

AA283

Aircraft and Rocket Propulsion

Space Sailing

Properties of light

• Momentum

$$\mathbf{p} = \frac{\mathbf{h}}{\lambda}$$

• Energy

$$E = hv = h\frac{c}{\lambda} = pc$$
; $h = 6.63 \times 10^{-34}$ Joule - sec
 $c = 3.00 \times 10^8$ M/sec

Reference - *Space Sailing* by Jerome L. Wright, Gordon and Breach Science Publishers 1994

Properties of light, cont' d

• Energy flux

$$W = \left[\frac{\text{Joules}}{\text{photon}}\right] \cdot \left[\frac{\text{photons}}{M^2 - \sec}\right] = hv \cdot \left[\frac{\text{photons}}{M^2 - \sec}\right] = \left[\frac{\text{Joules}}{M^2 - \sec}\right]$$
At the earth's radius from the sun

$$W_{\text{earth}} = 1368 \text{ Joules} / M^2 - \sec$$

$$W_{\text{earth}} / c = 4.56 \times 10^{-6} \text{ N} / M^2$$

Properties of light, cont' d

• Light pressure on a perfectly reflecting surface normal to the incidence direction of light P = 2W/c

At the earths radius

$$P_{earth} = 9.12 \times 10^{-6} N / M^2$$

At other radii

$$P = \left(9.12 \times 10^{-6} \text{ N/M}^2\right) \left(\frac{r_{earth}}{r}\right)^2 \quad ; \quad \frac{r}{r_{earth}} = \text{radius in AU}$$

Light Force on a Sail

• Perfect reflection

$$F_i = \frac{W}{c} A \cos \alpha$$
; $F_R = \frac{W}{c} A \cos \alpha$

$$F_{\rm N} = 2\frac{W}{c}A\cos^2\alpha \quad ; \quad F_{\rm T} = 0$$

Light Force on a Sail, cont' d

• Taking account of reflected, absorbed and radiated energy $\frac{F_N}{\left(2\frac{W}{c}A\right)} = \frac{(1+rs)\cos^2\alpha + B_f r(1-s)\cos\alpha + \frac{B_f e_f - B_b e_b}{2}(1-r)\cos\alpha}{2}$

$$\frac{F_{T}}{\left(2\frac{W}{c}A\right)} = \frac{(1-rs)\cos\alpha\sin\alpha}{2}$$

where

r = reflectivity of the front surface for the incident radiation <math>s = specular reflection coefficient

- s = specular reflection coefficient
- ef, eb = front and back surface IR emission coefficients for wavelength of emitted radiation based on sail temperature. B_f, B_b= Non-Lambertian coefficients for front and back surfaces.

Sail acceleration

The size of a sail is determined by the mass of the payload and the characteristic acceleration required for a particular mission.

$$a_{c} = 2\eta \frac{W}{c} \left(\frac{A}{m_{total}} \right)$$

where m_{total} is the total mass of the ship and η is the sail efficiency (typically about 0.9). The key factor limiting the acceleration available is the <u>mass loading</u> of the sail.

$$\sigma = \frac{m_{total}}{A}$$

The lowest available mass loading using currently available materials is about 5 gm/M^2

Sail Concepts

FIGURE 3.1 Basic Types of Solar Sailing Craft.

FIGURE 3.16 The Lattice Ship. (K.E. Drexter)

http://www.space.com/26488-solar-sails-could-beat-therocket-equationanimation.html#ooid=pjY2V5cDpVU5cY3qPtYv3wNXstzeS AWW

NanoSail-D, Jan 2011

A Recent Private Effort – Cosmos 1

Mass Estimates

TABLE 3.1 Mass Estimates for 820-Meter Square-Rigged Ships.

HR-820	Clipper	Ultralight
1821	824	162
173	167	102
58	52	157
38	35	5E
760	400	35
130	80	20
50	40	20
80	70	50
50	50	50
222	135	
3382	1843	677
641,200	580.000	590.000
5 0 7	500,000	560,000
5.27	3.18	1.17
1.54	2.55	6.94
	1821 173 58 38 760 130 50 80 50 222 3382 641,200 5.27 1.54	Im-620 Clipper 1821 824 173 157 58 52 38 35 760 400 130 80 50 40 80 70 50 50 222 135 3382 1843 641,200 580,000 5.27 3.18 1.54 2.55

excluded from contingency ^bexcluding operations module and payload

FIGURE 4.23 Perforated Solar Sail With Microstructures. (R.L. Forward/Hughes)

Payload Fraction

FIGURE 3.2 Payload Variation with Characteristic Acceleration.

Earth to Moon

FIGURE 2.2 Lunar Spiral Times.

Earth Escape

FIGURE 2.1 Earth Escape Times From Various Orbits.

Mission to L2 – PhD thesis Sun Hur 1992

Feasible Trajectory

Trajectory in the modified potential well

Mission Toward the Sun

Missions to the Planets

TABLE 2.1 Inner Planets Missions Summary.

Sail Size m	Mercury Rendezvous		Venus Rendezvous		Mars Rendezvous		Mars Aerobrake	
	days	tons	days	tons	days	tons	days	tons
800 ^a	600	9.4	200	1.4	400	24	121	10
	900	19	270	4.6	500	52	200	1.9
	1200	28			700	9.4	338	5.z 10
2000 ^b	600	66	200	17	400	23	131	
	900	124	270	36	500	40	200	40
	1200	184			700	66	338	70
${}^{a}\sigma = 5.0$	g/m ²	$b\sigma = 3.0$	g/m ² (exc	cluding pay	loads)			

Missions to the Planets - Cont' d

FIGURE 2.4 Typical Travel Times to the Inner Planets.

Mission example - levitated orbit

Mission example - solar watchers

WATCHER

FIGURE 2.21 Synchronous Solar Orbits. (R.L. Forward/Hughes)

Microwave Thrust

FIGURE 7.10 Operation of a Starwisp Probe. (R.L. Forward)

FIGURE 7.6 Profile of an Interstellar Fly-By Probe. (R.L. Forward)

Mission example round-trip interstellar flight

FIGURE 7.8 Profile of a Roundtrip Voyage to Epsilon Eridani. (R.L. Forward)

Breakthrough - Starshot - 2017

Use a Gigawatt scale laser to accelerate a 1 gram nano-sized spacecraft to 20% of the speed of light.

Reach the Alpha Centauri system 4.37 light years away in 20 years.

The *StarChip* – camera, photon thruster, power, navigation and communication.

The *LightSail* – several meters in diameter, only a few hundred atoms thick.

The *LightBeamer* – 100 Gigawatt laser tuned to maximize reflectivity from the sail.

The plan

Path to the stars

The research and engineering phase is expected to last a number of years. Following that, development of the ultimate mission to Alpha Centauri would require a budget comparable to the largest current scientific experiments, and would involve:

- Building a ground-based kilometer-scale light beamer at high altitude in dry conditions
- Generating and storing a few gigawatt hours of energy per launch
- Launching a 'mothership' carrying thousands of nanocrafts to a high-altitude orbit
- Taking advantage of adaptive optics technology in real time to compensate for atmospheric effects
- Focusing the light beam on the lightsail to accelerate individual nanocrafts to the target speed within minutes
- Accounting for interstellar dust collisions en route to the target
- Capturing images of a planet, and other scientific data, and transmitting them back to Earth using a compact on-board laser communications system
- Using the same light beamer that launched the nanocrafts to receive data from them over 4 years later.

Potential Planets in the Alpha Centauri system

Astronomers estimate that there is a reasonable chance of an Earth-like planet existing in the 'habitable zones' of Alpha Centauri's three-star system. A number of scientific instruments, ground-based and space-based, are being developed and enhanced, which will soon identify and characterize planets around nearby stars.

A separate Breakthrough Initiative will support some of these projects.

What would it take to reach the speed of light in a few minutes?

Spacecraft mass = 0.001 kgAcceleration time to c/3 = 1000 secFinal speed = 10^8 m/sec Acceleration = 10^5 m/sec^2 Force = 10^2 kg-m/sec^2 Sail Area = 10 m^2

Required light pressure

$$P = \frac{2W}{c} = 10 N / m^2$$
$$W = 1.5 \times 10^9 J / m^2 - \sec^2 t$$

The *LightBeamer* – 100 Gigawatt laser tuned to maximize reflectivity from the sail.

How much power does the sail have to dissipate? Assume 99.999% of the incident energy is reflected by the sail.

$$W_{dissipated} = 1.5 \times 10^4 J / \text{sec}$$

How fast will the sail heat up? Assume the heat capacity of water (very conservative – for metals C is much lower). C=4.184 J/K

$$W_{dissipated} = 1.5 \times 10^4 J / \sec = C \frac{dT}{dt}$$
$$\frac{dT}{dt} = 3.58 \times 10^3 K / \sec$$

How far away is the spacecraft at the end of the acceleration?

$$r = a \frac{t^2}{2} = 0.5 \times 10^5 \times 10^6 = 5 \times 10^{10} m = 0.33 AU$$