
This is the result first presented in (1), t h a t the optimal igni
tion-to-burnout mass ratios are the same for all stages. 

Inc lus ion of Gravi ty , Drag a n d T u r n i n g Correc t ions 

To the extent t h a t one is able to make rough estimates of 
velocity losses due to gravity, drag and turning, these losses 
can be included as modifications of the required V in Equat ion 
[5], and the corrections will be reflected in the determination 
of the IJLJ. The resulting improvement is, of course, no bet ter 
than the estimates of the losses; hence this method is not a 
substitute for accurate calculations with a high-speed digital 
computer. Instead, it has proved to be a valuable auxiliary, 
in providing very good slide-rule designs, thereby materially 

T h e p r o b l e m considered is t h a t of d e t e r m i n i n g rocke t 
t h r u s t p r o g r a m s t h a t u s e t h e leas t a m o u n t of fuel t o propel 
a given m a s s in a ver t ical p l a n e f rom one p o i n t t o a n o t h e r 
w i t h o u t a e r o d y n a m i c lift , where g rav i t a t iona l force a n d 
a e r o d y n a m i c d rag a re k n o w n as func t ions of a l t i t u d e a n d 
speed. I t is solved by f o r m u l a t i n g i t as a Mayer p r o b l e m i n 
t h e ca lcu lus of var ia t ions w i t h cons ide ra t ion given t o t h e 
fact t h a t t h e rocke t m a s s c an never increase d u r i n g t h e 
flight. A s a m p l e p r o b l e m for a s h o r t - r a n g e g r o u n d - t o - a i r 
rocke t h a s been worked o u t u s ing a d ig i ta l c o m p u t e r t o 
show s o m e of t h e fea tu res of t h e s e leas t - fuel t ra jec tor ies . 

I n t r o d u c t i o n 

(^ O D D A R D ( l ) , 3 Hamel (2), Tsien and Evans (3), and 
y Lei tmann (4, 5) have considered the opt imum thrus t 

program for a vertical sounding rocket and have established 
t h a t this program involves a rapid boost a t the beginning of 
flight, usually followed by a period of continuous burning (sus
tain phase), and ending with a zero th rus t period (coasting 
phase). Edwards (6) and Cicala and Miele (7) have formu
lated the present problem in considerable detail; the principal 
contribution of the present authors is to add to this formula
tion a way to handle the constraint of nonincreasing mass and 
some numerical calculations of a typical case. Actually, 
two constraints were considered: (a) t h a t the rocket mass 
never becomes less t han the final (empty) mass and (b) t h a t 
the ra te of change of rocket mass be zero or negative. I t was 
found t h a t specifying only (a) was sufficient for the present 
problem since the resulting th rus t programs also satisfied (b). 
Earlier writers have considered calculus of variations prob
lems with such constraints (8, 9). 

F o r m u l a t i o n of t h e P r o b l e m 

We will consider the problem on a flat ear th and neglect 
variat ions of the gravitat ional force with alt i tude, which is an 
adequate approximation for short-range rockets. (The more 
complete problem is a direct extension of the present one.) 
Adopting the coordinates shown in Fig. 1, the conservation of 
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reducing the amount of expensive computer t im£ needed to 
locate design optima. 
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momentum parallel and perpendicular to the flight pa th re
quires t h a t 

mv = —cm — D(y, v) — mg sin y [1] 

H = — g cos 7 [2] 

where m is the instantaneous mass of the rocket, D the aerody
namic drag and v the velocity. The rocket has been assumed 
to have high weathercock stability so t h a t its axis is always 
parallel to the flight pa th . (The flight pa th is the pa th of the 
center of gravi ty of the rocket.) 

We will also need the kinematic relations 

y = v sin y [3 ] 

x = v cos 7 [4] 

The th rus t of the rocket motor has been given as —cm, 
where c is the effective exhaust velocity of the gases relative 
to the rocket and is assumed to be constant. Note t ha t c/g is 
the specific impulse of the rocket propellant. Referring to the 
introduction we see t h a t we need to require t h a t 

m > rrif [5] 

and, further, we should check our solutions to be sure t h a t 
m < 0 throughout the flight since fuel cannot be "sucked 
back i n " to the rocket. 

Now, let us define an "admissible t ra jec tory" as one t h a t 
satisfies Equat ions [1 through 5] and in addition has certain 

y * 

V 

(x f , y f > 

^0 

J . 
X 

Fig. 1 Trajectory notation 
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specified final values of m, x and y, and certain specified initial 
values of v, x and y. 

The problem, simply stated, is to find the admissible t ra
jectory tha t minimizes the initial mass. 

The Equat ions for a Stat ionary Trajectory 

We first change from time to horizontal distance, x, as in
dependent variable using Equa t ion [4] 

dx 
dt = 

v cos 7 

Next we introduce dimensionless variables as 

gx Dev 

t v~ m v QV 0 o ~~ r«i 
c2 rrif c c2 c m/g 

Next we eliminate JJL as a variable in favor of the quan t i ty 
0 = jLte", which does not change during an impulsive burning 
of fuel (see Equat ion [1]). Log 0 = v + log /JL has the proper
ties of a "potent ia l veloci ty" since it is the velocity t h a t could 
be a t ta ined a t any point in the flight by burning all the rest of 
the fuel instantaneously, i.e., decreasing /x to 1. Such an in
s tantaneous "boos t , " while not possible, is a convenient 
idealization to a very rapid burning of fuel. Rewriting Equa
tions [1, 2, 3, 5] in the new variables 

sec 7 . 
Ji = <p + ( 9 sm 

V 

J2 = y' -f - = 0 . . . . 
V2 

Js = t\' — ta.n 7 = 0 . . 

J, = 0 - ev - f2 = 0. 

7 + G) = = 0 where Q, = 

•••[7] 

[8] 

• -[9] 

[10] 

where ( ) ' = dQ/d£ and we have introduced a new real vari
able f in Equat ion [10] to insure t ha t /x > 1. These are four 
equations in five variables, 0, y, 77, v and f so one of them is 
a rb i t ra ry ; we shall regard 77 as the arbi t rary function. Note 
t h a t the t ime can be computed from 

sec 7 
[11] 

Consider now an admissible trajectory, characterized by 
the functions 0, y, 77, v and f, and another admissible trajec
to ry characterized by 0 + 30, y + 8y, 77 + ST?, J; + 5^ and f 
+ 5f where <5() signifies a small variation. Since both are 
admissible trajectories, it follows t ha t 

8Ji = Ji(<t> + 8<l>, T + 8y, V + 577, v + 5*>, f + 5f) 
-Jiihy, v,v, f) = 0 . . [12] 

Therefore 

0 = J 0
/ E urn^M [13] 

where X*(f), £ = 1, 2, 3, 4, are four more dependent variables 
known as Lagrange multiplier functions, as yet unspecified. 
Integrat ing Equat ion [13] by par t s in the usual manner, we 
find 

0 = 1X̂ 0 + \28y + X,fy]0* - / 0 ^ [~V - ~ p ^ - X41. 

+ [x/ 

<50 

Xi sec2 7 
( 0 + Q, sin 7 ) + Xa sec2 7 7̂ + 

|~ QiysecT"] f sec 7 
X3 — Xi 077 + Xi ( 0 sm 7 + 12 — j/S2„) 

L ^ J L ^2 

"Idv + 2 X 4 f 5 f > ^ . . [ 1 4 ] + 242 + ^ 

Now, we choose Xi, X2, X3 and X4 so t ha t the coefficients of 50, 
67, 8v and 5f all vanish, i.e. 

v _ X l i a n r _ X 4 = 0 [ l 5 ] 

Xi sec2 'v 
X2' - (0 + 12 sin 7) + X3 sec

2 7 = 0.... [16] 
v 

Xi( 0 sin 7 + ft - vQv) H 2 C Q S 7 + J/2 COS7X4C = 0. . . . [17] 
v 

X4f = 0 [18] 

Referring to the terms before the integral in [14], we see tha t 
for an admissible trajectory [8rj]^o = [8rj]^=^f = 0. Now 
7(0) and 7 (? / ) are unspecified bu t we may choose 

X2(0) = X2(£/) = 0 [19a] 

Similarly, since v(%f) is unspecified, it follows t ha t 0(£/) is 
unspecified, bu t we may choose 

Xi(f/) = 0 [19b] 

Equat ions [19a, 19b] are known as "na tura l boundary con
d i t ions" of the problem. Because of our choice of X's through 
Equat ions [15-19], Equat ion [14] reduces to 

^ ^ - / / ' ( x . ' - X . ^ f ^ ) * , [20] 

From [18] it follows tha t a t any given t ime during the flight 
either X4 = 0 or f = 0. F rom [10] it can be seen t ha t f = 0 
corresponds t o r n = mf, i.e., constant mass which means zero 
thrus t . Now we have used the variable 0 for the express pur
pose of allowing for an instantaneous boost a t £ = 0 since 
0 ( 0 + ) = 0(0 — ), i.e., 0 does not change during such a boost. 
Since we wish to find the minimum initial mass /x(0 —) for a 
given initial velocity v(0 — ) and /z(0 —) = e~y ( o _ )0(O), it will 
suffice to minimize 0(0) . Referring to Equat ion [20] we see 
t h a t if we pu t 

Xi(0) = const ^ 0 [21] 

we can obtain a s tat ionary value of 0(0) for arbi t rary small 
577 if 

X 3 , _ X I S W T = O [ 2 2 ] 

V 

Since all of the equations involving the X's are homogeneous in 
them, we may set 

Xi(0) = 1 [23] 

An admissible trajectory t ha t gives a s tat ionary value of 
initial mass will thus be obtained by the simultaneous solution 
of the seven first-order ordinary differential equations [7, 8, 9, 
10, 16, 17, 22] plus the two equations [15, 18] in the nine de
pendent variables 0, v, rj, 7, f, Xi, X2, X3 and X4 with the seven 
boundary conditions 

Atg = 0 At g = fr 
X2 = 77 = 0 Xi = X2 = 0 
X i = 1 yU = 1 , 77 = 7?/ 

[24] 

A First Integral of t h e Prob lem 

Equat ions [15-18] plus [22] are the Euler-Lagrange equa
tions corresponding to the integrand of Equat ion [13]. Since 
the integrand of [13] is not an explicit function of £, a first 
integral of the five Euler-Lagrange equations exists, namely 

dG dG , dG dG „# dG 
0 ' + v' —- + rj' h 7 + f — — G = const 

50 bv' drjf by 5f 
. . . . [ 2 5 , 
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where 

G = £ X*/< 

Substituting into [25] and multiplying through by ctn 7, the 
first integral becomes 

A3 = -fa ctn 7 + - (0 + 12 esc 7) + 2 C n 7 . . [26] 
V V2 

where fa = const. Substituting [26] into [16] gives 

i!2 cos 7 

where 12 = 0(77, p). Thus if /jfl, y0, and the drag function 12 
are given, Equation [35] is a transcendental equation for v0. 
Fig. 2 shows a plot of this relation for the particular case of a 
quadratic drag law 

D = DQv*e--fa • [36] 

.[27] 
x . A Xil2 cos 7 X2\ 
A2 = sec 7 esc 7 I fa — —— I 

\ v v2) 

A Second Integral for the Sustain Phase 

If we use an exponential law for the variation of drag with 
altitude, i.e. 

®(v, n) = Q(v)e -Pv • [28] 

then it follows that Q, = — 012. Using this in Equation [16] 
and multiplying [7] by Xi and [22] by 0 and adding the result
ing three equations together, we obtain an exact differential 
equation if X4 = 0 (as it is during sustain) which upon integra
tion yields 

/3Xi0 — X3 = fa = const. • [29] 

where D0 = drag at sea level at speed v = c. 
Note: with 7 = 90°, Equation [17] is the optimizing con

dition for the entire sustain phase of a vertical sounding 
rocket, a simple relation apparently missed by Hamel (2) and 
Tsien-Evans (3), but noticed by Leitmann (4). 

Conditions at the Juncture of the Sustain Phase and 
the Coasting Phase 

By considering the conditions at the juncture of a con
tinuous burning arc and a coasting arc (both extremals of 
the problem) it is easily determined that all the X's as well as 
0, v, 7, r] and f are continuous across this juncture (see Bolza 
(10)). The first derivatives of these quantities may be discon
tinuous across the juncture. 

Relations During the Coasting Phase 

During the coasting phase, JJL = 1, and 0 = ev, so that Equa
tion [7] becomes simply 

Relations for the Sustain Phase 

During the sustain phase X4 = 0, so we have three linear 
simultaneous algebraic equations for Xi, X2, X3, namely [17, 
26, 29]. Solving for Xi, we obtain 

v' = S 6 C T (fle-" + sin 7) 
v 

• [37] 

Xi = 
2v(fa cos 7 — fa sin 7) 

(1 - 2fa)0sin 7 + 12+^12/ 

Also, eliminating X4 between [15, 22] yields 

Xi tan 7 
Xi = ; \v — 1 — e v esc 7(12 — vily)] 

2X2e-" 
. . [38] 

• [30] 

Substituting this into [15] with X4 = 0, the following first-
order ordinary differential equation for the velocity v is ob
tained 

During the coasting phase then, Equations [37, 38] must be 
solved simultaneously with [8, 9, 27] with initial values of v, rj, 
7, Xi and X2 that are the final values of the sustain phase. 

= fa sin 7} 12 + pfl, + v2[{fiv - l)fly - ]8fi] - (2fty - 1)0 esc 7} + k2 cos y\tt + yfl, - v2 tan2 7 [(fa - 1)12, - flfl]} 
v[v2Qvv — (0 sin 7 + 12 — ?&„)](&! cos 7 — fa sin 7) 

[31] 

This last equation, solved simultaneously with the equations 
of motion [7, 8], and the kinematic relation, [9], determines 
the sustain phase of the optimum trajectory. From [17, 24] 
the boundary condition X2(0) = 0 yields 

[0 sin 7 + 12 - J / 1 2 ^ 0 = 0 [32] 

Utilizing [32] and Xi(0) = 1 in [30] we find that 

[(fa - 1)0„ - 0Q + fa cos 7 - fa sin 7k= 0 - 0 [33] 

Substituting [32, 33] into [31] we obtain at £ = 0 

" 2 tan7[( fa - 1)12, -012] 

Method of Solution 

It can be shown that the present problem of finding the 
thrust program that minimizes the initial mass of a ballistic 
rocket in traveling between two given points is identical to 
the problem of maximizing the range of a rocket with a 
given amount of propellant when the initial point and the final 
altitude are given (or maximizing final altitude with final 

Yv2 2vfa esc 7 — (12 + vQiv) ctn 7 
30 I, • [34] 

Equation [32] can be thought of as determining v(0) in terms 
of initial 0, rj and 7. Equations [33, 34] can be thought of 
as determining the constants fa and fa in terms of initial 0, 77, 
7 and v'. 

Boost Velocity 

Equation [17] with X4 = 0 provides us with a way to calcu
late the amount of the initial boost since jit0 = ^eVQ, if v° = 0, 
where the superscript refers to conditions before the boost and 
the subscript to conditions after an instantaneous boost. 
Substituting this into Equation [17] we have 

8(0, *>o) - vQQv(0t vo) + M° sin 70 = 0. • [35] 

range given). This latter viewpoint was taken in our sample 
problem. Thus we start with a given initial mass, take an 
arbitrary 7(0), then use [35] to determine v0 = J>(0+) a n d 
m0 = m°e~p(i (the velocity and mass after boost), then proceed 
with the sustain phase by guessing an initial acceleration 
p'(0). The problem is then integrated numerically by finite 
differences throughout the sustain phase until the fuel is ex
hausted; at that point, coasting flight is begun (zero thrust) 
and it is continued until X2 = 0. If Xi is not also zero at that 
point, the sustain phase is started over again with another 
value of initial acceleration vf(0). It was found that the 
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.5 

_Vo 
C 

.4 

1 1 1 1 
W0= WEIGHT BEFORE BOOST 

P0C
2 

D 0 = C D S 2 — = D R A G A T S P E E D C 

c = EFFECT VE EXHAUST VELOCITY 

OF ROCKET GASES RELATIVE TO ROCKET 

y 0 = ELEVATION ANGLE AT LAUNCH 

V '0= VELOCITY Al r END OF BOOS 1 

Fig. 2 Boost velocity for maxi
mum range ballistic trajectory-

quadratic drag law 

.01 .02 .04 .06 . 0 8 .1 W 0 s i n / 0 .2 .4 .8 .1 

W0siny0 

I 1 — 1 

i/V = WEIGHT BEFORE BOOST 

D0 = C 0 S A C 2 

1 1 1 

Z = EFFECTIVE ROCKET EXHAUST VELOCITY 
r0 = ELEVATION ANGLE AT LAUNCH 
T0= INITIAL SUSTAIN THRUST 

— = e y •, y = A 
ro 

LI 1 1 UUt 

h^'0 2 1 5 

Fig. 3 Approximate initial sus
tain thrust for maximum range 
ballistic trajectory (quadratic 
drag law and exponential atmos

phere) 
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FUEL SPECIFIC IM PULSE-208 SEC. 
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\ 7 0 ° 
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RANGE-MILES 

Fig. 4 Altitude-range envelope for optimum thrust programming 
of ground-to-air rocket for sample problem 

THRUST-
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(Am)BOOST 
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0 = 90° 
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DRAG = CDS Y- ,C D S = .47 FT_ 

° /> = /P0e"ayi -j-= 30,000 FT. 

/ 
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T I M E - S E C O N D S 

Fig. 5 Thrust vs. time curves for optimum thrust programming 
of ground-to-air rocket for sample problem 
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correct value of v'(0) could be estimated rather closely by 
differentiating the coefficient of Xi in Equation [17] (see Fig. 
3). If the final altitude came out below sea level, a higher 
value of 7(0) was used on the next try. In this way, by tak
ing the final value of rj that came out of the problem, we say 
that if we had specified this value as rjf then the thrust pro
gram of this problem meets the necessary conditions for a 
stationary value of final range, £/, for that altitude. 

Sample Problem 

A sample problem was calculated using the Harvard 
Univac. The parameters for the problem were 

mQg = 1000 lb; mfg = 500 lb; p = p0e~ay; CDS = 0.47 ft2 

and the drag law was chosen (for simplicity) to be 

PV2 

D = CDS — 

For altitudes below about 50,000 ft, 1/a = 30,000 ft approxi
mates the density variation with altitude fairly closely. 

The problems calculated were "inverse problems," i.e., the 
maximum range at various altitudes for a rocket with a mass 
ratio of 2 and certain drag characteristics was calculated. 

Fig. 4 shows five optimum trajectories. The envelope of 
these trajectories represents the maximum distance this rocket 
can reach with the best possible thrust programming. Note 
all the trajectories consist of an initial instantaneous boost, 
a sustain phase, and a coasting phase. The initial flight path 
angle for maximum range ground-to-ground appears to be 
about 68 deg, well above the value of 45 deg which it would be 
in the absence of drag. Fig. 5 shows thrust vs. time during 
the sustain phase; note about 32 per cent of the rocket fuel 
is used in the instantaneous initial boost and the remaining 
68 per cent of it is used during the sustain phase in a slightly 
"regressive burning" motor; i.e., the thrust drops off with 
time. The burning time is longer for the lower altitude firings. 

Fig. 6 shows velocity vs. time for each flight. For 7 = 90 
deg the analysis of Tsien and Evans4 was used and it was 
gratifying to see that their results faired smoothly into the re
sults of the numerical calculations. 

Note that for 70 = 70 deg, the velocity began to decrease 
near the end of the flight whereas it did not for the other 
cases. This is undoubtedly due to the entry into high density 
air near sea level which the other trajectories did not ex
perience. 

INITIAL WEIGHT-IOOO LB. — 
FUEL WEIGHT-500 LB. 

FUEL SPECIFIC IMPULSE-208 SEC. 

DRAG = C DS £f2- C 0S = .47 FT 2 

30,000 FT. 

4 As previously noted by others, there are-some typographical 
errors in their Equations [31 and 32], p. 101; the equations (in 
their notation) should read 

, „ „ 4- T, 2v + (1 - fl) - 7 2vo + (1 - fl) + 7 
as = v-vQ + 2 l n 2 , + ( 1 - 0 ) + 7 2 , o + U - / ? ) + 7 

I * + 3 In V2 + ( 1 " fi)v ~ 2/3 [311 

7 = V ( l + « 2 + 4^ [32] 

30 4 0 50 

TIME-SECONDS 

Fig. 6 Velocity vs. time curves for optimum thrust programming 
of ground-to-air rocket for sample problem 
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