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\:::ZZ::::::::' Too much unburned oxidizer
Port too short
~‘::::::::_‘_::::::::=-------========::::::: Too much unburned fuel
Port too long
\::::I::::::::zu ----- - O/F ratio at the end of the port is just right
Port length just right
Problem

The desired O/F ratio varies considerably depending on the choice of oxidizer. But the growth rate of the combustion layer
is relatively independent of O/F. The L/D ratio of the port should be about 6 to 10.

The Solution
Mix fuels to produce a regression rate tailored to the desired motor size and O/F.
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Burning rate law:
r=aG" [ x"

(1, + 10, (x.1))
where (G is the port mass flux G = ;
T r(x,t)

Typically m is small and 0.4 <n < (.7. Marxman suggested m=0.2, n=0.8
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FSAE{’%HE?&[Q Simplified approach

AN RO NAYTLCS

A simplification that is often used is assume the regression rate only depends
on oxidizer mass flux

e n mox
r=aG, G, =—2
Substitute and separate variables.

n

T gy = (rhox (t))n dt

a

Integrate
1

I’(t) _ (r(0)2n+1 + a(2nn+ 1) J‘Ot(mox (t'))n dt,jznﬂ

T

In this approximation the radius is constant along the port. This assumption
underpredicts the fuel generation rate and is not an accurate predictor of the O/F
ratio at the end of the port especially for low O/F ratios.
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Solve the nonlinear coupled mass-flow-regression-rate problem

The regression rate equation is

ar(x,t) . m’;ort

=d n_m._2n

i, = 1, i
ot T"x"r

port

The mass flow rate increase along the port is determined by the rate at
which mass is swept up from the fuel surface.

. . n
a’nport (x’t) 1-n mport
=27 apf m_2n-1
0x x"r

These first order PDEs need to be solved simultaneously for the local mass
flow rate and port radius.
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The case n=1/2
The coupled problem can be solved exactly for the case n=1/2 .

2

1/2 1-m
., (x,t)=| m, (1) + T Cap,x
l-m
-1/2 1/2 l_mt 1/2
r(x,t): r((),t)2 + M—a L. . (t,)l/zdt " T apgx
x" ° l—-m

The increase in port surface area exactly balances the decrease in mass flux
and so the mass flow rate is constant for constant oxidizer mass flow rate. The
O/F at the end of the port is constant.
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Numerical solution of the coupled problem

Karabeyoglu, M.A., Cantwell, B.J. and Zilliac, G., Development of Scalable Space-Time Averaged Regression
Rate Expressions For Hybrid Rockets, 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit AIAA
2005-3544 10 - 13 July 2005, Tucson, Arizona

Table 1: Summary of motor test data used to evaluate the length exponent for the paraffin/GOX system. 100 sec
Test 4L-04 4L-05 4L-08 4P-01 02 \ 80 =
Oxidizer Mass Flow Rate, kg/sec 4.44 443 442 443 S€C
Burn Time, sec 8.30 8.25 8.15 8.40
Average O/F 2.66 2.72 2.64 2.69 t 60 sec —_—
Initial Port Diameter, cm 8.93 10.01 10.30 11.38 015 \_40
Grain Length, m 1149 1149  1.148 1.148 = Sec
Final Port Diameter (Fore), cm 15.53 15.88 16.17 16.67 5 N
Final Port I?lameter (Af.t), cm 16.23 16.63 16.64 17.54 % 20 sec
% Change in the Port Diameter 4.34 4.54 2.84 4.99 Dt:U 01
Flux Exponent, n 0.62 0.62 0.62 0.62 = L 10 sec i
Length Exponent, m -0.018 -0.009 -0.033 0.000 DC_)
Regression Rate Coefficient, a® 936107 924107 9.1010° 936107
®: Note that the units of the regression rate coefficient are based on mm/sec for the regression rate, meters for the t=0 sec
length and kg/m>-sec for the mass flux. 0.05F =
m=-0.015, n=0.62
L=1.143 m, Dpi=0.1016 m
" . mo=4.5 kg/sec
Initial and final port geometry data from four tests were 0§ 95 07 95 95 : :
used to estimate a, n and m in the full space-time coupled Axial Distance, m
prOblem . Figure 11: Port diameters contours calculated at various times for m= -0.015, n=0.62 and a = 0.0927 . Oxidizer
mass flow rate is constant at 4.5 kg/sec, grain initial diameter is 0.106 m and grain length is 1.143 m.

Numerical solution captures the “coning” effect due to the mass flow increase in the port as well as the port
minimum due to a nonzero m exponent on x.
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For constant oxidizer mass flow rate the coupled equations admit a similarity
solution. Importantly this solution is relevant to the design of a working system.

Let the fuel be a semi-infinite block filling the right half plane in 3-D. At f =0 a finite oxidizer mass flow rate is
initiated along the x-axis. At first the mass flux is infinite but as the port opens up the mass flux drops to reasonable

values in the range of interest to a designer.

t=0

0 t>0

Cantwell, B. J. , Similarity solution of fuel mass transfer, port mass flux coupling in hybrid propulsion, J.
Engr. Math. Vol 84 issue 1, Feb 2014. Special issue in rememberance of Milton Van Dyke.
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Governing parameters

Nondimensionalize variables. Scales can be defined in terms of the
basic parameters of the problem.

_27rpf] = Mass | Length’
:n"zox] = Mass | Time

_n_"a] = Mass ™" Length”"" " 'Time"™

Solve for characteristic length, time and mass.

[ 1-n+m
T (mox)Z—Zn—m
ch — 3 14+2n+m
(n-_"a)Z—Zn—m (2ﬂpf)2—2n—m
i 1-n
I (mox)2—2n—m
ch — 1 1
(n-_”a)m (zn-pf)2—2n—m
3-3n
M (mox)2—2n—m
ch — 3 1+2n+m

(0o o, o
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Define Note
X t r m,. ;
xz— T=—— R:— J: .pt O/F:mox: 1
Lch Tch Lch mox mf J-1

Dimensionless governing equations

oR(x,7) T
aT - ZmRZn

of(x.t) J"
ax o meZn—l

The boundary conditions of the semi-infinite problem defined earlier are

R(x,0)=0 J(0,7)=1
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These equations admit a three dimensional Lie algebra

X“:a%

Xb:(ll—_Z %_(T:ijaar”aaf

X :%aif 2n2_n21n1+1jfaar+(;ﬁ)leaie
The group

PO +(2n—2m+1jf 0 +(1—m)R J
_xax 2n—1 ot \2n-1) R

holds invariant the constant oxidizer mass flow rate
in the port
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The group X¢ is used to construct similarity variables.

dy dt B dR _daJ
¥ (2n—2m+1)T a (1—m) 0
2n—1 2n—1
X R
9 = 2n—1 K(e) = 1-m J(e) = J
T(Zn—2m+1) Z(Zn—l)

The governing equations reduce to a pair of coupled ODEs

dK__(2n—2m+1j J"

do 2n—1 6(4;;31"1)1{2”
i J"
d6 K>

K()=0 J(0)=1
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This system of ODEs admits a dilation group.
0 =¢e‘0
Fa e‘(l‘")(znz_:_"i+l)“ %

j — e(2n—2m+1)aJ

Construct new similarity variables.

do dK _ dJ
0 _(l_n)(Zn—2m+1)K -~ (2n-2m+1)J
2n—-1
1 9(2n—2m+1)
M(e) = 2n-2m+1 V(e) =

90_@( 2n-1 )1((9) '1(9)

Finally the problem reduces to an autonomous system

= u vV —U
doo \2n-1)\ (1-n)

dv 1 2-n. 2n-1
— =V —- A% u
do (2n—2m+1)
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The system has two critical points at

(14.,v.)=(0,0)

and
) . 2 _ 2 +1 2n+1
(uc,vc)= [(2’1— 2m+1) (]._n)l ,( " m@ﬂ_?) }
(1-n)
Normalize by the coordinates of the nonzero critical point
U=— v=2"
uC vC
Finally
_ 2n+l1
Z_Uz (21 nl)U(UV" _1]
* n- Notice the
AV v O\ absence of m
(3
da u) v*
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g=—%

( 2n—1 j
T 2n—-2m+l1

(=)

R= X

2n-2m+l

(n—2m i1y (1-m) 6"y (g)

(1 _ n)(Zn—l) 9(2n—2m+1)

J =
(2n-2m+1)""v(6)

The preservation of J(0,7)=1 is accomplished through the

asymptotic behavior of V(0)
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The problem boils down to the solution of a single first order ODE

V U2n+1
1—
dv (2n-1\V u*) vr

dU l-n )U U
Vn
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n>1/2 n<l/2
20
1.5 15
V 1%
1.0 0 —> oo 1.0 ~—
0.5 0.5
9 OUHO 05 1.0 U 15 20 0'%.: = 0.5 0 7 15 2.0

One trajectory in the phase portrait preserves the boundary condition J(0,7)

Along this trajectory %in(}V(O) =(1=n)"" 0" /(2n—-2m+1)"" .
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Solution V versus U for n=0.62

10,
_ Recall

0.8}

v(U) | Vo

0.6} R

0.4} -1
' J

02}

040
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Solution in terms of 6

Numerical approximation to U(6) and V(6)

10 n=08, m=02 ceeen RN % e %e ° s "* 10 . .. L e
0.8t 08 n=08 m=02 ,.*" _.o°"
U n=0.62, m=0.009 Vv
06! 06! & et Tn=0.62, m=0.009
0.4 0.4} s
0.2 02t
00 ‘ ’ . . . . ' 00
0 10 20 30 0 40 50 60 70 0 10 20 30 0 40 50 60 70
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Dimensionless radius and mass flow solutions. n>1/2

30,
R (@)
| I o
20t
2L 15
1 10
T=1 osl =1
80 02 0.4 06 X 08 10 099 02 04 06 1 08 10
4r 20
R ©) O/F | (@
3t 1.5
2 10
1 x=1 05F z=1
00 02 04 06 08 10 090 02 04 06 038 10
T T
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Dimensionless radius and mass flow solutions. n<1/2

4,

30

a
R @ J_.l ®

3l 25

20f
2 1.5F
] 10
L =1 —

T 05F =1
% 0 0‘.2 04 016 0:8 ILO 0.0 02 0i4 0.6 0I8 1.0
X X
ar 201
R |
,0 (© O/F (d)
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2 10
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Parameters of some typical oxidizer/fuel combinations

Fuel/Oxidizer Paraffin/O, | HDPE/O, | HDPE/N,O
p;*x107 0.920 0.941 0.941
n 0.62 0.498 0.331
m 0.009 0.0 0.0
ax10’ 9.240 4.193 11.573
1-n+m
T, /(n'lax)Z—Zn—m x107° 1.206 2.095 0.03237
1-n
L, /( mox)Z—Zn—m 5.931 7.077 1.763
3-3n
1.206 2.095 0.03237
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Comparison with NASA Ames test 4L-05

Case 1 — Paraffin burning with oxygen (n,m)=(0.62,0.009).
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Set the oxidizer mass flow rate to m,, = 4.43 kg / sec . Characteristic scales for this case are

T, =2.607%x10° seconds L, =12.594 meters M, =1.155x10" kilograms  (73)

Take the port length to be L 6 =1.149m meters. The initial and final burn times are

port

tyum = 4.20 seconds and t,,,, =12.45 seconds. For these burn times, 7, , =1.611x10° and
T ., =4776%x107°.

0.10 m,, =443 kg | sec

20,
, (@) L,,=1149m (b)
r 008! t, . =1245
T | x/L,, =000365896 bum? S:: Jl o
P 06| Y /L, = 0067977 r/L,,, =0073260
| x/ L, =0.00325377 By = 4.20 seC 10 __,—///—
0 04 ﬂ : tbumz = 1245 sec
TR, L. - 00418686 r/L,,, =00455746
0.02 05}
000" : ; . . . . .
90 02 04 06 o/ L 0.8 10 095 02 07 0% 08 1o
'port x/ Lport
0.10, 4
(c) O/F | (d) %/ Ly, =1

_r 008 x/L,, =1 st

Lpart
006 % /" | OfF at the end

r/L,, =0073260 ol O/F=287582 of the port
004L v\ 0/F=253415 ook P q
00ks very goo
/L =00455746
0.02f T Spon 1 over the
entire burn
0.00 . - : - ; 9 . , . . .
0.0 02 0.4 06 08 10 0 02 0.4 0.6 0.8 10
t/tbum2 t /tburn2
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Comparison with NASA Ames test 4L-05

Measured variable Test 4L-05 Similarity solution (Fig 15)

Oxidizer mass flow rate, kg/sec 4.43 4.43
Burn time, sec 8.25 8.25

Grain length, m 1.149 1.149

Initial port radius, m 0.05005 0.05005 (averaged along port)

Final port radius (fore end), m 0.0794 0.0783

Final port radius (aft end), m 0.0832 0.0842
Percent increase in radius along the port 4.79 7.54
Overall O/F ratio 2.72 2.73

Excellent agreement with port geometry and O/F
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O/F comparison between coupled and uncoupled regression rate formulations

0.20¢

0.15¢
O/F -O/F

coupled uncoupled

O/F

coupled

0.10¢

0.05¢

0.003 5 A ¢ g 70

O/F

oupled
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