Overview
 Scalar implicative
 Grammar-driven models
 Our model
 Experiment
 Model assessment
 Conclusion
 Appendix

 000
 00000
 0000
 000
 0000
 000
 0000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Embedded implicatures as pragmatic inferences under compositional lexical uncertainty

Christopher Potts

Stanford Linguistics

Paper, code, data: https://github.com/cgpotts/pypragmods

Mike Frank

Dan Lassiter

Roger Levy

Conversational implicature

Definition

Speaker S saying U to listener L conversationally implicates q iff

- **1** S and L mutually, publicly presume that S is cooperative.
- **2** To maintain **1** given U, it must be supposed that S thinks q.
- S thinks that both S and L mutually, publicly presume that L is willing and able to work out that <a>2 holds.

Conversational implicature

Definition

Speaker S saying U to listener L conversationally implicates q iff

- **1** S and L mutually, publicly presume that S is cooperative.
- **2** To maintain **1** given U, it must be supposed that S thinks q.
- S thinks that both S and L mutually, publicly presume that L is willing and able to work out that <a>2 holds.

Example

Ann: What city does Paul live in? Bob: Hmm ... he lives in California.

- (A) Assume Bob is cooperative.
- (B) Bob supplied less information than was required, seemingly contradicting (A).
- (C) Assume Bob does not know which city Paul lives in.
- (D) Then Bob's answer is optimal given his evidence.

Conversational implicature

Definition

Speaker S saying U to listener L conversationally implicates q iff

- **1** S and L mutually, publicly presume that S is cooperative.
- 2 To maintain 1 given U, it must be supposed that S thinks q.
- S thinks that both S and L mutually, publicly presume that L is willing and able to work out that <a>2 holds.

Implicature as social, interactional

Implicatures are inferences that listeners make to reconcile the speaker's linguistic behavior with the assumption that the speaker is cooperative.

Implicatures and cognitive complexity

The speaker must believe that the listener will infer that the speaker believes the implicature.

Overview	Scalar implicature	Grammar-driven models	Our model	Experiment	Model assessment	Conclusion	Appendix
000	00000	00000	0000000	000	00000		000

Two strands of inquiry

Interactional models

- Embrace the social nature of implicatures.
- Derive implicatures from nested belief models with cooperative structure.
- Focus on contextual variability and uncertainty.

Grammar models

- Limit interaction to semantic interpretation.
- Derive implicatures without nested beliefs or cooperativity.
- Place variability and uncertainty outside the theory of implicature.

Overview	Scalar implicature	Grammar-driven models	Our model	Experiment	Model assessment	Conclusion	Appendix
000	00000	00000	0000000	000	00000		000

Two strands of inquiry

Interactional models

- Embrace the social nature of implicatures.
- Derive implicatures from nested belief models with cooperative structure.
- Focus on contextual variability and uncertainty.

Grammar models

- Limit interaction to semantic interpretation.
- Derive implicatures without nested beliefs or cooperativity.
- Place variability and uncertainty outside the theory of implicature.

My goal

Despite divisive rhetoric, the two sides in this debate are not in opposition, but rather offer complementary insights.

Overview	Scalar implicature	Grammar-driven models	Our model	Experiment	Model assessment	Conclusion	Appendix
000	00000	00000	0000000	000	00000		000

Plan for today

- Scalar implicature
- 2 Grammar-driven models of implicature
- 3 The compositional lexical uncertainty model
- 4 Experiment: scalars under quantifiers
- 6 Model assessment

Example

A: Sandy's work this term was satisfactory.

- Contextual premise: the speaker A intends to exhaustively answer 'What was the quality of Sandy's work this term?'
- Contextual premise: A has complete knowledge of Sandy's work for the term (say, A assigned all the grades for the class).
- 3 Assume A is cooperative in the Gricean sense.
- The proposition q that Sandy's work was excellent is more informative than p, the content of A's utterance.
- **6** q is as polite and easy to express in this context as p.
- **6** By **1**, q is more relevant than p.
- **7** By **3**-**6**, A must lack sufficient evidence to assert q.
- (3) By (2), A must lack evidence for q because q is false.

Example

A: Sandy's work this term was satisfactory.

- Contextual premise: the speaker A intends to exhaustively answer 'What was the quality of Sandy's work this term?'
- Contextual premise: A has complete knowledge of Sandy's work for the term (say, A assigned all the grades for the class).
- 3 Assume A is cooperative in the Gricean sense.
- The proposition q that Sandy's work was excellent is more informative than p, the content of A's utterance.
- **5** q is as polite and easy to express in this context as p.
- **6** By **1**, q is more relevant than p.
- **7** By **3**-**6**, A must lack sufficient evidence to assert q.
- (3) By (2), A must lack evidence for q because q is false.

Example

A: Sandy's work this term was satisfactory.

- Contextual premise: the speaker A intends to exhaustively answer 'What was the quality of Sandy's work this term?'
- Contextual premise: A has complete knowledge of Sandy's work for the term (say, A assigned all the grades for the class).
- 3 Assume A is cooperative in the Gricean sense.
- The proposition q that Sandy's work was excellent is more informative than p, the content of A's utterance.
- **6** q is as polite and easy to express in this context as p.
- **6** By **1**, q is more relevant than p.
- **7** By **3**-**6**, A must lack sufficient evidence to assert q.
- 8 By 2, A must lack evidence for q because q is false.

Example

A: Sandy's work this term was satisfactory.

- Contextual premise: the speaker A intends to exhaustively answer 'What was the quality of Sandy's work this term?'
- Contextual premise: A has complete knowledge of Sandy's work for the term (say, A assigned all the grades for the class).
- 3 Assume A is cooperative in the Gricean sense.
- The proposition q that Sandy's work was excellent is more informative than p, the content of A's utterance.
- **6** *q* is as polite and easy to express in this context as *p*.
- **6** By **1**, q is more relevant than p.
- **7** By **3**-**6**, A must lack sufficient evidence to assert q.
- (3) By (2), A must lack evidence for q because q is false.

Simplified scalar implicature reasoning

Context: the speaker is a sportscaster who fully observed the outcomes and intends a complete and accurate report:

Simplified scalar implicature reasoning

Context: the speaker is a sportscaster who fully observed the outcomes and intends a complete and accurate report:

Simplified scalar implicature reasoning

Context: the speaker is a sportscaster who fully observed the outcomes and intends a complete and accurate report:

a.	Worlds:	NN	NS	NA	SN	SS	SA AN	AS	AA	
b.	Literal:				SN	SS	SA AN	AS	AA	'at least some'
c.	Implicature:	NN	NS	NA	SN	SS	SA			'not all'
d.	Communicated:				SN	SS	SA			'only some'

Scalar implicatures under universal quantifiers

Every player hit some of his shots.

Scalar implicatures under universal quantifiers

Every player hit some of his shots.

Scalar implicatures under universal quantifiers

Every player hit some of his shots.

Overview Scalar implicature Grammar-driven models Our model Experiment Model assessment Conclusion Appendix 000 00000 000000 0000 000000 00000 00000

Scalar implicatures under universal quantifiers

a.	Worlds:	NN	NS	NA	SN	SS	SA	AN	AS	AA	
b.	Literal:					SS	SA		AS	AA	'all hit at least some'
c.	Implicature:	NN	NS	NA	SN	SS	SA	AN	AS		'not all hit all'
d.	Result:					SS	SA		AS		'all hit some; not all hit all'
e.	Aux. premise:	NN				SS				AA	'uniform outcomes'
f.	Communicated:					SS					'all hit only some'

Scalar implicatures under non-monotone quantifiers

Exactly one player hit some of his shots.

- a. Worlds: NN NS NA SN SS SA AN AS AA
- b. Literal: NS NA SN AN
- c. Local: NS SN SA AS

'exactly one hit at least some' 'exactly one hit only some'

Scalar implicatures under non-monotone quantifiers

Exactly one player hit some of his shots.

- a. Worlds: NN NS NA SN SS SA AN AS AA
- b. Literal: NS NA SN AN
- c. Local: NS SN SA AS

'exactly one hit at least some' 'exactly one hit only some'

Scalar implicatures under non-monotone quantifiers

- a. Worlds: NN NS NA SN SS SA AN AS AA
- b. Literal: NS NA SN AN
- c. Local: NS SN SA AS

'exactly one hit at least some' 'exactly one hit only some'

Scalar implicatures under downward-entailing quantifiers

AN

AA

- a. Worlds: NN NS NA SN SS SA AN AS AA
- b. Literal: NN
- c. Local: NN NA

'none hit some' 'none hit only some'

Scalar implicatures under downward-entailing quantifiers

AN

AA

- a. Worlds: NN NS NA SN SS SA AN AS AA
- b. Literal: NN
- c. Local: NN NA

'none hit some' 'none hit only some'

Overview	Scalar implicature	Grammar-driven models	Our model	Experiment	Model assessment	Conclusion	Appendix
000	00000	00000	0000000	000	00000		000

Grammar-driven models

Scalar implicature

2 Grammar-driven models of implicature

- 3 The compositional lexical uncertainty model
- 4 Experiment: scalars under quantifiers
- 6 Model assessment

Overview	Scalar implicature	Grammar-driven models	Our model	Experiment	Model assessment	Conclusion	Appendix
000	00000	00000	0000000	000	00000		000

Grammar models

Gennaro Chierchia, Danny Fox, and Benjamin Spector (2012), 'The grammatical view of scalar implicatures'

"More specifically, the facts suggest that SIs are not pragmatic in nature but arise, instead, as a consequence of semantic or syntactic mechanisms, which we've characterized with the operator, O. This operator, although inspired by Gricean reasoning, must be incorporated into the theory of syntax or semantics, so that — like the overt operator *only* — it will find its way to embedded positions."

Overview	Scalar implicature	Grammar-driven models	Our model	Experiment	Model assessment	Conclusion	Appendix
000	00000	0000	0000000	000	00000		000

Exhaustification

Definition (Exhaustification operator)

$$\mathcal{O}_{ALT}(\varphi) = \llbracket \varphi \rrbracket \sqcap \bigsqcup \{ -q : q \in ALT(\varphi) \land \llbracket \varphi \rrbracket \not\sqsubseteq q \}$$

the exhaustified meaning is the literal meaning plus the negation of all stronger alternatives

Overview	Scalar implicature	Grammar-driven models	Our model	Experiment	Model assessment	Conclusion	Appendix
000	00000	0000	0000000	000	00000		000

Exhaustification

Definition (Exhaustification operator)

$$O_{ALT}(\varphi) = \llbracket \varphi \rrbracket \sqcap \bigsqcup \{ -q : q \in ALT(\varphi) \land \llbracket \varphi \rrbracket \not\sqsubseteq q \}$$

the exhaustified meaning is the literal meaning plus the negation of all stronger alternatives

Scalar implicatures in logical forms

 Overview
 Scalar implicative
 Grammar-driven models
 Our model
 Experiment
 Model assessment
 Conclusion
 Appendix

 000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 000000
 00000
 00000

Scalar implicatures in logical forms

 Overview
 Scalar implicative
 Grammar-driven models
 Our model
 Experiment
 Model assessment
 Conclusion
 Appendix

 000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 000000
 00000
 00000

Scalar implicatures in logical forms

Overview	Scalar implicature	Grammar-driven models	Our model	Experiment	Model assessment	Conclusion	Appendix
000	00000	00000	0000000	000	00000		000

Implicit interactionality

Chierchia et al.

"the facts suggest that SIs are not pragmatic in nature but arise, instead, as a consequence of semantic or syntactic mechanisms"

Overview	Scalar implicature	Grammar-driven models	Our model	Experiment	Model assessment	Conclusion	Appendix
000	00000	00000	0000000	000	00000		000

Implicit interactionality

Chierchia et al.

"the facts suggest that SIs are not pragmatic in nature but arise, instead, as a consequence of semantic or syntactic mechanisms"

Resolving underspecification pragmatically

The grammatical system specifies a one-to-many mapping from surface forms to logical forms. Only a pragmatic theory can explain how discourse participants coordinate on these LFs.

Implicit interactionality

Chierchia et al.

"the facts suggest that SIs are not pragmatic in nature but arise, instead, as a consequence of semantic or syntactic mechanisms"

Resolving underspecification pragmatically

The grammatical system specifies a one-to-many mapping from surface forms to logical forms. Only a pragmatic theory can explain how discourse participants coordinate on these LFs.

Chierchia et al.

"one can capture the correlation with various contextual considerations, under the standard assumption [...] that such considerations enter into the choice between competing representations (those that contain the operator and those that do not)."

Coordinating on a logical form in context

Example

A: Sandy's work this term was satisfactory. Potential implicature: Sandy's work was not excellent

Available logical forms:

Sandy's work was

- [satisfactory]
- O_{ALT([[satisfactory]])={[[excellent]]}([[satisfactory]])}
- O_{ALT([[satisfactory]])={[[good]],[[excellent]]}([[satisfactory]])}

The compositional lexical uncertainty model

1 Scalar implicature

2 Grammar-driven models of implicature

3 The compositional lexical uncertainty model

- 4 Experiment: scalars under quantifiers
- 6 Model assessment

Overview	Scalar implicature	Grammar-driven models	Our model	Experiment	Model assessment	Conclusion	Appendix
000	00000	00000	000000	000	00000		000

Agents
Overview	Scalar implicature	Grammar-driven models	Our model	Experiment	Model assessment	Conclusion	Appendix
000	00000	00000	000000	000	00000		000

Definition (Literal listener)

Overview	Scalar implicature	Grammar-driven models	Our model	Experiment	Model assessment	Conclusion	Appendix
000	00000	00000	000000	000	00000		000

Definition (Pragmatic speaker)

 $s_1(msg \mid world, Lex) \propto \exp \lambda (\log I_0(world \mid msg, Lex) - C(msg))$

Definition (Literal listener)

Overview	Scalar implicature	Grammar-driven models	Our model	Experiment	Model assessment	Conclusion	Appendix
000	00000	00000	000000	000	00000		000

Definition (Pragmatic listener)

 $I_1(world \mid msg, Lex) \propto s_1(msg \mid world, Lex)P(world)$

Definition (Pragmatic speaker)

 $s_1(msg \mid world, Lex) \propto \exp \lambda (\log I_0(world \mid msg, Lex) - C(msg))$

Definition (Literal listener)

Overview	Scalar implicature	Grammar-driven models	Our model	Experiment	Model assessment	Conclusion	Appendix
000	00000	00000	000000	000	00000		000

Definition (Lexical uncertainty listener)

$$L(world \mid msg) \propto \sum_{Lex \in L} P_L(Lex)s_1(msg \mid world, Lex)P(world)$$

Definition (Pragmatic speaker)

 $s_1(msg \mid world, Lex) \propto \exp \lambda (\log I_0(world \mid msg, Lex) - C(msg))$

Definition (Literal listener)

Overview	Scalar implicature	Grammar-driven models	Our model	Experiment	Model assessment	Conclusion	Appendix
000	00000	00000	000000	000	00000		000

The Rational Speech Acts (RSA) model

Overview	Scalar implicature	Grammar-driven models	Our model	Experiment	Model assessment	Conclusion	Appendix
000	00000	00000	000000	000	00000		000

The Rational Speech Acts (RSA) model

N	bosket	Å										
S	4	Å	*				NSA					
		2				A scored	011		N.33	sc	core	d 0
А						A aced	001		S .33		ace	d 0
						0	111		A .33		(0 5
(a) F	ossi	ble v	world	ds		(b)	М	-	(c) Prior	(d) Co	sts
	N	S	A	-		A scored A	aced	0		N	S	A
A scored	0	.5	.5	-	N	0	0	1	A scored	0	.67	.33
A aced	0	0	1		S	.99	0	.01	A aced	0	0	1
0	.33	.33	.33		A	.5	.5	0	0	.99	.01	0
(;	a) <i>l</i> ₀			-		(b) <i>s</i> ₁			(0	:) L		

Overview	Scalar implicature	Grammar-driven models	Our model	Experiment	Model assessment	Conclusion	Appendix
000	00000	00000	000000	000	00000		000

Overview	Scalar implicature	Grammar-driven models	Our model	Experiment	Model assessment	Conclusion	Appendix
000	00000	00000	000000	000	00000		000

1 It's a sofa, not a couch.

Overview	Scalar implicature	Grammar-driven models	Our model	Experiment	Model assessment	Conclusion	Appendix
000	00000	00000	000000	000	00000		000

- 1 It's a sofa, not a couch.
- 2 synagogues and other churches

Overview	Scalar implicature	Grammar-driven models	Our model	Experiment	Model assessment	Conclusion	Appendix
000	00000	00000	000000	000	00000		000

- 1 It's a sofa, not a couch.
- 2 synagogues and other churches
- 3 superb but not outstanding

- 1 It's a sofa, not a couch.
- 2 synagogues and other churches
- 3 superb but not outstanding
- 4 some . . .

Overview	Scalar implicature	Grammar-driven models	Our model	Experiment	Model assessment	Conclusion	Appendix
000	00000	00000	000000	000	00000		000

Definition (Refinement)

- Let φ be a set-denoting expression. X is a refinement of φ iff X ≠ Ø and X ⊆ [[φ]].
- 2 $\mathcal{R}_c(\varphi)$, the set of refinements for φ in context c, is constrained so that $\llbracket \varphi \rrbracket \in \mathcal{R}_c(\varphi)$ and $\mathcal{R}_c(\varphi) \subseteq \wp(\llbracket \varphi \rrbracket) - \emptyset$

Overview	Scalar implicature	Grammar-driven models	Our model	Experiment	Model assessment	Conclusion	Appendix
000	00000	00000	000000	000	00000		000

Definition (Refinement)

- Let φ be a set-denoting expression. X is a refinement of φ iff X ≠ Ø and X ⊆ [[φ]].
- 2 R_c(φ), the set of refinements for φ in context c, is constrained so that [[φ]] ∈ R_c(φ) and R_c(φ) ⊆ ℘([[φ]])−Ø

Example

1
$$D = \{a, b\}$$

2 $[[Player A]] = \{Y \subseteq D : a \in Y\}$
 $= \{\{a, b\}, \{a\}\}$
3 $\mathcal{R}_c(Player A) = \begin{cases} \{\{a, b\}, \{a\}\} \\ \{\{a, b\}\} \\ \{\{a\}\} \end{cases}$

Compositional semantics under lexical uncertainty

Refinements	Lexica	Semantic composition
$(\{\{a, b\}, \{a\}\})$	$[Player A] = \{\{a, b\}, \{a\}\}$ $[scored] = \{a, b\}$	<pre>[[Player A]]([[scored]]) = 1</pre>
$\mathcal{R}_{c}(Player A) = \begin{cases} \{\{a,b\}\} \\ \{\{a\}\} \end{cases}$	$[Player A] = \{\{a, b\}, \{a\}\}$ $[scored] = \{a\}$	$[\![Player A]\!]([\![scored]\!]) = 1$
({a, b})	$[Player A] = \{\{a, b\}, \{a\}\}$ $[scored] = \{b\}$	[[<i>Player A</i>]]([[scored]]) = 0
$\mathcal{R}_{c}(\text{scored}) = \left\{ \{a\} \\ \{b\} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$[Player A] = \{\{a, b\}\}$ $[scored] = \{a, b\}$	$\llbracket Player A \rrbracket (\llbracket scored \rrbracket) = 1$
	$[Player A] = \{\{a, b\}\}$ $[scored] = \{a\}$	[[<i>Player A</i>]]([[scored]]) = 0
	[[<i>Player A</i>]] = {{ <i>a, b</i> }} [[<i>scored</i>]] = { <i>b</i> }	$[\![Player A]\!]([\![scored]\!]) = 0$
	<pre>[[Player A]] = {{a}} [[scored]] = {a, b}</pre>	$[\![Player A]\!]([\![scored]\!]) = 0$
	<pre>[[Player A]] = {{a}} [[scored]] = {a}</pre>	$[\![Player A]\!]([\![scored]\!]) = 1$
	[[<i>Player A</i>]] = {{a}} [[<i>scored</i>]] = { <i>b</i> }	$[\![Player A]\!]([\![scored]\!]) = 0$

Overview	Scalar implicature	Grammar-driven models	Our model	Experiment	Model assessment	Conclusion	Appendix
000	00000	00000	0000000	000	00000		000

Simple scalar implicature

		N S A	
,		A scored 0 .71 .29	
L		A aced 0 0 1	
		0 .75 .25 0	
	1	\downarrow	\searrow
	A scored A aced 0	A scored A aced 0	A scored A aced 0
0.	N 0 0 1	N 0 0 1	N 0 0 1
51	S .99 0 .01	S .99 0 .01	S 0 01
	A .33 .67 0	A 0 .99 .01	A .5 .50
		\downarrow	↓
	N S A	N S A	N S A
,	A scored 0 .5 .5	A scored 0 1 0	A scored 0 0 1
<i>I</i> 0	A aced 0 0 1	A aced 0 0 1	A aced 0 0 1
	0.33.33.33	0.33.33.33	0.33.33.33
		\rightarrow	
	N S A	N S A	N S A
	A scored 0 1 1	A scored 0 1 0	A scored 0 0 1
М	A aced 0 0 1	A aced 0 0 1	A aced 0 0 1
	0 1 1 1	0 1 1 1	0111
	<u>↑</u>	<u>↑</u>	<u>↑</u>
0	$[scored] = \{\langle S, a \rangle, \langle A, a \rangle\}$	$[scored] = \{(S, a)\}$	$[scored] = \{\langle \mathbf{A}, \mathbf{a} \rangle\}$
Ľ	$[aced] = \{\langle A, a \rangle\}$	$\llbracket aced \rrbracket = \{ \langle A, a \rangle \}$	$\llbracket aced \rrbracket = \{\langle A, a \rangle\}$

	NN	NS	NA	SN	SS	SA	AN	AS	AA
Player A scored	0.0	0.0	0.0	0.24	0.19	0.16	0.18	0.16	0.07
Player A aced	0.0	0.0	0.0	0.0	0.0	0.0	0.36	0.3	0.34
Player B scored	0.0	0.24	0.18	0.0	0.19	0.16	0.0	0.16	0.07
Player B aced	0.0	0.0	0.36	0.0	0.0	0.3	0.0	0.0	0.34
some player scored	0.0	0.14	0.11	0.14	0.17	0.14	0.11	0.14	0.05
some player aced	0.0	0.0	0.22	0.0	0.0	0.19	0.22	0.19	0.18
every player scored	0.0	0.0	0.0	0.0	0.31	0.27	0.0	0.27	0.14
every player aced	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0
no player scored	0.31	0.14	0.12	0.14	0.06	0.05	0.12	0.05	0.01
no player aced	0.18	0.19	0.08	0.19	0.14	0.06	0.08	0.06	0.0
0	0.01	0.01	0.32	0.01	0.01	0.15	0.32	0.15	0.0

	NN	NS	NA	SN	SS	SA	AN	AS	AA
Player A scored				0.24					
Player A aced					1		0.36		
Player B scored		0.24							
Player B aced			0.36						
some player scored					0.17				
some player aced			0.22				0.22		
every player scored					0.31				
every player aced									1.0
no player scored	0.31								
no player aced		0.19		0.19					
0			0.32				0.32		

	NN	NS	NA	SN	SS	SA	AN	AS	AA
Player A scored				0.24					
Player A aced							0.36		
Player B scored		0.24							
Player B aced			0.36						
some player scored					0.17				
some player aced			0.22				0.22		
every player scored					0.31				
every player aced									1.0
no player scored	0.31								
no player aced		0.19		0.19					
0			0.32				0.32		

	NN	NS	NA	SN	SS	SA	AN	AS	AA
Player A scored				0.24					
Player A aced							0.36		
Player B scored		0.24							
Player B aced			0.36						
some player scored					0.17				
some player aced			0.22				0.22		
every player scored					0.31				
every player aced									1.0
no player scored	0.31								
no player aced		0.19		0.19					
0			0.32				0.32		

	NN	NS	NA	SN	SS	SA	AN	AS	AA
Player A scored				0.24					
Player A aced							0.36		
Player B scored		0.24							
Player B aced			0.36						
some player scored					0.17				
some player aced			0.22				0.22		
every player scored					0.31				
every player aced									1.0
no player scored	0.31								
no player aced		0.19		0.19					
0			0.32				0.32		

	NN	NS	NA	SN	SS	SA	AN	AS	AA
Player A scored				0.24					
Player A aced							0.36		
Player B scored		0.24							
Player B aced			0.36						
some player scored					0.17				
some player aced			0.22				0.22		
every player scored					0.31				
every player aced									1.0
no player scored	0.31								
no player aced		0.19		0.19					
0			0.32				0.32		

- **1** $\mathcal{R}_c(\text{Player A}) = \{ [\text{Player A}], [only Player A] \}$
- 2 $\mathcal{R}_c(\text{Player B}) = \{ [\![\text{Player B}]\!], [\![only Player B]\!] \}$
- 3 R_c(some) = {[[some]], [[some and not all]]}
- 6 R_c(scored) = {[[scored]], [[scored and didn't ace]]}

	NN	NS	NA	SN	SS	SA	AN	AS	AA
Player A scored	0.0	0.0	0.0	0.45	0.11	0.22	0.15	0.05	0.02
Player A aced	0.0	0.0	0.0	0.0	0.0	0.0	0.42	0.36	0.22
Player B scored	0.0	0.45	0.15	0.0	0.11	0.05	0.0	0.22	0.02
Player B aced	0.0	0.0	0.42	0.0	0.0	0.36	0.0	0.0	0.22
some player scored	0.0	0.25	0.09	0.25	0.06	0.12	0.09	0.12	0.01
some player aced	0.0	0.0	0.24	0.0	0.0	0.21	0.24	0.21	0.11
every player scored	0.0	0.0	0.0	0.0	0.61	0.16	0.0	0.16	0.07
every player aced	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0
no player scored	0.61	0.0	0.16	0.0	0.0	0.0	0.16	0.0	0.06
no player aced	0.19	0.17	0.1	0.17	0.13	0.07	0.1	0.07	0.0
0	0.15	0.13	0.13	0.13	0.1	0.09	0.13	0.09	0.05

Overview	Scalar implicature	Grammar-driven models	Our model	Experiment	Model assessment	Conclusion	Appendix
000	00000	00000	000000	000	00000		000

- **1** $\mathcal{R}_c(\text{Player A}) = \{ [\text{Player A}], [only Player A] \}$
- 2 $\mathcal{R}_c(\text{Player B}) = \{ [\text{Player B}], [\text{only Player B}] \}$
- 3 R_c(some) = {[[some]], [[some and not all]]}
- **5** $\mathcal{R}_c(\text{scored}) = \{ [[\text{scored}]], [[\text{scored and didn't ace}]] \}$

	NN	NS	NA	SN	SS	SA	AN	AS	AA
Player A scored				0.45					
Player A aced							0.42		
Player B scored		0.45							
Player B aced			0.42						
some player scored		0.25		0.25					
some player aced			0.24				0.24		
every player scored					0.61				
every player aced									1.0
no player scored	0.61								
no player aced	0.19								
0	0.15								

Overview 9	Scalar implicature	Grammar-driven models	Our model	Experiment	Model assessment	Conclusion	Appendix
000	00000	00000	000000	000	00000		000

- **1** $\mathcal{R}_c(\text{Player A}) = \{ [\text{Player A}], [only Player A] \}$
- 2 $\mathcal{R}_c(\text{Player B}) = \{ [\text{Player B}], [\text{only Player B}] \}$
- 3 R_c(some) = {[[some]], [[some and not all]]}
- **5** $\mathcal{R}_c(\text{scored}) = \{ [[\text{scored}]], [[\text{scored and didn't ace}]] \}$

	NN	NS	NA	SN	SS	SA	AN	AS	AA
Player A scored				0.45					
Player A aced							0.42		
Player B scored		0.45							
Player B aced			0.42						
some player scored		0.25		0.25					
some player aced			0.24				0.24		
every player scored					0.61				
every player aced									1.0
no player scored	0.61								
no player aced	0.19								
0	0.15								

- **1** $\mathcal{R}_c(\text{Player A}) = \{ [\text{Player A}], [only Player A] \}$
- 2 $\mathcal{R}_c(\text{Player B}) = \{ [\![\text{Player B}]\!], [\![only Player B]\!] \}$
- 3 R_c(some) = {[[some]], [[some and not all]]}
- 6 R_c(scored) = {[[scored]], [[scored and didn't ace]]}

	NN	NS	NA	SN	SS	SA	AN	AS	AA
Player A scored				0.45					
Player A aced							0.42		
Player B scored		0.45							
Player B aced			0.42						
some player scored		0.25		0.25					
some player aced			0.24				0.24		
every player scored					0.61				
every player aced									1.0
no player scored	0.61								
no player aced	0.19								
0	0.15								

- **1** $\mathcal{R}_c(\text{Player A}) = \{ [\text{Player A}], [only Player A] \}$
- 2 $\mathcal{R}_c(\text{Player B}) = \{ [\![\text{Player B}]\!], [\![only Player B]\!] \}$
- 3 R_c(some) = {[[some]], [[some and not all]]}
- 6 R_c(scored) = {[[scored]], [[scored and didn't ace]]}

	NN	NS	NA	SN	SS	SA	AN	AS	AA
Player A scored				0.45					
Player A aced							0.42		
Player B scored		0.45							
Player B aced			0.42						
some player scored		0.25		0.25					
some player aced			0.24				0.24		
every player scored					0.61				
every player aced									1.0
no player scored	0.61								
no player aced	0.19								
0	0.15								

Overview	Scalar implicature	Grammar-driven models	Our model	Experiment	Model assessment	Conclusion	Appendix
000	00000	00000	000000●	000	00000		000

- **1** $\mathcal{R}_c(\text{Player A}) = \{ [\text{Player A}], [only Player A] \}$
- 2 $\mathcal{R}_c(\text{Player B}) = \{ [\text{Player B}], [\text{only Player B}] \}$
- 3 R_c(some) = {[[some]], [[some and not all]]}
- **5** $\mathcal{R}_c(\text{scored}) = \{ [[\text{scored}]], [[\text{scored and didn't ace}]] \}$

	NN	NS	NA	SN	SS	SA	AN	AS	AA
Player A scored				0.45					
Player A aced							0.42		
Player B scored		0.45							
Player B aced			0.42						
some player scored		0.25		0.25					
some player aced			0.24				0.24		
every player scored					0.61				
every player aced									1.0
no player scored	0.61								
no player aced	0.19								
0	0.15								

Experiment: scalars under quantifiers

Scalar implicature

- 2 Grammar-driven models of implicature
- 3 The compositional lexical uncertainty model
- 4 Experiment: scalars under quantifiers
- 6 Model assessment

Overview	Scalar implicature	Grammar-driven models	Our model	Experiment	Model assessment	Conclusion	Appendix
000	00000	00000	0000000	000	00000		000

Experiment display

Overview	Scalar implicature	Grammar-driven models	Our model	Experiment	Model assessment	Conclusion	Appendix
000	00000	00000	0000000	000	00000		000

Experiment display

Other experiment details

- 800 participants recruited via Mechanical Turk (no participants or responses excluded)
- Between-subjects design
- 3 training items; 23 fillers; 9 target sentences:

Every		all)
Exactly one	player hit	none	of his shots.
No		some)

- Worlds: {NNN, NNS, NNA, NSS, NSA, NAA, SSS, SSA, SAA, AAA}
- Average 80 responses per target-world pair
- Visual display of worlds and jersey colors randomized

 Overview
 Scalar implicature
 Grammar-driven models
 Our model
 Experiment
 Model assessment
 Conclusion

 000
 00000
 00000
 000
 000
 0000
 00000
 00000
 00000
 00000
 00000
 000000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 000000
 00000
 00000
 <

Results

Percentage True responses

Appendix

Percentage True responses

Percentage True responses

Overview	Scalar implicature	Grammar-driven models	Our model	Experiment	Model assessment	Conclusion	Appendix
000	00000	00000	0000000	000	00000		000

Model assessment

- Scalar implicature
- 2 Grammar-driven models of implicature
- 3 The compositional lexical uncertainty model
- 4 Experiment: scalars under quantifiers
- 6 Model assessment
| Overview | Scalar implicature | Grammar-driven models | Our model | Experiment | Model assessment | Conclusion | Appendix |
|----------|--------------------|-----------------------|-----------|------------|------------------|------------|----------|
| 000 | 00000 | 00000 | 0000000 | 000 | ●0000 | | 000 |

Set-up

1 $D = \{a, b, c\}$

2 $W = \{NNN, NNS, NNA, NSS, NSA, NAA, SSS, SSA, SAA, AAA\}$

$\mathbf{3} \ \mathbf{M} = \\ \left\{ Q(player)(hit(S(shot))) : \begin{array}{l} Q \in \{exactly \ one, \ every, \ no\} \\ S \in \{every, \ no, \ some\} \end{array} \right\} \cup \{\mathbf{0}\}$

④
$$C(\mathbf{0}) = 5$$
; $C(m) = 0$ for all $m \in M - \{\mathbf{0}\}$

6 Flat state prior

6 Flat lexicon prior

Overview 000	Scalar implicature	Grammar-driven models	Our model	Experiment 000	Model assessment	Conclusion	Appendix 000

Models

- Literal semantics: the predicted values are the output of the literal listener l₀
- Pixed-lexicon pragmatics: the predicted values are the output of L considering only one lexicon
- **Our Constrained refinement**: the inferences of the uncertainty listener *L* with the largest space of refinements
- A Neo-Gricean refinement: as in 'Unconstrained refinement', but with just neo-Gricean refinements

Overview	Scalar implicature	Grammar-driven models	Our model	Experiment	Model assessment	Conclusion	Appendix
000	00000	00000	0000000	000	0000		000

Comparisons with humans

Overview	Scalar implicature	Grammar-driven models	Our model	Experiment	Model assessment	Conclusion	Appendix
000	00000	00000	0000000	000	0000		000

Comparisons with humans

Overview	Scalar implicature	Grammar-driven models	Our model	Experiment	Model assessment	Conclusion	Appendix
000	00000	00000	0000000	000	00000		000

Overall assessment

	Pearson	Spearman	MSE	
Literal semantics	.938 (.926947)	.762 (.754770)	.0065 (.00570075)	
Fixed-lexicon pragmatics	.924 (.911932)	.757 (.749–.766)	.0079 (.00720090)	
Unconstrained uncertainty	.945 (.936950)	.794 (.767820)	.0038 (.00350044)	
Neo-Gricean uncertainty	.959 (.950962)	.809 (.808820)	.0034 (.00310040)	

Table: Overall assessment with 95% confidence intervals obtained via non-parametric bootstrap over subjects.

Results on crucial items

	'everysome'			'ex	'exactly onesome'			'no… some'		
	Ρ	S	MSE	Р	S	MSE	Р	S	MSE	
Literal	.99	.86	.0002	.80	.70	.0180	.88	.52	.0346	
Fixed-lexicon	.93	.85	.0027	.80	.70	.0179	.88	.52	.0346	
Unconstrained	.88	.84	.0043	.98	.94	.0007	.76	.57	.0097	
Neo-Gricean	.82	.88	.0087	.94	.87	.0036	.93	.89	.0028	

Table: Assessment of crucial items. 'P' = 'Pearson'; 'S' = 'Spearman'.

Conclusion

- A synthesis of Gricean and grammar-driven approaches in a single formal, quantitative model.
- Key components: lexical uncertainty and recursive modeling of speaker and listener agents.
- Next steps: experiments with different sentences, and with different notions of refinement.
- Code and data available to facilitate such investigations: https://github.com/cgpotts/pypragmods

Conclusion

- A synthesis of Gricean and grammar-driven approaches in a single formal, quantitative model.
- Key components: lexical uncertainty and recursive modeling of speaker and listener agents.
- Next steps: experiments with different sentences, and with different notions of refinement.
- Code and data available to facilitate such investigations: https://github.com/cgpotts/pypragmods

Thanks!

Binary and Likert response experiments

Binary

Likert

Binary and Likert response experiments

Likert

Binary and Likert response experiments

Likert

Overview	Scalar implicature	Grammar-driven models	Our model	Experiment	Model assessment	Conclusion	Appendix
000	00000	00000	0000000	000	00000		000

Model assessment

	Pearson	Spearman	MSE	
Literal semantics	.938 (.926947)	.762 (.754–.770)	.0065 (.00570075)	
Fixed-lexicon pragmatics	.924 (.911932)	.757 (.749–.766)	.0079 (.00720090)	
Unconstrained uncertainty	.945 (.936950)	.794 (.767–.820)	.0038 (.00350044)	
Neo-Gricean uncertainty	.959 (.950962)	.809 (.808820)	.0034 (.00310040)	

Table: Binary

	Pearson	Spearman	MSE
Literal semantics	.935 (.910947)	.756 (.742764)	.0079 (.00650099)
Fixed-lexicon pragmatics	.920 (.894932)	.751 (.736759)	.0094 (.00800114)
Unconstrained uncertainty	.929 (.905938)	.794 (.765815)	.0052 (.00450067)
Neo-Gricean uncertainty	.950 (.927956)	.805 (.795812)	.0046 (.00380062)

Table: Likert

Overview	Scalar implicature	Grammar-driven models	Our model	Experiment	Model assessment	Conclusion	Appendix
000	00000	00000	0000000	000	00000		000

Parameter exploration

			C(0)	λ	k
Literal semantics	Pearson Spearman MSE	.94 .76 .0065			
Fixed lexicon pragmatics	Pearson	.93	1	.1	1
	Spearman	.76	0	.2	1
	MSE	.0069	1	.1	1
Unconstrained uncertainty	Pearson	.97	1	.1	1
	Spearman	.80	1	.1	1
	MSE	.0022	1	.1	1
Neo-Gricean uncertainty	Pearson	.98	1	.1	1
	Spearman	.81	1	.2	1
	MSE	.0018	1	.1	1

Table: Best models found in hyper-parameter exploration, as assessed against the binary-response experiment. Searched λ : [0.1,5] in increments of .1; L_k for $k \in \{1, 2, 3, 4, 5, 6\}$; $C(\mathbf{0}) \in \{0, 1, 2, 3, 4, 5, 6\}$. The literal listener is not affected by any of the parameters explored.

Overview	Scalar implicature	Grammar-driven models	Our model	Experiment	Model assessment	Conclusion	Appendix
000	00000	00000	0000000	000	00000		000

Parameter exploration

Figure: L_1 , using parameters in the range that seem to be nearly optimal for all of these models: $\lambda = 0.1$; $C(\mathbf{0}) = 1$.

OverviewScalar implicatureGrammar-driven modelsOur modelExperimentModel assessmentConclusionAppendix000

Parameter exploration

Figure: L_1 , using the parameters we originally chose: $\lambda = 1$; $C(\mathbf{0}) = 5$.