The Allocation of Talent and U.S. Economic Growth

Chang-Tai Hsieh Erik Hurst Chad Jones Pete Klenow

October 2016

Big changes in the occupational distribution

White Men in 1960:

94% of Doctors, 96% of Lawyers, and 86% of Managers

White Men in 2008:

63% of doctors, 61% of lawyers, and 57% of managers

Sandra Day O'Connor...

Share of Each Group in High Skill Occupations

High-skill occupations are lawyers, doctors, engineers, scientists, architects, mathematicians and executives/managers.

Our question

Suppose distribution of talent for each occupation is **identical** for whites, blacks, men and women.

Then:

- Misallocation of talent in both 1960 and 2008.
- But *less* misallocation in 2008 than in 1960.

How much of productivity growth between 1960 and 2008 was due to the better allocation of talent?

Outline

1. Model

2. Evidence

3. Counterfactuals

Model

- N occupations
- Live for three periods ("young", "middle age", "old")
- Draw talent in each occupation $\{\epsilon_i\}$ and at home
- Young: Choose lifetime occupation (i) and human capital (s, e)
- All ages: Decide to work or stay at home

Preferences
$$U=c_y^\beta c_m^\beta c_o^\beta (1-s)z$$

Human capital $h=s^{\phi_i} e^{\eta} \epsilon$
Consumption $c=(1-\tau_w)wh-(1+\tau_h)e$

What varies across occupations/groups/cohorts

 w_{it} = the wage per unit of human capital in occupation i (endogenous)

 ϕ_{it} = the elasticity of human capital wrt time invested for occupation i

 $\tau^{w}_{igt} = \text{labor market barrier facing group } g \text{ in occupation } i \text{ (time effect)}$

 τ_{igc}^{h} = human capital barrier facing group g for i (cohort effect)

 z_{igc} = preference for occupation i by group g (cohort effect)

Timing

- Individuals draw and observe an ϵ_i for each occupation.
 - See current ϕ_i , τ_{ig}^w , τ_{ig}^h , and z_{ig} .
 - Anticipate w_i
 - \Rightarrow choose occupation, s, and e.
- Then observe ϵ^{home}
 - Decide to work or stay home when young.
- Age to next stage of life
 - See new τ_{ig}^{w} and w_{i}
 - Decide to work or stay home.

Some Possible Barriers

Acting like τ^w

• Discrimination in the labor market.

Acting like τ^h

- Family background.
- Quality of public schools.
- Discrimination in school admissions.

Individual Choices

The solution to an individual's utility maximization problem, given an occupational choice:

$$\begin{split} s_i^* &= \frac{1}{1 + \frac{1 - \eta}{\epsilon \beta \phi_i}} \\ e_{ig}^*(\epsilon) &= \left(\frac{\eta (1 - \tau_i^w w_i s_i^{\phi_i} \epsilon)}{1 + \tau_i^h} \right)^{\frac{1}{1 - \eta}} \\ U(\tau_{ig}, w_i, \epsilon_i) &= \bar{\eta}^{\beta} \left(\frac{w_i s_i^{\phi_i} [z_i (1 - s_i)]^{\frac{1 - \eta}{3\beta}} \epsilon_i}{\tau_{ig}} \right)^{\frac{3\beta}{1 - \eta}} \\ \text{where} \quad \tau_{ig} &\equiv \frac{(1 + \tau_{ig}^h)^{\eta}}{1 - \tau_{ig}^w} \end{split}$$

The Distribution of Talent

We assume independent **Fréchet** for each occupation:

$$F_i(\epsilon) = \exp(-\epsilon^{-\theta})$$

- McFadden (1974), Eaton and Kortum (2002)
- θ governs the dispersion of skills

Home sector talent drawn from this same distribution.

Result 1: Occupational Choice

$$U_{ig} = (\tilde{w}_{ig}\epsilon_i)^{\frac{3\beta}{1-\eta}}$$

Extreme value theory: $U(\cdot)$ is Fréchet \Rightarrow so is $\max_i U(\cdot)$

Let p_{ig} denote the fraction of people in group g that work in occupation i:

$$p_{ig} = rac{ ilde{w}_{ig}^{ heta}}{\sum_{s=1}^{N} ilde{w}_{sg}^{ heta}} \quad ext{where} \quad ilde{w}_{ig} \equiv rac{w_i s_i^{\phi_i} [z_{ig} (1 - s_i)]^{rac{1 - \eta}{3 eta}}}{ au_{ig}}.$$

Note: \tilde{w}_{ig} is the reward to working in an occupation for a person with average talent

Result 2: Labor Force Participation

 $LFP_{ig}(c,t) \equiv$ fraction of people in *i*,*c*,*g* at time *t* who decide to work.

$$LFP_{ig}(c,t) = \frac{1}{1 + \tilde{p}_{ig}(c) \cdot \left[\frac{\Omega_g^{home}(c)}{(1 - \tau_{ig}^w(t)) \cdot w_i(t)}\right]^{\theta}}.$$

We do not observe \tilde{p} or *LFP*. But their product is the observed fraction of people of a cohort-group actually working in an occupation, p_{ig} :

$$p_{ig}(c,t) = \tilde{p}_{ig}(c) \cdot LFP_{ig}(c,t).$$
observed occ choice lfp

Result 3: Average Quality of Workers

• The average quality of workers in each occupation is

$$\mathbb{E}\left[h_{ig}(c,t)\cdot\epsilon_{ig}(c,t)\right] = \gamma s_i(c)^{\phi_i(t)}\cdot$$

$$\left[\left(\frac{\eta \cdot s_i(c)^{\phi_i(c)} \cdot w_i(c) \cdot (1 - \tau_{ig}^w(c))}{1 + \tau_{ig}^h(c)}\right)^{\eta} \left(\frac{1}{p_{ig}(c,t)}\right)^{\frac{1}{\theta}}\right]^{\frac{1}{1-\eta}}$$

• $\uparrow p_{ig} \Rightarrow$ lower average quality (other things equal)...

Result 4: Occupational Earnings

- Let $\overline{\text{wage}}_{ig}(c,t)$ denote average earnings in occupation i by group g.
- Then wage of young cohort is

$$\begin{split} \overline{\text{wage}}_{ig}(t,t) &\equiv (1 - \tau_{ig}^{w}(t)) \cdot w_{i}(t) \cdot \mathbb{E}\left[h_{ig}(c,t) \cdot \epsilon_{ig}(c,t)\right] \\ &= \gamma \bar{\eta} \left(\frac{m_{g}(t,t)}{LFP_{ig}(t,t)}\right)^{\frac{1}{\theta} \cdot \frac{1}{1-\eta}} \cdot \left[(1 - s_{i}(c))z_{ig}(c)\right]^{-\frac{1}{3\beta}} \end{split}$$

where
$$m_g(c,t) = \sum_{i=1}^{M} \tilde{w}_{ig}(c,t)^{\theta}$$
.

• So occupational wage gaps depend only on LFP and z_{ig} .

Occupational Choice

• Focusing only on the young (who make occupational decisions):

$$\frac{p_{ig}}{p_{i,wm}} = \left(\frac{\tau_{ig}}{\tau_{i,wm}}\right)^{-\theta} \left(\frac{\overline{\text{wage}}_{ig}}{\overline{\text{wage}}_{i,wm}}\right)^{-\theta(1-\eta)}$$

- Misallocation of talent comes from **dispersion** of τ 's across occupation-groups.
- This equation allows us to recover τ_{ig} ...

Inferring Barriers

$$\frac{\tau_{ig}}{\tau_{i,wm}} = \left(\frac{p_{ig}}{p_{i,wm}}\right)^{-\frac{1}{\theta}} \left(\frac{\overline{\text{wage}}_{ig}}{\overline{\text{wage}}_{i,wm}}\right)^{-(1-\eta)}$$

We infer high τ barriers for a group with low average wages.

We infer particularly high barriers when a group is underrepresented in an occupation.

We pin down the *levels* by assuming $\tau_{i,wm} = 1$.

Aggregates

Human Capital
$$H_i = \sum_{g=1}^G \int h_{jgi} dj$$

Production
$$Y = \left(\sum_{i=1}^{I} (A_i H_i)^{\rho}\right)^{1/\rho}$$

Expenditure
$$Y = \sum_{i=1}^{I} \sum_{g=1}^{G} \int (c_{jgi} + e_{jgi}) dj$$

Competitive Equilibrium

- 1. Given occupations, individuals choose c, e, s to maximize utility.
- 2. Each individual chooses the utility-maximizing occupation.
- 3. A representative firm chooses H_i to maximize profits:

$$\max_{\{H_i\}} \left(\sum_{i=1}^{I} (A_i H_i)^{\rho} \right)^{1/\rho} - \sum_{i=1}^{I} w_i H_i$$

4. The occupational wage w_i clears each labor market:

$$H_i = \sum_{g=1}^G \int h_{jgi} \, dj$$

5. Aggregate output is given by the production function.

A Special Case

- Live for one period only
- $\sigma = 1$ so that $w_i = A_i$.
- 2 groups, men and women.
- $\phi_i = 0$ (no schooling time).

$$\overline{wage}_{m} = \left(\sum_{i=1}^{N} A_{i}^{\theta}\right)^{\frac{1}{\theta} \cdot \frac{1}{1-\eta}}$$

$$\overline{wage}_f = \left(\sum_{i=1}^N \left(\frac{A_i (1 - \tau_i^w)}{(1 + \tau_i^h)^{\eta}}\right)^{\theta}\right)^{\frac{1}{\theta} \cdot \frac{1}{1 - \eta}}$$

Further Intuition

Adding the assumption that A_i and $1 - \tau_i^w$ are jointly log-normal:

$$\begin{split} \ln \overline{wage}_f &= \ln \left(\sum_{i=1}^N A_i^{\theta} \right)^{\frac{1}{\theta} \cdot \frac{1}{1-\eta}} \\ &+ \frac{1}{1-\eta} \cdot \ln \left(1 - \overline{\tau}^w \right) - \frac{1}{2} \cdot \frac{\theta - 1}{1-\eta} \cdot \text{Var}(\ln (1 - \tau_i^w)). \end{split}$$

Also helpful for understanding comparative statics:

$$\operatorname{Var} \ln(1 - \tau^w) = \frac{1}{\theta^2} \cdot \operatorname{Var} \ln \frac{p_{ig}}{p_{i,wm}}$$

Outline

1. Model

2. Evidence

3. Counterfactuals

- U.S. Census for 1960, 1970, 1980, 1990, and 2000
- American Community Survey for 2010–2012
- 67 consistent occupations, one of which is the "home" sector.
- Look at full-time and part-time workers, hourly wages.
- Prime-age workers (age 25-55).

Examples of Baseline Occupations

Health Diagnosing Occupations

- Physicians
- Dentists
- Veterinarians
- Optometrists
- Podiatrists
- Health diagnosing practitioners, n.e.c.

Health Assessment and Treating Occupations

- Registered nurses
- Pharmacists
- Dietitians

Standard Deviation of Relative Occupational Shares

Standard Deviation of Wage Gaps by Decade

Mean of τ_{ig}

Variance of τ_{ig}

Mean of z_{ig}

Variance of $\overline{z_{ig}}$

Estimated Barriers (τ_{ig}) for White Women

Baseline Parameter Values and Variable Normalizations

Parameter	Definition	Value
heta	Fréchet shape	2.12
η	Goods elasticity of human capital	0.103
σ	EoS across occupations	3
β	Consumption weight in utility	$\frac{1}{3}$ · 0.693
$z_{i,wm}$	Occupational preferences (white men)	1
$ au^h_{i,wm}$	Human capital barriers (white men)	0
$ au^w_{i,wm}$	Labor market barriers (white men)	0

Endogenous Variables and Empirical Targets

Parameter	Definition	Empirical Target
$A_i(t)$	Technology by occupation	Occupations of young white men
$\phi_i(c)$	Time elasticity of human capital	Average wages by occ, white men
$\tau_{i,g}^h(c)$	Human capital barriers	Occupations of young by group
$ au^{\scriptscriptstyle{W}}_{i,g}(t)$	Labor market barriers	Life-cycle wage changes by group
$z_{ig}(c)$	Occupational preferences	Occ wage gaps of young by group
$\Omega_g^{home}(c)$	Home sector talent/taste	Labor force participation

Mean of τ^h and τ^w : White Women

Variance of τ^h and τ^w : White Women

Model versus Data: Earnings and Labor Force Participation

Year	Earnings Data	Earnings Model	LFP Data	LFP Model
1960	26,191	26,199	0.599	0.599
1970	35,593	36,142	0.636	0.597
1980	32,925	33,703	0.702	0.643
1990	38,026	39,357	0.764	0.708
2000	47,772	50,195	0.747	0.689
2010	50,981	53,898	0.759	0.723

Outline

1. Model

2. Evidence

3. Counterfactuals

Share of Growth due to Changing Frictions (all ages)

	Share of grow τ^h and τ^w	th accounted for by τ^h, τ^w, z
Earnings per person	28.7%	29.2%
GDP per person	26.6%	27.3%
Labor force participation	55.1%	41.9%
GDP per worker	19.1%	23.5%

Rents as share of GDP in the Model

GDP per person, Data and Model Counterfactual

Share of Growth due to Changing Frictions (young only)

Share of growth acc	•
	τ^h and τ^w
GDP per person (young)	38.8%
Earnings per person (young)	41.6%
Consumption per person (market, young)	31.8%
Consumption per person (home+market, young)	34.7%
Utility per person (consumption equivalent, young)	56.5%

Share of Growth due to Changing Labor- vs. Product-Market Frictions

	Share of growth accounted for by		
	τ^h and τ^w	τ^h only	τ^w only
GDP per person	26.6%	18.3%	8.4%
GDP per person (young)	38.8%	26.9%	12.3%
Earnings per person (young)	41.6%	21.0%	20.5%
Consumption (market)	31.8%	16.3%	15.5%
Consumption (home+market)	34.7%	21.8%	13.0%
Utility per person (young)	56.5%	37.4%	15.7%

Wage Gaps and Earnings by Group and Changing Frictions

	— Share of growth accounted for by —			Full
	τ^h and τ^w	τ^h, τ^w, z	$\tau^h, \tau^w, z, \Omega_g^{home}$	Model
Wage gap, WW	158.0%	171.5%	88.3%	104.9%
Wage gap, BM	85.4%	93.4%	81.0%	104.0%
Wage gap, BW	110.2%	124.6%	81.8%	98.0%
Earnings, WM	0.2%	0.0%	1.0%	104.6%
Earnings, WW	67.6%	68.2%	86.8%	100.2%
Earnings, BM	20.7%	20.4%	22.5%	96.0%
Earnings, BW	48.0%	49.5%	61.5%	96.9%
LF Participation	55.1%	41.9%	185.4%	79.4%

Wage Gaps in Model vs. Data: White Women

Wage Gaps in Model vs. Data: Black Men

Wage Gaps in Model vs. Data: Black Women

Share of Growth in GDP per Person due to Different Groups

1960–2010	$ au^h$ and $ au^w$	$ au^h$ only	τ^w only	
All groups	26.6%	18.3%	8.4%	
White women	22.3%	15.2%	7.3%	
Black men	1.4%	1.1%	0.3%	
1960–1980				
All groups	31.2%	12.6%	19.0%	
White women	24.9%	9.2%	16.1%	
Black men	2.8%	1.5%	1.3%	
1980–2010				
All groups	24.0%	21.5%	2.6%	
White women	20.8%	18.5%	2.5%	
Black men	0.6%	0.8%	-0.2%	

Back-of-the-Envelope Calculations

- Log-normal model approximation:
 - Declining $\bar{\tau}$: 0.05 log points
 - Declining $Var \ln \tau$: 0.21 log points
 - $-0.26/0.91 \approx 28.6\%$ of growth.
- Mechanically apply declining earnings gaps
 - Declining wage gaps and rising LFP
 ⇒ 37.3% of growth in earnings per person
 - Why larger? Attributes entire decline in gaps to frictions, whereas differential productivity growth and returns to schooling also mattered.

Robustness to Alternative Counterfactuals

GDP per person grov	wth accounted for by $ au^h$ and $ au^w$
Benchmark	26.6%
Wage gaps halved	23.3%
Zero wage gaps	21.5%
No frictions in "brawny" occupations	22.9%
No frictions in 2010	26.4%

Robustness to Parameter Values

GDP per person growth accounted for by				
	$ au^h$ and $ au^w$	τ^h alone	τ^w alone	
Benchmark	26.6%	18.3%	8.4%	
$\theta = 4$	27.0%	15.2%	12.5%	
$\eta = 0.05$	24.7%	6.4%	18.4%	
$\eta = 0.20$	28.2%	25.0%	3.1%	
$\sigma = 1.05$	27.0%	18.7%	8.4%	
$\sigma = 10$	26.3%	18.1%	8.5%	

Changing Only the Dispersion of Ability

Value of θ	GDP per person growth accounted for by τ^h and τ^w
1.9	13.0%
2.12 (baseline)	26.6%
3	67.1%
4	99.8%
5	128.4%

More Robustness

	— GDP growth accounted for by —		
	τ^h and τ^w	τ^h only	τ^w only
Benchmark	26.6%	18.3%	8.4%
Weight on $p_{ig} = 1$	23.8%	21.9%	2.0%
Weight on $p_{ig} = 1/2$	25.2%	22.7%	2.4%
Weight on $p_{ig} = 0$	27.2%	8.1%	19.1%
50/50 split of $\hat{\tau}_{i,g}$ in 1960	26.6%	19.1%	7.7%
50/50 split of $\hat{\tau}_{i,g}$ in all years	28.8%	19.8%	9.3%
LFP minimum factor = 1/3	26.5%	18.6%	8.2%
LFP minimum factor = 2/3	26.4%	17.9%	8.8%
No constraint on τ^h	26.4%	21.8%	4.6%

Labor Supply Elasticities for White Women

Model τ 's for Black Men vs. Survey Measures of Discrimination, by U.S. State

Future

Absolute advantage correlated with comparative advantage:

- Talented 1960 women went into teaching, nursing, home sector?
- As barriers fell, lost talented teachers, child-raisers?
- Could explain Mulligan and Rubinstein (2008) facts.

Separate paper:

Rising inequality from misallocation of human capital investment?

Extra Slides

Mean of τ^h and τ^w : Black Men

Variance of τ^h and τ^w : Black Men

Mean of τ^h and τ^w : Black Women

Variance of τ^h and τ^w : Black Women

