, = N, /N, represents the size




POPULATION AND IDEAS 509

of the dynastic family living at time . Individuals live through their descendants,
so that the death of an individual is not a remarkable event in that person’s life.
When an individual dies, her assets are divided evenly among the other members
of the dynastic family. ;

With respect to the kernel of the utility function, it turns out to be convenient
to assume

u(c,, Ny) =Iogc,+elog1§7,, (11)

where € > 0. Both the marginal utility of consumption and the marginal utility
of progeny are positive but diminishing. The elasticity of substitution between
consumption and progeny is one, as in Barro and Becker (1989). Within the class
of utility functions with a constant elasticity of substitution between consumption
and progeny, this unit elasticity guarantees that the dynastic approach is time
consistent—choices made by the dynastic head of generation zero will be imple-
mented by subsequent generations. This assumption also turns out to be required
for the existence of a balanced growth path, as we will see shortly."!

Finally, characterizing the equilibrium of the model is much easier under the
stronger assumption that € = 1, so that per capita consumption and offspring
receive equal weight in the utility function. In the presentation of the model, we
will make this assumption and indicate at the appropriate time what happens when

€ # 1,

4.2. Technology

The consumption-capital good in the economy, final output ¥, is produced accord-
ing to

Y, = A°K°LL®, (12)
(2t Bl &4

where A is the stock of ideas in the economy, K is capital, Ly is labor, and
the parameters satisfy o > 0 and 0 < @ < 1. While this kind of production
function is commonly used in economics, it incorporates a fundamental insight
into the process of economic growth. Specifically, the production function exhibits
increasing returns to scale because of the nonrivalry of ideas. The strength of
increasing returns is measured by o.

The technology for producing offspring has already been discussed. It turns out
to be convenient to invert this production function in the analysis that follows.
Individuals are endowed with one unit of labor, and generating a net fertility rate
of n = i — d requires [ = B(n) units of time, where

11. This restriction is closely related to the restriction in dynamic general equilibrium business cycle
models that consumption must enter in log form if consumption and leisure are additively separable
(leisure per person does not need to enter in log form because it is not growing over time). Alternative
approaches to fertility can relax this assumption.
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n+d\""
) . (13)

ﬁ(n)s( .

The time that individuals have left over to supply to the labor market is therefore
1 — B(n). Note that 8(0) > 0 (some time is required to maintain a constant level of
population to compensate for the deaths at rate d), and 8(n) is a convex function.
In the optimization problem, we have individuals choose » rather than 7, but of
course the two choices are equivalent. With N identical agents in the economy,
the total change in population in an economy with net fertility » is given by

N( =n[Ng. (14)

We start the economy at time 0 with Ny > 0 given.

Capital accumulates in this economy in the form of assets owned by members
of the dynastic family. Letting v denote the per capita stock of assets (K = Nv 1s
imposed later, and Ky > 0 is assumed),

U= —n)uy+w[l—-Bn)]—c — f, (15)

where r is the market return on assets, w is the wage rate per unit of labor, and f
represents per capita lump-sum taxes collected by the government (f = F/N).

The final component of the technology of the economy is the production of
ideas. New ideas are produced by researchers according to

At =51LA1: (16)

where L 4 denotes labor engaged in research, and A represents the measure of new
ideas created at a point in time. The resource constraint on labor is

Lg+ Ly, =[1-B(n)IN: =L,. (17)

While individual researchers, who are small relative to the total number of
researchers, take & as given, it may, in fact, depend on features of the aggregate
economy. The true relationship between new ideas and research is assumed to be
given by '/

Al = 6L21A?7 (18)

where § > 0,0 < A < 1, and ¢ < 1 are parameters. This formulation allows for
both positive and negative externalities in research. Ata point in time, congestion or
duplication in research may reduce the social value of a marginal unit of research,
associated with A < 1. In addition, the productivity of research today may depend
either positively (knowledge spillovers) or negatively (fishing out) on the stock
of ideas discovered in the past. Equation (18) therefore allows for increasing,
constant, or decreasing returns to scale in the production of new ideas.
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4.3. Market Structure

Romer (1990) and others have emphasized that ideas are nonrivalrous but partially
excludable. The assumption that ideas are at least partially excludable allows
inventors to capture some of the social value that they create. This feature, together
with the increasing returns to scale implied by nonrivalry, leads Romer, Grossman
and Helpman, and Aghion and Howitt to favor models with profit-maximizing
entrepreneurs and imperfect competition—what we might call “Silicon Valley”
models.

Here, we will make an alternative assumption that will have the flavor of growth
through basic science. In particular, we assume that ideas are nonrivalrous and
nonexcludable; that is, they are pure public goods.'? This means that inventors
cannot use the market mechanism to capture any of the social value they create. In
the absence of some nonmarket intervention, no one would become a researcher
because of the fundamental ineffectiveness of property rights over basic science,
and there would be no growth.

This alternative assumption serves two purposes. The primary purpose is that
it greatly simplifies the analysis of the decentralized model. We assume that all
markets are perfectly competitive and then introduce a government to collect lump-
sum taxes and use the revenues to fund research publicly. Of course, this case
may also be of independent interest. Previous Silicon Valley-style models have
analyzed the case in which research is undertaken by private entrepreneurs who are
compensated through imperfectly competitive markets. This chapter explores the
alternative extreme in which growth is associated with basic science undertaken
by publicly funded scientists.

The government collects lump-sum taxes F from individuals and uses this
revenue to hire research scientists at the market wage w. We assume that the
government collects as much revenue as needed so that a constant fraction of the
labor force, 0 < § < 1, is hired as researchers: that is, L4 = sL.

4.4, Equilibrium

A competitive equilibrium in this model is a sequence of quantities {c;, ¥;, K:, A,,
v;, Lyi, Las, Ny, 1.}, prices {w;, r;}, and lump-sum taxes {F,} such that:

1. The head of the dynastic family chooses {c/, n,} to maximize dynastic
utility in equation (10) subject to the laws of motion for asset accu-
mulation (15) and population (14), taking {r:, w;, F,} and vg and Ny as
given.

2. Firms producing output rent capital K; and labor Ly, to maximize profits,
taking the rental prices r, and w; and the stock of ideas A, as given.

3. Markets clear at the prices {w;, ;} and the taxes {F;}. In particular, the
stock of assets held by consumers V, is equal to the total capital stock
K., and the number of researchers is a constant fraction § of the labor
force.

12. See Shell (1966) for an early application of this approach.




512 CHARLES I. JONES

We now characterize the competitive equilibrium in steady state, that is, when all
variables are growing at constant (exponential) rates.

The first-order conditions from the utility maximization problem for individuals
imply that the steady-state fertility rate chosen by the dynastic family satisfies'”:

(r — gy +wp' ] _ g
N; Ut '

(19)

This equation is the dynamic equivalent of the condition that the marginal rate
of transformation (the left-hand side) equals the marginal rate of substitution (the
right-hand side) between people and const mption. The marginal rate of transfor-
mation is based on the cost to the individual of increasing fertility, which involves
two terms. First, there is a capital-narrowing effect: adding to the population dilutes
the stock of assets per person. Second, there is the direct cost of wages that are
foregone in order to increase the population growth rate. The total cost is scaled
by the size of the population so that it is measured in terms of bodies rather than as
a rate of growth, and it is multiplied by the effective discount rate r — gy to put it
on a flow basis. This marginal rate of transformation is equal to the static marginal
rate of substitution u ; /u. along the optimal balanced growth path.

This relationship makes it clear why a unit elasticity of substitution between
people and consumption is required. The marginal rate of transformation on the
left-hand side of equation (19) will end up being proportional to y/ N, where y
is per capita output Y/N. Therefore, the marginal rate of substitution must be
proportional to ¢/ N for a balanced growth path to exist; otherwise, the cost and
the benefit of fertility will grow at different rates and the economy will be pushed to
a corner. The equation also makes clear why the curvature B (n) > 0is required:
with B(n) = 1 — Bn, for example, equation (19) does not depend directly on n,
and households will move to a corner solution.

Other first-order conditions characterizing the equilibrium are more familiar.
For example, consumption growth satisfies the following Euler equation:

C“,/C,:‘:r,—n,-p. (20)

Also, the first-order conditions from the firm’s proﬁt—maximization problem,
assuming no depreciation, are ‘

r: '—:OtY,/K,

and

1 1
==Y T=gey T=5 @1

-

(1-a)Y

wy =
LYt

13. Robert Barro, in work in progress, shows that with an intertemporal elasticity of substitution
equal to one, if we replace r — gy with p, this condition holds at all points in time, not just along a
balanced growth path.
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With these first-order conditions in mind, we are ready to characterize the
steady-state growth rate of the economy. Along the balanced growth path, the
key growth rates of the model are all given by the growth rate of the stock of ideas:

(o2

gy =8 =& = 84, (22)

-«
where g; denotes growth rate of some variable z along the balanced growth path,
y is per capita income Y /N, and k is capital per person K /N."

The growth rate of ideas, g4, is found by dividing both sides of equation (18)
by A:

Along a balanced growth path, the numerator and the denominator of the right-
hand side of this expression must grow at the same rate, and this requirement pins
down the growth rate of A as

A
1-¢

8a = 8Ly-

Finally, along a balanced growth path, L 4 must grow at the rate of growth of the
population. Therefore,

AR

= —— 23
84 =14 (23)
Combining this result with equation (22), we see that
8y =vn, (24)

where y = [o/(1 — )][A/(1 = $)].

As in Jones (1995), the per capita growth rate of the economy is proportional
to the population growth rate. This is a direct consequence of increasing retums
to scale: With ¢ = 0, there is no per capita growth in the long run. Note that
balanced growth in the presence of population growth in this model requires o < 1
and ¢ < 1. That is, the capital accumulation equation and the law of motion for
ideas must both be less than linear in their own state variables; otherwise, growth
explodes and the level of consumption and income is infinite in a finite amount
of time.

14. This relationship is derived as follows. First, the constancy-of-consumption growth requires a
constant interest rate and therefore a constant capital-output ratio, yielding the first equality. Second,
the asset accumulation equation in (15) is simply a standard capital accumulation equation. For the
capital stock to grow at a constant rate, the capital-consumption ratio must be constant, yielding the
second equality. Finally, log differentiating the production function in (12) yields the last equality.
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Figure 1. Solving for n?¢.

4.5. Fertility in the Decentralized Economy

The rate of population growth is determined by consumer optimization, as in equa-
tion (19). Using the fact that € = 1 and r — gy = p along a balanced growth path,
and substituting for the wage from equation (21), equation (19) can be written as

B'(n) 1

I—pm 1-5 o " (25)

1
kk+d—-a)y - -
P

Some algebra then shows that along a balanced growth path, the rate of fertility
satisfies'®
ﬂ/(nDC ) _ 1—5%

1-B(nP¢) — p 20

The solution to this equation exists and is unique under the assumption that '(0) <
(1 — 5)/p, as shown in Figure 1. Recall that the relationship in equation (24) that
gy = yn then determines the growth rate of the economy along the balanced
growth path.

The steady-state growth rate of the economy is directly proportional to the net
fertility rate. This rate is smaller the higher is the rate of time preference p or the

15. Specifically, divide both sides of the equation by k and use the fact that y/k = r/a and
c/k = y/k — gy = (1 — @)/ xr + p along a balanced growth path.
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higher is the cost of fertility B(:). Interestingly, the growth rate of the economy
is decreasing rather than increasing in the fraction of the labor force devoted to
research. This is very different from the results in previous idea-based growth
models and reflects the fact that growth is driven by a different mechanism. Here,
changes in research intensity affect long-run growth only through their effect
on fertility. A larger research sector takes labor away from the alternative use
of producing offspring, which reduces population growth and therefore reduces
steady-state per capita growth. It is important to note that this long-run effect is
quite different from the short-run effect. In the short run, an increase in the fraction
of the labor force devoted to research will lead to more new ideas and a faster rate
of growth. Only in the long run is the fertility effect apparent.

5. WELFARE AND A PLANNER PROBLEM

With more than one generation of agents, it is not obvious how to define social
welfare: It depends on how one weights the utility of different generations. We
focus on a narrower question: Does the allocation of resources achieved in the
market economy maximize the utility of each dynastic family given the initial
conditions that constrain their choices?

To maximize the welfare of a representative generation (the generation alive at
time zero here), the social planner solves

o0
{max } Ug = f e "u(c,, No.) dt, 27
Cr oSty 0
subject to
ko= ATKS(1—5)' " [1 = B(n )] = ¢ — ke, (28)
A, = 85 [1 — BT NI A, 29)
and

N} =n;N[. (30)

The first-order conditions from this maximization problem can be combined to
yield several equations of interest. First, optimal consumption satisfies a standard
Euler equation

G g —p. G1)
¢ k;

Second, the first-order conditions together with the equations governing the law
of motion for capital and ideas can be solved to yield optimal research intensity in
the steady state:
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1
sspzm’ (32)
where
sP _ l—a[p(l—-9¢) _
Vo= Ao [ An +1 ¢]'

To solve for the steady-state rate of population growth, we follow the steps used
for the decentralized model. The first-order conditions from the planner’s problem
can be combined to yield a condition analogous to equation (19) in steady state:

B'(n°F) 1 ] p Uy

A
1—B(nSP) 1—55° + pur=, (33)

NY uCI N[

[kr + A —-a)y, -

where 1, is the shadow value of an idea [the co-state variable corresponding to
equation (29)].

The distortion that affects fertility choice can be seen by comparing this equation
to the corresponding condition in the decentralized model, either equation (19)
or (25). Individual agents ignore the extra benefit associated with increasing
returns to scale provided by additional population. This distortion is reflected
by the presence of the second term on the right-hand side of equation (33), which
corresponds to the utility value of the extra ideas created by an additional person.

Some additional algebra reveals that, along the balanced growth path, the
optimal fertility rate satisfies'®

B ") 1
T=5G%) " o o

Finally, the optimal steady-state growth rate of per capita income is given by
gfp = ynsP,

A comparison of equations (26) and (34) indicates that steady-state fertility
and growth are inefficiently too slow in the decentralized economy, as shown
in Figure 2. This results from the fact that, as noted above, individuals ignore the
economy-wide benefit of fertility that is associated with increasing returns to scale:
A larger population generates more ideas that benefit all agents in the economy.
This is the “Mozart effect” mentioned by Phelps (1968).

In more general models that I have explored, this result can be overturned.
For example, when the kemnel of the utility function is generalized to place a
higher weight on offspring, that is, when € > 1, it is possible for the decentralized
economy to have a fertility rate and therefore a growth rate that is inefficiently
too high. This occurs if § is sufficiently smaller than s57.'” Second, fertility and

16. Once again, divide both sides of the equation by k and use the fact that y/k = r/a and
c/k = y/k — gy = (1 —a)/a * r + p along a balanced growth path.

17. To see part of the intuition, recall that from the standpoint of the decentralized economy, a lower
research intensity increases fertility.
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Figure 2. Comparing n¢ and n**.

growth can be inefficiently high in a model in which the Romer (1990) market
structure is used instead of the perfectly competitive/basic science market structure.
With the imperfectly competitive market structure of Romer, capital is underpaid
relative to its marginal product so that some resources are available to compensate
entrepreneurs. However, recall that part of the opportunity cost of fertility is
the additional capital that must be provided to offspring. Imperfect competition
reduces this cost and can lead to inefficiently high fertility and growth.

6. DISCUSSION

This extended example contains a number of predictions about long-run growth,
some of which are found in earlier papers and some of which are new. First, the
“scale effects” prediction that has been a key problem in many endogenous growth
models turns out to be a key feature in this model. Increasing returns to scale implies
that the scale of the economy will matter. Instead of affecting (counterfactually) the
long-run growth rate, however, scale affects the long-run Jevel of per capita income.
Large populations generate more ideas than small populations, and because ideas
are nonrivalrous, the larger number of ideas translates into higher per capita
income. Endogenous growth in the scale of the economy through fertility leads to
endogenous growth in per capita income.

Changes in government policies can affect the long-run growthrate by affecting
the rate of fertility. For example, suppose that for each child, parents have to pay
a fraction of their wages in taxes. Such a tax will reduce fertility and therefore
reduce per capita growth.
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Other policies can also affect population growth and per capita growth in the
model, but the effects are often counterintuitive on the surface. Specifically, the
imposition of many taxes in the model will increase rather than decrease long-run
growth (thoygh once again, the short-run effects and the welfare effects can go
in the opposite direction). For example, a tax on labor income creates a wedge
between working and child-rearing, the untaxed activity, and will increase fertility
and per capita growth. A tax on capital reduces the opportunity cost of fertility
by reducing the capital stock and wages and therefore will also increase growth.
Finally, as we have already seen, an increase in an existing government subsidy
to research will reduce long-run growth in the model. Note that increasing the
research subsidy may easily be welfare improving here, but not, as is often argued,
because it increases the long-run growth rate.'® In general, these results emphasize
the important point that long-run growth and welfare are different and may even
respond to policy changes in opposite directions.

What policies should the government follow in this model to obtain the socially
optimal allocation of resources? At least in steady state, the policy turns out
to be very simple and conventional, contrary to the counterintuitive results just
mentioned. Suppose the government taxes labor income at rate 7, and uses the
revenue to fund research, with no lump-sum rebates or taxes. In this case, it is easy
to show that steady-state fertility achieves its socially optimal level. Moreover,
the share of labor employed in research, §, is equal to the tax rate 7, . Therefore,
by choosing a labor income tax rate of 7, = 557, the fraction of labor working
in research as well as the steady—state fertility and growth rate match the social
optimum.

A final issue worth considering is the plausibility of the way endogenous
fertility is modeled. The assumption of a unit elasticity of substitution between
consumption and offspring in the dynastic utility function is crucial for delivering
sustained exponential growth in population, and therefore in per capita income.
However, it is far from clear that future population growth will actually be
sustained. For example, fertility rates throughout the world appear to be falling and
demographic projections by the U.S. Bureau of the Census and the World Bank
suggest that world population may stabilize at some point far into the future—
maybe the twenty-third centwy (Doyle, 1997).

Jones (2001) examines a model with an elasticity of substitution greater than
one in a study of growth over the very long run. In this case, the model generates
a demographic transition similar to that observed in the advanced countries of the
world and, at least for some parameterizations, suggests that population levels may
stabilize. An important prediction of such a model is that exponential growth in
per capita incomes would not be sustained. This does not mean that growth would
necessarily cease, however. For example, a constant number of researchers could
potentially generate a constant number of new ideas, leading to arithmetical rather
than exponential growth. '

18. Inall of the examples in this paragraph, it is assumed that the tax revenue collected is rebated lump
sum to the agents. The behavioral changes result from the substitution effects; without the lump-sum
rebates, the income effect will neutralize the substitution effect.
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In this sense, the framework does not necessarily suggest that sustained expo-
nential growth must continue forever. As indicated earlier, linearity in the pop-
ulation equation does mot guarantee growth; this depends on fertility behavior.
Sustained growth seems to be a good description of the advanced economies for
the last century or so. But if the model is correct, the future of per capita growth
will hinge on the ability of the world economy to continue to devote more and
more quality-adjusted resources to the production of new ideas.

7. CONCLUSION

Recent research has led to a large number of potential explanations for the engine
of economic growth. Distinguishing among taese explanations is important, both
from a scientific standpoint and from a policy perspective. Some explanations
suggest that increases in public investment in physical capital would be appropriate
and others point to subsidies to private investment. Some suggest that imperfect
competition and incentives for innovation are key and others stress the formation
of human capital. Some suggest that growth rates may be much higher in the future,
and others say that they will be much lower.

In order to generate sustained exponential growth like that observed in the
United States for the last 125 years, models of growth require a differential equation
that is linear, or at least very nearly so. Following the suggestion of Solow (1956),
this chapter proposes that a successful theory of economic growth should provide
an intuitive and compelling justification for this crucial assumption.

After proposing this standard to which our future models should aspire, the
chapter attempts to make some progress. We begin by pointing out that, taking
population growth as a given, it is possible to understand the exponential growth
in per capita income without appealing to any additional linearity. Instead, the
increasing returns to scale associated with the nonrivalry of ideas combined with
the historical presence of population growth implies per capita growth.

The remainder of the chapter explores a model in which both population growth
and per capita growth emerge endogenously. The crucial linearity appears in the
law of motion for population, and the chapter argues this is a more natural location
for linearity than other locations considered in existing growth models. Each family
chooses a number of children to have, 7i. With N such agents in the economy, the
net increase in population is given by N = nN, where n = 7ii — d. In other words,
in deciding how many children to have, individuals choose the proportional rate
of increase in the population. The linearity of the law of motion for population
results from the biological fact of nature that people reproduce in proportion to
their number. By itself, however, this linearity is not sufficient to generate per
capita growth.

The second key ingredient of the model is increasing returns to scale. In line with
the reasoning of Romer (1990) and others, increasing returns also seems to be a fact
of nature. Ideas are a central feature of the world we live in. Ideas are nonrivalrous.
Nonrivalry implies increasing returns to scale. This line of reasoning, rather than
placing the key linearity in the equation of motion for technological progress, is
the fundamental insight of the idea-based growth models, according to the view in
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this chapter. Endogenous fertility and increasing returns, both motivated from first
principles, are the key ingredients in an explanation of sustained and endogenous
per capita growth.
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