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Compound-Compressible Nozzle Flow 
A one-dimensional theory based upon fundamental flow relationships is presented for 
analyzing the behavior of one or more gas streams flowing through a single nozzle. This 
compound-compressible flow theory shows that the behavior of each stream is influenced 
by the presence of the other streams. The theory also shows that the behavior of com-
pound-compressible flow is predicted by determining how changing conditions at the 
nozzle exit plane affect conditions within the nozzle. It is found that, when choking of 
the compound-compressible flow nozzle occurs, an interesting phenomenon exists: The 
compound-compressible flow is shown to be choked at the nozzle throat, although the in-
dividual stream Mach numbers there are not equal to one. This phenomenon is verified 
by a wave analysis which shows that, when choking occurs, a pressure wave cannot be 
propagated upstream to the nozzle throat even though some of the individual streams have 
Mach numbers less than one. Algebraic methods based on this compound-compressible 
flow theory are used to demonstrate the usefulness of this approach in computing the 
behavior of compound-compressible flow nozzles. A comparison of the compound-
compressible flow theory with three-dimensional computer calculations shows that the 
effects of streamline curvature on nozzle behavior ca?i be disregarded for many practical 
nozzle configurations. Test results from a typical two-flow nozzle show excellent agree-
ment with the predictions from the theory. 

M c 
Introduction 

I ODERN propulsion engines often exhaust several 
different streams of gas side-by-side through a single nozzle, Fig. 
1. These flows can exhibit sizeable compressiblity effects and 
they will be referred to here as compound-compressible nozzle 
flows. The purpose of this paper is to provide, for the first time, 
a simple method to predict the behavior and clarify the under-
standing of such flows. 

A one-dimensional analysis similar to that used in single-stream 
compressible flow problems is applied here to compound-com-
pressible flow problems. The great advantage of this type of ap-
proach is that it provides physical insight into the nature of the 
flow. 

Mixing between the various streams is not considered in the 
development of the basic theory, but its effect on compound-
compressible flow behavior will be discussed. It will be shown 
that mixing often has a negligible effect on the flow behavior. 

The usefulness of the compound-compressible flow theory is 
demonstrated by comparing its predictions with both three-
dimensional computer calculations and experimental results. 

The basic approach used to develop the compound-compressi-
ble flow theory will be to determine how changing conditions at 
the nozzle exit plane change conditions within the nozzle. This 
will be seen to be the heart of the matter and all results obtained 
in this paper are presented in this light. Note should be taken 
of a pioneering contribution to compound-compressible nozzle 
flows made by Pearson, Holliday, and Smith [l].4 Their results 
are consistent with the general conclusions arrived at in this 
paper. 
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Fig. 1 Schematic drawing of axia l ly symmetric compressible-nozzle flow 

One-Dimensional Compound-Compressible 
Nozzle Flow Theory 

The development of one-dimensional compound-compressible 
nozzle flow theory follows that of Shapiro [2] for single-stream 
flow. The most important alteration is that the fluid static 
pressure is chosen as the dependent parameter because it can vary 
only along the nozzle in one-dimensional flow, whereas all other 
fluid properties can also change from stream-to-stream across the 
nozzle. 

This analysis is sufficiently general to include any arbitrary 
number of streams designated by the integer n. For example, 
at anj' position in the nozzle, 
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1 Now, Propulsion Staff Engineer, Commercial Airplane Division, 

The Boeing Company, Renton, Wash. 
2 Now, Head, Turbine Research and Technology Group, Pratt & 

Whitney Aircraft, East Hartford, Conn. 
3 Now, Computer Specialist, Gerber Scientific Instrument Com-

pany, South Windsor, Conn. 
' Numbers in brackets designate References at end of paper. 
Contributed by the Applied Mechanics Division for publication 

(without presentation) in the J O U R N A L OF A P P L I E D M E C H A N I C S . 
Discussion of this paper should be addressed to the Editorial De-

partment, ASME, United Engineering Center, 345 East 47th Street, 
New York, N. Y. 10017, and will be accepted until October 15, 1967. 
Discussion received after the closing date will be returned. Manu-
script received by ASME Applied Mechanics Division, November 15, 
1966. Paper No. 67—APM-L. 

t = l dx (1) 

where A is the total flow area, / l , is the flow area of the ith stream, 
and x is the axial nozzle position coordinate. In single-stream 
one-dimensional theory, dA /dx is arbitrarily small and this carries 
over into the present case where all dAJdx are arbitrarily small. 
The transverse pressure gradients caused by streamline curvature 
can then be neglected and this leads to the conclusion that static 
pressure is only a function of axial position. 

It is also assumed that the flow in each stream is stead}', adia-
batic, and isentropic and that each fluid is a perfect gas with con-
stant thermodynamic properties. Note that these assumptions 
exclude mixing effects. 
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where A:, is the ratio of specific heats, M, is the Mach number (M,-
= VJy/kiRiTi) for the ith stream, and p is the fluid static pres-
sure. Equations (1) and (2) may be combined to yield 

dx 
(In V ) = 

dA 
dx 

where 

i - ( - -hi k< \ m , 2 j 

h k< \M, 2 V 

1 M. 
/3 dx 

W 

The term /3, the compound-flow indicator, will subsequently be 
shown to be significant in determining the nature of the flow (i.e., 
whether it is compound-subsonic or compound-supersonic). 

The behavior of compound-compressible flow in a nozzle of fixed 
geometry can be most profitably examined by regarding the inlet 
pressure as an independent variable, Fig. 2. If the stagnation 
pressures (poi), the stagnation temperatures (7V), and the gas 
properties are constant and known for each stream, the mass 
flows (w,) are functions only of the local pressure and the local 
flow area: 

Wi = 
Ajpoi 

VToi C o . ) ^H, G , - l ) _ i C o , ) (5) 

Thus, for any given value of p at the inlet plane, where the A ,• 
are known, equation (5) may be used to determine the corre-
sponding values of wt. With the w{ fixed by the inlet pressure, 
it can be seen from equation (5) that the local A{ are functions 
only of the local p and known quantities in the remainder of the 
nozzle. Since the local M, are also functions only of the local p 
and known quantities, namely, 

M,» = 
kj - 1 

l»- 1 

L(?)" - (0) 

it follows directly that the local value of j3, equation (4), is a 
function only of the inlet pressure, the local pressure, and known 
quantities. Therefore, equation (3) can be integrated in principle 
from inlet to exit for any chosen value of inlet pressure. Referring 

to Fig. 2, the consequences of the choice of inlet pressure can now 
be examined. 

If the inlet pressure is sufficiently high (curves a and b), equa-
tion (6) will yield values of M, 1 small enough that (3 will be > 0 
everywhere in the nozzle and p will therefore change in the same 
direction as A throughout, equation (3). In particular, both p 
and A will have their smallest values at a geometric throat where 
A reaches its minimum. Note that the integration also shows 
what the back pressures must be to maintain these flows. 

At the same time, the differentiation of with respect to p 
yields 

d§_ 
dp = s P ^ w [ ( 1 - M ' a ) i + 2 ( 

1 + M,2 > 0 

(7) 

Fig. 2 Compound-compressible flow in a nozzle of fixed geometry 

Each stream may then be separately treated as a single-stream 
one-dimensional flow (Shapiro [2], Table 8.2). Consequently, 

(2) 

which shows that (3 always changes in the same direction as p. 
Therefore, for curves a and b, /3 will also change in the same 
direction as A and will also have its minimum value at the throat. 

As the inlet pressure is decreased, the value of /3 at the throat 
will also decrease. In fact, when the inlet pressure is chosen to 
be sufficiently small, /3 reaches zero at the throat. When this 
occurs, equation (3) is indeterminant and no longer serves to 
determine the axial pressure gradient at the throat. Under this 
condition, application of L'Hospital's rule to equation (3) yields 

dx 
(In p) 

(3) 
d2A 
dx2 

M,-2)2 + 2 

(8) 

The geometry of any throat is such that d'A/dx' is always >0. 
Therefore, d(ln p)/dx will be either the positive or negative root 
of a real number. 

Curve c represents the choice of the positive root while curve d 
represents the choice of the negative root. Comparison of 
curves c and d reveals a familiar single-stream compressible flow 
situation: The geometric throat is a saddle point for two isen-
tropic solutions in the divergent section of the nozzle. No back 
pressure between curves c and d can correspond to an isentropic 
flow. It is anticipated that those back pressures which do not 
correspond to isentropic solutions, such as that of curve e, may 
be reached by means of compound shocks initiated at some point 
on curve d. 

The behavior of the flow along curve c is similar to that of 
curves a and b; i.e., A, p, and (3 will reach their minimum values 
at the throat. Note that the positive root of equation (8) is 
chosen only when the back pressure corresponds exactly to that 
of curve c. 

The implications of the choice of the negative root of equation 
(8) will now be considered in detail (curve d). Since equation (7) 
has shown that j3 always changes in the same direction as p, dfl/dx 
must also be negative at the throat. Accordingly, /3 must de-
crease from positive to negative as it passes through zero at the 
throat. Furthermore, with /3 negative entering the divergent 
section (where dA/dx is > 0), simultaneous examination of equa-
tions (3) and (7) shows that the local values of both p and /3 must 
continue to decrease through the divergent section. Note that 
the integration of equation (3) still shows what the back pressure 
must be to maintain this flow. 

No isentropic solutions exist for inlet pressures corresponding 
to values less than that of curve d because /3 would reach zero 
upstream of the geometric throat. This would result in an infinite 
axial pressure gradient, equation (3). 
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Some interesting conclusions can be made by examining the in-
fluence of back pressure, p„, on the inlet pressure. A back pres-
sure greater than that of curve c will affect the pressure at the 
inlet plane and will thus influence the flow rates of the individual 
streams. Any back pressure less than that of curve c will affect 
neither the inlet pressure nor the flow rates. This condition will 
be referred to as compound-choking. Under such conditions, the 
nozzle geometric throat controls the behavior of the flow. 

Also, since dp/dx is always < 0 for curve d, Bernoulli's equa-
tion shows that a continuous acceleration of the flow takes place 
throughout the nozzle. Applying this to equation (3), it can be 
seen that, for continuous acceleration of the flow, |3 > 0 whenever 
dA/dx < 0 and (3 < 0 whenever dA/dx > 0. Thus, for con-
tinuous acceleration of the flow in a single-stream convergent-
divergent nozzle, examination of /3 reveals that the flow must be 
subsonic in the convergent section, sonic at the throat, and 
supersonic in the divergent section, equation (4). In the follow-
ing section, it will be shown that for compound-compressible flow 
an analogous situation exists: The flow must- be compound-sub-
sonic in the convergent section, compound sonic at the throat, 
and compound-supersonic in the divergent section. It will also 
be shown that these regimes are differentiated by the com-
pound-flow indicator, /3. 

Compound Waves 
The compound-choking phenomena just described can be ex-

plained by examining the effects of small pressure disturbances 
on the flow. A diagram of such a disturbance is shown in Fig. 3. 
It is consistent with one-dimensional theory to take the flow area 
as constant in wave calculations. If a weak plane pressure dis-
turbance is imposed on the flow, Fig. 3(a), this disturbance cannot 
propagate at different absolute velocities in each stream without 
violating the condition that the static pressures at the stream 
interfaces be equal. Therefore, the wave must be continuous 
and must travel as a single compound wave, Fig. 3(b). Although 
the wave is not necessarily plane, the pressure rise across it cannot 
vary from stream to stream. 

As indicated in Fig. 3(6), the absolute terminal velocity in the 
upstream direction of the compound wave is designated by a . It 
follows directly that: a > 0 corresponds to compound-subsonic 
flow; a = 0 corresponds to compound-sonic flow; a < 0 corre-
sponds to compound-supersonic flow. 

An analytical expression for the compound wave velocitj^, a, 
can be derived by treating each stream separately as a flexible 
tube and conserving mass, momentum, and entropy across the 
compound wave in the frame of reference of the compound wave. 
It follows that 

AAf 

A-i 

A^ 

kiPi 

1 

M = + m , . Y 
A V h R i T i 7 

(9) 

where A signifies the change across the compound wave. Since 
the flow area is constant, 
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Fig. 3 Evolution of a one-dimensional compound wave 
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Examination of equation ( 1 2 ) shows that the compound wave 
velocity a, and the compound flow indicator j3, must always have 
the same sign. Therefore /3 > 0 corresponds to compound-sub-
sonic flow; P = 0 corresponds to compound-sonic flow; /3 < 0 
corresponds to compound-supersonic flow. 

Nolo that compound-choking can only occur at the nozzle mini-
mum area for it is there only that (3 can equal zero. Note also that 
small-amplitude compound waves cannot move upstream in the 
compound-supersonic region. One would therefore expect that 
compound-shock waves could arise and cause the steady com-
pound-compressible flow to be nonisentropic in the compound-
supersonic region. By the same reasoning, compound-shock 
waves are not expected in the compound-subsonic region. 

Several conclusions may be drawn from this analysis: 

1 The concept of flow choking at Mach one is no longer valid 
in compound-flow analysis. Indeed, when compound flow is 
choked, the individual stream Mach numbers at the throat will 
not be equal to one (except for the unique case where the stagna-
tion pressures of all the streams are equal and the Mach numbers 
of all the streams are unity). Rather, compound-choking is de-
termined by the compound-flow indicator and can occur only 
when j8 = 0 at the minimum nozzle flow area. 

2 Not every stream need have a Mach number < 1 in order 
that the flow be compound-subsonic and not every stream need 
have a Mach number > 1 in order that the flow be compound-
supersonic. In fact, equation (4) shows that the various streams 
influence f3 in proportion to their flow areas, which agrees with 
intuitive reasoning. 

3 The compound-flow regimes determined by j3, compound-
subsonic and compound-supersonic, are analogous to the sub-
sonic and supersonic flow regimes encountered in single-stream 
nozzles. In fact, the usual single-stream results are obtained 
when n = 1 in the foregoing equations. 

Y , A/1, = A.-t = 0 
i = i 

(10) 

across the wave. And since pt = p and Ap t = Ap, equations (9) 
and (10) may be combined to yield the desired relation for 
the compound wave velocity a\ namely, 

E £ i = 1 Ki 

A VktRiTi 7 

= 0 (11) 

Equations ( 4 ) and ( 1 1 ) may be combined to yield 

Computational Procedures tor Compound-Compressible 
Nozzles 

Despite the need for differential equations in drawing conclu-
sions about one-dimensional compound-compressible flows, the 
solutions for the behavior of these flows will lie seen to require 
only algebraic computations. 

Although the equations in the preceding sections were derived 
for n flows, to illustrate the application of this analysis, only 
two-stream convergent-divergent nozzles will be considered in 
this section. This will not only result in the development of less 
involved equations but will also clarify the role of the geometric 
throat and the phenomenon of choking. 
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As has been shown, the behavior of compound-compressible 
flow is determined by the relationships of k{, Rh A,-, wit Tm, po;, and 
p. Equations (1) and (5) can be combined to yield 

£ uu Vr~*i / M k < 12 / kj \ i _ / 
i = 1 Poi \pj Ir> \ki - 1/ L \PoJ 

ki-V 
b 

= E ^ = (13) 
1 = 1 

Using equation (13), the following expression may be written for 
two streams at any point in the nozzle: 

•A 
wt VT, 
ir, VT, 

A 
u * 

fcl+1-

where 

i r i " i ' / » i ( 

_ ( V ) * ' 1 _ ( p . ) h f W j ( h - 1 \ 
\ p j L \Po./ J ) [R>k\ \A-2 — 1/ 

fa+r 

I C ^ ) ' - ' <»» Wi VT0 1 
Poi 

These are the fundamental equations for solving two-stream 
compound-compressible flow probems. 

When unchoked flow exists, it has been shown that the flow be-
havior is determined by the back pressure, Fig. 2, and = pCIit. 
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Fig. 4 Typical relationship of flow parameters in a convergent-divergent 
nozzle 

Thus, for unchoked flow, equation (14) may be applied at the exit 
plane. Typical solutions of equation (14) for unchoked flow are 
presented in nondimensional terms in Fig. 4 as the curved lines 
of different A,*/A^\ t . Although these curves were generated for 
particular values of k, R, and temperature-corrected mass flow 
ratio (i«2 V T m / W i Vt\>\), similar solutions can be generated for 
any other values of these parameters. 

Under choked flow conditions, it has been shown that the flow 
behavior is determined by the nozzle geometric throat where 
ft = 0. Equations (4) and (6) can be combined to yield the follow-
ing equation for choked conditions: 

v2 V'l 
w, V t 

Tm ^ /h Po2\ JA-i - 1 /p_\ . 
\A-1 p j I 2 L w 

1 - i i 

- 1 1 

X C02) ' f t (a-2 - l) 1 -

l-h 
C02) 

h-r 
hi 

- l 

X 

1 r fa - 1 
2 ( fcl \ 

1 - (") h 

\p0./ A'i - 1J 
1 - (") h 

\p0./ 
(16) 

Equations (14) and (16) may be simultaneously solved, by trial-
and-error, to determine the relationship between P02/P01, "-'2 VTm/ 
«' 1 VT0i, Ai*/Athroat and pthroat/poi at choking for any given gas 
properties. The relationsliip between P02/P01, W2 VT\n/wi V'Tqu 
and /liV-lehroat is shown in Fig. 5. It can be seen that, for any 
given value of w2 VTm/wt VT\u there is a unique P02/P01 corre-
sponding to each .Ai*/ylthroat. These values appear as horizontal 
lines in Fig. 4 because the back pressure does not affect the 
choked solution. 

Referring to Fig. 4 for any given combination of Ai*/yi8 Iu and 
A]* / A throat in a single nozzle, the intersection of the corresponding 
lines indicates the onset of choking (curve c in Fig. 2). For 
values of poi/pa smaller than that at the intersection, the flow 
behavior is given by the unchoked curve. For values of poi/p« 
greater than that at the intersection, the flow behavior is given 
by the choked straight line. Therefore, the entire flow behavior of a 
compound-compressible nozzle can be described by a single line. 
For example, the dashed line in Fig. 4 represents a nozzle with 
-41 * / . 1 throat = 0.431 and A S / A ^ n = 0.226. (These are the ac-
tual dimensions of the test model described in the experimental 
section of this paper.) 

The behavior of Mi and M2 at the throat for choked flow as a 
function of w2 VT^/Wi VTm and fixed -4i*/Athroat and gas 
properties is shown in Fig. 6. Note that neither stream is sonic at 
the nozzle throat. 
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Additionally, it is important to note here that the solutions 
presented previously are independent of the individual flow areas 
at the inlet plane. In practice, however, it is possible for these 
areas, if not properly designed, to cause large three-dimensional 
effects at the inlet plane, due, for example, to independent chok-
ing of the primary stream. Nevertheless, it is still either the 
nozzle exit area or geometric throat, not the inlet areas, which 
will control the flow behavior. Thus, even if these three-dimen-
sional effects cause stagnation pressure losses at the inlet plane, 
the theory still gives the correct solution provided that pM and pa 
are measured downstream of the loss. In any case, this situation 
can be avoided by designing the proper flow areas for the inlet 
plane. This can easily be done by solving equations (1) and (5) 
simultaneously at the inlet plane for the flow parameters corre-
sponding to the one-dimensional solution. 

The procedures outlined in this section are particularly suited 
to problems where w2 ^/TM/W, y/T0i is specified. However, the 
theory can be applied equally as well to generate solutions for 
any suitable set of given conditions. The methods presented 
here may also be extended to cases of more than two flows. 

Three-Dimensional Two-St ream Nozzle 
Computer Calculations 

One of the basic assumptions of the one-dimensional theory is 
that the effects of streamline curvature are small enough to be 
neglected. This can be an important restriction in the applica-
tion of the theory to actual nozzles. Therefore, to demonstrate 
the effect of such curvatures, a three-dimensional two-stream 
nozzle solution will be compared with the one-dimensional theory. 
To do this, an axially symmetric two-flow nozzle computation 
was carried out. A brief description of the computation is given 
here to justify its use in evaluating the one-dimensional theory. 

The basic idea behind this calculation can best be understood 
by recalling that the curves in Fig. 2 were obtained by an integra-
tion of equation (3) through the nozzle. Here a numerical 
integration includes three-dimensional effects. 

Some important assumptions are made about the flow before 
this solution is applied; namely, 

1 The system must be symmetrical with respect to its center 
line. 

2 The two flows are isentropic and do not mix but are in con-
tact along a slipline. 

3 The static pressure is free to vary along the slipline but 
must be equal across it at every point. 

4 The primary, or inner, stream must be everywhere super-
sonic while the secondary, or outer, stream is not restricted. 
This allows a method of characteristics to be used for the primary 
stream calculations. 

For any one problem, the temperature-corrected mass flow ratio, 
the ratio of specific heats for each stream, the gas constant for 
each stream, the coordinates of the wall shape, and the primary 
stream inlet Mach number are considered to be specified. 

N O Z Z L E W A L L 
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Fig. 7 Construction of a typical slipline point in three-dimensional f low 
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The flow field of the primary stream is constructed using 
standard numerical forms of the method of characteristics equa-
tions for axially symmetric flow. The secondary stream is calcu-
lated using one-dimensional, isentropic flow relations. The flow 
areas of the secondary stream are measured along a projection 
normal to the slipline, Fig. 7. The assumption that this flow 
is one-dimensional and has no streamline curvature effects is not 
a serious restriction. It should be noted that the secondary flow 
passage occupies only a small portion of the total radius at any 
section (relatively small mass flow rates and annular geometry). 
Therefore, the streamline curvature effects are small compared 
to those of the primary stream, where they have been accounted 
for. 

The secondary and the primary streams meet along the slipline. 
The calculation of a succession of points along this slipline involves 
an iteration procedure incorporating the calculations of the 
flow properties of each stream simultaneously, Fig. 7. Point C 
illustrates a typical slipline point to be calculated. Point B, the 
previous slipline point, and point A, the previous point on Mach 
lines A-B and A-C, are known. The conditions of point C are 
that it be on the Mach line A-C and that the static pressure at C 
be the same in the primary and secondary streams. These con-
ditions are satisfied through a trial-and-error solution involving 
the location of point C. 

As was noted, the program is performing a numerical integra-
tion equivalent to the integration of equation (3). For any set of 
given conditions, the results can be presented in terms of the 
Pai/Pn required to drive the flow. A reduction in p02/poi corre-
sponds to operation at a decreased back pressure p„. The term 
p„ will correspondingly decrease until pm/poi reaches a minimum 
value. Any value below this minimum will cause the slipline 
iteration to converge on a secondary area ratio, A2/A2* < 1, 
which is physically meaningless. This minimum value of pm/poi 
corresponds to choked flow. All values of pm/Vn greater than 
the minimum value correspond to unchoked flow. In short, the 
three-dimensional solution closely parallels the one-dimensional 
solution, Fig. 4. 

The three-dimensional computation for both choked and un-
choked flows usually presents little difficulty, and the integration 
through the geometric throat is generally smooth. Difficulties 
may arise when the accelerating secondary stream approaches 
Mach 1. This is due to the usual mathematical sensitivities en-
countered in computing one-dimensional flow properties near 
Mach 1. However, the transition through this region can be 
made by special techniques. 

This study was undertaken to find the effects of streamline 
curvature on the behavior of a compound nozzle. The first cal-
culations were performed with geometry corresponding to the 
basic nozzle used for the experimental portion of this paper. The 
flow fields in these cases showed definite three-dimensional be-
havior, especially in the initial expansion region. However, the 
calculations showed no important coalescing of Mach lines, so that 
the isentropic assumption was essentially valid. 

To further study three-dimensional effects, the nozzle geometry 
was modified. A series of nozzle shapes was generated by apply-
ing a scale factor to only the axial coordinates of the basic nozzle. 
The resultant series then consisted of nozzles which were identical 
one-dimensionally but had severe variation in the slopes of the 
contour. These geometries are shown in Fig. 8. 

The results from this series of computations are presented in 
Fig. 9. Curves a and b demonstrate the compound-choked flow 
regime. The term pm/poi is plotted versus Z*throat/-Dthroat, the 
length from the inlet to the throat divided by the diameter of the 
throat. Notice that for both curves the agreement with one-
dimensional results is excellent for relatively large Lthro»t/-Dthro»t 
ratios. For the smaller values of Lthroot/Duiroat, the three-dimen-
sional effects influence pce/poi. This is not surprising since in this 
range the nozzle contour slopes are most severe. Also, the nozzle 
throat is close enough to the inlet to be in the influence in the 
initial expansion of the primary stream. 
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T H E B A S I C N O Z Z L E A N D T Y P I C A L V A R I A T I O N S E X P E R I M E N T A L R E S U L T S 

ONE D I M E N S I O N A L T H E O R Y 

A E X I T — 

S H O R T E N E D 1—H "-THROAT | E L O N G A T E D N O Z Z L E 

N O Z Z L E ; " - E X I T 
B A S I C N O Z Z L E 

BASIC NOZZLE DIMENSIONS : 

A ' r ' A T H R O A T = 0.431 

M / * E X I T - 0226 

U H R O A T / D T H R O A T = 0.374 

L E X I T - " E X I T = 0.695 

Kj=K2= 14 
Rl=R2=53.3 

Fig . 8 N o z z l e s used in t h r e e - d i m e n s i o n a l c o m p a r i s o n 
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L T H K U A T ' D T H R O A T L T H R O A T / D J H R O A T 

Fig . 9 C o m p a r i s o n of o n e - d i m e n s i o n a l a n d t h r e e - d i m e n s i o n a l resul ts 

Curves o and d demonstrate the compound-unchoked flow 
regime. Again, agreement with the one-dimensional results is 
excellent. The discrepancies for short nozzles are not so pro-
nounced here since the exit conditions, and not the throat condi-
tions, are dominant. Some departure from the one-dimensional 
line is seen for the longer nozzles. It is felt that this may be due 
to accumulating inaccuracies resulting from the finite difference 
techniques used. For long nozzles, these errors may become 
significant by the time the exit plane is reached. 

The agreement between the one-dimensional and the axially 
symmetric solutions is excellent for the range of nozzle variation 
examined. Three-dimensional effects have little influence on the 
level of P02/P01 for the nozzle geometries considered. 

Experimental Results 
Extensive test programs conducted 011 a wide variety of nozzle 

types and geometries have shown excellent agreement between 
the one-dimensional compound-flow theory and experimental re-
sults. These test programs have included convergent, cylindrical, 
and convergent-divergent nozzles with both two and three 
streams. 

The success of the one-dimensional theory is not surprising. 
The previous section indicated that the behavior of compound 
flow nozzles is reasonably insensitive to three-dimensional effects. 
For nozzles with small wall frictional effects, and fairly undis-
torted inlet flow, only the effects of mixing can cause the one-
dimensional model to be inaccurate when applied to real nozzles. 
It is reasonable to assume that, since the flow is turbulent, mixing 
is confined to a shear layer between adjacent streams which grows 
with axial position at an angle of less than 8 deg [3]. It is there-
fore clear that the shapes of the and the nozzle length are the 
major factors which determine the degree of mixing. The ten-
dency of the mixing will be to pump the low-velocitj' streams and 

2 4 6 8 10 
Poi/Pco 

Fig . 1 0 C o m p a r i s o n of c o m p o u n d - c o m p r e s s i b l e f l o w t h e o r y w i t h 
e x p e r i m e n t a l resul ts 

to retard the high-velocity streams. The extent of the influence of 
mixing depends primarily on the flow rates of each stream. The 
behavior of streams with proportionately low rates will be greatly 
affected by mixing while those with higher flow rates will ex-
perience only small effects. Note, however, that in the important 
case of choked Uow, mixing effects downstream of the nozzle throat 
can exert no influence whatsoever upon the behavior of the flow. 
Thus, for many nozzle applications, mixing will influence only a 
small portion of the flow. 

Because of the space limitations of this paper, a fully compre-
hensive comparison of one-dimensional theory with experimental 
data from a wide variety of compound-flow nozzle types and 
geometries is impractical. According^, the basic nozzle previ-
ously discussed was selected for comparison. Being convergent-
divergent, it is a representative two-stream nozzle in that it can 
display both the choked and unchoked regimes of compound 
flow. 

Tests were run over a wide range of temperature-corrected 
mass flow ratios while varying pm/p^ from approximately 2 to 10. 
This allowed the nozzle to exhibit both choked and unchoked 
behavior at each mass flow ratio. Fig. 10 is a comparison of ex-
perimental results with predictions based upon the one-dimen-
sional compound-flow theory. The choked flow regime is the 
straight portion of the theoretical lines and, as expected, occurs 
at the higher poi/paThe unchoked flow regime is the curved 
portion of the lines which occurs at the lower primary nozzle 
stagnation pressure ratios. 

It can be seen that the one-dimensional theory shows excellent 
agreement with the experimental data, particularly in the choked 
flow regime. Correlation with experimental data in the un-
choked flow regime is somewhat less accurate. However, in view 
of the mixing effects previously discussed, this was to be expected. 
During choked flow, all mixing downstream of the nozzle throat 
can have no effect 011 the flow. Thus the effective mixing length 
for choked flow is merely the distance from the inlet plane to the 
throat. On the other hand, during unchoked flow, all mixing 
downstream of the nozzle throat will have a very definite effect 
on the flow behavior. With unchoked flow, then, the effective 
mixing length is the entire length of the nozzle. 

As anticipated, we also observe that mixing has little effect at 
the higher mass flow ratios but exerts increasing influence as 
mass flow ratio decreases. Furthermore, the important effect 
of mixing is to pump the secondary flow and therefore reduce the 
required pm/poi-

It is noted that the model tested was not an ideally designed 
nozzle; i.e., the primary stream was independently choked and 
slightly underexpanded at the inlet plane. However, the model 
used in the experiments was operated sufficiently near to its 
isentropic design conditions that stagnation pressure losses in the 
supersonic stream were probably not important, and shock losses 
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are impossible in the subsonic secondary stream. This was indi-
cated in the previous section, where the three-dimensional solu-
tion showed no significant coalescing of the primary stream Mach 
lines under conditions for which the tests were run. Although 
Poi/Pos is measured upstream of the inlet plane, these argu-
ments justify our neglect of total pressure losses in all calcula-
tions. 

Concluding Remarks 
A new one-dimensional theory describing the behavior of com-

pound-compressible nozzle flows has been developed and its 
implications have been examined from a number of viewpoints. 

The theory yields simple algebraic methods for calculating the 
operation of compound-compressible nozzles. Comparison of the 
algebiaic results with those of three-dimensional flow field com-
putations indicates that the effects of streamline curvature are 
not important for many practical nozzle configurations. Com-
parison of the algebraic results with experimental data for flows 
with unimportant mixing effects shows that the theory can 

accurately predict the behavior of real devices. 
A complete definition of the range of applicability of the simple 

theory requires a great deal of experimental experience. For ex-
ample, little information is available about the rate of growth of 
the mixing zone between the high-velocity streams, and no in-
formation is available about the detailed nature of compound-
shock waves. Furthermore, no predictions about the thrust or 
nozzle efficiency can be made when the flow is choked until the 
losses caused by a compound-shock wave are known. Conse-
quently, it appears that the compound-compressible nozzle pro-
vides a number of interesting and important areas of research. 
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