

Energy Generation from the Decomposition of Microbially- Generated Nitrous Oxide

PI: Professor Brian Cantwell Aeronautics and Astronautics

Graduate Student: Yaniv Scherson Aeronautics and Astronautics

Collaboration with Professor Craig Criddle Civil and Environmental Engineering

Support: The Woods Institute for the Environment

Overview of Research

N₂O Decomposition

$$N_2O \Rightarrow \frac{1}{2}O_2 + N_2 + 82 \text{ kJ/mol}$$

$$T_{adiabatic} = 1640$$
°C

MEMS N₂O Thruster

Small-Scale Thruster

- 12 tests conducted
- Rh on alumina catalyst

Performance Parameters	
Bed Loading	5 kg/m²/sec
c*	71%
T _{preheat}	400° C (100W Power)
T _{chamber}	888° C

Scaled-Up Device

Scaled-Up Device

Performance Parameter

 $P_{chamber} = 78 \text{ psi}$

Bed Loading = $5 \text{ kg/m}^2/\text{sec}$

c* = 81%

 $T_{int} = 300$ °C

 $P_{in} = 30W$

Where can we get N₂O to make ultra-clean energy?

Nitrogen Fixation

Natural Nitrogen cycle spins at 130 Tg N/yr.

Haber Process: 100 Tg N/yr.

The Problem: Nitrogen Waste

The Problem: Nitrogen Waste

N₂O Green House Gas

310 x Global Warming Potential (GWP) of CO₂

N₂O is 5.2% (U.S.) and 8% (world) of GHG emissions

N₂O production is increasing

• IPCC models suggest 415% increase by 2100

Haber-Process produces excess Ammonia

 toxicity to fish, fertilization and eutrophication of natural water bodies, oxygen depletion, and vast dead zones in the ocean margins

Bioreactor Overview

Currently bioreactors minimize N₂O and are inefficient Propose to maximize N₂O production, much more efficient This could lead to a ground breaking technology in waste water management!

The Solution

- 1. Convert reactive Nitrogen waste to N₂O gas
- 2. Decompose N₂O to enriched air + gen power

<u>C</u>oupled <u>A</u>utotrophic <u>N</u>itrous <u>D</u>ecomposition <u>O</u>peration (CANDO).

Convert Reactive Nitrogen waste to N₂O Generate significant power (N₂O + CH₄) and air Improve efficiency of bioreactors and reduce their operational cost

Bioreactor

13

Source: Prof. Criddle

Coupled System: Bioreactor

Impact on Bioreactor Operation

Methane

- 3-4 times more CH₄ production
- Up to 0.1 L of CH₄ per liter of wastewater treated

Oxygen

- Reduce O₂ requirement by up to 62%
- Aeration is about 50% of the operational costs of a treatment plant

Biomass

- Significantly decrease waste biomass
- Disposal of waste biomass is the second greatest operational expense at treatment plants.

Robustness

 Much faster growing and more robust bacteria than competing process (ANNAMOX)

Local Wastewater Treatment Plants

PALO ALTO

SAN JOSE

20-25 Million Gallons per Day

10 times more!

 $N_2O \rightarrow 200 \text{ kW}$

Power 190 homes!

 $CH_4 \rightarrow 6.4 \text{ MW}$

Power 6600 homes!

