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Summary

The element—potential method for chemical equilibrium analysis 1s a
powerful technique that is is virtually unknown inh the thermodynamicscommun=-
ity. It provides a superior means for solution of complicated problems,
especlally those invol?ing several phases. The concept of element potentilals
is so useful that it should be included, 1f not preferred, in any advanced

instruction on chemical equilibrium.

This paper describes the basic method, a new algorithm for its effective
computer implementation, and a general-purpose interactive freeware program
that can be used to solve chemical equilibrium problems in single- or multi-
phase systems. The method 1s extremely flexible and robust, and the programs
have been tested by many users 1in difficult problems in sooting combustion,

optical materials fabrication, and other multi-phase chemical prohlems.

1. Introduction

The solutlon of chemical equilibrium problems has posed a tough challenge
for numerical computation. The problem may be formulated in several ways. If
one uses the concept of equilibrium constants, then it 1s necessary to ident-
ify the set of reactions that take place and to determine the associated equi-
librium constants. One then has to solve a set of nonlinear .algebralc equa-
tions for the mol numbers of each species, a difficult task 1if the system is
large. Other methods: based on the minimization of the Gibbs function adjust
the mols of each species, consistent with atowmic constraints, until the min-
imum Gibbs function state is found. Again, there are many variables involved,
and great care must be taken to be sure that all mols are non-negative. When

there are important rare species in the system, this can be a very difficult

task.



In search of a better way to solve combustion-equilibrium problems, the
author reinvented what he later discovered to bhe a "lost” nethod, the so—
called method of element potentials. Early development of the method was done
by Powelll. The RAND method for equilibrium calculation described by Clasen2
is essentially an early implementation of the method. White3 pointed out some
computational advantages of the method. Bigelow4 extended the nonlinear pro-
gramming theory of the method. The author's contribution is the development
of the dual problem and a powerful numerical implementation. For pre—STANJAN
history of the method, see Van Zeggeren and Storeys. The purpose of this
paper 1s to make the method of element potentials known to the combustion

community and to outline an interactive computer program based on the method

that is available for solving chemical equilibrium problems.

The method of element potentials uses theory to relate the mol fractions
of each specles to quantities called element potentials. There 1s one element
potential for each independent atom in the system, and these element poten-
tials, plus the total aumber of mols 1n each phase, are the only variables
that must be adjusted for the solution. In large problems this is a much
smaller number than the number of specles, and hence far fewer variables need
be adjusted. There are many other advantages to the element-potential method
that quickly become obvious when one begins to use it. We bellieve that ele-

ment potentials should be part of modern instruction in thermodynamics, but

the concept 1s not widely known or taught.

The present analysis, and the program, assumes that the gas phase 1s a
mixture of ideél gases and that condensed phases are ideal solutions. These
are good approximations for many practical problems of interest. The concept
of eiemeﬁt potentials is not limited to these models, and we believe that it

may be very helpful in dealing with non~ideal systenms.

The program, called STANJAN because of its roots at Stanford and its
connection with the JANNAFP thermochemical data tables, is an interactive
program designed for use with either desktop or mainframe computers. The
basic data are taken from the JANNAF tables, and data for a selection of
species accompany the program. A companion program, JANFILE, can be used to
prepare data for other species from the JANNAF table data. Both are very

robust, user—friendly interactive programs.




- With STANJAN, the user selects the species to be included in each phase
of the system, sets the atomic populations and state parameters, and then
STANJAN solves for the equilibrium state using the method of element poten-
tials. This is extremely rapid, and, with an 8087 floating-point coprocessor
on an IBM-PC, solutions for typical combustion problems are returned almost
immediately. The results include the composition of each phase (mols and mol
fractions), and the thermodynamic properties of the system, including (1if

desired) the speed of sound.

Thermodynamic cycle analysis 1s easily executed with STANJAN, because the
user may specify the state parameters in a variety of ways, including
i) temperature and pressure,
i1) pressure and entropy,
. 111) enthalpy and pressure same as last run,
iv) volume, entropy same as last run.

The equllibrium composition can be calculated, .or a frozen composition can be

gpecified.

STANJAN can be used to compute adiabatic flame temperatures for reactions
at constant pressure (or volume). The approach 1s first to make a run with
the reactants at the inlet (or initial) state, which calculates the enthalpy
(and energy). This 18 followed by a run in which the products of combustion
are considered, with the state specified as having the same pressure and

enthalpy (or volume and energy) as the previous run.

A serles of calculations can be made over a matrix of T and P values.
These tabulated results can be stored in a flle for later processing; speclal
provisions are made for creating output tables readable by spreadsheet pro-—

grams, particularly LOTUS~123.

In summary, STANJAN 13 a powerful and easy—-to—use program for analysis of
chemical equilibrium 1in single—~ or multiple-phase systems. The executable
IRM~PC program disks are freeware and may be ffeely copled by any institution
for 1ts use. The FORTRAN source programs are also avallable at reasonable

cost for users who wish to recompile for other machines or uses.



2. The Baslc Theory of Element Potentials
The Gibbs function of a system 1is:

8 e

G = I g, A j (2.1)

where E. is the partial molal Gibbs function and Nj is the number of mols
of species Jj, and s 1is the total number of species in the system. Treat-
ing each phase as either a mixture of ideal gases or as an ideal solution, the
partial molal Gibbs functions are given by:
\ 2.2)
J _»\(
) j A,
where gj(T,P) is the Gibbs function of pure J evaluated at the system tem—
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perature and pressure, xj““is the mol fraction of

is the universal gas constant.

The atomic population constraints are: - w}ﬂ
)
- b
131 ni'ij - pi ’ i - 1, see, & ) (2.3)

where nij is the number of 1 atoms in a J wmolecule, Py is the popula-
tion (mols) of 1 atoms In the system, and a 1s the number of different
elements (atom types) present in the system. The equilibrium solution at the

given T and P 1s the distribution of 'Nj that minimizes G, subject to

the atomic constraints (2.3), for non-negative Nj'

Minimization problems with constraints are best handled by the method of
Lagrange multipliers. The development in this section does not assume know—
ledge of the method, but in essence develops the method for this particular
problem. Since Lagrange multipliers may be unfamiliar to some readers and 1t

is very important in the numerical solution, a brief review of the method 1is

presented in Appendix A. T (-~ y
A o
For convenience, we denote Ej = gj(T,P)/RT, and seek the minimum of

G/RT. Using (2.2) we find that, for arbitrary variations in the mol numbers,

G ® S 1 / (2.4)

d (——J = I (gj + &n xj) de + jfl Nj ;—-dxj
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We denote the number of mols in phase m by N ; then,

m
x, = NN (2.5)
J 37
where E-j) is " the number of mols in the phase containing species J (a
specles present 1n more than one phase 13 assigned distinct j indices for
each phase). The second sum in (2.4) can therefore be replaced by - @;' E
SR P _ 8 S G
St I N I dx . 5 4
v, N m pg //
y /\\} m-l J-l J %/\ /.Q /Ql’f . ¢
/ K
in m > [a,
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where p 1s the total number of phases which might be present. This van- (

ishes, hecause the mol fractions in each phase always sum to unity.

Now the dNJ are not all independent, because of the atomic constraints.

Relationships among the dNJ are obtained by differentiating (2.3):
L .n,dN, = 0 , 1 =1, 0o, & (276)

We must solve for the a restricted dNJ in terms of the sg~a  free de,
and then substitute these relationships into (2.4) in order to express the
G varlation in terms of freely variable Nj. This process 1is equivalent to
subtracting multiples of (2.6) from (2.4){

e 8 _
d (-—) = I (gj + &n xj) dN

RT jm1 i
(2.7)
a 8
- I A I n, dN
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The A; are the multipliers that are required to drop out the set of restric-
ted de from this equation. Thus, setting the coefficients of these dNJ

to zero, one has

+&nx, - I A,n = 0 (2.8)

for the restricted Jj. With these de absent from (2.7), the remaining
N
ay
variaticns that change G (to first order). This will be true only if the

may be freely varied, and at the minimum G point there must be no



coefficient of each free dNJ is zero; hence, (2.8) also applies to the free

~ . Iz - o - -~

j+ So, for every gpecles, v ral 3_ 3%%&’ _ %3 e
x = exp(~g, + Z (2.9) —
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Equation (2.9) 1s the main result of the theory of element potentials for
mixtures of 1deal gases or for i1deal solutions. It relates the phase mol
fraction of each specles to its value of g(T,P)/RT, to the atomlic makeup of
its molecule, and to a set of undetermined multipliers (the "Lagrange multi-

pliers”) to be determined from the atomic constraints. The multiplier Xi is

called the element potential for 1 atoms. Using (2.2), we see that
. {\L\ w A R pirew o~ SQECHH 3
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gJ/RT - 151 Ainij -k }a\w‘& (2.10)

- 5?“.\!/‘ wley (57 # & et
and hence Ay represents the Gibbs function/RT per mol“of 1 atoms. What is
even more amazing is that each atom of an element contributes the same amount ;
to the Gibbs function of the system, irrespeéii#é_sf which molecule or phase
it 13 in! The Xi are properties of the system, however, and cannot be tab-
ulated as functions of the atom or molecule, as can the gJ It 1s perhaps
for this reason that the method of element potentials has not been widely

used, although we believe it should be the method of choice today.

.
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straints (2.3), which we rewrite zus‘r
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Using (2.9), this becomes a set of a equations for the a unknown Xi and
the p unknown E-. To this we add the p equations o
n N
e * s
s \ :l (}#}\
z xj bd 1 ’ m = 1, sesy P U » (2.12)
j=1
in
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Equations (2. 11) and (2.12) must be solved simultaneously to determine the
element potentials and phase_mols.; This might appear to be a difficult task,

but it is possible to do It accurately and quickly.



In many problems there will be a set of dominant species, the mol frac—
tions of which can be estimated from simple balances. These can be used to
estimate the element potentials, which can in turn be used to calculate the
mol fractions of the minor species. As we shall see in examples to follow,
this involves only the solution of linear algebraic equations. Thus there are

advantages to the. method of element potentials, even 1in "small” problems.

Some examples are presented in the next section,

In problems with many specles, the method has many significant advanta-

ges.” UThere 13 no need to identify a set of reactions or to makg}use of the
. \

associated equilbrium constants. One has to deal only with (£‘+ 5 vari-

¢
ables, whereas other methods work with the 8~ unknown mols as variables. In a

.gas—phase problem with 100 specles containing C, H, 0, and N, the element—

potential method has only five unknowns, whereas mol-iteration methods must

work with 100 unknowns. Mol-iteration methods must guard against negative mol

fractions, which can never occur with mol fractions generated by (2.9). Fur-

thermore, they can héve serious problems when some species have very small mol
fractions, but this 13 not a problem in a well-designed implementation of the
method of element potentials. The power of the element-potential method is

exceptional in:déaling with systems containing multiple phases. This will be

illustrated by examples after the dual problem and numerical solution method

have been described.

3. Element Potentials in Hand Calculations

Two simple examples will illustrate the use of element potentials in hand

calculations. Both involve the system consisting of CO, CO,, 0,, and c(s)

(solid carbon) atw3§QQ:Kdand 1d§;m;' where these species have the following

Gibbs functions:

Species . g = g(T,P)/RT
co | -33.578
co, -49.830
0, -30.273
c(s) , -3.686



(a) Same Number of Dominant Species as Elements

Suppose that the system contains 2 mols of C atoms and 1 mol of O

. atoms. Some solid “carbon must therefore be presenty and its mol fraction in » N
e o o :
‘ d% the solid phase must be 1. Using (2.9) for C(S), ~

r:‘ O\l - —~ ‘
£ ¢ Xe(s) 1 . exp( 8cesy * AC) | (3.1) d

“ 1

§ The element potential for carbon can be found Immediately from (3.l): g

‘ﬂ“ i

Y - 3 . -3086 A

i Ac gces) * n(l) A= (3.2) g

; Ny

¥; If we can estimate one other mol fraction, we can calculate the element poten- \

A r
QD!V tial for oxygen. At first glance, it looks as though the dominant gas specles N

should be CO,, which has the lowest Gibbs' function. Now, the dissociation N§

- . y

- of CO, gives' 1 mol of CO and 0.5 mols of O for which S co-.S0u B

2 Cowoarin~ & 36(5) + (. 2 ,///:/ C’OI "Z Y‘;\

| G L vi-: (0, = (ur.§0 A 152
NS G/RT = - 33.578 + 2n(2/3) + 0.5 x [=30.273 + 2a(1/3)] = = 49.668 qql%’ \
9 . ‘ . < v ” Fg

This 1s just slightly: greater than the Gibbs function of the mol of C02, so
~\ there still appears to be a slight preference for coif However, a half-mol
N  of €0, can combine with a half-mol of C(S) to make a mol of CO. For

: 4‘\(”‘

N the COZ and C(S), Tco,r SLE>CO SCO, +.5C = CO & ¢ _

~ . T - §75 ,A
3 VRS -3% e
\\fé ———~_ G/RT = 0.5x [-49.830 + 2a(1/2)] + 0.5 % (- 3.868) = = 25.455 < (~"7>

. . L9 , f
which 18 much greater than that of the mol of CO. Hence, any free carbon

will tend to react with CO, to form CO, and consequently we expect the
S~ dominant gas specles to be CO. Assuming that the CO mol fraction is 1,

’m\u < Mo M ’("(( Car

(2.9) gives ' . '
d - . ‘\\ \,y
and (0. ,[Q— anva *?}L we
i i lrinks L 2p % €P
\u\\\ (7 (3.3) ;

o = exp(=gg + Ao+ Ag) = 1

from which we obtain our second linear equation in the element potentials:

Ag Ay = 8y * 2n(l) (3.4)

Solving (3.2) and (3.4) simultaneously for the potentlals, we have
Ag = - 3.686
8



Ao = -29.892 .

From this we ugse (3.3) to estimate the mol fraction of CO2

~ —5
xco2 ‘exp(—gcoz + Ao+ ZAO) = 0.1193 x 10

The assumption that CO was the dominant gas specles was clearly correct. If
we wished, we could correct our estimates by lowering the mol fraction of CO,
but in this case we are so close to the exact golution that the iteration is

not worthwhile. 1Indeed, this solution is exact to four decimal places!

Suppose at this point we wished to estimate the concentration of a spe-
cles that we have not thus far included in the system, for example 0. We can
do this easily usiang the element potentials. At 3000°K and 1 atm, §6 =

~ 12,951, so
/Kn = "U(? ( ‘/ﬁ\lo "(L)';\")
X = exp(+ 12,951 - 29.892) = 2.38 x 1078

This 1s a very accurate estimate, since the inclusion of O in the system
with this mol fraction will not significantly influence the element poten-

tials.-

7& > In summary, whenever we have a gsystem in which one dominant specles can
- be 1identified for each element in the system, the mol fractions of these

species can be used to estimate the element potentials. With these element
potentials, estimates of all of the other mol fractions can be made, and
corrections can be made to the element potentials by iteration, 1f neces-

sary. The element potentials can then be used to estimate the concentrations

of minor species.,

(b) Fewer Dominant Species than Elements

Suppose instead that the system contains 1 mol of C atoms and 2 mols
of O atoms. Here the condensed phase will be almost absent and the gas
phase will consist almost entirely of CO5. Therefore, we have only one dom—
inant mol fraction from which we want to estimate two element potentials. We

can still do this using a concept called "balancing™. The atomic constraints

can be written as:

NCO + Ncoz + NC(S) - 1 (3.4)

9
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N+ 2N. +2N_ = 2 ’ (3.5)

co CO2 O2

The 1dea of balancing 1Is to select a set of base gpecles, and then to recast

the constraints so that each equation contains only one of these base sgpecies.
The base set should {nclude the dominant species. We select the dominant spe-
cles CO2 as one hase, and O2 as the other. Equation (3.4) contains only

the base CO, and tells us that there 1s approximately 1 mol of COZ in the

system.  Combining the equations to eliminate Co, from (3.5), we obtain
- Neg —deesy < L

(3.6)

- 2r0. -

e N, -
- - - (/— - F
ZNOZ NCO ZNC(S) 0 4

This tells us that the second base species 0, must be “"balanced” by CO

and/or C(S). Since CO has a much smaller Gibbs function that C(S), the

balance will be primarily with CO, and so approximately

ZNO = Ny (3.7)

2
Since hoth 0, and - CO are in the same phase, this translates fnto a re-
quirement that the mol fraction of CO must be twice that of 02.' Then,

using (2.9) in (3.7) and taking the log of both sides, a linear equation

‘ relating the element potentials 1s obtained:

2n(2) - Eoz ta, o= - gco FAg oty (3.8)
A second linear equation relating the element potentials is obtained from the oy
estimate that the mol fraction of CO, 1is unity, puu\(k “”““*~j ’ VV/ Cxp.'
~ N A 1 b
- gcoz + Ao+ 23, = 2a(l) %zy“ (3.9)

We solve these two equations and obtain

Ac = - 18.351 , AO - - 1;.739

Using these potentials, the mol fractions are estimated as follows:

Xcg 0.599 , X, = 0.299 , X ™ 1
2 2
are rare gpecles was not very

Clearly, the assumption that CO and 02
so that they

good. However, we can correct our estimate by rescaling the xJ

sum to unity,

10



Xco 0.316 , xoz o.138 , xCOZ 0.526

These estimates are within 10Z of the exact values. An improvement can be ob—
tained by {1terating, using our revised estimate for xCoz in (3.9). The

result 1s:

and these produce

Xco = 0:3%0 ,  xg = 0.195 ,  xgy = 0.526

These renormalize to give

Xeg = 0.352 , xg, = 0:175 ,  xgg, = 0.473

The exact solution is

and so we see that with only two iterations we are very close.

The i1terative process used here might be used as the basis for a numer—
ical method for general problems. However, a general method must work 1irre-
gspective of the structure of any particular problem, and thus the multi-phase,
many—~species problem presents a greater challenge. The numerical method that
we have developed to meet this challenge 18 based on the dual problem devel-

oped in the following sections.

4., The Dual Problenm

Thé objective 1is to solve Eqs., (2.11) and (2.12) to determine the a
unknown element potentials and the p unknown phase mols. A convergent
algorithm exists for this purpose, -based on a related max-min problem (the

"dual™ problem). We define three functions of the element potentials and

phase mols:

P a
W = I N(Z~-1)- I 4.1
m( m ) ipi ( ?
m=] i=]
11 -
DR _ -

AN
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s
Z = I x : (46.2)

m j=1 bl
inm
8 . . 7Y
H = I N n x -p 3"60“Au'\ (4.3)
1 (3) 133 1 speeie
i=1 ' s=‘“ib:}\,ﬂu~

. - L\
where X, is defined in terms of the Ay by (2.9). Note that Zm = 1 for

all phases present in the system when (2.12) 1is satisfied, and H; = 0 for

all atoms 1 when (2.11) is satisfied. Differentiating W(},N),

a

(—-5/1 « £ /“;-(\‘3)

p e Yy = =
W Yo 3 o
5 = H Vo (bed)
i
w
3N ™
m
so that
a P .
W = I HdA o+ I (Zm-l)dg (6.6)
i=] m=]

Note that, at constant N
e

, .W will be stationary (dW = 0) with respect to
arbitrary varlations 1in the element potentials at any state for which the

e

atomic constraints are satisfied (Hi = Q). A
We define
s
D = I n X (407)
im jul 1373
inm
8
= ¢ N .n n x . (4.8)
Qik A (3) 13 k3 3
J=1
Then
2 /
dz = I D, dai (4.9)
m Im 1
1=]
and
a P _
= + ‘ 4,10
dHi I Qidek I Dimde ( )
k=1 m=1

12



The nature of the stationary polnt in W 13 revealed hy

2 oH

3 W
= = Q > 0 (4.11)
3113kk BAk | ik

Since Qii > 0, W 18 a minimum at the extremum, and W 13 a coancave func-
tion of the element potentials. This means that the minimum W point, where
the population constraints are satisfied for fixed phase mols, can be found by
the method of steepest descent, in which we move down the path in A space

along which W decreases most rapidly, until we find the minimum point.

Now congider a path in (33 _) space along which the Hy all vanish.

From (4.6), we see that W on this path 1s also statfonary with respect to

arbitrary variations dN  when (2.12) 1is satisfied for all phases present.

Along this path the A, are fixed by the N , and we must consider this in
m

the analysis.

Between any two states for which the H; are zero, from (4.10),

a P
I Qd\ = - I D _dN
k=1 pel "

This tells us how the W—minimizing Ai will change when we change the N .,

We define a matrix Eim gsuch that

a .
kfl QikEkm T Dim (4.13)

Then, between two nearby states where the H, all vanish,

P

- N ) 4.14
dAi L Eimde ( )
m=1

Then, from (4.9), along the path of states where all Hy = 0 we have
1 _
dz - I A dN (4.15)

m mn n
a=]

where

(4.16)

13



Equation (4.16) tells how the Z, change when we change the N along
o

* —
the path where all Hi-- O. Let W (N) deunote the value of W along such a
paths Then, from (4.6),

*
W .
B (4.17)
- m
aN
m
where
Therefore, using (4.15),
-SZW* aZ '
—— = — = A_ (4.19)
N 3N aN '
m n n

Hence, using (4.16), (4.13), and (4.8),

azw* a a a
- = I D, E - - I Z Q " E
3N 3N {=1 im im {m] k=l ikEkm im
D om :
8 a a _
= - I z Z N,,.x,n,,n E
g=1 =l k=l (1)737137k n"kn
8 ( a )2
= - I N .x I n E < 0 (4.20)
1§ 1
J-l (j) J 1-1 j n .
Hence, W* is a maximum at the stationary polnt; moreover, W* 1s a convex
function of the E- This means that the method of steepest ascent, 1n which
m.

* —
we move up the W (N)  surface along the most rapidly rising path, can be used
to find the maximum,

Summarizing, W 1s a minimum for given phase mols at any state for which
the atomlic constralints are satisfied. We denote such sgtates by W*. W* isg

in turn a maximum with respect to the phase mols when the mol-fraction-—sum

constraints are satisfied. These facts form the besis for a convergent solu-—

tion algorithm.

14



At the equilibrium solution,

* a
wmax = ~ I Xipi (4.21a°
i=1
but, since A; 1is the G/RT per mol of 1 atoums,
*
W = - G/RT (4.21b)

max

The max-min problem for W 1s the "dual™ of the Gibbs minimization problen,
with the dual function W having physical significance only in the equilib-

rium state.,

To help the reader understand this max—-min problem, consider ch%ufne—

P K dde
a

specles case; (2.9) becomes “
(m Leomind) g . X= o g+ ?_'\N )
o 8704 (4.22)

and the atomic constraint 1s

?‘. nx = p \\,}WM ‘()oq.»\u‘iv‘h (4.23)

For this case, .
~ \I

—, =g+ni
e -

w = N( (4.24)

-

l) - Ap

At fixed ﬁ, W 1is a concave function. of A, sketched in Fig. 4,1a. The
- -4 enAa
atonic constraint (4.23) is satisfied when Nn (1’3 ) = P

A = -11’-[54-1:1(1-_)] / (4.25)
nN

The path along which the constraints are satisfied is sketched in Fig. 4.lb.
ssti e A ke Wb ¢ w*

Thus, ,
\/x.\.-/"
* — ~
W= B-N—E[ + 2n (p—)] v (4.26)
n n —
N Nn
W' 1s sketched as a function of N fn Fig. 4.lc. The maximum of W' occurs
when
N = p/n o (4.27)

15
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Figure 4.la W at fixed N Figure 4.1b Path along which the
population constraint

. is satisfied

Figure 4.lc W* as a function of N .
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Figure 5.1 The W surface for E =0, p=1,n=1
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for which the element potential is, as expected,

(4.28)

>
1
s

*
and the equilibriumvalue of W 1s
¥
* —_ - -
W = - Ng = = Nn (4.29)
max

5 Dual-Problem Numerical Solution Details

The solution of the max-min problem proceeds in three modes. We shall
first describe these graphically in terms of the previous example and 1its

extension into more dimensions, and then present the analytical details.

The surface W(A,N), for n =1, p =1, g =0, 1is shown in Fig. 5.l.
One way to solve the problem is to march down the surface at constant N
until the minimum point 1is reached. The loci of such minima define a road

that leads up the valley to the saddle point, where the the equilibrium

solution 1s located.

Imagine that this surface 1is a hillside. On the hillside, a hiker has
the choice of going up or down, and he must go down in A space to reach the
minimum W at fixed E: If there were two A's 1instead of just one, his
downhill path could be taken in many ways; the fastest way down 1s the "path

of steepest descent”. Once at the roadway, the hiker has a choice of up or

- *
down, and he must go up In N-space to reach the point of maximum W where

the phase-mol-sums are all unity. But he must stay on the road, where the

population constraints are satisfied. He would have a choice of several up-

N, and he should choose the road of
This 1s the basis

hill roads 1f there were more than one
steepest ascent 1in order to reach the summit most quickly.
for the numerical method for solution of the max-min problem for W; steepest
descent varlation of the element potentials at constant phase mols, followed
by steepest-ascent variation of the phase mols while maintaining the atomic
constralnts.

At the bottom of the valley, where the terrain 1s flat, it 1s hard to
tell which way 1is down; here steepest descent methods often have difficulty,
or are slow; but Newton—-Raphson methods work well when we are close to a solu-
tion. So we use steepest descent to get close, and Newton—Raphson to zoom to

the minimum. The same basiec procedure 1s applied ascending towards the top.
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The phase mols are adjusted by steepest ascent until we are very near the

solution, at which point a Newton-Raphson iteration is employed.

In a two—phase problem, the hiker could be golng nicely uphill, reducing
the mols of one phase, and run abruptly into a fence labeled, "No more mols~-

keep out of negative mol-land!" At this point our hiker must turn and follow

the fence wuphill, maintaining zero mols for thigs phase, until the path of
gteepest ascent leaves the fence. This 1s the basic method by which the so-

lution process decides which phases are present. We shall now outline the

mathematics of these processes.

Mode 1: Steepest Descent of W d{in A Space at Fixed N

If a segment of the descent path in A space has length ds, then

dli = fids . (5.1)
and
a
151 ££], = 1 (5.2)
Then,
&£ - r HE, - - (5.3)
i=1

are the direction cosines for the descent path. To find the

where the fi
dW/ds, subject to

path of gsteepest descent, we seek the fi that maximize

(4.23). Thus, we put

. .
dWw 8
d (ds 5 151 fifi) 0 (5.4)

where B8/2 1s a Lagrange multiplier for the normalizing coastraint (5.2).

Hence, the steepest descent path is that for which

a
r (W ~8f)df, = 0 (5.5)
iw]

for arbitrary dfi. Thus, the direction cosines for the path of steepest

descent are given by

18



o4 = Hi/B (5.6)
Then (5.2) gives
a 2
z HiHi = B (5.7)
i=1
so that
a
¥ e r BH/ = B (5.8)
ds {=l] 11

which must be negative for descent. Hence, from (5.7)

a
B = -‘/ I HH (5.9)
1= 11

For a given set of phase mols and potentials, we calculate the Hy and

determine the path of steepest descent towards the set of Ay which, for the

given phase mols, will render all of Hi = 0, The distance that we should go

along this path is estimated using a Taylor series expansion of dW/ds,

2
dw dwi - d" W
ES— 504‘ 2 A8 + 4. (5.10)
ds o

Since we seek dW/ds = 0, wusing (5.8) and (4.4),

a dA - a a 2
] dw k AW
0O = B+ I =—— (——ﬂ — = ‘B + I I ———— £ £ As (5.11)
K=l BAk ds’ ds . kel {ml axkaxi 1k
So, using (4.11)
Ag = -8 (5.12)
a a
I I Q,f.,f
kel il ik 1k

Since the matrix Qik is determined by the current values of the phase mols
and element potentials, the path of steepest descent and the trial step we
should take down it are easily calculated. This method for adjusting the

element potentials is denoted as mode 1 in STANJAN.

In mode 1, the first thing done after the varlious quantities have been

‘evaluated for the new potentials is to examine the behavior of W on the old
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path of steepest descent. If the minimum point has been passed, then a "val-
ley interpolation™ 1is made using both the old state and the new state to
egtimate the location between them on the descent path where the minimum W
point occurs. This interpolated state 1s then used to start a fresh descent.
If the trial polnts are jumping back and forth across a valley, overshooting
the minimum point, then "“damping™ 18 turned on, in which the step along the
path 1s reduced from that estimated above. This allows the trial point to

descend down a steep hillside and then turn to follow the gentler downflow of

the valley towards the point of minimum W,

Mode 1 1s very robust and will work effectively, even when the trial
state 1s far from the state of minimum W. For example, convergence has been
obtained in cases where the 1initial mol fraction sum Z was as large as
1017! Improvements occur along the descent path at the rate of a decade or
two per step, and it 1s not long before the errors in the Hi become quite

small. At this point an adjustment is made in the phase mols, and the solu-

tion process continues.

Mode 2: Newton—Raphson Adjustment of the A at Fixed E

Near the point of minimum W, 1t becomes difficult to tell the direction
‘of steepest descent, and Instead a Newton-Raphson iteration 1s used to find

the point where the Hi all vanish., Equation (4.10) becomes, for fixed phase
mols,

a
T QikAkk - - Hi (5.13)
k=1
This 1s solved to obtain the desired changes. This procedure 1s denoted as
mode 2 in STANJAN. It is adopted whenever the H errors are suitably small,

&

and abandoned in favor of mode 1 if the computed changes are too large.

Phase Mols Adjustments in Modes 1l or 2

rendering the Hi all zero (approximately) has been

After a set of Ai

: *
N for maximum W . When
o

found for a given set of N , we must adjust the
™

the solution is not close, a steepest ascent method 1is used to adjust the

N .
m
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Let r, represent the direction cosines in N s8pace, and ds* an ele~

ment of the path along which we seek the maximum of W*. Then

dN = r ds _ (5.14)
(5.15)

From (4.17),

* P
awv_ . vy (5.16)

. *, *
‘To find the path of steepest ascent, we seek the r, that maximize dW /ds ,

sublect to (5.15). Thus we set

aw™ P
d( -%er)-o (5.17)
oo v+ }

*
ds m=1

where a/2 18 a Lagrange multiplier for the normalizing constraint (4.34).

Hence, the steepest ascent path is that for which

P
(Vv ~ar)df = 0 (5.18)

m=1

for arbltrary dfm. Thus, the direction cosines for the path of steepest

ascent are given by

Ty = Vm/a (5.19)
Then (5.15) gilves
P 2
T VvV - g (5.20)
mm
m=]
so that
*
P
H . I VV/a = a (5.21)
mm
ds m=1

which must be positive for ascent. Hence, from (5.20)
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a = LI VvV (5.22)

The distance that we must go along the path 1is estimated from a Taylor'é

*
series expansion of dW /ds*.

v v a%u *
—'; = —T + "-—*'7 AS + see (5'23)
ds ds |o ds o

Since we scale the point aw*/ds = 0, wusing (5.21),

k. dN *
Py /aw x PP 2 *
0 = a+ I — - *-a+£ 2—_—_—-1'1' « As (5.24)
n=1 3N \ds /ds n=l =1 3N aN ™
m n m.
So, using (4.19),
* - a
A - 5.25
8 P ( )
L I A rr
n=] g=] 0@ DM

Thig 1s used to estimate the distance along the path to the maximum W
poinc.‘ If this distance would produce negative phase mols, then the changes

are reduced to prevent this occurrence. Limits placed on the changes, "ridge

interpolation”, oscillation damping, and other numerical tricks add to the

robustness of the program.

If 1is the path of steepest ascent reaches a state where one N is zero,
: m

then that phase will be absent in the system, and the phase 1s dropped from

the phase sums. A new path of steepest ascent 1is then computed, and a step

towards the maximum of W is taken. The possibility of inactive phases

becoming active is considered in each phase adjustment.

Mode 3: Newton—Raphson Adjustment of the A and E

When the atomic poulation errors are small and the mol fraction sums for

all active phases are very nearly unity, a Newton-Raphson scheme 1s used to

adjust the Xi and E- simultaneously. The equation system (4.9), (4.10) is
n

used to calculate the changes necessary to bring all Hi to zero and all Z[n
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doned whenever the changes it requests are too large. This mode is always the

last mode used before a converged solution; it 1s called Mode 3 in STANJAN.

Accuracy and Convergence

The element potentials and phase mols are adjusted to accuracy of l part
in 108, and the mol fraction sums are made unity to 1l part in 1010,  This
accuracy 1s maintained, even in nearly singular cases, with the help of the

matrix conditioning procedure described below.
300
On an IBM-PC, mol fractions as small as 107 are displayed. On most
mainframes the mol fractions can be no smaller than 10-68.

rate results can actually be obtained 1in some problems using the smaller

Thus, more acccu—

desktop computers!

6, Independent Atoms, Basis Species, and Matrix Conditioning

In some systems the atoms are not 1independently variable; for example, in
a system consisting of CO, COS, and S, the atoms C and O are not in-
dependently variable. In order to avoild singular matrices in the solution,
we must work only with the independent atoms. These are identified in the
STANJAN 1initializer, described below. The atom sums above are then carried

out only over the independent atoms, and only the element potentials of inde-
peﬁdent atoms are computed. ]

In any system there will be a small set of base species which together
could contain all of the atoms. While there 1s one base species per indepen-
dent atom, there need not be a one—to-one correspondence between the indepen-
dent atoms and base species. Usually there are.many possible sets of base
species; the most useful are those that dominate the system, and the STANJAN
initializer identifies these. For example, in a system containinga mixture
of Co, COy, 02, and Cc(S) at 3000°K and 1 atm, with a C:0 —ratio of

2:1, the base species will be C(S) and CO (see example 1in Section 3).

The base species play a key role in obtaining accurate solutions when the
wmatrices are nearly singular. This 1s accomplished by a process we call

matrix conditioning, an idea closely related to the balancing concept used in

the second example of Section 3. For example, consider a system containing
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co, C€o,, and O,, with a C:0 ratio of 1:2, at a low temperature. The

system will consist almost entirely of COZ' and the population equations

will be

N + N =- 1 (6.1)
2N + N_ . + 2N - 2 (6.2)

Since Ny and NO are both very small, these two equations are very nearly

the same, i.e., the system is very nearly linearly dependent. Conditioning

removes this difficulty.

We need to solve equations of the form

a .
151 Qikxk - Yi : (6.3)

where X, denotes the solution vector and Yi the right-hand side (see

(4.19) and (4.21)). The Qq matrix associated with this system {is

*co, * X0 2xco2 * Xeo
Qik = N (6.4)
2x + x dx _* + x + 4x
COZ Co CO2 Cco 02

because xCOZ = |1, and the other xJ are very small, this matrix is very

nearly singular, and hence the solutions of (4,13) and (5.13) are very hard to
construct accurately.

The 1dea of matrix conditioning 1s to form linear combinations of the

equations that remove all but one base species from each equation. This 1is
equivalent to multiplying the (6.4) by a conditioning matrix C.i3 this
produces '
a a 3 a
I I I C . N( )ni nij Xk = I C iYi (6.5)
n n
Iw] kwl j=l ] Y 3 i=1
Now, for the nth equation, we rcelect Cni such that the only base species

retained 1is the nth;
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th

a 1 1f 3 18 the n base species,
I C,n (6.6)
i=]1 niij 0 1f j 1s any other base species.
Then, instead of solving (6.4), we solve the conditioned equations
; * * 6.7
WK = Y (6.7)
k=1
where the conditioned matrix and right-hand side are
* a 6
Qik = I Cinan (6.8)
n=1
* a . (6.9)
Y - r C,.Y .
i k=1l ik "k

In the C-0 example above, we take CO, and 0, as the base species. The

first equation does not contain the base 0,, and hence 1s already condi-

tioned. The second conditioned equation is formed by subtracting the first of

(6.3) from half of the second. Thus, the two conditioned equations are

(NCO2 + Nco)x1 + (ZNCO2 + Nco)x2 - Y (6.10)

1
(—Nco)x1 + (ZNO2 - Nco)x2 = -Y +35Y, (6.11)

This pair of equations will be linearly independent and will yield accurate

numerical results, even when the mols of CO and 0, are very small.

STANJAN computes Qik exactly, so that the base specles vanish com-

pletely from other than their own equations. The conditioned versions of
equations (4.19-4.21) are solved, rather than the primitive equations. The
bases are reviewed and changed 1f necessary whenever a phase appears or dis-

appears during the solution, and a new conditioning matrix is calculated?

This matrix conditioning allows STANJAN to solve accurately, even when

two original equations differ by 1s little as one part in 1020 or more! The

matrix—-conditioning process 1is also used in the phase-redisctribution process
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in the initializer (Section 7) to help maintain high accuracy in nearly sing-
ular systems.

The population equations may also be conditioned, producing

a s a N
I C N n x = I C p = p (6.12)
k=l fel ik (J) ki J -] 1KK 1

Note that, by (6.6), all but one of the base species drop out from each of

these conditioned population equations. For example, the conditioning of Egs.

(6.1) and (6.2) produces

N + N = ] (6.13)

--é-N +N. = 0 (6.14)

The right-hand sides of these equations (the "conditioned populétions") are
just the mols of the base specles, and this fact 18 used to compute the con-
ditioned populations. The balancing prqcedure described 1in Section 3 is
required whenever one of the conditioned populations pI 1s zero, and the

conditioned population equation provides this balance. Note that (6.14) is

the balance equation (3.7).

7. Initialization

The solution requires an initial guess, and a good guess leads to a fast
solution. The STANJAN initializer is one of the most important reasons for
its success in treating géneral problems. Problems that could not be initial-
ized by early STANJAN versions now run nicely, and problems that took dozens
of {terations are now 1nitialized so well that only a few iterations are
required. Thus, the STANJAN {initlalizer may be of considerable interest to

those who prefer to use other methods for equilibrium solution.

The basic idea of the initiaglizer is to create an approximate distribu-
tion of the atoms from which the phase mols and mol fractions of key species
can be estimated. These estimated mol fractions are then used to estimate the
element potentials, In much the same way as the examples in Section 3. The

initializer does this in 3 way that works for an arbitrary problem.
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The initializer begins by distributing the system atoms to a set of base
specles in a way thaf makes an approximate Gibbs function as small as poss-
ible. This approximate Gibbs function 1s that obtained by neglecting the
n X corrections to the Gibbs functions (see 2.2). The initializer minimi-

zes

S_ . 3 g.N (7.1)

Ny 20 , 3=l eee, s (7.2)

This minimization problem is a classic problem in linear programming, and 1is
solved by the simplex method. Because the simplex method may not be familiar
to readers, a brief description of it 1is given here; for more detall see

Appendix B, and for a full account see Veinotts.

The theorems of linear programming show that the solution will be one
where only a small set of species have non-zero mols (in the approximation
(7.1)). At each step in the simplex process.one has identified a set of "base
speclies™ that contain the ACOms, with all other gpecies having zero mols. The
simplex'process is a base—specles—replacement process in which the function to
be minimized 13 continually reduced by changing the base species set until no
further reductions are posgsible. There ‘are always as many base species as

there are independent atoms in the system, and the base species mols together

contaln all of the atoms.

The process begins by placing all atoms in "false” monatamic species.
The atoms are transferred to the real speciles by a simplex minimization of the
total number of false mols. Important conclusions are drawn at the end of
this simplex process. If it is impossible to eliminate the false speciles,
then the assigned populations were lmpossible. If a false species remains as
a base with zero mols, then that atom is not linearly independent in the sys-

tem. 7This 1s the process by which Iindependent atoms are identified.

Once the atoms are placed in real species, thé simplex minimization
process contlnues until no further reduction in c* can be achieved. The
dominant s8pecies are then identified as the bése gpecies; the mols of all
other species are zero at this point. The conditioning matrix is calculated

for this gset of base specles.
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The initial distribution of atoms to the base species allows estimation
of the phase mols and mol fractions of the base apecieé, with one base species
per independent atom. In order to estimate the element potentials, one linear
equation in the element potentials must be obtained for each independent atom

in the system (i.e., for each base species). For each base there are two

primary possibilities:

i) If the estimated mol fraction is greater than zero, this value is

used to derive one linear equation relating the element potentials (see exam—
ples in Section 3).

11) If the base specles was estimated to have zero mols, then the dom-
inant balancing specles 1s identified. The balancing species is a secondary
species that appears in the conditioned population equation with a negative
coefficient; the one with the largest expected mol fraction is chosen as the
dominant balancing specles. ' Four possible events are then possible:

a) If no balancing species can be found, then the species is
excluded and the initialization is repeated.

b) 1If the balancing species 1s in the same phase as the zero—mols
base specles, then the balance equation 1s used to derive a linear
equation relating the potentials (see example Iin Section 3). If
the phase has zero mols, the "phase-redistribution” flag 1s set,

c¢) If the balancing gspeclies 1s in another phase, then the other
zero~mols base species are examined and the bases are reordered so
that the dominant zero—mols base 1s considered first.

d) 1If the zero—-mols base 1s the dominant zero—-mols base in a phase
containing zero mols, then its mol fraction 1s set to unity and
this value 1is used to derive a linear equation relating the element
potentials, and the phagse-redistribution flag is set. '

The conditioning matrix is recomputed whenever the bases are changed. These

processes produce a set of linear algebralc equations, which is solved for the
estimated element potentials.

In determining the balanéing species, estimates of the element potentilals
are used to estimate the specles mol fractions. The simplex Lagrange multi-
pliers themselves provide the first estimates of the element potentials for
purposes of selecting the balancing species. Then, after a set of element
potentials has been obtained from the process described above, the selection

of - balancing species 1s repeated using these potentials, and different
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balancers are chosen 1f appropriate. Thus, the final element potentials are

consistent with the choices of balancing species used to generate them.

If the phase redistribution flag was set by the element potential estima-
ting process described above, then it is necessary to redistribute the atoms
to populate an empty phase. The idea is to redistribute so that the balancing
specles are present In about the right amount, which will force the species
that they balance to be present. The first step 18 to estimate the mol frac-
tions of the balancing species using the estimated element potentials. Then
the atoms are redistributed amongst the set of specles consisting of the
original base specles plus the balancing species, seeking to bring the mol
fractions of the balancing species as close to thelr targets as possible.
This 1s accomplished by a second simplex calculation in which the sum of the
differences between the target mol fractions and actual mol fractions is
minimized, subject to the atomic constraints, to the constraint that all mols
must be non-negative, and to the constraint that the target mol fraction can
not be exceeded. Usually.these targets are met precisely. The net effect 1is
that approximately the right number of atoms are put into the phases which, on

first estimation, had zero mols. This intricate simplex process 1s described
in more detail below.

If a phase redistribution is required, the element potentials are reesti-
mated using the revised mol distribution, following the procedure described

On each pass the base set 1s checked to see that they are the dominant
Thusg, at the end the phase mols

above.
species, and 1f necessary bases are changed.
and element potentials are all based on a consistent set of dominant species.

These initial estimates of the phase mols and element potentials will generate

approximately the correct mol fractions, and so the equilibrium solution by

.the method described in Section 5 usually converges to high accuracy in just a
few iterations.

When running a sequence of calculations involving the same species and

atomic populations at nearby states, the full 1initialization process 1is

avoided. The mol fractions of the base specles from the previous run are
instead used to estimate the element potentials, and the phase mols of the
previous run are used. STANJAN also provides the option of freezing the

composition, and these runs do not require initialization or equilibrium

golution.
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The phase-redistribution simplex process uses the variables

yJ - - Nj + Ekj)x; Sbalancers) (7.3a)

for the balancing specles assigned target mol fractions x;, and

yy = NJ (bases) . (7.3b)

for the base species. Equation (7.3a) is rewritten as

oo (Jgo et NJ..)-NJ (7.4)
in (3) in (3)

where the sum over j'o denocés a sum over the basge gpecles, and j"b de-

notes a sum over the balancing speciles, in the phase of balancing species j.

The set of (7.4) for the balancing species (there may be more than one) is

inverted to give, for the balancing species,

+ I (balancers) " (7.52)

N - 2 T ny " B ly 1
J J"b JJ J J'O JJ J'
where j"b denotes a sum over balancing species and j'o denotes a sum over

base species and T and B result from the inversion. Then, for the base

specles,

NJ ol (bases) (7.5b)

Equations (7.5) allow expression of the Nj in terms of the simplex variables

The atomic constraints (2.3) can then be expressed in the form .

Yy
z R y - P ’ 1 = 1, ece o, & (7.6)
ibo 1374 i
where jbo denotes a sum over all variables 1in this simplex problem (the
base and balancing species); RiJ i3 computed from Tbjn, Bjj" and nyye
Finally, the simplex variables also satisfy
> 0 for all (7.7)

)’J_
Note that (7.7) keeps the balancing mol fractions no greater than their tar—

gets.
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ine slmplex process 18 1nltlated by establishing a feasible set wusing
additional false monatomic specles having yJ - NJ and minimizing the sum of

the false mols, subject to the constraints. Then the problem described above
i3 solved.

In order to improve the accuracy 1a nearly singular problems, the atomic
constraint equations (7.6) are multiplied by the conditioning matrix Cyyp
discussed in Section 6. In some problems with very rare balancing species,
the constraint equations may not be ver& well satisfied after -some simplex
base change. A correction is then made. The approach 1is to select the con-
stralnt equation best satisfied, and then to treat that simplex base as a
known quantity in a smaller set of equations for the other simplex bases. The

net result 1is a remarkable increase in accuracy.

In summary, the initializer is a sophisticated program that makes a very
good guess as to the distribution of atoms to dominant speciles and phases 1in
the system. It possesses remarkable accuracy 1in very-nearly-singular situa-

tions. The importance of the initializer cannot be overemphasized.

8. Examples
a) Carbon—-Rich C-0 System

The first example involves a carbon-rich mixture of CO, COZ’ 02, and
0, with the possibility of a solid carbon phase. The full output log of this
run 1ls presented to give the reader a flator of STANJAN. The user begins by
calling STANJAN., After an opening opportunity to see a brief description of
the element potential method, tpe dialog begins. The user's responses are
underlined in the log in F{g. 8.1. The margin numbers refer to the notes that
follow. This example is similar to the first two examples in Section 3, and

the reader may find it useful to make the comparison.

1) Note that the first step 1s to get the data for the specles to be
used., In this case the user selects the general-purpose combustion file
COMB.DAT, from which he selects the desired species. When running a lot
of problems with the same speciles, it 1s faster to first use the program
JANNFILE to set up a data set containing only the desired speciles, and
then use the single—~keystroke defaults * and # to make the phase

selection from this species set.

2) In this example the user had made a previous run with the same atoms,
and so 1s given a cholce of using the same populations or making a setup
change. In the first run STANJAN offered two ways to specify the atom
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populations, either by giving them directly or by naming some reactants
in the data file and then gpecifying the number of mols of each put into

the system.

3) The isentropic sound speed, defined as
3P
(35)9 (8.1)

is calculated. Equilibrium states will be used to calculate ¢ unless
the frozen composition option is selected, in which case it becomes the

sound speed with frozen chemistry.

c -

4) STANJAN includes an optional instructive monitor, which can be used-
to learn about the method. It 1s included here to display the features
of the 1initializer and dual problem solution described in previous sec-

tions.

5) This 18 what the user would have seen had he chosen to check the
atomic composition.

6) These are the properties as computed from the JANNAF table data.

7) The initializer first finds that CO will be the dominant speciles.
The balancing requires the presence of COZ’ in the amount estimated.
The initializer then redistributes the atoms to the phases to provide the

target mol fraction of the balancing species CO.

8) Note how close the solution is after the initialization. Only two
iterations are §equired to reach a solution accurate in mol fractions to

one part in 10

9) These are the data taken from the JANNAF tables.

10) This 1is the primary output.
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Figure 8.1 Example run log for carbon-rich C-0 system

You may now select a species data file. The file COMB.DAT contains a set
of species for combustion analysis. Just <return?> if no file {s desired,

Species data file? COMB.DAT

Getting species data file COMB.DAT PLEASE WAIT!

c
cs)
CH4
co
coz2
H
H2
H20
H20 (L)
HO
N
N2
NO
NO2
0

02

Species data file: COMB.DAT

c R oNe-) CH4 co co2 H H2
H20<(L) - HO N N2 NO NO2 o]

Type the species in phase 1, separated by commas. When typing
file species above, be sure to use EXACTLY the same characters.

If you enter cther species you will need their thermochemical data.
Type # to include all gas species above, # for all condensates.
Just <return> {f you are finished specifying phases.

cQ,C02,0.02

Typae the species in phase 2, separated by commas. When typing
file species above, be sure to use EXACTLY the same characters.

If you enter other species you will need their thermochemical data.
Typae # to include all gas species above, # for all condensates.
Just <return> {f you are finished specifying phasaes.

C(S)

Type the species {n phase I, separated by commas. When typing
file species above, be sure to use EXACTLY the same characters.

[f you enter other species you will need their thermochemical data.
Type # to include all gas species above, # for all condensates.
Just <return> i{f you are finished specifying phases.

Do you want to CHECK the ATOMS {n the molecules? N

{return> may be used for “no”

(continued)
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2)

3)

4)

Figure 8.1 (continued)

The mixture has the SAME ATOMS as in the last run.

This is the CURRENT SETUP:

Phasa
COo

Phage
c(s)

Atom
c
0

]l species:
co2

2 species!

(074

reiative population
1.00000000E~Q0
1., 00000000E~OQ

Do you want to make any SETUP CHANGES? N_

{return> may be used for

Run modae options:

Abort and
Speci fied
Specified
Specified
Specified
Specified
Specified
Specified
Specified
Specified
A matrix of

P and H same
vV and U same
Specified T,
Specified P,
Specified V,
One of the a

CCCOVON 44

and
and
and
and
and
and
and
and
and

NICOHICNCY

-ncll

redo setup

specified P,T cases
as last run
as last run

S same
S same
S same
bove at

Entaer run mode option: 1

Enter

‘Enter

The sound speed can be calcuiatnd. but then the calculations take longer.,

T (K)t 35000

P (atm): &

ag last run
ag last run
as last run

(LOTUS file option)

a specifiaed frozen composition

Dc you want the SOUND SPEED?

Do you want to SAVE the run OUTPUT in a file? __

Do you want to MONITOR the run (probably not)? Y_

Monitor levels:
O none

1 (TP

state iteration monitor

2 method instruction monitor
3-9 trouble diagnostic monitor

Monitor level? 2

Do you want the MONITOR OUTPUT in a FILE? __

(continued)
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35)

6)

7)

8)

Atomic compositions: Figure 8.1 (continued)

c o]
co 1 1
caoz b 2
0 (o] 1
o2 o 2
cs 1 (o]
Properties for T = 3000.000 K, P = 1,0133E+05 Pa
speclies hy kcal/macl s, cal/mol-K g/RT
co -4.,063 &5.370 =-33.578
co2 ~-57.351%9 79.848 -49,830
c 73.081 S0.094 -12.951
o2 23,446 &7.973 -30.273
s 14.412 12.129 -3.684

Initialization:

Independaent atom popul ation
c 1., 00000E+CQO
0 1. C0000E+0OO

Estimated distribution:
Phase | mols = 1,00000E+00Q
Phase 2 mols = . OOQ00E+00Q

co coz2 0 02 c(s
mols: 1.00000E+O0C ,OCQQ00E+0C ,Q0000E+0O0 ,0OQ0000E+QQ0 ,00000E+0O
X3 « 10000E+Q! .OOO0QE+0O0 ,O0CO0E+QC0 ,00000E+00 ,O00000E+O0Q

Phasa redistribution:
Target mol fraction = ,11932E-0S for CO2

Egstimated distributions
Phase | mols = 9,99999E-01
Phase 2 mols = 1,19321E~0é6

.

Hote) coz2 0 02 cs)
molg: 9,.9999BE-01 1.,19321E-06 .O0000E+00 ,OQO0Q00E«+O00 1,19321E-06
X1 . 10000E+01! » 11932E~05 ., O0000E+00 ,O0000E+00 , 10000E+O1
Equilibrium sclution monitor: .

dual function W = I, 487765381673JE+01
mol fraction sum Z = {,000000043IF3I2E+00

1.000000000000E~+00

EQUIL pass 13
phase 1 mols = 9,99998807E-01}
2 mols = 1,19320842E~-06 mol fraction sum I =

phase
element potential for C = =3,46B86153B09S40E+00; population error = -2,843E-12
element poitential for 0 = =2,989149796328E+01; population error = 4,J93E-08
co co2 o] o2 cs)
X: . 10000E+01 » 11932E-05 L4393JE-07 J135276E-12 .10000E+C!
Elemaent potentials and phase mols adJjusted by Newton—-Raphson
EQUIL pass 23 dual function W = T,45774&3538B606FE+0!
phase I mols = 9,99998807E-Q11 mol fraction sum Z = §,000000000000E+0O0
mol fraction sum I = {,000000000000E+Q0

phase 2 mols = 1,23714084E-06}
element poitential for C = =3, 64686.3538093540E+00; population error = 1.281E~-13

element potential for Q@ = =2, 9891498B00721E+0l}] population error = L1.281E-13
co caoz - O o2 c«s»
X1 . 10000E+01 ¢« 11932E-05 ,4393I35E-07 13276E~-12 ,10000E+0O!
Element potentials and phase mols adjusted by Newton-Raphson

Final distribution:
co co2 o} 02 c(s)
molst 9,99998E~-0! 1.,19321E-06 4.3I93IJLIE~08 [.J276IJE=-13 1.2I714E=-0S

End of rumn monitor output

(continued)
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9)

10)

Fig 8.1 (concluded)

QUTPUT READY. Noteae:

Do you want to see the JANNAF data used? Y

On IBM-PC,

use <ctrl-PrtSc> to start printer

Please press <return)> to continue. ..

JANNAF table data:s

{ctrl-s> stops/starts IBM-PC display.

(cptional).,

For T = 3000.00 K

species mol. mass enth. form SO H=HO
g/mol kcal/mol cal/mol =K kcal/mol
Phase 1 Gas species:
CcD 28.01034 -246.420 &63.370 22.3357
co2 44,00993 -34,0354 79.848 36,3533
0 16.00000 39.5359 50.096 13.522
02 31.99879 . 000 67.973 23. 4446
Phasa .23 Condensed spescies: Density, p/cc
cC(s) 12.01100 . 000 12.129 14.412 2.700
Independent relative el ement
system atom popul ation potential
c 1.00000000E+CQO -3.6862
o] 1.00000000E+00 . -29.8913
Composition at T = 3000, 00 K P = {,000E+00 atmospheres
species mcl fraction mol fraction mass fraction mol s#
in the phase in mixture in mixture
Phasa {1 Molal mass, g/mol = 28.011
co » 10000E+01 . 10000E+01 « 10000E+01 9. 99998E-01
co2 «11932E-05 « 11932E-035 . 18748BE-05 1.19321E-06
a] « 43I93ISE-07 « 43I9ISE~O7 « 25096E-07 4,39351E~-08
o2 « 135276E-12 « 13276E-12 «17431E-12 1.32763E~-13
Phase 21 Molal mass, g/mol = 12.011
cs) +« 10000E+01 « 12371E~0S « SI0LAFE-QS 1.23714E-06

# Species mols for the atom populations in mols.

28.011 kg/kmol
V = B.7B884E+00
§ = 9,74L45E+03

molal mass =
P = 1.0133E+05 Pa
M m=b, 06F1E+0S J/kg

Mixture properties:

T = 3J3000.000 K

U m=1,4974E+06 J/kg
2 EQUIL {terations.

iterationsg

Made O (T,P)

On IBM—PC, use <ctrl-PrtSc> to stop printer (optional).

Please praess <{return> to continue. ___

36 ,
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b) Example with Two Complex Phases

The next example 18 taken from the field of fiber optics manufacture. It
involves a complex set of sgpecles in the gas phagse, and a condensed phase,
treated here as an 1deal solution. The JANNAF data and operating conditions
were provided to the author by the AT&T Bell Laboratories. For brevity only
the final output 1s given in Fig. 8.2. Note that only five iterations were

required.

c) Gas Turbine Engine Example

This example shows how STANJAN can be used to calculate the adiabatic
~flame temperature in a gas turbine engine combustor, and then' the composition
after isentropic expansion in the turbine nozzle.

The first step 1s to get the enthalpy of the reactants by a rum at the
combustor inlet gtate. Here we took T = 400°K, P = 6 atm, and assumed that

the reactants were

CHA + 202 + 7.52 Nz

The results are shown in Fig. 8.3.

The next step 1s to get the adiabatic flame temperature by finding the
state of the products at the same enthalpy and pressure as the last run. The
reactants and a set of products are allowed species. The results are shown in
Fig. 8.4.

The final step 1s to get the temperature following isentropic expansion

in the turbines by finding the equilibrium state for the same species at the

game entropy and a specified pressure (here 1 atm.). The results are given in

Fig. 8.5,
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Figure 8.2

Indepandent
systam atom
Ar
cl
o
Si
Ge
P

Composition at T =

speciaes

Phase 11
Ar

Cl

Cl0
Ccl2
Cl4si
GaQ
GeQ2

(s]

02

0S4
Q2si
Cl4Ga
Cl3CP
oP

ozpP
010P4
ClGe
Phasa 2:
GeQ2<(1)
028i (1)
Q3P (1)

#* Species mols for the atom populations in mols.

Mixture propertiest
T = [630.000 K

relative
popul ation

1. 00000000E~-Q1
&.04600000CE+00
2.88340000E+01
1.00000000E+0Q0O
S. 13000000E-Q1
2.30000000E-02

1630.00 K
mol fraction
in the phase

mass, g/mol =

«39712E-02
«=S6748E-01
. 10439E-02
. 135201E+00
.47293E-07
. 179786E-10
«13847E-12
«22737E-04
« 783462E+00
.82707€-12
. 9S361E-10
. 2846351E-08
«11617E-04
. 13489E-08
.31089E~-03
«285269E-03
. 17309E~-13

mass, g/mol =

« IIFPFIE+CO
. &6007E+00
. {2491E-05

U =~%.4778E+0S J/kg

Made O (T,P)

iterations;

molal mass =
P = {1,0133E+05 Pa
H =-2,4331E+05 J/kg

38

el ement
potential
=-23.7073
-146.2887
-14,1631
-50.0253
-43.8478
-37.38359

P = 1,000E+00 atmospheres

mol fraction mass fraction

in mixture
38.25%

. 34738BE~-02
« 32040E-01
« 9S729E-03
. 13940E+00
«43370E-07
. 16484E-10
«12698E-12
. 20831E-04
. 71861E+00
. 75845E~12
.B7480E-10
. 26274E-08
. 10633E-04
.14204E-08
« 283 10E-03
« 28090E-03
«16037E-13
75.214

«28201E-01
. S47358E-01
« 103&2E-06

S EQUIL iterations.

Output for example with two complex phases

Iin mixture

. 52939E~02
. 444650E~01
«11920E-02
. 23921E+00
. 18882E-06
.35342E-10
.32141E-12
.80737E-0S
. SS6S1E+00
.B80921E-12
. 12869E-09
. 13593E-07
.39530E-04
.16140E~08
.43449E-03
. 16550E-02
.41983E~13

+ 71380E-01
« 79626E-01
. l9B04E-Q4

41.321 kg/kmol

mols#

1.00000E-01
9.30339E~01
1.74821E-02
2.34379E+00
7.92022E-07
3.01041E-10
2.31896E-12
3.B0779E-04
1.31233e+01
1.38310E-11
1.39701E-09
4.798235£-08
1.943543E-04
2.59397E-08
S, 20647E-03
4,.39927E-03
2. 9322BE-13

5. 1S000E-01
9.99999E-01
1.89240E-06

V = JI,0048E+00 m##3/kg
S = 4§,2782E+03 J/kg—-K



Figure 8.3

K

Independant relative
system atocma population
H 4, O0000000E~+QO
o 4, 00000000E+00
N 1.30400000E+01
Dependent
system atom-
c 1,00000000E+00
Composition at T = 400. 00
species mol fraction
in the phase
Phase 13 Molal mass, @g/mol
CH4 « ISOS7E~O1
02 +19011E+00
N2 «71483E+00

% Species mols for the atom populations in nols.

Mixture propertiess
T = 400.000 K
U ==2,646F4E+05 J/kg

Macde O (T,P) iterationsg

molal mass =
P = 6,07935E+0S Pa
H =~1,4459E+03 J/kg

First step in the turbine example:

el ement
potential
-12.3340
-10,.83714

P = 4,000E+00 atmospheres
mass fraction
in mixture

mcl fraction
in mixture
27.4633
. PSOS7E-O1L
« 1901 1E+00C
«71483E+00

i1 EQUIL iterations.

39

Calculation of the enthalpy of the reactants

«SS187E-0!
« 22013E+00
« 728466E+00

27.4633 kg/kmol
V = 1,9796E-01
& = 7.0201E+03

mols#

1. 00000E+00
2. 00000E+00
7.352000E+00

mee3/kg
J/kg—K



Figure 8.4 Second step in the turbine example:

Independent
system atom

Z0IX0O

Composition
specios

Phase 1:
c
CH4
co
caz
H
H2
H20 .
HO
N
N2
NQ
NQ2
o]

02
Phase 21
H20 (L)
Phase 31

cts)

#+ Species mals for the atom populations {n mols.

Mixture pro
T = 2316
U =-8,47

Mace 4 (T,

Calculation of the

relative

population
1.00000000E+CO
4, 00000000E+00
4., 0000000Q0E+0Q0
1.50400000E+01

at T = 23146,31
mol fraction
in the phase
mass, g/mol
. SSISBE~16
. 25808E~1Y%
« 75620E~02
.86918E~01
. 22987E~03
.28857E~02
. 18473E£+00
.2423I3JE~-02
. 15822E~07
. 70944E+00
.21100E~02
«b7724E-06
. 13180E~03
. 35539E-~-02
mass, g/mol
. OO000E+00
mass, g/mol
. OQ0000E+0Q0

Molal

Molal

Mol al

perties:
. 309 K
77E+QS J/kg

P) jfterations;

K

molal mass =
P = 4,.0795E+05 Pa
H =m={,4459E+08 J/kg

40

mol

adiabatic flame temperature

elemaent
potential
=20.,44746
-11.9990
-146,35667
-12,9931

P =
fraction
in mixture
27.466
« SS3IS8BE-~16
.25808E~13
« 7856&20E~0Q2
»86918E~01
» 2298B7E-~03
» 28857E~02
» 1BA473SE+Q0
« 24233JE-~02
. 15822E-07
« 70944E+00
2«21 100E-0Q2
«b7724E~04
» 13180E~03
« SSSIPE~02
. 000
. 00000E+00
« 000
« Q0000E+00

25 EQUIL iterations.

&.000E+00 atmospheres
mass fraction

in mixture

«24209€E-16
« 15074E-13
« 77120E-02
« 13927E+00
«B43461E-0S
«211B1E~03
«12118E+00
+» 13006E-02
- 80493E-08
« 72338BE+Q0C
«23083E-02
«113435E-03
« 74780E-04
«41404E-02

« O0000E+00Q

» OOO0QE+00Q

27.4466 kg/kmol
vV = |, 1534E+00 m#*#3/kg

molsw

S.B3920E-146
2,73153E-13
8.00373E-02
9. 19962E-01
2,43302E-03
J.05426E-02
1.93542E+00
2.34492E-02
1.4687459E~07
7.350883E+00
2.23330E-02
7.148B07E~-06
1,39501E-03
3.7&14BE-02

« 00000E+Q0

» 000QQ0E+Q0Q

8 » 9,3791E+03 J/kg-K



Figure 8.5 Third step in the turbine example:

Calculatibn'of the nozzle exit state

relative

population
1., 00000000E+0Q0
4. 00000000E+0Q00
4, 0000000QE+0Q0
1. S504000C0E+0Q1

Independant
system atom

Z0TITn

Composition at T = 1674.93 K

species mel fraction
in the phase
Phase 11 Molal mass, g/mol =
c - 15608E-23
CH4 « FIFRTE-Z0
co » IJ22SE=-0J
co2 « P4697E-01
H « 16438E-03
H2 « 2025 1E-03
H20 .« 1B982E+00
HO « 74204E-04
N s 27866E~11
N2 + 7145BE+00
ND «B451BE-04
NOZ « B3678E-08
o} A . 4B6BSE~06
G2 s 20673E-03
Phase 2: Molal mass, g/mol =
cs) +« OO000E~+00
Phase 331 Molal mass, g/mol =
H2O (L) + OOO00E+Q0

# Species mols for the atom populations in mols.

Mixture propertisss
T = 1674.929 K
U =—1,7272E+06 J/kg

Made 3 (T,P) iterationsy

Calculating the scund speed}

Sound speed (isentropic) =

molal mass =
P = 1,0133E+05 Pa
H ==1,2231E+06 J/kg

el ament

potential
-24,7380
-13.7096
-18.3106
-13.3409

P = 1,000E+00 atmospheres

mol fraction mass fraction

in mixture
27.623
.« 15608E-23
« 9IFABE-20
e IIJIZ2ATE-OJI
« P4697E~01
«16438E-035
« 2025 1E-03
. 1B98B2E+00
« 74204E-04
« X7B6LE-11
»71438E+00
.B451BE-04
. B3678BE-08B
. 4B6BSE-06
» 206 73E-03
. 000
+» O0O000E+O0
. 000
+« OO000E+Q0

24 EQUIL {terations.

PLEASBE WAIT!

794.9 m/s

41

in mixture

. 67B62E-24
+ S4545E-20
. 3368BE-03
. 1S0B&4E+00
.59977E-07
.14778E-04
. 12379E+00
. 45683E-04
. 14130E-11
. 72462E+00
.91807E-04
. 139346E-07
. 28197E-06
. 23944E-03

« O0O000E+00

+» OQ000E+Q0

27.625 kg/kmol
V = 4,97S0E+00 me#3/kg
& = 9.3791E+03 J/kg—K

mols#

1.642488E-23
9.88372E-20
3. 49629E-03
9. 96504E~01
1.729746E-03
2,13099E-03
1.99747E+00
7.80848E-04
2.9323%E~-11
7.51936E+00
8.89380E-04
B8.80548E-08
8. 12314E-06
2.17541E-03

. 00000E+00

+ O0000E+0Q0



d) Other Applications

An early version of STANJAN was used for fiber—optics fabrication analy-
sis by McAffee et al.7 This version, which did not use the full dual problem,
had difficulties in converging with multiple phases, and had to be extended by
chem.CO cover ideal solutions. The present version runs their problems very

quickly, with no difficulty.

More recently, McAffee et al.8 gtudied other such problems using the
element potential method. At that time, the full dual problem had not yet
been developed, so they developed their own algorithm for making the steepest

descent.

9. Avallability and TImplementation of STANJAN

STANJAN and an assoclated data file-managing program, JANFILE, have been
compiled using MICROSOFT(c) FORTRAN for use on the IBM=PC or compatible desk-
top computers. These programs run with or without the floating point coproc-
essor. This version can handle up to twenty specles, in up to six phases,

containing up to eight different elements.

The user disk, containing the compiled programs, data files, and exam-
ples, 1s available for educational use as freeware. An'institucion desiriné
to use this program for instructional use should send a blank formatted disk
to the author in a floppy disk maliler. The disk will be returned with these
files. This disk may be freely copled, and faculty members are encouraged to

help spread STANJAN by sending copies to colleagues at other institutions.

The FORTRAN source programs are also avallable on IBM-PC floppy disk, at
a reasonable cost. For details contact the author. These may be recompiled
for usé on larger computers, and can be easily modified to handle larger
problems. These programs are good examples of moderm, structured FORTRAN pro-
grams, are very well documented internally, and may themselves be useful as

educational tools.

An early verslion of the equilibrium routine of the parent STANJAN, whicﬁ
did not use the full dual problem, was incorporated in Sandia's widely used
CHEMKIN program as “the Stanford Equilibrium Solver”. 1Users of that program
will find the present equilibrium solver more robust and faster, especilally 1if

used with the current STANJAN initializer.
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Appendix A

The Method of Lagrange Muitipliers
Lagrange multipliers are used in the theoretical solution of problems of

the form

F(x) = min (A.1)
subject to the constraints
C.(x) = conmstant , k=1, o0 , ¢ (A.2)

In general, F and Ck may be nonlinear functions of the solution vector
x = (X7, X9, eee’y X )o
Taking the differential of F,

n

dF = T Hidxi (A.3)
i=]
where
H - .ai. (A.&)
i axi

Now, for F to be a minimum with respect to arbitrary variations, dF = O

for arbitrary dxi that satisfy the consgtraints

n

de = (0 = z Aikdxi | (A.5)
i=1
where
aCk _

If we have n variableé and ¢ constraints, only n—-c of the variables may
be freely varied. Before examining the conditions under which dF 1s zero
for arbitréry variations of the free Xy, we need to represent the changes in
the restricted x; in terms of the changes in the free ones, and then substi-
tute for the changes in the restricted variables in (A.3). This substitution

is equivalent to subtracting a linear combination of the equations (A.5) from
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(A.3) such that the restricted dx; drop out of the result. This subtraction

yields:

n c
(Hi - zl xkAik) dx, (A.7)

c
dF - L dC - z
k=1 Ak k i=]1 k=

must be chosen to drop out the restricted dxi-

where the coefficilents Ai
In order for the restricted dxi to drop out, the coefficient of each must be

zero, so for these 1,

c

By = L A4, =0 (A.8)
k=1

For the remaining freely varied X4 there must be no variation that changes

F (to first order) which requires that the coefficient of these dxy also

vanish in (A.7). Hence, (A.8) must hold for all 1{i.

3

Equation (A.8) represents a set of n simultaneocus equations for the

solution vector x;. The constraints (A.2) provide ¢ additional equations

for the A, called the "Lagrange multipliers”.

If F and C; are quadratic functions of the Xy then (A.8) will be a

linear equation system; this is the case in‘the applications to finding the

. paths of steepest descent described in Section 5 above. In the element poten-—

tial theory, F 18 the system Gibbs function, and the resulting equations are

nonlinear.
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The Simplex Method

The Simplex method finds the solution vector yj that minimizes

n
F(y) = I w.y (B.1)
j_l j j
Subject to the constraints

n
I Aijyj - Ci , i=1, «ec , C (§.2)

=1
> O B.3
vy 2 (B.3)

The method solves this problem simultaneously with a "dual” problem of maximi-

zing

I AC = max ' (B:fA)

subject to

I NA, £ v (B.5)

The method rests on the fact that the final solution will contain only as many
non-zero yy as there are constraints (B:Z). These are the "base variables”
for the problem. The solution Involves sgtarting with a trial set of bases and
then replacing one base at a time. Each replacement results in a reduction in

the value of the objective function F. The process terminates when no fur-

ther changes are possible.

On each simplex pass, the first step 1s to determine the n “simplex

Lagrange multiplers”™ A, by solving

n
kfl Aijk - Wj (B.5)

where (B.6) applies only to the current base set. Then, for each variable

Ty that is not a current base, one computes
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n
= I - .
SJ o Aijk wa (B.7)

for each j that 1s a candidate as a better base; Sj represents the reduc-
tion in F per unit of yJ added to the systeme The 3J having the largest

SJ > 0 1s chosen as a new base fo replace one of the old bases.

The direction of changes in the space y 1s then calculated from (B.2),

I A + A = 0 (B.8)

Ay
108 ik 'k

137

where JOB denotes a sum over the old bases, and k denotes the new base
member. This determines the directions AyJ/Ayk. Then ;he change 1in each old
base along this path is examined, and the first point along the path at which
one of the old yJ drops to zero 1is found. This determines the value of
Y 1in the new base set, and hence the changes in the other bases Yy The
process ends when there 1s no possible base change.,

The simplex method requires a "feasible solution™ (an initial base set)
to start. This can:be generated using the same simplex process by ektending
the system to include a set of non—negative false variables, one for each

constraint. The feasible solution is then obtained using the simplex process

to minimize the sum of the false variables.
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