This is a reproduction of a library book that was digitized by Google as part of an ongoing effort to preserve the information in books and make it universally accessible.

$$
1600 \mid 14
$$

TREATISE

ON THE

MOTION OF ROCKETS:

TO WHICH IS ADDED,

AN ESSAY ON NAVAL GUNNERY,

IN

THEORY AND PRACTICE;

DESIGEED FOR THE USE OF THE
ARMY AND NAVY,

AND ALL PLACES OF

MILITARY, NAVAL, AND SCIENTIFIC INSTRUCTION.

BY WILLIAM MOORE,
OF THE ROYAL MILITARY ACADEMY, WOOLWICH.

LONDON:

PRINTED FOR G. AND S. ROBINSON, PATERNOSTER-ROW.
1813.

PREFACE.

Ir was not till the year 1810, when the Academy of Copenhagen proposed as a prize question, the curve that a rocket describes, when projected, in any oblique direction, in vacuo, that I was led to consider the theory of the motion of rockets in different mediums. Since that period, I have at different times published, in the Philosophical Journal, some short and incomplete papers on this subject ; but finding that my enquiries would extend to a considerable length, and make a tolerable size treatise, which to military and other students would not be altogether useless, I resolved to arrange the matter which those contained with that of my other investigations, and publish them with another new theory on Naval Gunnery, in a volume collectively.

This, then, may be considered my apology for laying before the public the present work;-of the plan of arrangement of which, and of the principal articles which it contains, the following is a brief outline.

Previously to entering upon the theory of rockets, I have judged it not improper to lay down such parts of the doctrine concerning variable quantities, and of constant and variable forces, as are usually employed in the solution of mechanical problems, not merely for the ease and convenience of reference, but for the more important
object of giving to the young student a clear notion of the meaning and application of those quantities; for it deserves to be remarked, that in most of our minor works on mechanics, which are usually put into the hands of beginners, they are not given in that eligible and practical form, or treated with that clearness and perspicuity, as immediately to satisfy the minds of learners in general of their nature; or of determining their precise values in the resolution of problems in which they may be concerned; a defect, let me add, that cannot be too much guarded against by writers of scientific and elementary treatises.

The first section on rockets, includes the theory of these bodies, considered as moving in a non-resisting medium. It commences with the proposition respecting the time of motion of a rocket in a vertical ascent, and the height to which it will rise before all its motion is destroyed by gravity; then follows the investigation of the curve that the body describes; then that of its velocity at any given instant of its flight; and lastly, that of the range of the rocket on the horizontal plane.

Section 2, embraces all the theory concerning the resistance to planes, cones, spheres, and cylinders, moving in fluids, that was necessary to establish the subsequent theory of rockets.-The investigations of the resistance to a cylinder moving in a fluid in any direction different from that of its axis are, I believe, new ; no work with which I am acquainted containing a solution to this problem generally, but merely of the common particular case where the solid is supposed to move in the direction of its axis; and perhaps, the theory of the flight of rockets is one, out of but very few, in which the subject is at all applicable.

The third section, contains the theory of rockets in resisting mediums. First, the motion of the body in a vertical ascent in the atmosphere is considered, and not only the height to which it will rise before all its motion is destroyed is determined, but also the time of its ascent and descent; a problem of no small labour, even upon the hypotheses which I have assumed; then the proposition concerning its motion in a medium independent of gravity is resolved, and all the circumstances relating to it most fully developed; next that of the effects of the wind upon the rocket in deflecting it from the plane of projection; and finally, the computation of the errors of bomb-shells and cannon-balls in any given case and velocity of the wind.-In this section I do not pretend to have given a complete theory of rockets;-the numerous difficulties that attend the perfection of even what is here offered, lead me to doubt of this from the ablest hands. All I can say in its behalf is, that the several subjects of which it treats, are at once of a new and natural description, containing many facts of importance, investigated in such a manner, as, it is hoped, cannot fail to benefit the young student who is just entering upon such enquiries.

Section 4, relates to the motion of wheels, suspended on fixed horizontal axes, as impelled by the force of rockets attached to their circumferences. And in the following section is given such part of the theory of pendulums, abandoned to the action of these machines, as is most useful in practice; as the estimation of the arc through which the pendulum is urged by the rocket during the time of its combustion, from which, an easy and correct method is derived for finding the strength of its composition.

Next follows a complete essay on naval gunnery, as
relating to the most effectual means of destroying the fleets of our enemies, when not far distant from the artillery. It rests on the problem, which determines the charge of gunpowder for any given piece of ordnance, to cause its shot to produce the greatest possible damage to any splintering object of given thickness; for it is well known that ships of war are built of wood of this nature-and as the issue of a contest greatly depends upon the damage done to the vessel, it follows, that those charges that will effect the most mischief possible, and in the shortest time, are the fittest to be used in all cases of actual service. It is a fact deserving observation, that with some charges, a complete broadside fired into the enemy's ship, would not in any material degree disable it for fighting; whilst with others, even half the number of guns would sink her on the first discharge; and surely, it is hence not unreasonable to infer, if the destruction of an enemy's vessel when in action be an object, to effect it by a few guns at one blow, is preferable to that from any distant cannonading, kept up perhaps for hours together, with frequent disadvantage to ourselves, in loss of men, injury to our ships, and unnecessary expenditure of ammunition.

But it may be asked, are not the charges here recommended generally used by our officers, and do they ever combat the enemy, except in unavoidable instances, but when they are nearly in contact with him? I reply that they do not; yet from the quantity of firing that sometimes takes place before the enemy is sunk or captured, it is to be suspected, that the charges employed, are not always the most efficacious; and I speak further from experience, for I have seen in his Majesty's dock-yard at Woolwich, prize men of war having many shot holes in
them, almost wholly closed by the wood's own efforts, and that required nothing more than a small wooden peg, or a piece of cork, to stop them up perfectly. Whence it is evident, that the charges in those cases were much too great, and gave to the shot an improper force, insomuch, that no sensible effect was produced by them in disabling the ships for action.
In some sanguinary conflicts, recourse has been had to the double shotting of the guns, in order to produce more extensive damage to the enemy; thus, it has been observed, that in the glorious (and unparalleled important) battle of Trafalgar, the gallant Nelson bore down upon the enemy with his artillery double shotted, which he discharged into the Santissima Trinidada, (the Spanish admiral's flag ship,) as soon as he approached her within pistol shot. The effect was complete. It was not, however, altogether, in consequence of the guns being double shotted that the Santissima was at that blow so dreadfully disabled, but chiefly from the nicety of charge of gunpowder that was employed; for had not this been the case, although double or triple the number of shot should have pierced the side of the vessel, yet that circumstance would have added but little to its destruction, had they not passed through it with a proper motion.

Far be it from me to impeach the judgment of our officers in the distribution of charges that do not always produce the most desired effects; I am too well aware of the impossibility of this under the numerous opposing circumstances that attend a naval engagement; nor am I ignorant of the necessity of experiments to prove, that the charges which are here offered to their notice have any decided worth over those which they employ in the
case of service for which these are calculated; but this I must say, that the standard experiments with which they are connected, were never more accurately made by any experimentalists in any age or country, and if my endeavours prove not for their benefit, I have still the satisfaction of having meant well towards them, and the honour of offering something for their censure, if not for their applause.

Lastly, in order to render this work as useful as possible, I have subjoined to it a table of hyperbolic logarithms, for all numbers from one to two thousand; most of the computations in the theory of rockets requiring the use of a table of such numbers.
In concluding this preface, I must observe, that in all my researches, I have strictly adhered to the fullest illustration of them by example, conceiving that, a theory is never so well felt or understood by a learner, as when the several subjects it considers are properly exemplified in numbers; it is also gratifying in many instances, to. know the results under particular data, while at the same time it checks in most cases the correctness of the investigations.

Such, then, are the outlines of the present work, and such my motives for publishing it; I trust it will meet a fair examination-that it will prove useful to those for whom it is designed-and thus gratify my wishes, and realize my intentions.

WILLIAM MOORE.
Royal Military Academy, Woolwich.

OF

VARIABLE QUANTITIES

DEFINITION AND NOTATION.

IF ${ }_{A, b}, \mathrm{c}$, \& c . denote any variable quantities, and a, b, c, \&c. other values thereof; and if their magnitudes be so dependent on each other that when A is increased or diminished to $a ; \mathrm{B}, \mathrm{C}, \mathrm{D}, \& \mathrm{c}$. become $b, c, d, \& \mathrm{c}$. : then if it be said that A varies directly as B, the assertion implies that $\mathrm{A}: a:=\mathrm{B}_{1}: b$. \quad Or, $\frac{\mathrm{A}}{a}=\frac{B}{b}$.

If A vary reciprocally as B, it denotes that $A: a:$: $\frac{1}{B}: \frac{1}{b}$. Or, $\frac{A}{a}=\frac{b}{B}$.

And if a vary as \mathbf{B} and c directly, and d reciprocally, it signifies that $\mathrm{A}: a:: \frac{\mathrm{BC}}{\mathrm{D}}: \frac{b c}{d}$. Or, $\frac{\mathrm{A}}{a}=\frac{\mathrm{BC} d}{b c \mathrm{D}}$.

Also if the product of A and B vary as c directly, and D reciprocally; it implies that $\triangle \mathrm{B}: a b:: \frac{\mathrm{C}}{\mathrm{D}}: \frac{c}{d}$. Or, $\frac{A B}{a b}=\frac{c d}{c D}$.

And on the contrary, if $A B: a b:: \frac{c}{D}: \frac{c}{d} ; \operatorname{then}_{A B} A B$ vary as c directly, and \mathbf{D} inversely.

PROP. 1.
If any quantity A vary as another B ; B will also vary as A .
For by $D_{e f . ~ A: a: ~ B: b ; ~ o r ~ w h i c h ~ i s ~ t h e ~ s a m e ~ B: b ~}^{b}$: : A : a; therefore B varies as A also by Definition.

PROP. 2.

If one quantity A vary as another B , and B as another C , and C as another D ; the first A will vary as the last D .

For $\mathrm{A}: a:: \mathrm{B}: b:: \mathbf{c}: c:: \mathrm{D}: d$; therefore seeing, that $\mathrm{A}: a:: \mathrm{D}: d$, it follows from Definition that A varies as D.

Cor.-If one quantity A vary as another B, and B_{i} reciprocally as another C; the first A:will vary reciprocally as \mathbf{C}

For $A: a::$ в $: b:: \frac{1}{c}: \frac{1}{c} ;$ therefore A varies as $\frac{1}{c}$.

prop. 3.

Either side of a general Proportion may be multiplied or divided by any given quantity.

Thus if A varying as \mathbf{B} constitute any general propor- tion then A will vary as $n \mathrm{~B}$.

For $\mathrm{A}: a: \mathrm{B}: b:: n \mathrm{~B}: n b:: \frac{\mathrm{B}}{\mathrm{n}}: \frac{b}{n}$; therefore A varies as $n \mathrm{~B}$, and also as $\frac{B}{n}$.

PROP. 4.
Any general proportion may be transformed into an equation, and the geveral value of each of the terms constituting it deter-
mined, by first multiplying one side of it by a proper homologous quantity.

If A vary as $B C$, then $A=n \times B C$; where n is some given quantity composed of other values of A, B and c.

For since A varies as BC, therefore $A: a:: B C: b c$; and hence $\frac{A}{a}=\frac{B C}{b c}$; or $A=B C \times \frac{a}{b c}$: therefore n in this instance is $=\frac{a}{b c} . \quad$ And B and c are found in the same manner.

Cor.-Hence, if in the solution of any problem the quantity required be expressed in a general proportion or be one term of the same; its general value will be had by referring all the variable quantities contained in the proportion to other known values thereof as standards, and finding the homologous multiplier as above.

```
PROP. 5.
```

If both sides of a general proportion be multiplied or divided by any variable quantity; the results will still constitute a general proportion.

If A vary as B, and C be any variable quantity, then AC will vary as $B C ;$ and $\frac{A}{C}$ as $\frac{B}{C}$.

For $\mathrm{A}: a:: \mathrm{B}: b$; and $\mathrm{c}: c:: \mathrm{c}: c$; therefore compoundedly AC:ac:: BC: bc; and hence ΔC varies as BC.

In the same manner it is proved that $\frac{A}{C}$ varies as $\frac{B}{C}$.
PROP. 6.
Any quantity which is proportional to any other quantity in a general proportion may be substituted for it in the general proportion.

If A vary as BC , and C vary as D ; then will A vary as BD.

For since C varies as D, BC will vary as BD, Prop. 5. Hence, a varying as the former, will also vary as the latter by Prop. 2.

PROP. 7.
If the corresponding like sides of twe or more general proportions be multiplied or divided by each other, the products and quotients will constitute two other general proportions.

If A vary as B, and C vary as D;
Then $A C$ will vary as $B D$; and $\frac{A}{C}$ as $\frac{C}{D}$.

$$
\begin{aligned}
& \text { For } \mathrm{A}: a:: \mathrm{B}: b \\
& \text { and } \mathrm{c}: c: \mathrm{D}: d ;
\end{aligned}
$$

Therefore AC : $a c:: \mathrm{BD}: b d$; and consequently AC varies as BD.

In the same manner it is shewn that $\frac{A}{C}$ varies as $\frac{C}{D}$.
Cor.-The equal powers or roots of the sides of a general proportion, constitute a general proportion.

If A vary as B, then $A^{\frac{n}{m}}$ will vary as $B^{\frac{n}{m}}$ where $\frac{n}{m}$ denotes any number whole or fractional.

$$
\begin{aligned}
& \text { For } \mathrm{A}: a: \mathrm{B}: b \\
& \text { and } \mathrm{A}^{\frac{n}{m}}: a^{\frac{n}{m}}:: \mathrm{B}^{\frac{n}{m}}: b^{\frac{n}{m}} ;
\end{aligned}
$$

Therefore $A \frac{n}{m}$ varies as $B \frac{n}{m}$. *
PROP. 8.
If any quantity A vary as $\mathrm{B} \times \mathrm{C} \times \mathrm{D}, \mathcal{E}^{\circ} \mathrm{c}$; and $\mathrm{C} \times \mathrm{D}, \mathcal{E}^{\circ} \mathrm{C}$. be given, A will vary as B ; and if BC, E'c. be given A will vary as D.

For A varying as bcd, it follows from Prop. 4, that if sc be given A will vary as D; and as. b when $C D$ is given. That is $\mathrm{A}: a:: \mathrm{D}: d$, or $\frac{\mathrm{A}}{a}=\frac{\mathrm{D}}{d}$ when BC is given; and $\frac{A}{a}=\frac{B}{b}$. when CD is given.

Note.-When any quantity is said to be given it is meant that the relation of it to some fixed quantity of the same kind considered as a standard is known, and with which it is always supposed to be connected; in like manner, when any quantity is sought, it is required to find the relation of this unknown quantity to some fixed standard of the same kind.

PROP. 9.

If any variable quantity \mathbf{A} depend on several other variable quantities B, C; and if when B is invariable A varies as C , and as B when C is invariable; then will A vary as $\mathrm{B} \times \mathrm{C}$ when both are variable.

For when a becomes a, let $\mathbf{~}$ become b, and \mathbf{c} become c according to $D_{\text {efinition. And suppose, that had } \mathbf{c} \text { con- }}$ tinued constant A would have become a, when b became b : then since by supposition A varies as B when c is constant, $\mathrm{A}: a:: \mathrm{B}: b$. But b continuing the same when $a ́$ becomes a, c becomes c; and since A varies as C (by supposition) when B or b is constant, therefore $a: a:: \mathrm{c}: c$; and by compounding these two proportions, we have $A a ́:$ $a ́ a:: \mathrm{BC}: b c$, and by division $\mathrm{A}: a:: \mathrm{BC}: b c$. Hence A varies as вс.

Cor.-If there be any number of quantities, and A varies as each of them when the rest are considered constant, it. will vary as their product when all are variable.

ON MOTION, FORCES, \&c.

definitions.

1. Matter, is that of which all bodies are constituted.
2. Body, is the mass or quantity of matter in any material substance; and it is always proportional to its weight, whatever its figure may be.
3. Bodies are either hard, soft, or elastic. A bard body, is that which cannot be changed by any stroke. A soft body, is that which yields to any impression, but does not restore itself to its former figure. An elastic body, is that which after yielding to a stroke recovers its former shape; and is such that if it were let fall on a hard plane it would rise to precisely the same height from which it fell.

No bodies, either perfectly hard or perfectly elastic, such as are here defined are to be found in nature, but all partaking these properties in some intermediate degree.
4. Density, is the proportional weight, or quantity of matter in any body. So in two spheres, or cubes, of equal size or magnitude, if the one weighs 1 lb . and the other $2 l b$., then the density of the latter is double the density of the former; if it weigh 3 lb . its density is triple; and so on.
5. Motion, is that state in which a body is, when passing from one place to another.
6. Motion is either uniform, accelerated, or retarded. Uniform mation, is that when a body describes equal spaces in equal successive portions of time. Accelerated mation,
is that when a body describes unequal increasing spaces in equal successive portions of time. Retarded motion, is that when a body describes unequal decreasing spaces in equal successive portions of time.
7. Velocity, is that quality of motion, by which a body passes over a certain space in a certain time.
8. Force, is that which causes a change in the state of motion or rest of a body.
9. An Accelerative force, is that which respects the communication of velocity only, any difference in the quan. tities of matter moved not being considered. It is proportional to the velocity which it generates in a given time.
10. A Retardive force, is that which relates to the destruction of velocity only; and it is as the velocity which it destroys in a given time.
11. A Constant accelerative or retardive force, is that by

- which equal velocities are generated or destroyed in equal successive portions of time.

12. A Variable accelerative or retardive force, is that by which unequal velocities are communicated or destroyed in equal successive portions of time.
13. Momentum, is the product of the mass of a body into its velocity. It is the same as quantity of motion.
14. A Motive or moving force, is that which relates to the communication of momentum; and it is as the momentum which it generates in a given time.
15. A Resisting force, is that which relates to the destruction of momentum; and it is as the momentum which it destroys in a given time.
16. Gravity, is that force by which a body endeavours
to descend towards the centre of the earth. It is called absolute gravity when the body is in empty space, or in vacuo; but relative gravity when immersed in a fluid.
17. Specific gravity of a body, is the proportional weight of a given magnitude of the matter of which it is composed. The specific gravity of a body is therefore proportional to its density.
18. Centre of gravity of a body, is that point which being supported, the body itself will rest in any position; no other force acting upon it but that of gravity.

The centre of gravity of a body, is considered to be the place of the body; since whatever supports this centre supports the body and bears all the weight of it.
19. Inertia, is that by which a body endeavours, as much as in it lies, to retain the state in which it is, whether of rest or motion, when any force is impressed upon it to cause a change. The inertia of a body is proportional to the quantity of matter contained in it, or to its weight.
20. A Fluid, is a body, the parts of which yield to the smallest force impressed, and by so yielding are easily moved among each other.

This is the definition of what is called a perfect fluid: if the fluid require some force to move its parts, it is imperfect, and so much so, in proportion to that force : such are perhaps all the fluids in nature with which we are acquainted.
21. A Medium, is any fluid through which a body passes in its motion towards any point. Thus the air or atmosphere is the medium in which birds and other animals move; and in which projectiles move; and water is the medium in which fishes move.
22. A Non-resisting medium, is one that affords no resist-
ance to bodies passing through it; and a resisting medium, is that in which the motion of bodies are retarded.

AXIOMS.

1. Every body will continue in its state of rest or uniform motion in a right line until it is compelled to change that state by the action of some external force.
2. Any change effected in the motion of a body is in the direction of the force impressed, and is proportional to it in quantity.
3. To every action there is always opposed an equal re-action; or the mutual actions of two bodies on each other are always equal and directed towards contrary parts.

Thus, in the communication of pressure upon any immoveable plane, whether arising from the protrusion, gravity, or impact of a body, the sense of the axiom is, that the resistance of the plane, and an opposite force equal to that producing the pressure, have each of them the same effect, as either of them only destroys the force of protrusion, gravity, or impact. In the communication of motion, by one body striking another, the axiom asserts that the momenta lost and gained by the bodies are equal, when estimated in opposite directions. In the communication of motion by unknown means, as by magnetism, or electricity; it affirms that the body attracting or repelling moves in an opposite direction to that of the body attracted or repelled, and with an equal momentum. Thus to propose an instance in the case of attraction :-when a loadstone and a piece of iron, equal in weight, float in water upon equal and similar pieces of cork, they are found to approach each other with equal
velocities; and when they meet, or are kept asunder by any obstacle, they sustain each other by equal and opposite pressures.

ON THE GENERAL LAWS OF MOTION.

PROP. I.

Art. 1.-The moving forces which communicate the same velocity in a givien time to different bodies will be as the quantities of matter contained in those bodies.

For suppose one body to contain ten times the quantity of matter of another. Then because that greater body may be divided into 10 masses, each equal in quantity of matter, to the less body; it is evident that whatever force be required to produce a certain velocity in the lighter body, that 10 of such forces will be required to impel the 10 bodies through the same space in the same time respectively, so that the velocity of all the bodies shall be equal at the end of that time; and it signifies not, with regard to the velocity, whether the bodies be separated or united, if the said 10 forces still act upon them.

Cor.-Hence, because it is found by experiment, that all bodies whether heavy or light, great or small, near the earth's surface descend through equal spaces in equal times (the resistance of the air not being considered); it follows that the moving forces exerted by gravity on bodies are proportional to the quantities of matter contained in them.

PROP. IL.

2. The moving forces acting upon bodies and the momenta communicated to them in a given time; dre proportional to the quantities of matter moved, and the velocities communisated jointly: or putting M and m for any two moving forces, a and q the quantities of matter moved, and \mathbf{v}, \dot{v}, their velocities; $\frac{\mathrm{M}}{\boldsymbol{m}}=\frac{\mathrm{a}}{q} \times \frac{\mathrm{V}}{\boldsymbol{v}}$.

For by the preceding proposition, when the velocity communicated in any given time is the same, the moving force is as the matter moved, or $\frac{M}{m}=\frac{a}{q}$; and when the quantity of matter moved is the same, the moving force is as the velocity communicated in the same time (Def. 14, and Prop. 6, Var. Quan.); therefore, when neither the quantity of matter or velocity communicated in the same time is given $\frac{M}{m}=\frac{Q}{q} \times \frac{v}{v}$ by Prop. 9. Var. Quan.

PROP. III.

3. The accelerating forces which comminicate velocities to bodies, are as the moving forces directly, and the quantities of matter moved reciprocally: or putting F and f to denote any two accelerative forces, and retaining the letters for the other quantities in the last proposition; $\frac{F}{f}=\frac{M}{m} \times \frac{q}{a}$.

For by the last proposition the moving force is as the quantity of matter into the velocity generated in a given time; or $\frac{M}{m}=\frac{a}{q} \times \frac{\mathbf{v}}{v}$: and since the accelerative force
is as the velocity, or $\frac{F}{f}=\frac{v}{v}$; we shall, substituting $\frac{\mathbf{F}}{f}$ for $\frac{\mathbf{v}}{v}$ in the above, have $\frac{M}{m}=\frac{a}{q} \times \frac{\mathrm{F}}{f}$; and hence $\frac{\mathrm{F}}{f}=\frac{\mathrm{M}}{m} \times \frac{q}{\mathrm{Q}}$.

It may here be remarked once for all, that in the following propositions F and f are always understood to mean the accelerative forces, proportional to the velocities generated in a given time.

PROP. IV.

4. In bodies moving uniformly, the spaces described are in the compound ratio of the velocities and times of their descriptions: or $\frac{\mathrm{S}}{\mathrm{s}}=\frac{\mathrm{V}}{v} \times \frac{\mathrm{T}}{t}$.

For by the nature of uniform motion, the greater the velocity, the greater will be the space described in a given time; that is when the time is given the spaces will be as the velocities; or $\frac{s}{s}=\frac{v}{v}$. And if the velocity be given, the spaces will be as the times of describing them; that is, in a double time, a double space will be described; in a triple time, a triple space; and so on : or $\frac{s}{s}=\frac{T}{t}$. Therefore when neither the velocities or times are given, the spaces by Prop. 9, Var. Quan. will be as the velocities and times conjunctly: or $\frac{s}{s}=\frac{v}{v} \times \frac{T}{t}$.

Cor. 1. $\frac{v}{v}=\frac{s}{s} \times \frac{t}{T}$. That is, the velocities of
bodies moving uniformly, are as the spaces described directly, and times of describing them inversely.

Cor. 2. $\frac{T}{t}=\frac{s}{s} \times \frac{v}{v}$. Or the times of bodies describing any spaces with uniform motions, are as the spaces directly, and velocities reciprocally.

SCHOLIUM.

This proposition is applicable to bodies of all kinds moving with uniform velocities over any kind of spaces; as the hands of a clock or watch round the dial-plate; the motion of sounds of all kinds, as those from the discharge of artillery, the roar of rockets, thunder, \&c. also the sounds from woodmens' strokes, and of echoes, which are found by experiments to move uniformly.

PROP. v.

5. The velocities generated in bodies by the action of constant forces, are as those forces and the times in which they act jointly: or $\frac{\mathbf{V}}{v}=\frac{\mathbf{F}}{f} \times \frac{\mathrm{T}}{t}$.

For when the times are the same, the velocities generated, will be as the forces of acceleration : the velocities being their natural and general effects; that is $\frac{v}{v}=\frac{\mathrm{F}}{f}$. But the forces being the same, the velocities generated are as the times wherein the forces act ; because when the force is given, equal velocities are generated in equal times ($D e f .11$.); and consequently the whole velocities acquired are as the times wherein the given force acts: that is when $\mathrm{F}=f$, or $\frac{\mathrm{F}}{f}=1, \frac{\mathrm{v}}{v}=\frac{\mathrm{T}}{t}$. Therefore both times and forces being variable, the velocities generated.
will be as the forces and times of their acting conjunctly
(Prop. 9, Var. Quan.); or $\frac{\mathbf{v}}{v}=\frac{\mathbf{F}}{f} \times \frac{\mathbf{T}}{t}$.

PROP. VI.
6. If a body from rest be impelled by any constant force acting upon it for a given time the space described will be to the space described in the same time by the body moving uniformly with the last acquired velocity, in the ratio of 1 to 2 .

For let the given time be divided into equal evanescent instants, the number of which is n; then the velocity generated being, by the foregoing proposition, as the time, and continuing uniform during any one instant, we shall have the space described in any proposed instant proportional to the number of instants comprehended in the time of motion; so that if during the first instant the space described be s, in the next instant the space described will be $2 s$, in the third $3 s$, and in the first three instants the space described will be $s+2 s+3 s=6 s:$ so in the first n instants, the space described will $s+2 s+$ $3 s+4 s+8 c$. to $n s=\frac{(n+1) n s}{2}$: and since. by preceding Prop. the velocity last acquired is as the time (the force being given); and the space described by any uniform velocity, is as the time and velocity jointly (Prop. 4.); it follows that the space described by the last acquired velocity continued uniform for the time of the accelerated motion, will be as the square of that time. So that if s be the space uniformly described in the first instant of motion, $n^{2} s$ will be the space described in n instants with the velocity last acquired. Wherefore the space described by acceleration from rest, is to the space described uniformly with the last acquired velocity, in
the same time, as $\frac{(n+1) n s}{2}$ to $n^{2} s$; or as $n+1$ to $2 n$: and since the force acts not by successive impulses, but by unceasing acceleration, the magnitude of each instant must be diminished, and consequently their number increased sine limite; therefore n being ultimately itffinite, the last proportion of $n+1$ to $2 n$ will become that of n to $2 n$ or 1 to 2.

SCHOLIUM.

It is found by very nice experiments that the space through which a body descends near the earth's surface in 1 second is $16_{\mathrm{T}^{2}}^{1}$ feet; and in this descent it appears by the proposition that such a velocity is acquired as would carry the body uniformly over $32 \frac{1}{6}$ feet, or twice that space in the same time, 1 second. Wherefore, if $16_{\mathrm{T}^{\frac{1}{2}}}$ feet be put $=g$, then will the velocity per second, generated by the constant accelerative force of gravity be $2 g$; which may therefore be considered the measure of the intensity of that force, and a standard to which all other accelerative forces may be referred.

PROP. VII.

7. The spaces which bodies describe from rest by the action of constant forces, are in a compound ratio of the velocities last acquired and times of motion: or $\frac{s}{s}=\frac{\mathbf{v}}{v} \times \frac{\mathbf{T}}{t}$.

For by Prop. 4, the spaces described by the last acquired velocities continued uniform are as those velocities and the times of motion jointly: and the spaces described by the accelerating forces acting constantly for equal respective times being by the last proposition, half the
former spaces; are also as the velocities last acquired and times of motion jointly: that is $\frac{s}{s}=\frac{V}{v} \times \frac{T}{t}$.

PROP. VIII.
8. The spaces passed over by bodies urged by any constant forces, are as the forces and squares of the times jointly: or $\frac{s}{s}=\frac{\mathrm{F}}{f} \times \frac{\mathbf{T}^{2}}{t^{2}}$.

For by the foregoing proposition the spaces described by bodies estimated from rest, are as the velocities last acquired and the times of motion jointly; or $\frac{s}{s}=\frac{V}{v} \times \frac{T}{t}$. Also by Prop. 5, $\frac{\mathbf{V}}{v}=\frac{\mathbf{F}}{f} \times \frac{\mathbf{T}}{t}$: therefore by substitution we have $\frac{s}{s}=\frac{F}{f} \times \frac{T^{2}}{t^{2}}$.

PROP. IX
9. The constant forces, which accelerate bodies from rest, are as the squares of the velocities generated directly, and the spaces described inversely: or $\frac{\mathrm{F}}{f}=\frac{\mathbf{v}^{2}}{v^{2}} \times \frac{s}{s}$.

For by Prop. 5, $\frac{\mathrm{F}}{f}=\frac{\mathrm{V}}{v} \times \frac{t}{\mathrm{~T}}$; and by Prop. 7, $\frac{t}{\mathrm{~T}}=$ $\frac{\mathrm{v}}{v} \times \frac{s}{s} ;$ therefore by substitution we have $\frac{F}{f}=\frac{v^{2}}{v^{2}} \times \frac{s}{s}$.

SCHOLIUM.
Whatever has been demonstrated concerning constant accelerative forces, holds equally true for uniform
retardive forces; since it is evident, that whatever velocity is generated by the former in any time, the same forces would destroy in the same time if they acted in the manner of retardive forces. In like manner, if any moving force act upon a body constantly for any time, and generate a certain quantity of motion or momentum; the same force would, in the same time, destroy the same momentum if it acted as a resisting force. Thus if a body falling freely from rest near the earth's surface by the constant acceleration of gravity acquire in any time a certain velocity, the same velocity will be destroyed in the same time by the (now) retardive force, if the body be projected upwards with that velocity. In the former case v being the velocity acquired or last velocity, and in the latter the first, or initial velocity. And the same quantity of motion that was generated in the descent by gravity considered as a moving force, would be destroyed by the same gravity considered as a resisting force, in the same time in its ascent. Also, in all the intermediate points, the velocities and quantities of motion or momenta would be the same in both cases.
10. The various relations between constant forces, times, velocities, and spaces described, demonstrated in the foregoing propositions, and others immediately deduced from them, put down in order will be as follows.

IN CONSTANT FORCES.

1. $\quad \frac{s}{s}=\frac{t v}{T V}=\frac{t^{2} f}{T^{2} F}=\frac{v^{2} F}{V^{2} f}$
2. $\quad \frac{v}{v}=\frac{f t}{F T}=\frac{s T}{s t}=\left(\frac{f s}{F s}\right)^{\frac{1}{2}}$
3. $\quad \frac{t}{T}=\frac{\mathrm{F} v}{f v}=\frac{s V}{s v}=\left(\frac{\mathrm{Fs}}{f s}\right)^{\frac{1}{2}}$
4. $\quad \frac{f}{F}=\frac{T v}{t V}=\frac{T^{2} s}{t^{2} S}=\frac{v^{2} s}{V^{2} s}$

Hence, if the forces be referred to that of gravity at the earth's surface, or F be considered that force acting for 1 second, or corresponding time T, and be called 1 ; then since the space s described in that time is $16_{\mathrm{T}^{2}}^{1}$ feet (Schol. to Prop. Art. 6), and the velocity acquired (v) $32 \frac{1}{6}$ feet; or $2 g$ calling $16_{\mathrm{T} x}^{\mathrm{I}}$ feet g. Then the above formulx in this case will become as under.
5. $s=\frac{1}{2} t v=g f t^{2}=\frac{v^{2}}{4 g f}$
6. $v=\frac{2 s}{t}=2 g f t=(4 g f s)^{\frac{1}{2}}$
7. $t=\frac{2 s}{v}=\frac{v}{2 g f}=\left(\frac{s}{g f}\right)^{\frac{1}{2}}$
8. $f=\frac{v}{2 g t}=\frac{s}{g t^{2}}=\frac{v^{2}}{4 g s}$

Hence also, from the equations $v=2 g f t$ and $s=\frac{x}{\tau} t v$ for constant forces here deduced, may the following theorems expressive of the relation of the fluxions of the time, velocity, force and space described by bodies in motion when acted upon by any variable accelerating force be derived; considering the portion of time infinitely small, so that the force for that time may be considered constant. So,
in variable forces.

$$
\text { 9. } \quad \dot{s}=\dot{v \dot{t}}=\frac{v \dot{v}}{2 g f}
$$

10. $\dot{v}=2 g f \dot{t}=\frac{2 g f \dot{s}}{v}$
11. $\dot{t}=\frac{\dot{v}}{v}=\frac{i}{2 g f}$
12. $f=\frac{\dot{v}}{2 g \dot{s}}=\frac{\dot{v}}{2 g \dot{t}}$.

For v being $=2 g f t$, we shall, (f being constant for the infinitely small time \dot{t}) have $\dot{v}=2 g f \dot{t}$; also $s=\frac{1}{2} \tau^{\prime}{ }^{*}$ therefore $\dot{s}=\frac{1}{2} t \dot{v}+\frac{1}{2} v \dot{t}=$ (substituting the values of $-v^{*}$ and \dot{v} above) $v \dot{t}$. Whence all the equations in the above table are readily deduced.

If a motive force happen to be concerned in the problem or investigation, the accelerative force (f) in the above theorems will be had by dividing the motive force by the quantity of matter moved. For by Prop. 3. we have $\frac{f}{F}=\frac{m}{M} \times \frac{a}{q}$; where taking F, M, and a each equal to 1 (to which the corresponding terms f, m, and q will each be expressed proportionally), the equation will be $f=\frac{m}{q}$.

It is to be observed that the above theorems hold equally true for constant, and variable retardive forces.

Note.-The utility and convenience of these theorems will abundantly appear in the following work.
PROP. X.
11. The weights or quantities of matter in all bodies are in the compound ratio of their magnitudes and densities; or $\frac{\mathbf{a}}{q}=\frac{\mathbf{c}}{c} \times \frac{\mathbf{N}}{n}:$ where \mathbf{c}, c, denote the magnitudes or capacitics of the bodies, and N, n, their respective dewsities:

For by Def. 4. when the magnitude is constant, the quantity of matter is as the density; or $\frac{Q}{q}=\frac{N}{n}$. And the density being constant, the quantity of matter will evidently be as the magnitude; that is $\frac{a}{q}=\frac{c}{c}$. Hence, when neither the magnitude or density is constant, the quantity of matter is as the magnitude and density compoundedly; or $\frac{\mathbf{Q}}{q}=\frac{\mathbf{C}}{c} \times \frac{\mathrm{N}}{n}$: Prop. 9. Var. Quan.

Cor. 1.-In spheres, the quantities of matter are in the joint ratio of the cubes of their diameters and densities, or $\frac{\mathbf{Q}}{q}=\frac{\mathbf{D}^{3}}{d^{3}} \times \frac{\mathrm{N}}{n}$. And in all similar bodies the masses are jointly as the cubes of their like linear sides and densities.

For the magnitudes of all similar bodies are as the cubes of their like sides.

Cor. 2.-The quantities of matter in spheres, are as the cubes of their diameters and specific gravities; or $\frac{Q}{q}=\frac{D^{3}}{d^{3}} \times \frac{G}{g}:$ where G, g, are the respective specific gravities of Q and q. And in all similar bodies the quanitities of matter are as the cubes of their like linear dimensions and specific gravities.

For by Def. 17, the specific gravities of bodies are as the densities of the same; or $\frac{N}{n}=\frac{G}{g}$; wherefore, substituting $\frac{G}{g}$ for $\frac{N}{n}$ in the preceding corollary, it is $\frac{a}{q}=$ $\frac{D^{3}}{d^{3}} \times \frac{G}{g}$.

Cor. 3. -Hence also the weights of spheres are as the
cubes of their diameters and specific gravities jointly; or $\frac{\mathrm{w}}{w}=\frac{\mathrm{D}^{3}}{d^{3}} \times \frac{\mathrm{G}}{g}$.

For the weights of bodies are as the quantities of matter contained in them, or $\frac{W}{w}=\frac{a}{q}$; therefore, $\frac{W}{w}=\frac{D^{3}}{d^{3}} \times \frac{G}{g}$.
12. Let G denote the specific gravity of water, then since it is found that 1 cubic foot of water weighs just 1000 ounces avoirdupoise, let G represent 1000; in which case we may not only exhibit the specific gravity of any other bodỳ in numbersicompared with this as a standard, but also the weight of 1 cubic foot of the same; and hence the weight of a greater bulk of the same matter will be had by common proportion. Since $\frac{\mathrm{w}}{w}=\frac{\mathrm{D}^{3}}{d^{3}} \times \frac{\mathbf{G}}{g}$, we shall, taking a sphere of water of 1 cubic foot content, and assuming $G=1000$, have $\frac{1}{w}=\frac{1.2407^{3}}{d^{3}} \times \frac{1}{g}$; and $g=\frac{1.2407^{3} \times w}{d^{3}}$. Therefore,

$$
\begin{aligned}
& \text { 1. } \quad g=\frac{1.2407^{3} w}{d^{3}} \\
& \text { 2. } d=1.2407\left(\frac{w}{g}\right)^{\frac{\pi}{3}} \\
& \text { 3. } \quad w=\frac{g d^{3}}{1.2407^{3}}
\end{aligned}
$$

which theorems will give either the specific gravity of any sphere of matter, the diameter of the same, or its weight in ounces, when the other two quantities are known.

Ex. 1.
Let it be required to find the specific gravity of cast iron; a ball of the same metal of 4 inches diameter weighing 9lbs.

By substituting for d and w, in the first of the above formulx the values here given, we shall have the specific gravity $g=\frac{1.2407^{3} \times w}{d^{3}}=\frac{1.2407^{3} \times 144}{\frac{1}{2^{2}}}=7420.2668$, which is also the weight of a cubic foot of the same metal in ounces.

$$
E x .2
$$

Required the weight of a leaden ball of 6.6 inches diameter.

The specific gravity of lead, compared with that of water here denoted by 1000 is 11325 .
Hence $w=\frac{g^{3}}{1.2407^{3}}=\frac{11325 \times \cdot 55^{3}}{1.2407^{3}}=985.9227 \mathrm{oz}$, or 61.62 lbs the weight required.

$$
E x .3 .
$$

Required the diameter of a 42lb. iron ball, the specific gravity of which is 7425 as expressed in the following table of specific gravities.

Here using the second of the foregoing theorems, we have $d=1.2407 \times\left(\frac{w}{g}\right)^{\frac{1}{3}}=1.2407 \times\left(\frac{672}{7425}\right)^{\frac{1}{3}}=.557049$ feet, or 6.684588 inches.

TABLE.

Of the specific gravities of bodies as compared with that of water denoted by 1000 .

Common stone . - - - 2520
Nitre - - . - - - - 1900
Native sulphur - - - 2033
Solid gunpowder - - - 1745
Gunpowder close shaken - 937

- Do. in a loose heap - - - 836

Sea water - - - - . 1030
Common water - - . - 1000
Oak - . . . - . - 925
Elm - - . - - - 600
Ash - - . . - - - 800
Beech - - . . - . 852
Male Fir - - . - - 550
Female do. - - - - 498
Hazel - - - - . - 600
Mahogany - - - - 1063
Maple - - - - - - 750
Poplar - - - - - - 383
Walnut - - - . - 671
Dutch Yew - - - - 788
Spanish do. - - - - 807
Air at a mean state - - - $1 \frac{2}{9}$
Note.-The numbers in this table express also the respective weights of a cubic foot of each substance in avoirdupoise ounces.

ON THE MOTION, \&c. OF ROCKETS.

DEFINITION.

13. Rocket, in Pyrotechnics, is a machine, the form of the body of which is cylindrical, and its head conical. Its inside is filled with very inflammable materials; on the combustion of which the body is impelled forwand with a continued acceleration.
14. On the combustion of the composition of a rocket, an elastic fluid is generated, the full force of which is exerted in the first instant alike in all directions, whether there be any other substance for it to act against or not. Hence, if in a vacuum; the combustion took place as freely as in common air, the force of a laminum of the composition in its transformed state (equal to the initial strength of the same into the rocket's base), would be that which constantly acted upon the rocket during the time of its burning. For it is only the first force of the gas in this case that has effect upon the body to move it, it being the very next succeeding instant so greatly diminished from the extreme velocity with which it rushes into the vacuum, that it affords, comparatively speaking, no resistance whatever to the fluid next generated, whereby more motion to the rocket would be communicated *.

- Supposing the elastic force of the gas from the rocket composition to be $\mathbf{1 0 0 0}$ times as great as the elastic force of the atmosphere at the earth's surface; it will be found by accurate computation that the velocity with which it would rush into a vacuum is nearly at the rate of 8 miles per second!

Each laminum of gas as it is produced, acts upon and fires "at the same time the following laminum of composition; when the produce of this exerts its force upon, and converts into fluid in the same manner the next contiguous laminum of matter, which acts upon and fires the next, and so on continually, till the whole body of the rocket is consumed. If the rocket burns in a medium, then, as there is a body reacting against the fluid that rushes from the rocket, there is not so instantaneous a dissipation of the force of the latter the moment after it is generated; but a time of its action upon the rocket which is greater or less according as the surrounding medium is more or less dense and elastic. In this case, therefore, more motion is communicated to the body. than in the former, and but for the resistance to the forepart of the rocket it would move farther in a medium than in a vacuum. A gun recoils farther when fired with powder and ball, than when it is charged only with powder; from the same cause of a longer action of the fluid against the breech of it.
15. To estimate the quantity of action of the fluid at any given instant after its production, would be to find with what force and velocity it then expanded itself, whin if not greater than the velocity with which the rowet moved, it would have no effect whatever upon the rocket, and in any other case it will act only with their difference.

In the following theory of the motion of these machines, I have considered the first force only of every laminum of composition (indefinitely thin) to have effect, or the rocket to be urged during the time of its burning by this force acting constantly for that time; and it is imagined that the results determined from this supposi-
tion will not be found to differ very sensibly from these derived from experiments; the exact strength of the rocket composition being here supposed.

OF

THE THEORY OF THE MOTION OF ROCEETS

IN NONRESISTING AND RESISTING MEDIUMS.

16. To establish a theory of rockets that shall be consonant to the real phenomena from practice, or at all useful in it, it is necessary that the exact strength of the rocket composition be given. Such important datum, for any particular description of rockets, I have not been able, for want of experiments, to ascertain; but it is presumed that the force of the composition of those now used by the English in bombardment, \&cc. cannot, from their immense powers, differ very materially from half that of gunpowder; which is supposed to be nearly 2000 times as great when converted into fluid, as the elastic - force of the atmosphere*.

If this supposed strength of the rocket matter, for the nature of those for which it is assigned, or for any other species of rockets be not correct, it will only be necessary, when the real force of it for any proposed description shall have been determined, to substitute it for s in the several investigations that follow to get the true values of the results there deduced; for s being a constant quantity will not at all affect the steps of those investigations. I have merely assumed the above for the numerical illustration of nuy theory.

I have taken the initial force of gunpowder what Dr. Hutton imagines it must be from the various nice experiments and accurate computations which he has made to ascertain this important point.

It will be, therefore, with this assumed power of the composition, and the supposition that the lamina of it fire uniformly and burn parallel to the rocket's base, that I shall proceed to the investigation of the several effects of these màchines; the nature and times of their motion in different mediums; their powers at any given instant, \&c.-For all these are very interesting and important particulars for rocket artillerists to know, to whom the management of them generally devolves, and whose immediate concern it is to make themselves acquainted with every fact which the theory as well as the practice of throwing rockets may discover to them.

SECTION I.

on the motion of rockets in a nonresisting medium.

PROP. I.
17. The strength or first force of the gas from the inflamed composition of a rocket being given; as also the weight of the quantity of composition the rocket contains, together with the time of its burning, and the weight and dimensions of the

Perhaps no person ever came nearer the truth of the thing than D_{r}. Hutton. Robins computed the force at just half what Dr. Hutton makes it ; but it was independent of particulars which the enquiry evidently involved, and which would materially have affected his conclusion had they been considered. These particulars have been pointed out by Dr. Hutton in his edition of that author's distinguished work, entitled " New Principles of Gunnery;" and also by Euler in his excellent and learned Comment on the same performance ; and it is to these works I refer the reader for every information he may require on the subject.
rocket; to find the beight it will ascend if projected perpendicularly, and also the velocity acquired at the end of that time; the lamine of the composition being supposed to fire uniformly, and to burn parallel to the rocket's base.
Put $\boldsymbol{w}=$ weight of the case of the rocket and head

$n=230$ ozs. the medium pressure of the atmosphere on 1 square inch
$s=1000$ times the pressure of the atmosphere; or force of the inflamed composition
$d=$ diameter of the rocket's base
$x=$ PD the space the rocket describes in the time t, and
$v=$ the acquired velocity in that time. Then, $e d^{2}$ is equal to the area of the rocket's base (e being ${ }^{7} 7854$ the area of a circle the diameter of which is 1), and ned ${ }^{2}$ the pressure of the atmosphere on a surface $=e d^{2}$. Hence sned ${ }^{2}$ is the constant impelling force of the composition.

Now the weight of the quantity of rocket matter that is fired or consumed in the time t is $\frac{c t}{a}$, therefore $c-\frac{c t}{a}$. is the weight of the part unconsumed, which added to w gives $w+c-\frac{c t}{a}=m-\frac{c t}{a}$ (by putting $m=w+c$) for the, weight of the whole mass at the end of the time t, or when the rocket has ascended to D, and so far as weight resists the motion of the rocket, this must be deducted
from the impelling force. Hence sned ${ }^{2}-\left(m-\frac{c t}{a}\right)$ is the motive force of the rocket at D , and $\frac{\operatorname{sned}^{2}-\left(m-{ }_{a}^{c t}\right)}{m-\frac{c t}{a}}=$ $\frac{\text { asned }^{2}}{\text { am-ct }}-1$ the accelerative force.
By theorem 10. of variable forces we have generally $\dot{v}=$ $2 g f \dot{t}$ (where f denotes the accelerative force and $g=$ $\left.16{ }_{\mathrm{T}}^{\mathrm{T}} \mathrm{ft}\right)$. Therefore $\dot{v}=\frac{2 a g s n e d^{2} \dot{t}}{a m-c t}-2 g \dot{t}$; the fluent of which is $v=-\frac{2 a g s n e d^{2}}{c} \times$ hyp. $\log .\left(\frac{a m}{c}-t\right)-2 g t$.

Now when $t=0, v=0$; therefore the fluent corrected will be

$$
\begin{gathered}
\left.v=\frac{2 g a s n e d^{2}}{c} \text { (hyp. log. } \frac{a m}{c}-\text { hyp. log. } \frac{a m-c t}{c}\right)-2 g t \\
=\frac{2 a g s n e d^{2}}{c} \text { hyp. log. } \frac{a m}{a m-c t}-2 g t ;
\end{gathered}
$$

which, when t becomes a is

$$
v=\frac{2 a g s n e d^{2}}{c} \text { hyp. log. } \frac{m}{m-c}-2 a g ; \text { or, }
$$

because $m=w+c$, it will be

$$
v=\frac{2 a g \text { sned }^{2}}{c} \text { hyp. log. } \frac{w+c}{w}-2 a g
$$

which therefore is the velocity of the rocket when all the matter of inflammability in its body is just consumed.

For an example in numbers, suppose the weight, dimensions, \&c. to be as below; namely,

$$
\begin{aligned}
& s=1000 \\
& n=230 \mathrm{ozs}
\end{aligned}
$$

$$
\begin{aligned}
w & =18 \mathrm{lbs.}=288 \mathrm{ozs} . \\
c & =10 \mathrm{lbs}=160 \mathrm{ozs} . \\
a & =3 \mathrm{sec} . \\
d & =3 \mathrm{in.}=\frac{1}{4} \mathrm{ft} \\
g & =16 \mathrm{ft} \\
e & =\cdot 7854
\end{aligned}
$$

Then the above expression for v, namely $\frac{2 \text { agsned }^{2}}{c} \times$ hyp. $\log \cdot \frac{w+c}{w}-2 a g=\frac{2 \times 3 \times 16 \times 1000 \times 230 \times}{160}$ $\underline{7854 \times \frac{1}{16}} \times$ hyp. log. $\frac{448}{288}-96=6774.075 \times$ hyp. log. $\frac{14}{9}-96=2992 \cdot 9895-96=2896.0895$ feet, the velocity of the rocket per second at the instant of exhaustion of the composition.

To find the space x, we have by theorem 9th, variable forces $\dot{x}=v \dot{t}=\dot{b} t \times$ hyp. log. $\frac{a m}{a m-c t}-2 g t \dot{t} \quad$ (where b represents the fraction $\left.\frac{2 a g s n e d^{2}}{c}\right)=b \dot{t}$ hyp. log. $a m-b \dot{t}$ hyp. log. $(a m-c t)-2 g t \dot{t}$.

Now the fluent of the former part of this is evidently $b t$ hyp. log. am, and the fluent of i hyp. log. (am-ct) $=t$. hyp. log. $(a m-c t)+$ fluent of $\frac{c \dot{t}}{a m-c t}=t$. hyp. log. $(a m-c t)-t-\frac{a m}{c}$. hyp. log. $(a m-c t)=\left(t-\frac{a m}{c}\right)$. hyp. log. $(a m-c t)-t=-\frac{1}{c}(a m-c t)$. hyp. log. $(a m-c t)-t$. So that the whole fluent will be $x=b t$. hyp. log. $a m+\frac{b}{c}$
(am-ct). hyp. log. $(a m-c t)+b t-g t^{2}$; which when $x=0$, and $t=0$ is $\frac{\text { bam }}{c}$. hyp.log. am. Hence the fluent corrected is $x=\left(b t-\frac{b a m}{c}\right)$ hyp.log. $a m+\frac{b}{c}(a m-c t) \cdot$ hyp. log. $(a m-c t)$ $+b t-g t^{2}$, and in the case where $t=a$ it is $x=\left(\frac{a b c-a b m}{c}\right)$ hyp. log. $a m+\frac{a b}{c}\left(m-c\right.$.). hyp. log. $(a m-a c)+a b-a^{2} g$ $=(c-m) \cdot$ hyp. log. $a m+(m-c) \cdot$ hyp. log. $(a m-a c)+c$ $-\frac{a c g}{b}=\frac{a b}{c}((m-c)$. (hyp. log. $(a m-a c)-$ hyp. log. am $)+$ $\left.c=\frac{a c g}{b}\right)=\frac{a b}{c}+\left((m-c) \cdot\right.$ hyp. $\left.\log \cdot \frac{m-c}{m}+c-\frac{a c g}{b}\right)$.

This in numbers is $=127 \cdot 0139$ ($288+160$. hyp. log. $\left.{ }_{\mathrm{T}}^{\mathrm{T}}-1 \cdot 133734\right)=4015 \cdot 9827735 \mathrm{ft}$. the space the rocket ascends through during the 3 seconds it is on fire.
18. Since we have found the velocity at the end of this space to be 2896.9195 feet per second, we shall, on the surosition that the retardive force of gravity remains constant from D have, by the theory of uniform forces $\frac{v^{2}}{4 g f}=\frac{(2896 \cdot 9895)^{2}}{64 \times \cdot 9993709}=131261 \cdot 131$ feet for the height to which the rocket will farther ascend; which being added to that just determined $4015 \cdot 9827735 \mathrm{ft}$. gives $135277 \cdot 1137735$ feet for the whole height of the rocket above the surface of the earth when it has just lost all its motion, which is nearly equal to 27 miles.

But if the height to which it will farther rise be demanded on the true principle, that gravity varies inversely as the square of the distance from the earth's centre; Then,

Then $x^{2}: r^{2}:: 1: \frac{r^{2}}{x^{2}}$ the retardive force of gravity at 1 when that at the surface L is considered as unity.

Hence $-v \dot{v}=2 g f \dot{x}=\frac{2 g r \dot{x}}{x^{2}}$ (the negative sign being used because the velocity decreases) whose fluent is $v^{2}=$ $\frac{4 g r^{2}}{x}$, which, when $x=a$, and $v=c$, is $c^{2}=\frac{4 g r^{2}}{a}$; therefore the fluent corrected will be $v^{2}=c^{2}+\frac{4 g r^{2}(a-x)}{a x}$: So that when $v=0$, we shall have $c^{2}+\frac{4 g r^{2}(a-x)}{a x}=0$, and x $=\frac{4 a g r^{2}}{4 g r^{2}-a c^{2}}=($ taking the earth's radius at 3979 miles $)$ 21145143.65521 feet, the whole height of the rocket from the centre of the earth, and consequently 21145143.65521 $-r=136023.65521$ feet is the whole height from the surface. Whence also the height to which the rocket rises from the point where the impelling force of the composition ceases or is destroyed is 132007.67221 feet.

Hence it appears, that, in consequence of the diminution of the force of retardation from gravity upwards according to the inverse square of the distance from the earth's centre, the rocket will ascend nearly 746.54121
feet higher from a point $4230 \cdot 609$ feet above the earth's surface with a velocity of 2896.9895 feet per second, than it would do if the same force as at the point D had continued constant, or had continued to act upon the body always with the same intensity. Hence also, if the rocket had a velocity of 2896.9895 feet per second upwards when at a height from the earth's surface $=\frac{4 g r^{2}}{c^{2}}$ $-r$, it would never return, but continue to move for ever, ór fly off to an infinite distance. For the expression for x is $\frac{4 a g r^{2}}{4 g r^{2}-a c^{2}}$, or $x=\frac{4 a g r^{2}}{4 g r^{2}-a c^{2}}$, where it is evident that on $a c^{2}$ becoming $=4 g r^{2}, x$ will be infinite; and therefore to find a, put $4 g r^{2}-a c^{2}=0$ and reduce the equation.
19. Whence, having the height from which the body must fall to acquire a velocity, which, being added to that of 2896.9895 feet per second, shall cause it to move perpetually when projected with the velocity of their sum; we can readily determine what that velocity is; and it being a very curious fact to know, we will therefore give a solution to the problem in this place.

Then $\frac{r^{2}}{x^{2}}$ is the accelerative force of gravity at D when that at the surface is 1 . Therefore $\dot{v}=-2 g f \dot{x}$; and the fluent of the same is $v^{2}=\frac{4 g r^{2}}{x}$; which when properly
corrected is $v^{2}=4 g r^{2}\left(\frac{1}{x}-\frac{1}{d}\right)=($ when $x=r) 4 g r^{2} \times$ $\left(\frac{1}{r}-\frac{1}{d}\right)=4 g r^{2}\left(\frac{d-r}{d r}\right)=\left(\right.$ because $\left.d=\frac{4 g r^{2}}{c^{2}}\right) 4 g r^{2} \times$ $\frac{4 g r-c^{2}}{4 g r^{2}}=4 g r-c^{2}$. Therefore the velocity acquired in deacending through $d-r$ is $v=(4 g r-c)^{\frac{1}{2}}=36553.3482$ feet per second; which, added to the given velocity 2896.9482 feet per second, gives 39450.2377 feet, or $\mathbf{7 . 4 7 1 7 6 8}$ miles for the velocity of projection to cause a body to move to an infinite distance.

PROP. 2.

20. To find the period of the rocket's motion; or the time from its first going off to that of its return to the carth.

This is equal to the time of its ascent and of its de-scent--To find the time of the rocket's ascent from the point where it first ceases burning.
Put $r=C L$ the radius of the earth
$a=\mathrm{cD}$ the height of the rocket from the centre c at the end of its burning
$d=$ cs the distance of the limit of the rocket's ascent from the same point
$x=\mathrm{cI}$ any variable distance from c greater than CD
$v=$ velocity at I

$t=$ time of its motion from D to I
$c=$ velocity at D at the end of its burning
$g=16$ feet
Then n_{2} since we have found the general value of $v=$ $\left\{c^{2}+\frac{4 g r^{2}(a-x)}{a x}\right\}^{\frac{1}{2}}$ (See preceding Prop.); we shall
have $\dot{t}=\frac{\dot{x}}{v}=\frac{\dot{x}}{\left\{\frac{a c^{2} x+4 r^{2}(a-x)}{a x}\right\}^{\frac{x}{2}}}=$ (putting b
$=4 g r^{2}-a c^{2}$ and $\left.k=4 a g r^{2}\right) \frac{a^{\frac{1}{2}} x^{\frac{1}{2}} \dot{x}}{(k-b x)^{\frac{1}{2}}}=\frac{a^{\frac{1}{2}} x \dot{x}}{\left(k x-b x^{2}\right)^{\frac{1}{2}}}=\left(\frac{a}{b}\right)^{\frac{1}{2}}$
$\times \frac{x \dot{x}}{\left(d x-x^{2}\right) \frac{1}{2}}, \frac{k}{\bar{b}}\left(=\frac{4 a g r^{2}}{4 g r^{2}-a c^{2}}\right)$ being $=d$. Hence
$t=\left(\frac{a}{b}\right)^{\frac{1}{2}}\left\{\right.$ cir. arc to rad. $\frac{1}{2} d$ and versed sine $x-$ $\left.\left(d x-x^{2}\right)^{\frac{4}{2}}\right\}$; which, on correction will, in the extreme case where $x=d$, be $t=\left(\frac{a}{b}\right)^{\frac{1}{2}}\left\{\left(a d-a^{2}\right)^{\frac{1}{2}}+\right.$ arc to rad. $\frac{1}{2} d$ and versed sine $\left.(d-a)\right\}$; as will be evident by conceiving a semicircle described on cs as a diameter.

For an example. Let it be the same rocket as in the example to the foregoing proposition. Then we shall have

$$
\begin{aligned}
& r=3979 \text { miles, or } 21009120 \text { feet. } \\
& a=21013135 \cdot 6 \text { feet. } \\
& d=2145143.655 \text { feet. } \\
& c=2896 \cdot 9895 \text { feet. } \\
& g=16 \text { feet. } \\
& b=4 g r v^{2}-a c^{2}=28072165812115919 \text { feet. }
\end{aligned}
$$

Whence $t=\left(\frac{a}{b}\right)^{\frac{1}{2}}\left\{\left(a d-\dot{a}^{2}\right)^{\frac{1}{2}}+\right.$ arc to rad. $\frac{1}{2} d$
and versed sine $(d-a)\}=45 \cdot 55647+45 \cdot 7666=$ $91 \cdot 32307$ seconds; and consequently the whole time of the rocket's ascent is $94 \cdot 32307$ seconds.

Now to determine the time of its descent. Let as before
$r=$ cl the rad. of the earth. (See preceding figure.)
$d=\mathrm{cs}$ the extreme height of the rocket from the centre \mathbf{c}.
$x=C D$ any var. dist. from C.
$v=$ vel. of the rocket at 1 .
$t=$ time of falling to that point.
$g=16$ feet.
We have already found the general value for v under these circumstances. (See last Problem.) $=\left\{4 g r^{2} \times\right.$ $\left.\left(\frac{d-x}{d x}\right)\right\}^{\frac{1}{2}}$ or $\frac{8 r}{d^{\frac{1}{2}}}\left(\frac{d-x}{x}\right)^{\frac{1}{2}}$. Therefore $\dot{t}=\frac{-\dot{x}}{v}=$ $\frac{d^{\frac{1}{2}}}{8 r} \times \frac{-x \dot{x}}{\left(d x-x^{2}\right)^{\frac{1}{2}}}$ and $t=\frac{d^{\frac{1}{2}}}{8 r}\left\{\left(d x-x^{2}\right)^{\frac{1}{2}}-\right.$ cir. arc to rad. $\frac{1}{2} d$ and vers. sin. $\left.x\right\}$; and the correct fluential equation is $t=\frac{d^{\frac{1}{2}}}{8 r}\left\{\left(d x-x^{2}\right)^{\frac{1}{2}}+\right.$ cir. arc to rad. $\frac{1}{2} d$ and ver. $\sin .(d-x)\}:$ whence in the case where $x=r$, it is $t=$ $\frac{d \frac{1}{2}}{8 r}\left\{\left(d r-r^{2}\right)^{\frac{1}{2}}+\right.$ cir. arc to rad. $\frac{1}{2} d$ and vers. $\left.\sin .(d-r)\right\}$

This in numbers is equal to $46 \cdot 448185+46 \cdot 250625=$ $92 \cdot 69881$ seconds, whence the whole time of the rocket's motion is 187.02188 seconds, or 3 min .7 sec .

Cor. When $b\left(=4 g r^{2}-a c^{2}\right)=0$, the first value of t above is infinite as is evident by inspection.

PROP. III.
21. To determine the path of a rocket near the earth's surface, neglecting the resistance of the atmosphere.

If during the time the rocket was on fire, the weight of
the whole mass remained constant, the path of the rocket would, by mechanics, be a straight line : but this not being the case on account of the continual wasting of the matter which feeds the flame of the rocker, the accelerative force of the body will be different at every instant ; and therefore, since the accelerative force of gravity (as we will suppose) is constant to the height to which rockets generally ascend, the route of the rocket will consequently be a curvilinear one.
Let $A C$ be the first direction of the rocket, and AD the curve in which it moves, and draw cDe perpendicular to the horizontal line ab. Now the path of the rocket will be determined by finding the relation between AC and cD. Let us then
 suppose gravity not to act, and that the rocket arrives at the point c, in the line $A c$, in the time t. For although the contrary be the case, yet gravity does not hinder the rocket from arriving at the line CB , parallel to the direction in which that force is exerted, in the same time that it would have done by the single action of its own impelling force. Therefore, put $\mathrm{AC}=\boldsymbol{x}$; and we shall have (Prop. ${ }^{1}$) $x=\left(b t-\frac{a b m}{c}\right)$ hyp. log. $a m+\frac{b}{c}(a m-c t)$ hyp. $\log .(a m-c t)+b t$.

This expression for x being in terms of logarithms and other quantities; the general value of t in terms of \boldsymbol{x} (which is what we want to find), is not immediately to be obtained; therefore some other expression must be sought. Now under the present case, $\dot{x}=\dot{b} \dot{t}$ hyp. log.
$\frac{a m}{a m-c t}$ (Prop. 1.); the fluent of which may be had by
finding the log. of $\frac{a m}{a m-c t}$; which is done by first putting it into fluxions and then finding its fluent in a series. Thus, the fluxion of the log. $\frac{a m}{a m-c t}$ being $\frac{c \dot{t}}{a m-c t}$, we shall by expanding the fraction and taking the fluent of each term have, for the log. $\frac{a m}{a m-c t}$ the series $\frac{c}{a m} \times(t+$ $\frac{c t^{2}}{2 a m}+\frac{c^{2} t^{3}}{3 a^{2} m^{2}}+\frac{c^{3} t^{4}}{4 a^{3} m^{3}}+\frac{c^{4} t^{5}}{5 a^{4} m^{4}}+8 c c$.). Hence the above fluxional expression becomes $\dot{x}=\frac{b c}{a m} \times(\dot{t}+$ $\left.\frac{c t^{2} \dot{t}}{2 a m}+\frac{c^{2} t^{3} \dot{t}}{3 a^{2} m^{2}}+\frac{c^{3} t^{4} \dot{t}}{4 a^{3} m^{3}}+\frac{c^{4} t^{5} \dot{t}}{5 a^{4} m^{4}}+\& c.\right) ;$ whose fluent is $x=\frac{b c}{2 a m}\left(t^{2}+\frac{c t^{3}}{3 a m}+\frac{c^{2} t^{4}}{6 a^{2} m^{2}}+\frac{c^{3} t^{5}}{10 a^{3} m^{3}}+\frac{c^{4} t^{6}}{15 a^{4} m^{4}}+8 c c\right.$. wanting no correction. Or, multiplying by $\frac{2 a m}{b c}(=$ suppose Q) and calling the coefficients of the several terms of the series $A, B, C, \& c$.; it will be $a x=t^{2}+A t^{3}+B t^{4}+$ $c t^{5}+D t^{6}+\& c$.); which reverted into a series of x, is $t=$ $(a x)^{\frac{1}{2}}-\frac{A}{2} a x+\frac{5 A^{2}-4 B}{8}(a x)^{\frac{3}{2}}+\frac{3 A B-2 A^{3}-C}{2} a^{2} x^{2}$ $+\& c .=Q^{\frac{x}{2}}\left(x^{\frac{x}{2}}-\frac{\mathrm{A}}{2} Q^{\frac{1}{2}} x+\frac{5 \mathrm{~A}^{2}-4 \mathrm{~B}}{8}\right.$ Q $x^{\frac{3}{2}}+$ $\frac{3 A B-2 A^{3}-C}{2} a^{\frac{3}{2}} x^{2}+8 c$.) ; the time of describing the distance x, along $A C$, from the commencement of motion.

Now cD (y) being the distance descended by gravity in the same time; we therefore get $\frac{1}{4} y^{\frac{1}{2}}$ (omitting the $\frac{1}{12}$) for the time of the rocket's describing $C D$ by the force
of gravity : and consequently $\frac{x}{4} y^{\frac{1}{2}}=Q^{\frac{x}{2}} \times\left(x^{\frac{x}{2}}-\frac{\mathbf{A}}{2}\right.$
$Q^{\frac{1}{2}} x+\frac{5 A^{2}-4 B}{8} Q x^{\frac{2}{3}}+8 c$.)
Hence, knowing the equation which subsists between $A C$ and $C D$, the track which the rocket describes may be drawn; for it will only be necessary to give some value to x in order to determine the corresponding value of y; and to lay off this upon CD drawn perpendicular to $A B$, and thus finding several points of the curve, the curve itself may be described.

We have here supposed gravity to act in parallel lines, which is not strictly true; but the distance to which a rocket ranges on the earth's surface being very small compared with its circumference, the error arising from the contrary supposition will not in any material degree affect our conclusions.

PROP. IV.

\therefore 22. To find the velocity of the rocket in the curve at any given instant.

In the preceding diagram let $\mathrm{AC}=x$, and $\mathrm{AD}=z$ being the space described by the rocket in the time t : then calling the velocity at $\mathrm{C}\left(=b \times\right.$ hyp. log. $\frac{a m}{a m-c t}$ (Prop. 1.) v ; the velocity at D , in the curve, will be expressed generally by $\frac{\dot{z} v}{\dot{x}}$, following from the laws for the resolution of motion. Now by the theory of falling bodies in vacuo $C D=g t^{2}:$ and putting k and l for the natural sine and co-sine (to rad.1.) of the angle CAB of projection; we shall have $\mathrm{AB}=l x, \mathrm{CB}=k x$, and DB (the ordinate of
the curve $)=k \dot{x}-g t^{2}$. Therefore $\dot{z}=\left\{(k \dot{x}-2 g \dot{t})^{2}+\right.$ $\left.l^{2} \dot{x}^{2}\right\}^{\frac{x}{2}}$; and $v=\frac{\dot{z} \mathrm{~V}}{\dot{x}}=\frac{\left\{l^{2} \dot{x}^{2}+(k \dot{x}-2 g t \dot{t})^{2}\right\}^{\frac{1}{2}}}{\dot{x}} \times \mathrm{v}$. Again, by the theory of variable motions $\dot{x}=\mathrm{v} \dot{t}$. Consequently $\dot{v}=\frac{\left\{l^{2} \mathrm{v}^{2} \dot{t^{2}}+(k \mathrm{v} \dot{t}-2 g t \dot{t})^{2}\right\}^{\frac{1}{2}}}{\mathrm{v} \dot{t}} \times \mathrm{v}=\left\{\mathrm{v}^{2} l^{2}+(k \mathrm{v}\right.$ $\left.-2 g t)^{2}\right\}^{\frac{1}{2}}=\left\{l^{2} b^{2}\right.$ hyp. log. $\frac{a m}{a m-c t}+(k b$. hyp. log. $\left.\left.\frac{a m}{a m-c t}-2 g t\right)^{2}\right\}^{\frac{1}{2}}$, the velocity of the rocket at D; which wants no correction, because when $v=0, t=0$, and the whole vanishes: therefore $v=\left\{l^{2} b^{2}\right.$ hyp. \log. ${ }^{2}$ $\left.\frac{a m}{a m-c t}+\left(k b \text { hyp. log. } \frac{a m}{a m-c t}-2 g t\right)^{2}\right\}^{\frac{1}{2}}$
When the angle of projection is $90^{\circ}, l=0$, and $k=1$: therefore v in this case will be $b \times$ hyp. log. $\frac{a m}{a m-c t}-$ 2gt; as determined in Prop. 1: and when $k=0$, or the action of gravity is 0 , the velocity of the rocket in its rectilinear path is $b \times$ hyp. log. $\frac{a m}{a m-c t}$; which agrees with what has already been observed.
When the angle of elevation is $30^{\circ}, k=\frac{1}{2}$ and $l=\left(\frac{3}{4}\right)^{\frac{1}{2}}$: $\because v=\left\{\frac{3}{4} b^{2}\right.$ hyp. log. $.^{2} \frac{a m}{a m-c t}+\left(\frac{1}{2} b\right.$ hyp. log. $\frac{a m}{a m-c t}$ $\left.-2 g t)^{2}\right\}^{\frac{1}{2}}$. And when the angle of elevation is 60°, then k being $=\left(\frac{3}{4}\right)^{\frac{1}{2}}$, and $l=\frac{1}{2} ; v=\left\{\frac{1}{4} b^{2}\right.$ hyp. log. ${ }^{2}$ $\left.\frac{a m}{a m-c t}+\left(\frac{3^{\frac{1}{2}} b}{2} \text { hyp. log. } \frac{a m}{a m-c t}-2 g t\right)^{2}\right\}^{\frac{1}{2}}$.

PROP. v.

23. To find the borizontal range of the rocket, baving the angle of elevation of the engine, and the time the rocket is on fire given.
Let D be the place of the rocket when all the matter it contains is just exhausted; and $\mathrm{c} m$ and $\mathrm{c} n$ the measures of the velocities of the rocket in the directions AC and DI, the latter of which is a tangent to the curve at v : then by trig. sin. 2 Cnm (=nCB=
 $\mathrm{IDP})=\frac{\mathrm{c} m}{\mathrm{C} n} . \sin . \angle \mathrm{C} m n=\frac{\mathrm{C} m}{\mathrm{C} n}$. co-sin. of the angle of elevation of the engine $=\frac{\text { velocity }}{\text { velocity } \mathrm{C}}$ at D. co-sin. of the LCAB.

Whence calling the velocities at c and D, v. and v (computed from the $3 r d$ Prop.), we have \sin. $\angle I D B=$ $\frac{v}{v}$. co-sin. $\angle C A B$. And since we have found the $\angle I D B$, it will be easy to determine that part of the range denoted by 3L. For the curve from D being a parabola $\mathrm{DH}=\frac{s u v^{2}}{g}$, and $\mathrm{VE}=\frac{s^{2} v^{2}}{4 g}$ (from the laws of projectiles in 'vacuo); where s and u represent the \sin. and co-sin. of the $\angle I D H=\angle I D B-90^{\circ}$; consequently $v F=V E+E F$ $=\mathrm{vE}+\mathrm{DB}=\frac{s^{2} v^{2}}{4 g}+k x-g t^{2}$; whereof, x is given by the first proposition.

Again, by the nature of the parabola, VE:VF::EH $:$
$\mathrm{FL}^{2}=\frac{u^{2} v^{2}}{g} \cdot\left(\frac{s^{2} v^{2}}{4 g}+k x-g t^{2}\right) ;$ and $\mathrm{FL}=\frac{u v}{4} \cdot\left(\frac{s^{2} v^{2}}{4 g}+\right.$ $\left.k x-g t^{2}\right)^{\frac{1}{2}}$. Whence AL $=\frac{u v}{4}\left(\frac{s^{2} v^{2}}{4 g}+k x-g t^{2}\right)^{\frac{1}{2}}+$ $\frac{s u v^{2}}{2 g}+l x$, the entire range of the rocket, which was required.

For an example in numbers: suppose the engine from whence the rocket is thrown to make an angle with the horizon $=45^{\circ}:$ and let all other things remain as in the first proposition. Then \boldsymbol{v}, the velocity of the rocket in the curve at the end of its burning $=\left\{l^{2} b^{2}\right.$ hyp. log. ${ }^{2}$ $\left.\frac{m}{m-c}+\left(k b \text { hyp. log. } \frac{m}{m-c}-6 g\right)^{2}\right\}^{\frac{1}{2}}=(4479024+$. $+4080400)^{\frac{x}{2}}=2925 \cdot 6$; and sine angle IDB $=\frac{v}{v} \times$ co$\sin . \angle C A B=\frac{2993}{2925 \cdot 6} \cdot$ co-sin. $\angle C A B=134^{\circ} 6^{\prime} 38^{\prime \prime}$. Whence $\angle I D H=44^{\circ} 6^{\prime} 38^{\prime \prime}$; the nat. sin. and co-sin. of which are $\cdot 6960172$ and $\cdot 7180251=s$ and u respectively :' and the values of the letters in the above expression for the range collectively are as under.

$$
\begin{array}{rlr}
s & = & \cdot 696 \\
u & = & \cdot 718 \\
v & = & 2925 \cdot 6 \\
k & = & \cdot 7071 \\
l & = & \cdot 7071 \\
x & = & 4159 \cdot 6 \\
g & = & 16 \\
t & = & 3
\end{array}
$$

Whence the range itself is readily found equal to 273116.29 feet, or 51.72657 miles.

examples for practice. \bullet
 EXAMPLE I.

Given the diameter of a cylindrical rocket 4 inches, the length of the case 2 feet, and the weight of the case $8 \frac{1}{2} \mathrm{lb}$. to find to what height the rocket will rise in a vertical projection*.

EXAMPLE II.

All things remaining as in the foregoing example, to determine the time in which the rocket will lose all its motion upwards; or before it will begin to descend.

EXAMPLE III.

The same data being retained, to find the period of the rocket's return to the earth from the first moment of projection.

EXAMPLE IV.

Having given the diameter of a rocket equal to 7 inches, and its length $2 \frac{1}{2}$ feet; also the weight of the case of the rocket 13 lbs . and the angle of projection 30°; to find the range of the rocket on the horizontal plane.

RXAMPLE V.

Let the same rocket be supposed to contain a ball (of the same diameter) at the end of it ; and to be impelled after the consuming of the wild-fire by the explosion of a charge of gunpowder that fills the last 3 inches

[^0]of the case of the rocket; to find the range of the shot on the horizontal plane.

EXAMPLE VI.

All things remaining as in the 4th example; to find the velocity with which the rocket is moving at the end of 4 seconds.

EXAMPLE VII.
To find the height of the same rocket from the earth at any given instant; as at the end of 5 seconds.

EXAMPLE VIII.
Required the time of flight of the same rocket on the horizontal plane.

EXAMPLE IX.
The weight of the case of a rocket is 10 lb . its length 2 $\frac{1}{4}$ feet, and the diameter of its base 6 inches: What will be the oblique range and the time of flight of this rocket, reckoning from the point where it ceases burning to the point where it falls upon the horizontal plane?

SECTION II.

ON THE RESISTANCE TO BODIES MOVING IN FLUIDS WITH GIVEN VELOCITIES.
24. As frequent mention will be made in what follows on the theory of Rockets concerning the resistance that planes, cones, spheres, and cylinders suffer when moving in given directions in fluids; it will here be proper to lay down such matter on this head as will suffice for our
further enquiries on that subject ; especially as no book extant (with which at least I am acquainted) contains the principal part of the information that will be required, to which reference could otherwise be made.

PRop. vi.
25. To determine the resistance a plane meets with from a fuid, in which it moves, in an inclined position, with a given velocity.
It is universally allowed, and indeed it is evident, that the resistance to a body moving through an infinitely compressed fluid at rest (such as is here supposed), is the same in effect as the force of the fluid in motion with equal velocity, on the body at rest: therefore, as it will be somewhat more convenient to consider the fluid in motion, and the body quiescent, I shall pursue the several investigations in this section upon this hypothesis.

Let AB be the given position of the plane; and CA the direction of the fluid moving against it. Draw bc perpendicular to $A B$, and let
 bd be perpendicular to line AC; also draw ebf parallel to Ac.

Let AC denote the full force of the fluid against $A B$; or the force with which the plane would be struck thereby, if it were perpendicular to the direction of the fluid's motion. Then this being resolved into the two forces $A B, C B$, the former $A B$ being parallel to the plane has no effect to move it in any direction whatever, but only the force CB in direction CB , perpendicular to AB ; which is
to the whole force ca as sine angle a to rad. (1); and this force $C B$ to urge the plane ab in the direction $C A$ is as CD , which is to the force CB as \sin. $\angle C B D$, or sine angle A to rad. (1): CD therefore being that part only of the full force CA which has efficacy in moving the plane in the direction of the fluid, and in proportion to the whole force $C A$ as $\sin ^{2}$ \&A to 1 ; the full force of the fluid on the plane will be diminished from the obliquity of the impact in the ratio of 1 to the square of the sine of the angle of incidence. But the whole force will be further diminished in the ratio of 1 to sin. $\angle A$, on account of no more fluid striking the plane ab than what passes between the parallels $A C$ and $E F$, or that meet the vertical section BD, which is to AC as sin. $\angle A$ to rad. (1); and therefore, on both these accounts, the full force of the fluid on AC will be diminished in the ratio of 1 to the cube of the sine of the angle of incidence.

Let $A=$ the area of the given plane.
$f=$ the sine $\angle A$ to rad. 1.
$\mathrm{v}=$ velocity of the (supposed) moving fluid.
$n=$ density of the fluid.
Then by the nature of fluids, the force with which any one in motion strikes a plane perpendicularly, being equal to the weight of a column of such fluid, the base of which is equal to that of the given plane, and altitude the height through which a body must fall to acquire the velocity of its motion; the full force of the fluid on the plane, denoted above by the line Ac, will be $=A \times n \times$ $\frac{v^{2}}{4 g}$ (where $g=16 \frac{1}{1_{2}^{2}}$). And therefore, as $1: \sin ^{3}$ 2A $\left(\mathcal{~}^{3}\right):: \frac{\Delta n v^{2}}{4 g}: \frac{\Delta n v^{2} f^{3}}{4 g}$ the absolute force of the fluid on the plane $A B$, in direction $C A$, when the sine of the angle
of incidence is \int. Hence, conversely, the real resistance to the plane is $\frac{A n v^{2} \rho^{3}}{4 g}$, as was required.
26. If ab represent a line the length of which is L, and \int be the sine of the angle of incidence, or angle at which the line is inclined to the direction of its motion; then the resistance to the line estimated in the directly opposite direction to that of its motion will be $\frac{L n v^{2} f^{3}}{4 g}$.
27. And if a cylinder, the radius of the base of which is r, move in a fluid in the direction of its axis with velocity v ; then the end of the cylinder opposing in this case the full inertia of the fluid; the real resistance to the cylinder will be $\frac{p r^{2} n v^{2}}{4 g}$; p being $=3 \cdot 1416$ and n the density of the medium as before.
28. Also if a cone move in a fluid in the direction of its axis with its vertex foremost; the resistance.it suffers will be $\frac{p r^{2} n v^{2} \rho^{2}}{4 g}$; r being the radius of its base, v the velocity of motion, and f the sine of the angle of incidence of the reacting fluid against the solid.

For here, as many particles strike the surface of the solid as woutd meet the base; and therefore the full force of the fluid against the base can only be diminished in the ratio of 1 to $\sin ^{2}$ of the angle of inpidence (supposing throughout rad. 1.); or of the angle which the slant side of the cone makes with the axis, which is equal to it.
29. And if r be the radius of a circular plane moving obliquely in a fluid, and the sine of the angle of incidence, or angle at which the plane is inclined to the direction of its motion, be f; the resistance opposed to the plane
in the directly contrary direction to that in which it moves will be $\frac{\operatorname{pr}^{2} n \mathrm{v}^{2} \rho^{3}}{4 g}$.

Thus much concerning the resistance to planes, cones, and cylinders, when these move in the direction of their axes in fluids : I shall now proceed to determine the resistance to a sphere, or any segment of a sphere moving in the direction of the versed sine.

PROP. VII.

30. To determine the resistance to a sphere or a cylinder, with a bemispheric end, moving in a fuid with a given velocity, in the direction of its axis.

Let ateca be any section of the sphere through the axis DE, in the direction in which the solid moves. Draw TI a tangent to any point of the curve' as
 T , meeting the axis produced in I , and draw also TR perpendicular to DE, and join DT.

Put $\mathrm{Dr}=\infty, \mathrm{Tr}=y, \mathrm{ET}=z$, and $\mathrm{DT}=r$. Then the sine (\int) of the angle of incidence PTI or its equal angle $\mathbf{D T R}=\frac{\dot{D R}}{\mathbf{D T}}=\frac{\boldsymbol{x}}{\boldsymbol{r}}$. Now $2 p y \dot{z}$ is the fluxion of the surface of the spherical zone generated by AT; and $\frac{n v^{2} \int^{3}}{4 g} \times 2 p y \dot{z}$ (Prop. 6.), the fluxion of the force of resistance on the same; where $2 p y \dot{z}$, denotes the same quantity here that A does in that proposition. But $f^{3}=\frac{x^{3}}{r^{3}} ;$ and
$\dot{x}=\frac{r \dot{x}}{g}$. Therefore the fluxion of the force $\left(=\frac{n v^{2} /{ }^{3}}{4 g}\right.$ $\times 2 p y \dot{z})=\frac{p n v^{2} x^{3} \dot{x}}{2 g r^{2}}$; the fluent of which is $\frac{p n v^{2} x^{4}}{8 g r^{2}}$; the resistance to the sphere as far as relates to the action of the fluid against the surface of the said spherical zone atLc. And when $x=r$ the expression becomes $\frac{p n v^{2} r^{2}}{8 g}$ which is therefore the whole resistance to the sphere $A E$ CA, or cylinder, the end of which is the hemisphere, AEC, and the direction of whose axis is that of Dr .

The resistance to the spherical segment TEL, when moving in the direction RE, is hence determined to be $\frac{p n v^{2}}{8 g r^{2}}$ $x\left(r^{4}-x^{4}\right)=\frac{\eta^{2} v^{2} y^{4}}{8 g r^{2}}$; where y is the radius of its base, and r the rad. of the sphere of which TEL is the segment.

PROP. VIII.

31. To determine the resistance à cylinder meets with in a fuid when moving in a direction-perpendicular to its axis with a given velocity.

Let $A B C D$ be the cylinder, and ETF any section parallel to the base. Let a particle strike this section at \mathbf{T} in the direction PT , perpendicular, by supposition, to BD ; and draw to to the centre

E

O ; draw also the tangent TQ to the circle ETF or cylinder at T, upon which let fall the perpendicular $P a$, and let fall the perpendicular ar upon TP.

Let st be denoted by z, and тa represent the fluxion of $z=\dot{x}$; then it is evident by bare inspection of the figure (where TP may represent the full force of the fiuld against Ta, \&cc.), and from Art. 25, that $\frac{n v^{2} \dot{z}}{4 g} \times \sin .^{3} 2 \mathrm{PTa}$ will be the real force that urges ar in the direction AT; and comeequently the fluxion also of the force of the fluid against the circular arc to move it in the same direction.

$$
\begin{aligned}
\text { Put } S T & =x \\
\mathrm{LT} & =y \\
\text { ot } & =r, \\
\text { and } f & =\text { the sine of the angle PTa. }
\end{aligned}
$$

Then $\dot{x}=\left(\dot{x}^{3}+\dot{j}^{2}\right)^{\frac{\pi}{2}} ;$ and $y=\left(2 r x-x^{2}\right)^{\frac{3}{2}}$ by the property of the circle : consequently $\dot{y}=\frac{r \dot{x}-x \dot{x}}{\left(2 r x-x^{2}\right)^{\frac{1}{2}}}$, and $=\left(\dot{x}^{2}+\dot{j}^{2}\right)^{\frac{x}{2}}=\frac{r \dot{x}}{\left(2 r x-x^{2}\right)^{2}}$. Also by reason of similar triangles, $\frac{Q_{P}}{T P}=\frac{L T}{O T}=\frac{y}{r}$: whence f being $=\frac{Q P}{T P}$ will also be equal to $\frac{y}{r}$. Therefore by substitution the fluxion of the force of the fluid on $s=\frac{n v^{2} / 3 \dot{x}}{4 g}=\frac{n \psi^{2}}{4 g} \times \frac{y^{3}}{r^{3}}$ $\times \frac{r \dot{x}}{\left(2 r x-x^{2}\right)^{\frac{1}{2}}}=\frac{\pi v^{9}}{4 g} \times \frac{\left(2 r x-x^{2}\right)^{\frac{3}{3}}}{r^{3}} \times \frac{\pi v^{2}}{\left(2 r x-x^{2}\right)^{\frac{1}{2}}}=\frac{\pi v^{2}}{4 \sigma^{5}}$

ing no correction; so that when $x=2 r$, the firent will be $\frac{n v^{2} r}{3 g}$; which is the effective force of the fluid on the semicircumference of a section of the cylinder parallel to the base. Consequently $\frac{n v^{2} r}{3 g}$ into the height of the cylinder $(b)=\frac{n v^{2} r b}{3 g}$, will be the force of the fluid on the whole semicylindric surface; or the resistance that the cylinder suffers when it moves in a direction perpens dicular to its axis with the velocity V .

Cor.-Because it is found, that a sphere, the radius of which is r, moving in a fluid of the density n, with the velocity v, is $\frac{p n v^{2} r^{2}}{8 g}$; we shall have the resistance of the sphere to the resistance of its circumscribing cylinder as $\frac{p n v^{2} r^{2}}{8 g}$ to $\frac{2 \pi v^{2} v^{2}}{9 g}$, or as 1 to $\frac{16}{3 p}$ (where $p=3.1416$); the latter therefore being resisted more than the former by about 69829 of the former. Whence; the resistance to a sphere being given, the resistance to its circumscribfing cyliader will be had by multiplying the former by $1 \cdot 69829$.

PROB. IX.

92. To determine the same as in the last, when the gylinder moves in any direction oblique to its axis,

Let TP in the following diagram be the direction of the eylinder moving, in the fluid or er that of the fluid ofoinst the eylinder.

At any point T in the circumference of the section EFT (parallel to the base cD), draw the tangent Tw; also let lta be perpendicular to the diameter vos, which is at right-angles to the axis XY ; and draw ra, aw, and WR
 perpendicular to $T Q$; TW and TP respectively. Join PW, which will evidently be perpendicular to Tw.

Now because of the oblique motion of the cylinder in the fluid, the full resistance to the same will, on this account, be diminished in the ratio of 1 to the cube of the sine of the angle of incidence (drt.25). Or, supposing the fluid to move against the cylinder at rest, its full force against the cylinder, from the obliquity of the direction of the impact with regard to the position of the cylinder, will be diminished in the ratio of 1 to sin. ${ }^{3}$ of the angle pro of incidence. Let $\mathbf{F T}=\boldsymbol{z}$ and \boldsymbol{z} represent the fluxion of z. Let the full force of the fluid striking \dot{x} as above diminished ($=\frac{n v^{2} / 3 \dot{x}}{4 g}$, calling sin. $\angle \mathrm{PTG}, f$) be dènoted by TP; then resolving this force into the two forces $\mathbf{T w}, \mathbf{P w}$; and the latter of these into the two $\mathbf{P R}$, WR; the former only $\mathbf{P R}$, which has effect in moving the solid in the direction PT, will be to the whole force TP as $\sin ^{2} \angle \mathrm{P}$ Tw to 1 (rad. being 1), or as $\sin .^{2}$ of its supplement to 1 ; and the force TP being also further diminished in the ratio of 1 to $\sin . \angle \mathrm{PTW}$, on account of the number of particles striking \dot{x}, being so diminished (from the obk-
quity of the line \dot{z} with regard to PT); and therefore the real force upon $\dot{\boldsymbol{z}}$ to urge it in the direction PT , from the consideration of both the oblique motion of the fluid, and the oblique surface of the cylinder, will be $\frac{n \mathrm{v}^{2} \int^{3} \dot{x}}{4 g} \times \sin ^{3}{ }^{3} \mathrm{PTW}$; which is also the fluxion of the force of the fluid on the arc FT.

Put $r=$ ot, $x=$ ol, and $y=$ tl. Then by reason of the similitude of the triangles oLT, aTW, we obviously obtain the sine of the angle raw $(=\mathrm{LrO})=\frac{\dot{x}}{r}$. Call TP unity, and we get Ta $=f$; also sin. LTaw being expressed by $\frac{x}{r}$, by Trig. $\mathbf{T w}=\frac{f_{x}}{r}$. Hence in the right-angled triangle $T P W, P W=\left(T P^{2}-T W^{2}\right)^{\frac{1}{2}}=$ $\left(1-\frac{\int^{2} x^{2}}{r^{2}}\right)^{\frac{1}{2}}=\frac{\left(r^{2}-\int^{2} x^{2}\right)^{\frac{1}{2}}}{r}$; which in the present case is equal to the sine of the angle PTW. Therefore by substitution, the fluxion of the force of the fluid on $F T$ will be $\frac{n v^{2} \rho^{3}}{4 g r^{2}}, \frac{\dot{x}\left(r^{2}-f^{2} x^{2}\right)^{\frac{3}{2}}}{\left(r^{2}-x^{2}\right)^{\frac{1}{2}}}$; the fluent of which is

$$
\frac{n v^{2} \rho^{3}}{4 g r^{2}} \cdot\left\{r^{2} x-\frac{3 \rho^{2}-1}{6} x^{3}+\frac{3\left(\rho^{2}-1\right)^{2}}{40 r^{2}} x^{5}+\right.
$$

$$
\left.\frac{\left(f^{2}+5\right) \cdot\left(f^{2}-1\right)^{2}}{112 r^{4}} x^{7}+\& c .\right\}: \text { which on } x \text { becoming } r \text { is }
$$

$$
\begin{gathered}
\frac{n v^{2} \int^{3} r}{4 g} \cdot\left\{1-\frac{3 f^{2}-1}{6}+\frac{3\left(f^{2}-1\right)^{2}}{40}\right. \\
\left.+\frac{\left(f^{2}+5\right) \cdot\left(f^{2}-1\right)^{2}}{112}+8 c \cdot\right\}
\end{gathered}
$$

This therefore is the effective force of the fluid on the quadrantal arch fTs. Hence the force on the whole semicylindric surface $m \mathrm{DvrBs}$ is

54 RESISTANOE TO MODIES MOVING IM PLUIDS.

$$
\begin{gathered}
\frac{n v^{2} r b f^{3}}{2 g}\left\{1-\frac{3 \rho^{2}-1}{6}+\frac{3\left(f^{2}-1\right)^{2}}{40}+\right. \\
\left.\frac{\left(\rho^{2}+5\right) \cdot\left(\rho^{2}-1\right)^{2}}{112}+2 \& c \cdot\right\}, \text { which is also the resist- }
\end{gathered}
$$ ance to the cylinder when this moves in the fluid at rest, so far as relates to the surface $m \mathrm{D}$ vrbs only.

Now the resistance arising from the fluid against the top AsBm is $\frac{n v^{2} p r^{2}}{4 g}$. co-sin. ${ }^{3} \angle \mathrm{PTW}$ (Art. 25.): Hence the whole resistance to the cylinder is

$$
\frac{n v^{2} r b f^{3}}{4 g}\left\{1-\frac{3 f^{2}-1}{6}+\frac{3\left(f^{2}-1\right)^{2}}{40}+\right.
$$

$$
\left.\frac{\left(f^{2}+5\right) \cdot\left(f^{2}-1\right)^{2}}{112}+8 c c \cdot\right\}+\frac{n v^{2} p r^{2}}{4 g} \cdot\left(1-f^{2}\right)^{\frac{3}{2}}
$$

Cor.-When the angle TPQ is 90°, or the solid moves in a direction perpendicular to its axis; then \int becoming 1 , all the terms of the above series except the first two will vanish (each and all of them containing the factor $\left.f^{2}-1\right\}$, and the resistance will be $\frac{n v^{2} r b}{2 g}\left(1-\frac{3-1}{6}\right)$ $=\frac{n \mathrm{y}^{2} r b}{3 g}$ as detarmined in Prop. Art. 31.

EXAMPLES FOR PRACTICE.

EXAMPLE 1.

A cylinder, the radius of the bate of which is 8 inches, is terminated by a cone whose base is the same as that of the cylinder, and altitude 17 inches; what will be the resistance to this cylinder, moving in the atmosphere in the direction of its axis, with a velocity of 1200 feet per second?

EXAMPLE II.
What will be the resistance to a cylinder, whose diameter is 3 ft . and length 17 ft . moving in water in a direction perpendicular to its axis with a velocity of 2 ft. per second ?

RXAMPLE III,

The velocity of the wind is $\mathbf{8 8}$ feet per second: tequired its force to upset the monument of London, the radius of the base of which is $7 \cdot 5$ feet, and its height 202 feet, being that of an upright cylinder.

RXAMPLE IV.
The radius of the base of a cylinder is 11 inches; and its height 7 feet; what will be the resistance to this cylinder moving in air in a direction inclined to that of its axis in an angle of 54° with a velocity of 1500 feet per second?

EXAMPLE ${ }^{\text {. }}$

The resistance to a sphere is 54 lb . when moving with a certain velocity in a certain medium : required the resistance to its carcumscribing cylinder moving with the same velocity in the same medium perpendicular to its axis.

EXAMPLE VI.

The velocity of the wind is 50 miles per hour: required its force against a cylinder of 3 inches in radius and 50 inches in height, standing inclined to the horizon in an angle of 30°.

EXAMPLE VII.

Given the base of a cylinder, to determine it height; so that the resistance to the cylinder when it moves in the direction of its axis, may be equal to the resistance when the direction of its motion is perpendicular to the axis : the velocity being given.

SECTION III.

on the motion of rockets in resisting medioms.

> PROP. IX.
33. The time of burning, E®c. of a rocket being given; to frod the beight to which it will rise in the atmosphere in a vortical ascent; and also the velocity acquired at the end of that time; the resistance being as the square of the velocity directly.

Put $\boldsymbol{v}=$ weight of the case of the rocket and head,
$c=$ weight of the whole quantity of matter with which it is filled,
$a=$ time in which the same is consuming itself uniformly,
$n=230$ ozs.
$s=1000$,
. d = diameter of the rocket's base,
x. $=$ PD, the space the rocket describes in the time t,
$v=$ the acquired velocity in that time,
$R=$ the resistance of the air to the rocket when moving with a velocity of b feet per second.
Then $b^{2}: v^{2}:: R: \frac{R v^{2}}{b^{2}}$ the resistance at D; and consequently sned ${ }^{2}-\left(m-\frac{c t}{a}\right)-\frac{R v^{2}}{b^{2}}$ (see Prop. 1.) will be the motive force of the rocket at D in this case; and $\frac{\left(s n e d^{2} b^{2}-R v^{2}\right) a}{(a m-c t) b^{2}}-1$ the accelerative force. Therefore $\dot{v}=2 g f \dot{t}=\frac{\left(s n e d^{2} b^{2}-R v^{2}\right) 2 g a t}{(a m-c t) b^{2}}-2 g \dot{t} ;$ or putting
$2 a g \times \operatorname{sned}^{2} b^{2}=b, 2 a g \mathrm{R}=k, a m b^{2}=l$, and $c b^{2}=p$, we shall have $\dot{v}=\frac{b \dot{t}-k v^{2} \dot{t}}{l-p t}-2 g \dot{t} ;$ and $l \dot{v}-p t \dot{v}=h \dot{t}-$ $k v^{2} \dot{t}-2 g \dot{t}+2 g p t \dot{t} ;$ and further, putting $b-2 g l=q$ to render the expression as simple as possible, it will be $l \dot{v}-p t \dot{v}-q \dot{t}+k v^{2} \dot{t}-2 g p t \dot{t}=0$; whence v may be determined in terms of t as follows:

Assume $v=\mathrm{A} t+\mathrm{B} t^{2}+\mathrm{C} t^{3} .+\mathrm{D} t^{4}+\mathrm{E} t^{5}+8 \mathrm{c}$. : then making $\dot{t}=1$; we have $\dot{v}_{1}=\mathrm{A}+2 \mathrm{~B} t+3 \mathrm{C} t^{2}+4 \mathrm{D} t^{3}+$ $5 \mathrm{E} t^{4}+\& c$. : and substituting these in the given equation it becomes as follows:

$$
\left.\left.\left.\left.\left.\begin{array}{r}
l_{\mathrm{A}}+2 l_{\mathrm{B}} \\
-q
\end{array}\right\} t \begin{array}{l}
+3 l \mathrm{C} \\
-2 g p
\end{array}\right\} \begin{array}{l}
+4 l_{\mathrm{A}} \\
+k_{\mathrm{A}^{2}}
\end{array}\right\} \begin{array}{l}
+2 p \mathrm{D} \\
+2 k_{\mathrm{AB}}
\end{array}\right\} \begin{array}{l}
+4 l_{\mathrm{B}} \\
t^{3} \\
+2 k_{\mathrm{AC}} \\
+k_{\mathrm{B}^{2}}
\end{array}\right\} t^{4}=0
$$

Whence equating the co-efficients of the homologous terms to find the quantities $A, B, C, \& c$. they become

$$
\begin{gathered}
\Delta=\frac{q}{l} ; \mathbf{B}=\frac{p q+2 g p l}{2 l^{2}} ; \mathbf{c}=\frac{p^{2} q+2 g p^{2} l-k q^{2}}{3 l^{3}} ; \\
\mathrm{D}=\frac{p^{3} q+2 g p^{3} l-2 k p q^{2}-2 g k p q l}{4 l^{4}} ; \\
\mathrm{E}=\frac{12 p^{4} q+24 g p^{4} l-35 k p^{2} q^{2}-52 g k p^{2} q l-12 g^{2} p^{2} l^{2} k+8 k^{2} q^{3}}{60 l^{5}} \frac{\& c .}{\& c .}
\end{gathered}
$$

Therefore the fluent required is $v=\frac{q}{l} t+\frac{p q+2 g p l}{2 l^{2}} t^{2}$ $+\frac{p^{2} q+2 g p^{2} l-k q^{2}}{3 l^{3}} t^{3}+\frac{p^{3} q+2 g p^{3} l-2 k p q^{2}-2 g k p q l}{4 l^{4}} t^{4}$ $+\& c .=$ (in the ultimate case where $t=a$)

- $\frac{1}{448}\left\{q+\frac{a p(q+2 g l)}{2 l}+\frac{a^{2}}{3 l^{2}}\left\{p^{2}(q+2 g l)-k q^{2}\right\}+\right.$
$\left.\frac{a^{3}}{4 l^{3}}\left\{p^{3}(q+2 g l)-2 k p q(q+g l)\right\}+8 c.\right\} ;$ the velocity us required by the proposition.

Now to determine what this velocity is, we must first find the value of R for the given case of velocity b. Now under the conditions, that the patticles of the medium are perfectly nonelastic, and that the medium is infinitely compressed and affords no resistance to the motion of the rocket but what arises from the inertia of its particles, (which is the ground of our hypotheses concerning the law of resistance), we shall, putting r for the radius of the rocket's base, or of the head of the rocket; $\int=$ the sine of the angle, which the slant side of the head (supposing it conical), makes with the axis; $\boldsymbol{p}=$ 3.1416; $s=$ the specific gravity of the medinm, which is here considered as the atmosphere $;$ and $g=16$ feet, (omitting the $\frac{1}{Y_{2}^{2}}$) have $\mathrm{R}=\frac{p s r^{2} b^{2} \delta^{2}}{4 g}$. (Art. 28.)

Let $b=1$, in order to render the expression as simple as possible; and the angle, the sine of which is $\int, 30$ degrees; then $\int=\cdot 5$ or $\frac{1}{2}$ (to rad. 1.): and taking the specific gravity of air at medium, or $s=1 \frac{2}{9}, R$ will be found $=0002343$ ounces $;$ which is the absolute resistance the rocket suffers when moving with a velocity of 1 foot per second. Hence in numbers we shall have $v=$ $\frac{1}{448}(1040832+193542+5616-9792-3896)=2733 \mathrm{ft}$. when the first five terms only of the series are taken; a number quite sufficient for our further enquiries.

As to the space described by the rocket it is $x=$ fluent

$$
\begin{aligned}
& \dot{v t}=\frac{q}{2 l} t^{2}+\frac{p q+2 g p l}{6 l^{2}} t^{3}+\frac{p^{2} q+2 g p^{2} l-k q^{2}}{12 l^{3}} t^{4}+ \\
& \& c \cdot=(\text { when } t=a) \frac{a^{2}}{2 l}\left\{q+\frac{a p}{3 l}(q+2 g l)+\frac{a^{2}}{6 l^{2}}\right.
\end{aligned}
$$

$\left\{p^{2}(q+2 g l)-k q^{2}\right\}+\frac{a^{3}}{10 b^{2}}\left\{p^{3}(q+2 g l)-2 k p q(q+g l)\right\}$
$+8 c.\}=\frac{3}{896}(1040832+129028+2808-3916-649)$
$=\mathbf{3 9 1 0}$ feet ; the height of the rocket at the end of its burning.

From the numbers here brought out, the above series is shewn to be of a remarkable nature; and such, it is presumed, as very seldom occurs in practice. We observe the first three terms to be positive, and to decrease with common regularity; when a sudden violation of law takes place, and the fourth term becomes negative, and much greater than that which immediately precedes it. The fifth term being also negative and not uncommon with regard to the fourth, we may conclude perhaps (as the finding and working out more terms to give certainty to the thing is extremely laborious), that the series will now observe a proper law; in which case a very few feet more would be added to the foregoing velocity by the summation of a great number of its terms. Indeed it can be shewn that it is very nearly equal to the truth by reference to the similar result obtained in the 7th proposition, and the destruction of velocity by the retardive force of gravity in the time of the rocket's burning.
34. To find how far the rocket will farther ascend with its acquired velocity.

Let $x=$ any variable distance from the point to which the rocket has already ascended, $v=$ the velocity at that point, $a=2733$ feet the acquired velocity.
Then $\frac{R v^{2}}{b^{2}}$ will be the resistance of the medium to the rocket when moving with velocity v; or putting $b=1$ as
before, $R v^{2}$ will express that resistance. Hence $\frac{w+R v^{2}}{\boldsymbol{v}}$ will be the retardive force to the rocket; and consequently $\dot{x}=\frac{-v \dot{v}}{2 g f}=\frac{-w}{2 g} \cdot \frac{v \dot{v}}{w+R v^{2}}$; the fluent of which is $\frac{-w}{4 g R}$. hyp. log. $\left(w+R v^{2}\right)$.

Now $x=0$ when $v=a$; therefore the fluent corrected is
$x=\frac{w}{4 g R}\left\{\operatorname{hyp} . \log .\left(w+\mathrm{R} a^{2}\right)-\right.$ hyp. log. $\left.\left(w+\mathrm{R} v^{2}\right)\right\}$; which in the extreme case where $v=0$, is

$$
x=\frac{w}{4 g \mathrm{R}} \text { hyp. log. } \frac{w+\mathrm{R} a^{2}}{w}
$$

In numbers, this expression will be found equal to 7914.3 feet; which added to 3910 feet the space before ascended, gives 11824.3 feet for the height to which the rocket will rise before all its motion is destroyed, which is rather more than $2 \frac{1}{5}$ miles.

Since $\frac{w}{4 g R}$. hyp. log. $\frac{w+R a^{2}}{w+R v^{2}}=x$; we shall have hyp. log. $\frac{w+R a^{2}}{w+R v^{2}}=\frac{4 g R x}{w}$; and putting $c=2.718282$ the number whose hyp. log. is unity, $\frac{w+R a^{2}}{w+R v^{2}}=$ $\frac{4 g R x}{w}$. Whence v is found equal to

$$
\frac{\left\{w\left(c^{\frac{4 g R x}{w}}+1\right)+R a^{2}\right\}^{\frac{1}{2}}}{(R c)^{\frac{1}{2}}}:
$$

the velocity of the rocket corresponding to the space ascended \propto.
35. To determine the time of motion of the rocket through the above space. We have found the retardive force to the rocket moving with velocity v to be $\frac{w+B v^{2}}{v}$.
Therefore $\dot{t}=\frac{-\dot{v}}{2 g f}=\frac{-i v w}{2 g\left(w+\mathrm{R}^{2}\right)}=\frac{-w}{2 g \mathrm{R}} \cdot \frac{\dot{v}}{\frac{v}{\mathrm{~N}}+v^{2}}$
the fluent of which is
$t=\frac{-w}{2 g R}\left(\frac{R}{w}\right)^{\frac{1}{2}}$. cir. arc to rad. 1 , and tan. $\frac{v}{\left(\frac{v w}{R}\right)^{\frac{\pi}{2}}} ;$
$=\frac{-1}{2 g}\left(\frac{w}{R}\right)^{\frac{1}{2}}$. cir. arc to rad. 1, and $\tan \cdot \frac{v}{\left(\frac{w}{R}\right)^{\frac{1}{2}}}$
which corrected is
$t=\frac{1}{2 g}\left(\frac{w}{R}\right)^{\frac{1}{2}}\left\{\operatorname{arc}\right.$ to rad. 1, and $\tan \cdot \frac{a}{\left(\frac{w}{R}\right)^{\frac{1}{2}}}-$
arc to rad. 1, and tan. $\left.\frac{v}{\left(\frac{v}{R}\right)^{\frac{1}{2}}}\right\}$:
whence, in the case where v vanishes, we shall have $t=\frac{1}{2 g}\left(\frac{w}{R}\right)^{\frac{1}{2}}$. cir. arc to rad. 1 , and tangent $\frac{a}{\left(\frac{w}{R}\right)^{\frac{x}{2}}} ;$
which in numbers (retaining the same values of $a, \mathrm{R}, \& \mathrm{c}$: as before) $=9.74834 \times 1.457=14.2$ seconds or $14 \frac{7}{5}$ seconds.

Hence the whole time of the rocket's ascent is $17 \frac{1}{5}$ seconds.
36. But to determine what time will elapse from the rocket's first going off to its return to the earth; we must find how long it will be in descending from the
whole height to whieh it has risen. To this end it will be first necessary to enquire what velocity will make the renistance of the medium to be an exact counterbalance to gravity; and thence cause the motion of the rocket to become uniform.

Now $w-v^{2}$ being in this case the moving force; $\frac{\tilde{v}-\underline{v^{2}}}{\boldsymbol{v}}$ will be the accelerative force; which when the body moves uniformiy, is nothing. Therefore putting $\frac{\pi}{v}=0$, and reducing the equation we shall have $v=\left(\frac{\boldsymbol{v}}{\mathrm{r}}\right)^{\frac{1}{2}}$ for the velocity of the rocket when the resistance will be equal to the force of gravity; or when the motion of the machine becomes equable.
By the theory of variable motions,

$$
\dot{i}=\frac{\dot{v}}{2 f g}=\frac{w \dot{v}}{2 g\left(w-R v^{2}\right)}=\frac{w}{2 g R} \cdot \frac{\dot{v}}{\frac{v^{2}}{R}-v^{2}} ;
$$

whereof the fluent is

$$
\begin{aligned}
t & =\frac{w}{2 g R} \cdot \frac{1}{2\left(\frac{w}{R}\right)^{\frac{1}{2}}} \cdot \text { hyp. log. } \frac{\left(\frac{w}{R}\right)^{\frac{1}{2}}+v}{\left(\frac{w}{R}\right)^{\frac{1}{2}}-v} \\
& =\frac{1}{4 g}\left(\frac{w}{R}\right)^{\frac{1}{2}} \cdot \text { hgp. log. } \frac{\left(\frac{w}{R}\right)^{\frac{1}{2}}+v}{\left(\frac{w}{R}\right)^{\frac{1}{2}}-\cdots}
\end{aligned}
$$

Now when $t=0, v=0$, and the whole vanishes. Therefere in that case of the fluent whome $v=\left(\frac{q u}{R}\right)^{\frac{1}{7}}$, we shall have,
$t=\frac{1}{4 g}\left(\frac{\dot{w}}{R}\right)^{\frac{x}{2}}$. hyp. log. $\frac{\left(\frac{w}{R}\right)^{\frac{1}{2}}+\left(\frac{w}{R}\right)^{\frac{1}{2}}}{\left(\frac{w}{R}\right)^{\frac{1}{2}}-\left(\frac{w}{R}\right)^{\frac{1}{2}}}$.
equal to infinity; which shews that the rocket can never acquire the exact velocity $\left(\frac{w}{R}\right)^{\frac{1}{2}}$, but in an infinite timpe

To find therefore, we must first determine what velocity the rocket will acquire in descending the space $a_{\text {; }}$ whieh being substituted in the expression for t, the value of this will then be obtained.

$$
\begin{aligned}
& \text { Now } \dot{x}=\frac{\dot{v}}{2 g \dot{f}}=\frac{w v \dot{v}}{2 g\left(w-R v^{2}\right)}=\frac{w}{2 g} \cdot \frac{v \dot{v}}{w-R v^{2}} \\
& \text { the fluent of which corrected, is } \\
& x=\frac{w}{4 g R}, \text { lyp, lQg. } \frac{w}{w-R v^{2}} .
\end{aligned}
$$

Let $c=2.718282$, the number whose hyp. log. is unity.

$$
\begin{aligned}
& \text { Then } c=\left(\frac{w}{w-R \psi^{2}}\right) \frac{w}{4 g R}, \\
& \text { and } v=\frac{\left\{w\left(c^{\frac{4 g R x}{w}}-1\right)\right\}^{\frac{1}{2}}}{R^{\frac{1}{2} c} \frac{2 g R x}{w}} ;
\end{aligned}
$$

In which, writing $11824 \cdot 3$ for $\%$, and the several numeral values for $w, R, \& c \cdot ; \boldsymbol{v}$ will be found equal to

$$
\frac{\left\{288\left(2.71828^{6.1565}-1\right)\right\}^{\frac{1}{2}}}{.0153 \times 2.71828^{3.07825}}
$$

$=850^{\circ} 2$ feet. Whence,
$t=\frac{1}{4 g}\left(\frac{w}{\mathrm{R}}\right)^{\frac{\mathrm{x}}{2}} \cdot$ hyp. $\log \cdot \frac{\left(\frac{w}{\mathrm{R}}\right)^{\frac{1}{2}}+v}{\left(\frac{v^{2}}{\mathrm{R}}\right)^{\frac{1}{2}}-v}=48^{\prime \prime} .2984$
And consequently the time that elapses from the going off of the rocket to its return to the earth, is $65^{\prime \prime} .498$, or $1 \mathrm{~min} .5^{\prime \prime \frac{1}{2}}$ nearly.
37. In the solution to this problem, the density of the medium (that of our atmosphere) is supposed to be the same throughout the rocket's ascent; and the force of gravity also uniform. Now neither of these suppositions strictly obtains; the former varying in such manner that when the heights increase in arithmetical progression, the densities decrease in geometrical progression; and the latter varies as the inverse square of the distance from the earth's centre. Unless, therefore, the decrease of the force of gravity balances in a great measure the decrease of density of the medium, the rocket's height will be affected from such circumstance; and will be somewhat greater than what we have above determined it.

In the same solution also, the resistance of the air to the motion of the rocket is supposed to vary directly as the square of the velocity; an hypothesis which experiments disprove when applied to military projectiles with cannon balls. But it is to be apprehended, that in the motion of rockets, the deviation from this law is scarcely to be regarded; since what takes place in the flight of shot and shells to violate it, is in a great measure obviated in the rockets, by the extreme heat of the flame that rushes from them; which rarifying the ambient air promotes the motion of the particles striking the head of
the rocket, towards its hinder parts; and since it is only the immediate motions of such particles backwards that can cause the law to obtain (for it would obtain precisely, if; after the impact of the particles they had no power to impel others lying before them, but either glided off from the surface struck; or had their force annihilated by it at the moment of striking), it is to be expected that the conclusions here brought out, which are grounded on this law of resistance, will be found to agree pretty correctly with the results determined from experiment.

But if they should not, let then the law of resistance be as the nth power of the velocity, and the method of solution will remain precisely the same as before. For it is only the fourth equation in the preceding process, namely, $k v^{\mathrm{n}} \dot{i}=\boldsymbol{8} \mathrm{c}$. that will vary or become affected by any deviation from the law we have assumed; and therefore when this shall have been settled by experiment (the only way in which it ever can be settled), and the absolute resistance determined in any one case of velocity, and the real strength of the rocket composition ascertained; then, and not till then, shall we be able to offer any unerring rules to the military practitioner.

PROP. XI.

38. To determine whetber the notion of a rocket ascending vertically in the atmosphere can ever become uniform; the law of resistance being directly as the square of the velocity, as before.

When the motion of a body becomes uniform, or the velocity a maximum, the accelerative force is then nothing: therefore putting $\frac{\left(\text { sned } d^{2} b^{2}-R v^{2}\right) a}{(a m-c t) \cdot b^{2}}-1$ the accelerative force (see the last Prop.) $=0$, and reducing
the equation, we have $v=b \cdot\left(\frac{\operatorname{sned}^{2} a-a m+c t}{R a}\right)^{\frac{x}{2}}$. Whence it appears, that the velocity, and consequently the motion of the rocket can never become equable; being in terms of t, the time of its burning; but will be greater and greater unto the end of the time t, when the velocity will continually decrease till the whole is destroyed by the retardive force of gravity. And it is moreover evident, that the motion of a rocket can never become uniform under any law of resistance whatever.

PROP. XIT.

39. All things remaining as in the 10th Proposition, to find the velocity and space described by the rocket, when it is influenced only by the impelling force of the composition and the resistance of the medium.

Here, gravity not acting, the accelerative force of the rocket at the end of the time t will be $\frac{\left(\text { smed }^{2} b^{2}-R v^{2}\right) a}{(a m-c t) b^{2}}$ as determined in Prop. 9. Therefore $\dot{v}=2 g f \dot{i}=$ $\frac{\left(s_{n} d^{2} b^{2}-\mathrm{R} v^{2}\right) \cdot 2 a g \dot{t}}{(a m-c t) \cdot b^{2}}=$ (putting $b=2 a g s n e d^{2} b^{2}, k=2 a g R$, $l=a m b^{2}$, and $\left.p=c b^{2}\right) \frac{b \dot{t}-k v^{2} \dot{t}}{l-p t} ;$ and $\frac{\dot{v}}{b-k v^{2}}=\frac{\dot{t}}{l-p t}$, whereof the fluent is $\frac{1}{2 \cdot(b k)^{\frac{1}{2}}} \cdot$ hyp. $\log \cdot \frac{\left(\frac{b}{k}\right)^{\frac{x}{2}}+v}{\left(\frac{b}{k}\right)^{\frac{1}{2}}-v}=$ $-\frac{1}{p} \cdot$ hyp. log. $\left(\frac{L}{p}-t\right) ;$ which, when $v=0$, and $t=0$, is $0=-\frac{1}{p} \cdot$ hyp. $\log \cdot \frac{l}{p}$: therefore the correct fluent is
$\frac{1}{2(b k)^{\frac{1}{2}}} \cdot \operatorname{hyp} \cdot \log \cdot \frac{\left(\frac{b}{k}\right)^{\frac{r}{2}}+v}{\left(\frac{b}{k}\right)^{\frac{1}{2}}-v}=\frac{1}{p} \cdot\left\{\right.$ hyp. Iog. $\frac{l}{p}$

- hyp. log. $\left.\left(\frac{l}{p}-t\right)\right\}=\frac{1}{p} \cdot$ hyp. log. $\frac{l}{l-p t}:$ and
hence by the nature of logarithms
$\left(\frac{\left(\frac{b}{k}\right)^{\frac{1}{2}}+v}{\left(\frac{b}{k}\right)^{\frac{1}{2}}-v}\right)^{\frac{p}{2(b k)^{\frac{1}{2}}}}=\frac{l}{l-p t}:$ or, putting $\left(\frac{b}{k}\right)^{\frac{1}{2}}=$
j, and $\frac{(b k)^{\frac{\pi}{2}}}{p}=w$, we shall have $\frac{j+v}{j-v}=\frac{l^{w}}{(l-p t)^{\omega}}$;
and by reducing this equa. $v=\frac{j^{\omega}-j(l-p t)^{w}}{l^{\omega}+(l-p t)^{w}}$; which, when $t=a$, is $v=\frac{j l^{w}-j(l-p t)^{w}}{l^{w}+(l-p t)^{w}}$, the velecity of the rocket when it just ceases burning. Or, restoring the values of $j, w, l, h, \& c$., the velocity of the rocket in this case will be expressed by

$$
\frac{d b \cdot\left(\frac{s n e}{\mathrm{R}}\right)^{\frac{1}{2}} \cdot\left\{\frac{\frac{4 a g d(s n e \mathrm{R})^{\frac{1}{2}}}{c b}}{\left(a m b^{2}\right)}-\left(a m b^{2}-a c b^{2}\right) \frac{4 a g d(s n e \mathrm{R})^{\frac{1}{2}}}{c b}\right\}}{\left(a m b^{2}\right)}{\frac{4 a g d(s n e \mathrm{R})^{\frac{1}{2}}}{c b}}_{+\left(a m b^{2}-a c b^{2}\right)}^{\frac{4 a g d(s n e \mathrm{R})^{\frac{1}{2}}}{c b}} ;
$$

or taking $\mathrm{R}=\cdot 0002343$, and $b=1$, as in Prop, 9, it is

and substituting the values for $\dot{a}, c, \ddot{d}, \& c$., which are as follow: namely,

$$
\begin{aligned}
s & =1000 . \\
n & =230 \mathrm{ozs} . \\
w & =18 \mathrm{lbs}=288 \mathrm{ozs} . \\
c & =10 \mathrm{lbs}=160 \mathrm{ozs} . \\
m & =w+c=448 \mathrm{ozs} . \\
a & =3 \mathrm{sec} . \\
d & =\frac{\mathrm{r}}{4} \mathrm{ft} \\
g & =16 \mathrm{ft} \\
c & =7854
\end{aligned}
$$

it is $v=\frac{6941.575\left(1344^{1.95171}-864^{1.95171}\right)}{1344^{1.95171}+864^{1.95171}}$
$=\frac{6941 \cdot 575 \times 737094}{1814186}=2820.325$ feet ; which is therefore the greatest velocity the rocket can acquire, and which it does acquire at the end of its burning.

It is somewhat remarkable, that the whole resistance of the air to the rocket, on the supposition that gravity does not act, should so nearly approximate to the effect of this force (reckoned as constant), when there is no consideration of any resistance from the former; the deviation causing no more than (2896.9895-2820.325=) 76.6645 feet per second difference in the greatest velocity of the rocket on the side of gravity.

To find the space described: By theorem the 10th of variable motions $\dot{x}=थ t^{\bullet}=\frac{j^{\omega} \dot{t}-j \dot{t}(l-p t)^{\omega}}{l^{\omega}+(l-p t)^{\omega}}=j \dot{j}-$ $\frac{q j \dot{t}(l-p t)^{\omega}}{\Gamma^{\omega}+(l-p t)^{\omega}} . \quad$ Pat $l-p t=\tau ;$ then $\dot{T}=-\beta \dot{t}$, and \dot{t}
$=\frac{-\dot{T}}{p}$. Whence $\dot{x}=\frac{-j \dot{T}}{p}+\frac{2 j}{p} \cdot \frac{T^{w} \dot{T}}{l^{w}+T^{w}}=(b y$ expanding $\frac{\mathbf{T}^{w} \dot{\mathbf{T}}}{l^{w}+\mathbf{T}^{w}}$ in a series $)-\frac{j \dot{\mathbf{T}}}{p}+\frac{2 j}{p}-\left(\frac{\mathbf{T}^{w} \dot{\mathbf{T}}}{l^{w}}-\right.$ $\left.\frac{\mathbf{T}^{2 \omega} \dot{T}}{l^{2 w}}+\frac{\mathbf{T}^{3 w} \dot{T}}{l^{3^{w}}}-\frac{\mathbf{T}^{4 w} \dot{\mathbf{T}}}{l^{l^{* w}}}+8 \mathrm{cc}.\right)$; the fluent of which is $x=\frac{-j \mathbf{T}}{p}+\frac{2 j}{p}\left(-\frac{\mathbf{T}^{w+1}}{(w+1) l^{w}}-\frac{\mathbf{T}^{2 w+1}}{(2 w+1) l^{2 w}}+\right.$ $\left.\frac{T^{3 w+1}}{(3 w+1) l^{3 w}}-\frac{\mathbf{T}^{4 w+1}}{(4 w+1) \cdot l^{8 w}}+\& c.\right)=\frac{-j \mathbf{T}}{p}+$

$$
\begin{aligned}
& \frac{2 \dot{j} \mathrm{~T}^{w+1}}{p l^{w}} \cdot\left(\frac{1}{w+1}-\frac{\mathrm{T}^{2 v}}{(2 w+1) l^{w}}+\frac{\mathrm{T}^{2 w}}{(3 w+1) l^{2 w}}-\right. \\
& \left.\frac{\mathrm{T}^{3 v}}{(3 w+1) l^{3 w}}+\& c \cdot\right)=\frac{j}{p} \cdot\left\{-(l-p t)+\frac{2(l-p t)^{w}+1}{l^{w}}\right. \\
& \times\left(\frac{1}{w+1}-\frac{(l-p l)^{w}}{(2 w+1) \cdot l^{w}}+\frac{(l-p t)^{2 w}}{(3 w+1) l^{2 w}}-\right.
\end{aligned}
$$

$\left.\left.\frac{(l-p t)^{3 w}}{(4 w+1) \cdot l^{3 w}}+8 c.\right)\right\} ;$ and the fluent corrected is $x=$

$$
\begin{aligned}
& \frac{j}{p}\left\{l-2 l \cdot\left(\frac{1}{w+1}-\frac{1}{2 w+1}+\frac{1}{3 w+1}-\right.\right. \\
& \left.\left.\frac{1}{4 w+1}+\& c \cdot\right)\right\}+\frac{j}{p} \cdot\left\{-(l-p t)+\frac{2(l-p t)^{w}+1}{l^{w}}\right. \\
& \times\left(\frac{1}{w+1}-\frac{(l-p t)^{w}}{(2 w+1) \cdot l^{w}}+\frac{(l-p t)^{2 w}}{(3 w+1) l^{2 w}}-\right. \\
& \left.\left.\frac{(l-p t)^{3 w}}{(4 w+1) \cdot l^{3 w}}+\& c \cdot\right)\right\}=(w h e n t=a) j\{a+ \\
& \frac{2(l-a p)^{w}}{l^{w}} \cdot\left(\frac{1}{w+1}-\frac{(l-a p)^{w}}{(2 w+1) \cdot l^{w}}+\frac{(l-a p)^{2 w}}{(3 w+1) \cdot l^{2 w}}\right. \\
& \left.-\frac{(l-a p)^{3 w}}{(3 w+1) \cdot l^{3 w}}+\& c \cdot\right)-\frac{2 l}{p} \cdot\left(\frac{1}{w+1}-\frac{1}{2 w+l}\right.
\end{aligned}
$$

$\left.\left.+\frac{1}{3 w+1}-\& c.\right)\right\}$; for the space described by the rocket at the end of the time t.
40. Now to determine how far the rocket will farther move before its motion is wholly destroyed. Put $a=$ the velocity at the end of its burning $=2820 \cdot 325$ feet per second, and v any variable velocity corresponding to the space $x ; w=$ weight of the rocket $=448 \mathrm{ozs}$., and $\mathrm{R}={ }^{\circ} 0002343$ ounces, the resistance of the medium to the rocket when moving with a velocity of 1 foot per second. Then $\mathrm{R} \boldsymbol{v}^{2}$ will be the resistance to velocity $v_{\text {, }}$ and $\frac{R v^{2}}{w}$ the force by which the rocket is retarded by the fluid. Hence $\dot{x}=\frac{-v \dot{v}}{2 f g}=-\frac{w \dot{v}}{2 g R v}$, and $x=$ $\frac{-w}{2 g R} \cdot$ hyp. log. v; and the fluent corrected $x=$ $\frac{w}{Q_{g R}}$. hyp. log. a. Which by substitution of numbers is $=21672$ feet.

Hence, it appears, that after the burning of the rocket ceases, it will move to a distance of 21672 feet, or somewhat more than $4_{\text {ro }}^{1}$ miles, before all its motion is destroyed, when it will remain at rest in the medium, there being no force to influence it in any manner or direction whatever, and having no power to create motion in itself.
41. As to the time that the rocket would be in moving through this space, it will be had as follows. The same substitution as above being retained, the general fluxional expression for the time (\dot{t}) namely $\frac{-\dot{v}}{2 g f}$ will be found $=$
$\frac{-\dot{v}}{2 g R v^{2}}=\frac{-1}{2 g R} \cdot \frac{\dot{v}}{v^{2}}$ (substituting $\frac{R v^{2}}{w}$ for f as before) the fluent of which is $t=\frac{1}{2 g R v} . \quad$ Now when $t=0$, $v=a$, therefore the correct fluent of the time is $t=\frac{1}{2 g R v}$ $-\frac{1}{2 g \mathrm{Ra}}$ which, on τ becoming nothing, will be infinite. So that it appears, that the rocket will not describe the above space but in an infinite time.
Suppose $v=1$ foot; then $t=\frac{a-1}{2 g R a}=183.344 \mathrm{se}-$ conds or 2 min . 13 seconds. That is, the rocket will only have been in motion 2 min .13 sec . after it has acquired the greatest velocity from its burning, before the celerity of its motion will be reduced to 1 foot per second; and yet, notwithstanding this great annihilation of velocity in so short a time, the remaining small part will not in any finite time be destroyed, though we know the limit at which the rocket would attain a state of quiescence.

And from the result here determined, we conclude, that into whatever medium a body is projected with any given velocity, great or small, it will in no finite time lose all its motion. So that, if the planetary bodies were moving in a resisting medium, and gravity should suddenly be destroyed, the bodies would all pursue rectilinear paths (that would be tangents to their orbits) to certain finite distances, which would not be wholly described by them but in infinite times.

PROP. SIII.

42. Given the time that elapses from the first going off of a rocket to its return to the earth, considering it to bave ascended vertically; and the velocity or force of the wind; to find at uchat distance from the point of projiction the rocket will fall.

Before entering upon the solution of this problem, it will be proper to make a few preliminary observations. In the first place, then, we are to consider, that when a body from rest is put into motion by a fluid, it can never acquire a yelocity greater than that with which the fluid moves; that when it has acquired that velocity, it will be relatively at rest, or move uniformly and in common with the fluid with its velocity. And in all other cases the velocity with which the fluid strikes the body to accelerate its motion, will be equal to the difference of the given velocity of the fluid and the velocity acquired by the body. Thus a vessel abandoned to, or influenced only by a current, can never acquire a velocity greater than that with which the current moves; nor indeed exactly equal top it in any finite time, as shall be hereafter shewn; and in any intermediate state the current will act upon the body only with the difference of its velocity and the acquired velocity of the body. If another force as that of the wind conspire with that of the stream, the body may acquire a greater velocity than the stream; that is to say if the velocity of the former be greater than that of the latter; but it can never arrive at a velocity equal to that of the wind, on account of the resistance that will be opposed to its motion after it has attained a. greater velocity than that of the stream. Therefore, in
the case before us, the rocket in its sideral motion will never arrive at a velocity greater than that of the wind, nor precisely equal to it in any finite time; and consequently will suffer no resistance from the medium in its deflection from the original line of projection.

Again, the direction of motion of the wind being horizontal, the action of the same upon the rocket will be at right-angles to its axis, provided there be no rotation of the rocket throughout its motion, which we will suppose there is not. Therefore the force of the wind to move the rocket in its own direction in the first instance will be $\frac{n \mathrm{v}^{2} r b}{3 g}$, as determined in Prop. Art. 31 ; and at any other instant, calling the velocity acquired \boldsymbol{v}, it will be $\frac{n r b}{3 g}(\mathrm{v}-v)^{2}$, the force varying as the square of the velocity directly.

Let $\mathrm{R}=\frac{n r b}{3 g}$,
$w=$ weight of the case of the rocket, considered as merely cylindrical,
$c=$ weight of the matter contained in it,
$m=w+c$ the weight of both the case and the composition,
$a=$ time of the rocket's burning,
$v=$ velocity of the rocket in its sideral motion at the end of the time t.
Then $\mathrm{R}(\mathrm{v}-\mathrm{v})^{2}$. being the impelling force of the wind, and $\frac{a m-c t}{a}$ (See Prop. Art. 17.) the weight of the mass at the end of the time $t ; \frac{a \mathrm{R}(\mathrm{v}-v)^{2}}{a m-c t}$ will be the accelerative force of the rocket at the end of that time.

Now $\dot{v}=2 g f t=\frac{2 a g \mathrm{R}(v-v)^{2}}{a m-c t}$; and $\frac{\dot{v}}{(v-v)^{2}}=$

$$
\begin{gathered}
\frac{2 a g \mathrm{R} \dot{t}}{a m-c t} ; \text { the fluent of which, is } \\
\frac{1}{\mathrm{v}-v}=-\frac{2 a g \mathrm{R}}{c} \text { hyp. log. }(a m-c t), \\
\frac{v}{\mathrm{v}^{2}-\mathrm{v} v}=\frac{2 a g \mathrm{R}}{c} \text { hyp. log. } \frac{a m}{a m-c t}, \text { and hence } \\
v=\frac{\frac{2 a g \mathrm{R} \mathrm{v}^{2}}{c} \text { hyp. log. } \frac{a m}{a m-c t}}{\frac{2 a g \mathrm{RV}}{c} \text { hyp. log. } \frac{a m}{a m-c t}+1} ;
\end{gathered}
$$

$$
\text { or, putting } p=\frac{2 a g \mathbf{R v}}{c} \text {, the equation will be }
$$

$$
v=\frac{\mathrm{v} p \cdot \text { hyp. log. } \frac{a m}{a m-c t}}{p \text { hyp. log. } \frac{a m}{a m-c t}+1}
$$

Now writing k for hyp. log. am $+\frac{1}{p}$, we shall have for the fluxion of the space $(\dot{s})=v \dot{t}$, after reduction,

$$
\dot{\mathrm{v} t}-\frac{\mathrm{v} \dot{t}}{p\{k-\text { hyp. } \log \cdot(a m-c t)\}}
$$

Let $a m-c t=z$; then $\dot{t}=\frac{-\dot{z}}{c}$ and $\dot{s}=-\frac{v \dot{z}}{c}+$ $\frac{\dot{z} \mathbf{v}}{p^{c}(k-\operatorname{lyp} \cdot \log . z)}=$ (by expanding the fraction $\left.\frac{\dot{z}}{k-\operatorname{hyp} \cdot \log . z}\right)-\frac{v \dot{z}}{c}+\frac{\mathrm{v}}{c p}\left\{\frac{\dot{z}}{k}+\frac{\dot{z}}{k^{2}}\right.$ hyp. log.
$x+\frac{\dot{x}}{k^{3}}$ hyp. $\log ^{2} x+\frac{\dot{x}}{k^{4}}$ hyp. $\log ^{3} x+\frac{\dot{x}}{k^{5}}$ hyp. $\left.\log { }^{4} z+8 c.\right\}$;

> the fluent of which is
$s=\frac{-\nabla z}{c}+\frac{v}{c p}\left\{\frac{z}{k}+\frac{1}{k^{2}}(z\right.$ hyp. log. $z-z)+\frac{1}{k^{3}}$ $\left(z\right.$ hyp. $\left.\log ^{2} z-2 A\right)+\frac{1}{k^{4}}\left(z\right.$ hyp. $\left.\log ^{3} x-3 \mathrm{~B}\right)$
$+\& c$.$\} ; where A, B, C, \& c$. denote the foregoing terms with their proper signs. Or from further reduction, $s=$ $-\frac{\mathrm{vz}}{c}+\frac{\mathrm{vz}}{c k p}\left\{1+\frac{1}{k}\right.$ (hyp. log. $\left.z-1\right)+\frac{1}{k^{2}}$ (hyp. $\left.\log ^{2}{ }^{2} z-2 \mathrm{~A}\right)+\frac{1}{k^{3}}\left(\right.$ hyp. $\left.\left.\log .^{3} z-3 \mathrm{~B}\right)+\& c.\right\} \mathrm{A}$, B, \& c . denoting in like manner the foregoing terms with their proper signs; and so forward.

Now when $s=0, t=0$, and $z=a m$; therefore the correct equation or fluent will be

$$
\begin{aligned}
& s=\frac{\mathrm{v} a m}{c}-\frac{\mathrm{v} a m}{p c k}\left\{1+\frac{1}{k} \text { (hyp. log. am }-1\right)+ \\
& \frac{1}{k^{2}}\left(\text { hyp. log. } .^{2} a m-2 \mathrm{~A}\right)+\frac{1}{k^{3}}(\text { hyp. log. } a m-3 \mathrm{~B}) \\
& +\& c .\}-\frac{\mathrm{v}(a m-c t)}{c}+\frac{\mathrm{v}(a m-c t)}{c k p}\left\{1+\frac{1}{k}\right. \text { (hyp. }
\end{aligned}
$$

$$
\text { log. }(a m-c t)-1)+\frac{1}{k^{2}}\left(\{\text { hyp. log. }(a m-c t)\}^{2}-2 \mathrm{~A}\right)
$$

$$
\left.+\frac{1}{k^{3}}\left(\{\text { hyp. log. }(a m-c t)\}^{3}-3 \mathrm{~B}\right)+\& c .\right\}=
$$

$$
\frac{\mathrm{v} t(k-1)}{k}-\frac{\mathrm{vam}_{\mathrm{p}}}{p c k^{2}}\left\{\text { (hyp. log. am-1) }+\frac{1}{k}\right. \text { (hyp. }
$$

$$
\left.\left.\log _{\cdot}^{2} a m-2 \mathrm{~A}\right)+\frac{1}{k^{2}}\left(\text { hyp. log. }{ }^{3} a m-3 \mathrm{~B}\right)+\& \mathrm{c} .\right)
$$

$+\frac{\mathrm{v}(a m-c t)}{c k^{2} p}\{$ (hyp. $\log \cdot(a m-c t)-1)+\frac{1}{k}(\{$ hyp. $\left.\log \cdot(a m-c t)\}^{2}-2 \mathrm{~A}\right)+\frac{1}{k^{2}}\left(\{\text { hyp. log. }(a m-c t)\}^{3}\right.$ -3 B $)+\& c$. \}; from whence, writing a for t, the deflection of the rocket at the end of its burning will be determined.
The fluent of $\frac{\mathrm{v} \dot{\boldsymbol{z}}}{p c(k-\text { hyp. log. } \boldsymbol{z})}$ might have been otherwise derived by dividing \dot{z} by k minus the series expressing the hyp. log. of z, and then taking the fluent of each term separately. Thus the hyp. $\log . z=(z-1)$ $-\frac{1}{2}(z-1)^{2}+\frac{1}{3}(z-1)^{3}-\frac{1}{4}(z-1)^{4}+\& c$. ; therefore by division we have,
$\frac{v \dot{z}}{p c(k-\text { hyp. } \log \cdot z)}=\frac{\mathrm{v}}{p c}\left\{\frac{\dot{z}}{k}+\frac{1}{k^{2}}(z-1) \dot{z}-\frac{k-2}{2 k^{3}}\right.$ $(z-1)^{2} \dot{z}+\frac{k^{2}+3}{3 k^{4}}(z-1)^{3} \dot{z}-\& c$. $\}$; the fluent of which is $\frac{v}{p c}\left\{\frac{1}{k} z+\frac{1}{2 k^{2}}(z-1)^{2}-\frac{k-2}{6 k^{3}}(z-1)^{3}\right.$ $\left.+\frac{k^{2}+3}{12 k^{4}}(z-1)^{4}-8 \mathrm{c}.\right\}$. So that s, or the fluent of $\frac{-\mathrm{v} \dot{z}}{c}+\frac{\mathrm{v} \dot{\mathrm{z}}}{p c(k-\operatorname{lyp} \cdot \log \cdot z)}$, is $\frac{-\mathrm{v} z}{c}+\frac{\mathrm{v}}{p c k}\{z+$ $\frac{1}{2 k}(z-1)^{2}-\frac{k-2}{6 k^{2}}(z-1)^{3}+\frac{k^{2}+3}{12 k^{3}}(z-1)^{4}-\& c$. $\} ;$
which corrected, is
$\frac{\mathrm{v} a m}{{ }^{c} c}-\frac{\mathrm{v}}{p c k}\left\{a m+\frac{1}{2 k}(a m-1)^{2}-\frac{k-2}{6 k^{2}}(a m-1)^{3}+\right.$
$\left.\frac{k^{2}+3}{1 \& k^{3}}(a m-1)^{4}-\& c.\right\}-\frac{\mathbf{v}(a m-c t)}{c}+\frac{\mathbf{v}}{p c k}$
$\left\{(a m-c t)+\frac{1}{2 k}(a m-c t-1)^{2}-\frac{k-2}{6 k^{2}}(a m-c t-1)^{3}\right.$ $\left.+\frac{k^{2}+3}{12 k^{3}}(a m-c t-1)^{4}-\& c.\right\}=\mathrm{v} t-\frac{\mathrm{v}}{p c k}(\{a m+$ $\frac{1}{2 k}(a m-1)^{2}-\frac{k-2}{6 k^{2}}(a m-1)^{3}+\frac{k^{2}+3}{12 k^{3}}(a m-1)^{4}-$ \&c. $\}-\left\{(a m-c t)+\frac{1}{2 k}(a m-c t-1)^{2}-\frac{k-2}{6 k^{2}}\right.$
$\left.\left.\times(a m-c t-1)^{3}+\frac{k^{2}+3}{12 k^{3}}(a m-c t-1)^{4}-\& c.\right\}\right)$.
Where t being made $=a$, will give the deviation of the rocket from the line of projection at the end of its burning as before.
43. To find how much the rocket will be farther deflected during the remainder of the given time.

Let v now denote the velocity with which the wind strikes the body at the end of its burning; and v any accession of velocity of the rocket in its sideral motion after that period in the time t. Then $\frac{R(v-v)^{2}}{v}$ will be the accelerative force of the rocket; the weight of the whole mass being now a constant quantity. Hence,
$\dot{v}(=2 g f \dot{t})=\frac{2 g \mathrm{R} \dot{t}(\mathrm{v}-v)^{2}}{w} ;$ or, $\frac{\dot{v}}{(\mathrm{~V}-v)^{2}}=\frac{2 g \mathrm{R} \dot{t}}{w}$
whereof the correct fluent, putting $q=\frac{2 g R}{w}$, will be

$$
\frac{v}{\nabla^{2}-\nabla v}=q t ;
$$

whence by reduction, we shall have

$$
v=\frac{\mathbf{v}^{2} q t}{\nabla q t+1}
$$

where it is evident that v can never be equal to v, except in the case where t is infinite. Again,

$$
\begin{gathered}
s=v \dot{t}=\frac{v^{2} q \dot{t}}{v q t+1}=v \dot{t}-\frac{v \dot{t}}{v q t+1} \\
s=v t-\frac{1}{q} \text { hyp. log. }(v q t+1)
\end{gathered}
$$

wanting no correction, since when $s=0, t=0$, and the whole vanishes. Therefore the additional deflection of the body from its original line of projection during the remainder of the given time is expressed by

$$
\nabla t-\frac{1}{q} \mathrm{hyp} \cdot \log \cdot(\nabla q t+1)
$$

44. For an example. Let us suppose that the wind is blowing the common gale of 15 miles an hour; or with the velocity of 22 feet per second; and that the time of motion of the rocket as given by the proposition is $63^{\prime \prime}$; also let the values of the other letters included in the problem be as follow : namely,

$$
\begin{array}{rlrl}
w & =18 \mathrm{lbs} . & =288 \text { ozs. } & \\
c=10 \mathrm{lbs} . & =160 \mathrm{ozs} . & & \mathrm{V}=22 \mathrm{ft.} \text { (as just men- } \\
m & =28 \mathrm{lbs} . & =448 \text { ozs. } & \\
n=1 \frac{2}{9} \quad \text { tioned.) } \\
a & =3 \mathrm{sec} . r & =\frac{1}{2} \mathrm{ft.} & \\
g=16 \text { feet. }
\end{array}
$$

Then p (first part of the investigation) $=\frac{2 a g R V}{c}=$ $\frac{2 a g R \nabla}{c}=\frac{2 a g \nabla}{c} \times \frac{n r b}{3 g}=\frac{2 a n r b v}{3 c}=\frac{121}{240}$; and k $=$ hyp. log. $a m+\frac{1}{p}=9.186876$; which values, with the rest, being substituted in the first 20 terms of the first series expressive of the deflection of the rocket at the end of the time a, will be found $=7 \cdot 10096$ feet. Now

$$
v=\frac{\nabla p \cdot \text { hyp } \cdot \log \cdot \frac{a m}{a m-c t}}{p \cdot \text { hyp. log. } \frac{a m}{a m-c t}+1} ;
$$

Therefore making $t=a$, and reducing the expression, v $=4$ feet ; and hence the value of v in the second part of the process will be $=18 \mathrm{ft}$. Also $q=\frac{2 g R}{w}=\frac{2 g}{w}$ $\times \frac{n r b}{3 g}=\frac{2 n r b}{3 w}=\frac{11}{2592} ;$ and $t=60^{\prime \prime}$. Whence, $s=\nabla t-\frac{1}{q}$ hyp. log. $(\nabla q t+1)=$

$$
1080-\frac{2592}{11} \text { hyp. log. } \frac{67}{12}=674.75589 \text { feet. }
$$

And consequently the whole deflection of the rocket is 681.45685 feet.

When the velocity of the wind is not so considerable, the deflection will be accurately enough had from the latter formula only; for the deviation in such cases at the end of the rocket's burning will be very trifling, whether we consider the mass to vary (as it really does) during that time, or the constant weight of the rocket when its body is consumed. And the difference of the acquired velocities in the two cases will be too small to cause any sensible alteration in the final results.
45. For another example. Suppose the wind to blow at the very gentle rate of two feet per second, and the time of motion of the rocket as given by the proposition 50" : also

$$
\begin{aligned}
& v=14 \mathrm{lbs}=224 \mathrm{ozs} . b=\frac{5}{2} \text { feet. } \\
& r=8 \mathrm{lbs} .=128 \mathrm{ozs.} n=\frac{1 x}{9} \\
& r=\frac{1}{3} \text { foot. } g=16 \text { feet. } \\
& \text { Then } s=\nabla t-\frac{1}{q} \text { hyp. log. }(v q t+1)= \\
& 100-\frac{18144}{55} \text { hyp. log. } \frac{5911}{4536}=12 \cdot 655 \text { feet. }
\end{aligned}
$$

If the velocity of the wind be that of 11 feet per se-
cond; the deflection of the rocket will be 79 yards very nearly. But in neither of these examples is the weight of any appendage to the rocket taken into the account, which would alter the results very materially; making them much smaller than they are here found.
46. It may not be amiss now to enquire, how far a shell would be driven by the wind from the vertical line of motion during the whole time of its ascent and descent, which we will suppose to be $63^{\prime \prime}$, as in the first of the foregoing examples. Let the shell be that, the external diameter of which is 13 inches, the weight whereof when loaded is 2 cwt. or 3584 ounces. Then $\frac{p n v^{2} r^{2}}{8 g}$ (where $p=3.1416$) being the expression for the force of the fluid (Art. 30.) on the whole hemisphere of the body, we shall have R in this case $=\frac{p n r^{2}}{8 g}$; and $q=$ $\frac{2 g R}{w}=\frac{q g}{w} \times \frac{p n r^{2}}{8 g}=\frac{p n r^{2}}{4 w}=\frac{243 \cdot 343}{3096576}$. Whence $s=\nabla t-\frac{1}{q}$ hyp. log. $(v q t+1)=$
$1386-\frac{3096576}{243 \cdot 343}$ hyp. log. $\frac{27252 \cdot 7741}{24576}=1386-$ $1315 \cdot 19=70.41$ feet.

Therefore, notwithstanding the immense weight of the projectile, the wind acting upon it. with a velocity of 22 feet per second, for 1 min . and 3 sec ., will cause it to fall 70.41 feet from the point whence it was projected, an astonishing deviation for so ponderous a mass.

If the wind struck the body throughout its flight with the same velocity as at first, the deflection of the shell would be $75 \cdot 480294$ feet; or $23 \frac{x}{5}$ yards nearly.

Ex. 2.-Let the same shell be thrown obliquely in a
given direction, and suppose the time of flight $40^{\prime \prime}$; also the wind to blow directly across the line of fire with the same velocity as before; then will the extreme error of the projectile be found $=31$ féet.

If the direction of the wind niakes any given angle with that of projection, the result as above determined must be lessened in the ratio of radius to the sine of that angle, to get the true distance of the body from the plane of projection at the end of its flight.

Another example of a cannon ball. Suppose a twelvepounder, and the time of its motion at a certain elevation, $32^{\prime \prime}$; moreover let the wind be supposed to blow perpendicularly to the vertical plane of projection with a velocity of $29 \frac{2}{3}$ feet per second, or at the rate of 20 miles an hour, then we shall have for the maximum error in this case 67.8 feet nearly.

These examples are sufficient to demonstrate the effects of a disturbed atmosphere upon military projectiles, in driving them from their original courses, as well as to caution the practitioner, when in service, of the necessity of attending to this circumstance in cases of detached objects, where these are to be destroyed, and the air happens to be violently agitated; for without some alteration being made in the direction of the engine, the projectile may, in many instances, fall 30 or 40 , or even 50 yards from the object, and consequently produce no sort of injury to it whatever. But when the wind is moderate, and does not blow so directly across the projectile, the directing the piece in the plane of the object, will be attended with more certainty perhaps, than when it is pointed somewhat different, from the smallness of alteration that will be required, which, if not
strictly maintained, would incur greater error than if it were totally neglected.

PROP. XIV.

47. Given the time of fligbt of a rocket, and the angle and direction in which it is thrown, also the direction and velo. city of the wind; to determine at what distance from the plane of projection, the rocket will fall; it being supposed not to revolve, but always to retain the position in which it first moved off; or to be parallel in its sideral motion to the line of projection.

The method of solution to this problem is precisely similar to that of the foregoing. The angle of incidence of the wind against the rocket (considered as a mere cylinder) is given by the proposition : therefore, if this be denoted by \int, we shall get for the force of the wind, moving with the velocity of 1 foot per second,

$$
\begin{gathered}
\frac{n r f f^{3}}{2 g}\left\{1-\frac{3 f^{2}-1}{6}+\frac{3\left(f^{2}-1\right)^{2}}{40}+\right. \\
\left.\frac{\left(f^{2}+5\right)\left(f^{2}-1\right)^{2}}{112}+2 c \cdot\right\}+\frac{n p^{\prime} r^{2}}{4 g}\left(1-f^{2}\right)^{\frac{3}{2}}
\end{gathered}
$$

(where $\phi^{\prime}=3.1416$); which is the value of what R represents in the last problem. Hence $p=\frac{2 a g R V}{c}$, and $q=$ $\frac{\text { 2gk }}{\omega}$ will be known; and also $k=$ hyp. log. am $+\frac{1}{p}$; which being severally substituted in the general expression for the whole' deflection of the rocket in the direction of the wind, (determined in the foregoing proposition), namely,

$$
\frac{\mathrm{vt}(k-1)}{k}-\frac{\mathrm{v} d m}{p c k^{2}}\left\{\left(\text { hyp. Iog. } a_{m}-1\right)+\frac{1}{k}\left(\text { hyp. Iog. }{ }^{2}\right.\right.
$$

$$
\begin{aligned}
& a m-2 \mathrm{~A})+\frac{1}{k^{2}}\left(\text { hyp. } \log _{3}{ }^{3} a m-3 \mathrm{~B}\right)+\& \mathrm{c} \cdot \mathrm{\}}+ \\
& \frac{\nabla(a m-c t)}{c k^{2} p}\left\{(\text { hyp. log. }(a m-c t)-1)+\frac{1}{k}(\{\text { hyp }\right. \\
& \left.\log \cdot(a m-c t)\}^{2}-2 \mathrm{~A}\right)+\frac{1}{k^{2}}\left(\{\text { hyp. log. }(a m-\Delta t)\}^{3}\right. \\
& -3 \mathrm{~B})+\& c \cdot\}+\mathrm{v} t-\frac{1}{q} \text { hyp. } \log \cdot(\mathrm{v} q t+1) ;
\end{aligned}
$$

the deflection as required by the proposition may hence be determined : the angle which the line of direction of the wind makes with that of projection being given, and the several letters denoting the same quantities in both investigations.

SCHOLIUM.

48. The solution to this problem, ander the various considerations that it involves, even regarding the rocket a mere cylinder, without any appendage whatever, will, perhaps, long remain a desideratum in the true theory of rockets. The force of the wind upon the body at any given instant, as depending upon its position at that instant, is a circumstance which a correct solution must necessarily embrace ; and this is of itself no easy thing to determine, including in it the computation of two separate rotations; namely, the one resulting from the action of the wind; and the other as produced by the resistance of the air to the rocket in its descent to the earth by gravity. That there will be these two rotatory motions is evident. For with regard to the first ; though the rocket in its sideral motion can never meet with any resistance from the medium, yet the inertia of the varying mass will, in conjunction with the force of the wind (the centre of which force never lying in the same right-
line with the centre of gravity of the varying mass), produce rotation in the body; making that end of it move to leeward which is less heavy than the other. This rotation of the body, like that of the other, will be effected about an imaginary axis, always passirg through the centre of gravity of the whole mass; the place of which axis will, therefore, be variable, as long as the rocket continues to burn ; receding from the centre of the axis of the rocket towards the head, till a certain quantity of the composition is consumed, when it will return again towards that centre, and at last come into it*. And the angular velocity at any given instant, will be the same about the centre of gravity of the body at that instant,

[^1]as about the corresponding centre of spontaneous rotation.

As to the second rotation, it is obvious, that if any body, the ends of which are unequally heavy, move in a resisting medium towards a centre of force, that the heavier end, having greater power to overcome any resistance, will preponderate, and consequently will cause the body to revolve; and the revolution will continue until the body comes into a vertical position, when if no other force acted upon it, it would proceed forward in that position.

The first of these rotations will evidently be the cause of a sensible deflection of the rocket from the plane of projection, when the force of the wind is considerable, and the action of the same against the surface of the rocket not very oblique : nor will this deviation seem strange, when we consider the great velocity that the body acquires during the time it is on fire, and the consequent extensive range afterwards; that if the quantity of rotation be but small at the end of its burning, the ultimate error must be important.

Let us suppose, that at the complete exhaustion of the composition, the rocket should have revolved through an angle of \mathfrak{s}°; or that its position at that instant, should make with the position in which it was projected, an angle of that magnitude: also, that it should have acquired a velocity that will carry it tothe distance of 1000 yards on the horizontal plane, reckoning from the point where a perpendicular from the rocket falls upon that plane : then it will be found, that independent of the action of any other force, the greatest deflection of the rocket is 199 yards; which if diminished by the distance that it is carried through by the wind, the remainder

Would still be a difference too considerable to be disregarded in practice. It is on this account that the rocket is thrown in a side wind, in any particular warfare with these machines, somewhat to leeward of the object it is meant to destroy, for if this were not done, it is obvious, from What has been observed, that the weapon could have no effect whatever upon the object, from the distance it *Would fall from it, and even under the above circumstances, if the wind blew very strongly across the body of the machine, its effect, like all other projectiles, would be sometimes uncertain.

The rotation of a rocket, from windward to leeward, as produced by the action of the wind against it, being inevitable, unless the rocket's motion be directly with, or contrary to the motion of the wind, the rocket-engineer will do well, when in actual service, to bear in remembrance this particular, and to choose such a spot, if possible, from whence be can throw the rockets either directly with, or directly against the wind, at the object to be destroyed; when its effects cannot but be certain, if the object be within its sphere of conflagration. But although circumstances should not be favourable to the choice of such a position when the exigencies of the moment require the throwing of rockets, the certainty of their effects, even upon a single object, will be greatly secured by attending to the foregoing observations : but from no other knowledge than that derived from practice, can any system of warfare with rockets, be so much advanced and brought to perfection.

Having thus far proceeded in the theory of rockets moving in an abandoned state, in different mediums, and pointed out some of the difficulties that must be encountered to the farther extension of it, as well as to its per-
fection; I shall, after giving a few examples for practice in this section, proceed to determine the circumstances attendant on the motion of wheels, when influenced by the impelling force of rockets attached to their circumferences; the wheels being suspended on fired horizontal axes.

examples for practice.

EXAMPLE 1 .
The weight of the case and head of a cylindrical rocket is 14 ibs ; the radius of the base, and length of the case 5 and 33 inches; and the racius of the base, and height of the conical head 5 and 12 inches respectively: to find to what height the rocket will rise in the atmosphere in 2 vertical ascent.

RXAMPLE II.

Let a rocket of the above dimensions, \&c. move off in a direction inclined to the horizon in an angle of $\mathbf{3 0 ^ { \circ }}$; to find the height of the rocket from the earth at the end of its burning; granting it not to revolve, but to retain throughout the position in which it was projected.

EXAMPLE III.

The weight of the case and head of a rocket is given equal to 16 lbs . ; the radius of its base and also that of the head (which is conical) $5 \frac{1}{4}$ inches; the length of the cylindric case 3 feet; and the altitude of the head 9 inches. If when the rocket is thrown perpendicularly to the horizon it attains the height of $1 \frac{1}{2}$ mile from the earth, what will be the time of its motion ?

EXAMPLE IV.

How high would a 24 -pounder cast iron ball rise in
the atmosphere, if projected perpendicularly to the horizon with a velocity of 1200 feet per second ?

EXAMPLE V.

Let a 10 -inch shell, the weight of which unloaded is 89lbs., be projected vertically in the air with a velocity of 1700 feet per second; to determine where it will fall, the velocity of the wind being 19 feet per second.

EXAMPLE VI.

Suppose a solid cylinder of brass of 3 inches radius, and 2 feet in altitude, and having a hemispheric end of the same diameter as the base of the cylinder, to be projected vertically in the atmosphere with a velocity of 1500 feet per second: to determine the period of its return to the earth, it being supposed not to revolve, or to change the position in which it was projected; which it will not if the atmosphere continues calm.

EXAMPLE VII.

Given the same as in the last, and the time of the cylinder's return as thence determined; to find where it will fall; supposing the wind to have blown the smart gale of 40 miles an hour.

EXAMPLE VIII.

The time of flight of the rocket, Ex. 3., is given equal to $26^{\prime \prime}$, and the angle at which it is thrown 43°; also the direction of projection north-east by north. The wind blows at the rate of 26 miles an hour directly from the south. What then is the maximum deflection of the rocket from the plane of projection ?

[89]

SECTION IV.

© the application of the force of rockets to the motion of wheels suspended on fixed homizontal axes.

LEMMA 1.

49. Let cd be a circular plane, vibrating about an borizontally fixed axis $n \mathrm{Sm}$, parallel to the diameter AB ; and ins clined to SG, in any given angle SGC: to find the force of the plane CD to effect rotation about $n \mathrm{Sm}$.

Draw of perpendicular to the plane $\mathrm{CD}^{\text {at }} \mathrm{G}_{2}$ and sL perpendicular to al at L. Draw the diameter $C D$ perpendicular to $A B$, and IH any chord parallel to the same, and join es, gs; also let ef and Cr be parallel to cl, and meeting SL in \mathbf{F} and \mathbf{T}.

$$
\begin{aligned}
\text { Put } a & =\mathrm{ST}, \\
b & =\mathrm{OL}, \text { or EF, or } \mathrm{CT},
\end{aligned}
$$

$r=\mathrm{CG}$, the rad. of the given circle,
$x=\mathrm{cE}$,
$p=3.1416$,
Then $p r^{2}$ is the area of cd . Now. By the circle $\mathrm{EH}=$ $\left(2 r x-x^{2}\right)^{\frac{1}{2}}$, also $\mathbf{S E}^{2}$, or the square of the distance of $\mathbf{N H}$ from the axis of motion $=\mathrm{SF}^{2}+E \mathrm{~F}^{2}=b^{2}+(a+\kappa)^{2}$. Therefore $\left\{b^{2}+(a+x)^{2}\right\}\left(2 r x-x^{2}\right)^{\frac{1}{2}}$, will be the force of all the particles in the semi-chord EH, and $\dot{x}\left\{b^{2}+\right.$
$\left.\{a+x)^{2}\right\}\left(2 r x-x^{2}\right)$ the fluxion of the force of ECH,
which, putting f instead of $b^{2}+a^{2}$, is equal to $f \dot{x}\left(2 r x-x^{2}\right)^{\frac{x}{2}}+2 a x \dot{x}\left(2 r x-x^{2}\right)^{\frac{\pi}{2}}+x^{2} \dot{x}\left(2 r x-x^{2}\right)^{\frac{x}{2}}$, and the force of ECH itself
f area $\mathrm{ECH}+2 a r$ area $\mathrm{ECH}-\frac{\left(2 r x-x^{2}\right)^{\frac{3}{2}}}{3}+\frac{b r}{4}$
$\times\left(r\right.$ area $\left.\mathrm{ECH}-\frac{\left(2 r x-x^{2}\right)^{\frac{3}{2}}}{3}\right)-\frac{x\left(2 r x-x^{2}\right)^{\frac{3}{2}}}{4}=$
(when $x=0$) 0 . Therefore making $x=2 r$, we shall have

$$
\frac{1}{2} p r^{2}\left(f+2 a r+\frac{5 r^{2}}{4}\right)
$$

for the force of the semicircle CED, and consequently

$$
p r^{2}\left(f+2 a r+\frac{5 r^{2}}{4}\right)
$$

for the force of the whole circle as required : or restoring the value of f, and calling the distance sG $=\left\{b^{2}+\right.$ $\left.(a+r)^{2}\right\}^{\frac{1}{2}}, g$, the force of the whole circle will be truly expressed by

$$
p r^{2}\left(g^{2}+\frac{1}{4} r^{2}\right)
$$

Whence it appears, that the problem is in no way affected by the inclination of the circle to $s G$; the result being independent of any quantity expressive of that inclination. Hence, in all positions of the given circular plane, if the axis $n \mathrm{sm}$, be constantly parallel to the diameter AB, its force to produce rotation about $n \mathrm{~s} m$, will be the same. And hence the distance of the centre of oscillation of $\mathbf{C D}$, equal to this force divided by g into pr^{2}, will not be changed from the circumstance of inclination of the plane.

LEMMA 2.

50. Let the cylinder AB vibrate about an borizontally fixed axis $n \mathrm{sm}$, parallel to the diameter CD of the circular section CHDI, and in any inclined position SIF; to find its centre of oscillation.

Let $a=s \mathrm{P}$,
$b=A P$,
$d=\mathrm{AB}$, the length of the cylinder,
$r=$ the radius of its base,
$x=A \mathrm{~L}$, any variable distance from A ,
$g=$ the distance of the centre of gravity of the solid from s,
$p=3.1416$.
By the preceding lemma, the force of the section EF , to cause rotation about $n \mathrm{~nm}$ is

$$
p r^{2}\left(\mathrm{SL}^{2}+\frac{1}{4} r^{2}\right)
$$

Whence $\operatorname{pr}^{2} \dot{x}\left\{(b-x)^{2}+a^{2}+\frac{1}{4} r^{2}\right\}$, is the fluxion of the force of that part of the cylinder, the length of
which is x; therefore the fluent

$$
p^{2} x\left(g^{2}+\frac{1}{12} x^{2}+\frac{1}{4} r^{2}\right)
$$

wanting no correction, is the force itself of that part. Wherefore, when $\alpha=d$, we shall have

$$
d p r^{2}\left(g^{2}+\frac{1}{12} d^{2}+\frac{1}{4} r^{2}\right)
$$

for the force of the whole cylinder. This divided by g into the solid gives,

$$
g+\frac{d^{2}}{12 g}+\frac{r^{2}}{4 g}
$$

for the distance so of the centre of oscillation from \mathbf{s}; which being also independent of any quantity expressing the inclination of the cylinder, shews, that whether the solid vibrates in a horizontal, vertical, or any oblique position, if the axis $n \mathrm{~s} m$, continues parallel to CD , the solution to the problem will be the same as above.

Cor.-Because by mechanics, the distance of the centre of gyration of a body, from the axis of motion, is a mean proportional between the distances of the centres of gravity and of oscillation; we shall have for the distance of the centre of gyration of a cylinder vibrating horizontally or vertically, or in any inclined position, about an horizontal axis, as $n s m$, parallel to CD ,

$$
\left(g^{2}+\frac{1}{12} d^{2}+\frac{1}{4} r^{2}\right)^{\frac{3}{2}} ;
$$

where g and d denote the same quantities as in the problem.

PROP. XV.

51. Let ABCD be a solid cylindrical ruheel, of any given substance, suspended on an borizontal axis xY , passing through.
the centre of yravity I; and supposing a rocket ro, considered as a mere cylinder, and whose case is so light that its weight may be neglected, to be strongly attached, at its middle point, to the circumference at \mathbf{T}; to determine the velocity of the wheel's motion at any given instant.

Let $\varphi=$ weight of the wheel,
$r=1 T$ its radius,
$c=$ weight of the rocket composition,
$a=$ time in which the same is consuming itself uniformly,
$\mathrm{L}=$ length of the rocket,
$d=$ diameter of its base,
$b=1 p=r+\frac{1}{2} d$,
$\mathrm{s}=$ sned 2 (See Art. 17. Prop. 1st.) $=$ the force of a laminum of the composition when inflamed,
$v=$ velocity of the point p at the end of the time t,
$l=$ IG $\left(=\frac{r}{2 \frac{1}{2}}\right)$ the distance of the centre of gyration of the wheel from its centre of gravity.
Then by the laws of revolving motion, $\frac{\phi l^{2}}{b^{2}}$ is the mass which being condensed into p, and the matter of the whole wheel removed, will resist the motion of p, in the same manner, as the wheel itself does in its natural state. Now

64 rociets applied to the motion of wheres.
to determine, at any time, what similar mass must be substituted in p, for the matter in the rocket; the centres of gyration and of gravity of the latter must be first found ; as the places of these points will not be fixed (Art. 48.), but will vary during the whole time of the rocket's combustion.

To find the places therefore of these two points at the end of the time t. Let g (in the axis ro) denote the centre of gravity, and join Ig. Now $c-\frac{c t}{a}$ will be the weight of the unconsumed cylinder of composition at the end of the time t, and $\mathrm{L}-\frac{\mathrm{L} t}{a}$ its length; also $\frac{1}{2} \mathrm{~L}-$ $\frac{\mathrm{L} t}{2 a}$, the distance of the place of the centre of gravity of the said cylinder from either end of it; and $\frac{1}{2} L-$ $\left(\frac{1}{2} \mathrm{~L}-\frac{\mathrm{L} t}{2 a}\right)=\frac{\mathrm{Lt}}{2 a}$, the distance of the same point from p. Hence $I g^{2}=1 p^{2}+p g^{2}=b^{2}+\frac{L^{2} t^{2}}{4 a^{2}}$ is the square of the distance of g from the centre of motion r.
Now the square of the distance of the centre of gyration ($s 1^{2}$) from the same point, by Cor. to last lemma, is

$$
g^{2}+\frac{1}{12} d^{2}+\frac{1}{4} r^{2}
$$

where d is the length of the cydinder, and $g=1 g$. Whence $\mathrm{IR}^{2}=\frac{\mathrm{L}^{2} t^{2}+4 a^{2} b^{2}}{4 a^{2}}+\frac{\mathrm{x}^{2}(a-t)^{2}}{12 a^{2}}+\frac{r^{2}}{4}=$

$$
\begin{gathered}
\frac{3 \mathrm{~L}^{2} t^{2}+12 a^{2} b^{2}+\mathrm{L}^{2}(a-t)^{2}+3 a^{2} r^{2}}{12 a^{2}} ; \\
\text { and therefore, } \\
\frac{\left(3 \mathrm{~L}^{2} t^{2}+12 a^{2} b^{2}+\mathrm{L}^{2}(a-t)^{2}+3 a^{2} r^{2}\right) c(a-t)}{12 a^{3} b^{2}}
\end{gathered}
$$

ROCKETS $\triangle P P L E D$ TO TEE MOTION OF WHEELS 95°

is the mass which being substituted in p, will afford the same resistance to the motion of that point as the mass of the rocket at the end of the time t. To this add the mass $\frac{\phi l^{2}}{b^{2}}$, and the sum
$\frac{12 a^{3} \varphi r^{2}+c\left(3 \mathrm{~L}^{2} t^{2}+12 a^{2} b^{2}+\mathrm{L}^{2}(a-t)^{2}+3 a^{2} r^{2}\right)(a-t)}{12 a^{3} b^{2}}$
will be the whole inertia that resists the communication of motion to the point p^{*}. Hence,
$\frac{12 a^{3} b^{2} \mathrm{~s}}{12 a^{3} \varphi l^{2}+c\left(3 \mathrm{~L}^{2} t^{2}+12 a^{2} b^{2}+\mathrm{L}^{2}(a-t)^{2}+3 a^{2} r^{2}\right)(a-t)}$
is the actual force accelerating the point p at the end of the time t.

$$
\begin{gathered}
\text { Now } \dot{v}=2 f g \dot{g} ; \text { therefore } \\
\dot{v}=\frac{24 a^{3} g b^{2} \mathrm{~s} \dot{t}}{12 a^{3} \varphi l^{2}+c\left(3 \mathrm{~L}^{2} t^{2}+12 a^{2} b^{2}+\mathrm{x}^{2}(a-t)^{2}+3 a^{2} r^{2}\right)(a-t)}
\end{gathered}
$$

Let $z=a-t$; then $t=a-z$, and $\dot{t}=-\dot{z}$. Therefore

$$
\begin{aligned}
& \dot{v}=\frac{-24 a^{3} g b^{2} \mathrm{~s} \dot{z}}{12 a^{3} \varphi l^{2}+c z\left\{3 L^{2}(a-z)^{2}+12 a^{2} b^{2}+\Sigma^{2} z^{2}+{ }^{3} a^{2} r^{2}\right\}} \\
& \dot{v}=-\frac{6 a^{3} g b^{2} \mathrm{~s}}{c L^{2}}+\frac{\text { or, }}{\frac{3 a^{2} \varphi l^{2}}{c L^{2}}+\frac{3 a^{2}\left(L^{2}+4 b^{2}+r^{2}\right)}{4 L^{2}} x-\frac{3}{2} a z^{2}+\hbar^{3}}
\end{aligned}
$$

To find the fluent of this equation. Let

$$
\frac{k}{z-k}+\frac{0}{z-u}+\frac{w}{z-w}=
$$

- I do not consider the weight or gravity of the rocket to have any effect upon the wheel's motion. For, suppösing any number of complete revolutions, the retardation and acceleration from this circumstance, must so nearly counterbalance each other, that na sensible error can possibly arise from the neglect of it. And in ats given part of a revolution, it can make but a very small impression.

98 rocests Applied to the motion of whelds.

$$
\frac{1}{z^{3}-\frac{3}{2} a z^{2}+\frac{3 a^{2}\left(\mathrm{~L}^{2}+4 b^{2}+r^{2}\right)}{4 \mathrm{~L}^{2}} z+\frac{3 a^{2} \varphi l^{2}}{c \mathrm{~L}^{2}}}
$$

k, u, and w being the roots of the denominator assumed $=0$: then working according to the known rules for these cases, we shall get

$$
\begin{aligned}
\mathrm{K} & =\frac{1}{(k-u)(k-w v)} \\
\mathrm{v} & =\frac{1}{(u-k)(u-w)} \\
\mathrm{w} & =\frac{1}{(w-k)(w-u)}
\end{aligned}
$$

Hence K, U, and w being known, and the given fluxion justly characterised by the sum of the fractions $\frac{\mathrm{K} \dot{z}}{z-k}$ $+\frac{\dot{u}}{\dot{z}-u}+\frac{w \dot{z}}{z-w}$ into the given quantity $-\frac{6 a^{3} g b^{2} s}{c L^{2}}$, its fluent, (calling $\frac{6 a^{3} g b^{2} s}{c L^{2}}, P_{3}$) will be
$-\mathrm{P}\{\mathrm{K}$ hyp. $\log \cdot(z-k)+\mathrm{U}$ hyp. $\log \cdot(z-u)+\mathrm{w} \times$ hyp. $\log .(z-w)\}$. Now $z=a-t$. And when $t=0$, $v=0$. Therefore the correct fluent or general expression for the actual velocity of the point p will be P. (K hyp. log. $\frac{a-k}{z-k}+\mathrm{v}$ hyp. $\log \cdot \frac{a-u}{z-u}+\mathbf{w h y p}$. $\left.\log \cdot \frac{a-z v}{z-w}\right)$.

If two of the roots of the foresaid denominator be equal, as k and u, then assuming

$$
\frac{1}{x^{3}-\frac{3}{2} a x^{2}+\frac{3 a^{2}\left(L^{2}+4 b^{2}+r^{2}\right)}{4 L^{2}} x+\frac{3 a^{2} \varphi l^{2}}{c L^{2}}}
$$

$$
=\frac{L z+M}{(x-k)^{2}}+\frac{N}{x-w}
$$

and reducing the fractions to a common denominator, and equating the numerators, we shall find

$$
\mathrm{L}=\frac{-1}{(k-w)^{2}}, \mathrm{M}=\frac{2 k-w}{(k-w)^{2}}, \text { and } \mathrm{N}=\frac{1}{(k-w)^{2}} .
$$

Hence the fluent of

$$
z^{3}+\frac{3}{2} a z^{2}+\frac{3 a^{2}\left(L^{2}+4 b^{2}+r^{2}\right)}{4 \mathrm{~L}^{2}} z+\frac{3 a^{2} \varphi l^{2}}{c \mathrm{~L}^{2}}
$$

$=$ the fluent of $\frac{\mathrm{Iz} \dot{\mathrm{z}}+\mathrm{M} \dot{z}}{(z-\hat{k})^{2}}+\frac{\mathrm{N} \dot{z}}{z-w}$: where L, M, and N are known. And the fluent of this is
L hyp. $\log .(z-k)-\frac{L k+M}{z-k}+N$ hyp. log. $(z-w)$, (as will be readily perceived by substituting a single variable letter for the compound quantity $z-k$), which multiplied into - P, and corrected, gives

- $\left\{\mathrm{I}\right.$ hyp. $\log \cdot \frac{a-k}{z-k}-(\mathrm{L} k+\mathrm{m})\left(\frac{1}{a-k}-\frac{1}{\mathrm{x}-k}\right)$ +N hyp. $\left.\log \cdot \frac{a-w}{z-w}\right\}$, for the general value of the actual velocity of the point p in this case.

But in the above solutions we take for granted that the roots of the denominator of the fraction are all of them possible, which may not be the case under numerous particular data of the problem. It will therefore be proper to integrate the fluxion upon the supposition that the cubic involves imaginary roots. Let these be k and u (for being a cubic equation it must have two impossible roots, if any,) and the real root w : then the two fluxional fractions $\frac{\kappa \dot{z}}{z-\hat{k}}$ and $\frac{\dot{U} \dot{z}}{z-u}$, in which the
imaginary roots enter, being incorporated together in order that the impossible parts may vanish, we shall have

$$
-\mathrm{p}\left\{\frac{(\mathrm{k}+\mathrm{U}) z \dot{z}-(\mathrm{K} u+\mathrm{U} k) \dot{\dot{z}}}{z^{2}-(k+u) z+k u}+\frac{\mathrm{w} \dot{z}}{z-w}\right\}
$$

for the transformed given fluxion; the fluent of which is resolved as follows.

Suppose $c=\mathrm{K}+\mathrm{U}, d=\mathrm{K} u+\mathrm{v} k, a=k+u$, and $b=k u$; then will

$$
\frac{(k+v) z \dot{z}-(\kappa u+v k) \dot{z}}{z^{2}-(k+u) z+k u}=\frac{c z \dot{z}-d \dot{z}}{z^{2}-a z+b}
$$

Let, now, $x=z-\frac{a}{2}$: then $x=x+\frac{a}{2}, z^{2}=x^{2}+$ $a z, \frac{a^{2}}{4}$ and $z^{2}-a z+b=x^{2}+b-\frac{a^{2}}{4}=$ (writing m^{2} for $b-\frac{a^{2}}{4}$, which is a positive quantity by supposition) $x^{2}+m^{2}$. Therefore since $\dot{x}=\dot{x}$, the given fluxion $\frac{c x \dot{z}-d \dot{x}}{z^{2}-a z+b}$ will be transformed into $\frac{c x \dot{x}+\left(\frac{a c}{q}-d\right) \dot{x}}{x^{2}+m^{2}}$, the fluent of which is $\frac{1}{2} c$ hyp. log. $\left(x^{2}+m^{2}\right)+\frac{\frac{a c}{2}-d}{m^{2}}$ into a cir: arc of rad. m and tangent $x=$ (restoring the values of $a, b, m, x, \& c$.)

$$
\begin{gathered}
\frac{1}{2}(\mathrm{k}+\mathrm{U}) \text { hyp. log. }\left\{\left(x-\frac{k+u}{2}\right)^{2}+k u-\frac{(k+u)^{2}}{4}\right\} \\
+\frac{\frac{1}{2}(\mathrm{~K}+\mathrm{v})(k+u)-(\mathrm{K} u+\mathrm{v} k)}{k u-\frac{(k+u)^{2}}{4}}
\end{gathered}
$$

into a cir. arc. of rad. $\left\{k u-\frac{(k+k)^{2}}{4}\right\}^{\frac{1}{2}}$ and \tan.
$\left(z-\frac{k+u}{2}\right)$. Consequently the whole fluent is -P $\times\left\{\frac{1}{2}(\mathrm{~K}+\mathrm{v})\right.$ hyp. log. $\left\{\left(x-\frac{k+u}{2}\right)^{2}+k u-\right.$ $\left.\frac{(k+u)^{2}}{4}\right\}+\frac{2(\mathrm{k}-\mathrm{v})}{4 k u-(k+u)^{2}}$ cir. arc of rad. $\frac{1}{2}$ $\left\{4 k u-(k+u)^{2}\right\}^{\frac{3}{2}}$ and $\tan .\left(z-\frac{k+u}{2}\right)+\mathrm{w} \times$ hyp. log. $(z-w)\}$. This corrected, taking $z=a$ when $v=0$, gives, for the general value of the actual velocity of p,
P $\left\{\frac{1}{2}(\mathrm{x}+\mathrm{v})\right.$ hyp. $\log \cdot \frac{a^{2}-(k+u) a+k u}{x^{2}-(k+u) z+\frac{k u}{}}+$
$\frac{2(\mathrm{x}+\mathrm{v})(k+\dot{k})}{4 k u-(k+u)^{2}}$ into the difference of two circular arcs $(A-b)$ whose common rad. is $\frac{1}{2}\left\{4 k u-(k+u)^{2}\right\}^{\frac{3}{2}}$, and tangents $a-\frac{k+u}{2}$ and $z-\frac{k+u}{2}$ respectively + whyp. log. $\left.\frac{a-w}{z-w}\right\}=p\left\{\frac{1}{2}(x+v)\right.$ hyp. log.

$$
\frac{a^{2}-(k+u) a+k u}{z^{2}-(k+u) z+\frac{k u}{k u}}+\frac{2(\mathrm{~K}+\mathrm{v})(k+u)}{4 k u-(k+u)^{2}} \times
$$

circular arc of radius $\frac{1}{2}\left\{4 k u-(k+u)^{2}\right\}^{\frac{\pi}{2}}$ and tangent $\frac{\left\{k u-\frac{(k+u)^{2}}{4}\right\} \times\left\{\left(a-\frac{k+u}{2}\right)-\left(z-\frac{k+u}{2}\right)\right\}}{k u-\frac{(k+u)^{2}}{4}+\left(a-\frac{k+w}{2}\right)\left(z-\frac{k+u}{2}\right)}+$
whyp. $\left.\log \frac{a-w}{z-w}\right\}$.
Let us now restore the values of \mathbf{x}, u, and w , and we shall have,

$$
\begin{gathered}
\mathrm{x}+\mathrm{v}=\frac{1}{(k-u)(k-w)}+\frac{1}{(u-k)(u-w)}=\frac{1}{(w-k)(u-w)} \\
\mathrm{K}-\mathrm{v}=\frac{1}{(k-u)(k-w)}-\frac{1}{(u-k)(u-w)}= \\
\frac{v(u+k)-2 w}{(k-u)(k-w)(u-w)}, \\
\text { and, } 2(k-v)(k-w)=\frac{2(k+u)-4 w}{(k-w)(u-w)}
\end{gathered}
$$

Therefore by substitution and reduction, the above expression becomes
p $\left\{\frac{1}{2(w-k)(u-w)}\right.$ hyp. log. $\frac{a^{2}-(k+u) a+k u}{z^{2}-(k+u), z+k u}+$ $\frac{\mathcal{Q}(k+u)-4 w}{\left(k u-(k+u) w+w^{2}\right)\left(4 k u-(k+u)^{2}\right)}$ into the circular arc of rad. $\frac{1}{2}\left\{4 k u-(k+u)^{2}\right\}^{\frac{3}{2}}$ and tangent $\frac{\left(k u-\frac{(k+u)^{2}}{4}\right)(a-z)}{k u+a z-\frac{k+u}{2}(a+z)}+\frac{1}{(w-k)(w-u)}$ hyp. log. $\left.\frac{a-w}{z-w}\right\}$. And in the extreme case where $t=a$, or $z=0$, it is, $\mathbf{P}\left\{\frac{1}{2(w-k)(u-w)}\right.$ hyp. log. $\frac{a^{2}-(k+u) a+k u}{k u}$ $+\frac{2(k+u)-4 w}{\left(k u-(k+u) w+w^{2}\right)\left(4 k u-(k+u)^{2}\right)}$ into the arc whose rad. is $\frac{1}{2}\left\{4 k u-(k+u)^{2}\right\}^{\frac{x}{2}}$ and tangent $\frac{\left(k u-\frac{(k+u)^{2}}{4}\right) a}{k u-\frac{(k+u) a}{2}}+\frac{1}{(w-k)(w-u)}$ hyp. log. $\left.\frac{w-a}{w}\right\}$,
where it is evident that the impossible quantities k and u
(partaking of the forms $\pm n+m \sqrt{ }-1$ and $\pm n-m \sqrt{ }-1$) are so involved as to make all the terms in which they are contained real.

To illustrate this by an example.
Let $T=\frac{1}{2} \mathrm{ft}$. the thickness of the wheel which we will suppose of sound dry oak,

$$
\begin{align*}
& r=2 \frac{1}{2} \mathrm{ft} . \text { its radius } \\
& c=160 \mathrm{ozs} . \\
& a=4 \mathrm{sec} \\
& \mathrm{~L}=3 \mathrm{ft} \\
& d=\frac{1}{2} \mathrm{ft} \\
& b=r+\frac{i}{2} d=2 \frac{3}{4} \text { feet. } \\
& l^{2}=\left(\frac{r}{2 \frac{1}{2}}\right)^{2}=\frac{25}{8} \mathrm{ft}
\end{align*}
$$

Then $\dot{\varphi}=9081 \cdot 2875 \mathrm{ozs}$. and $\mathrm{P}=\frac{6 a^{3} g \dot{b}^{2} \dot{s}}{c \mathrm{~L}^{2}}=1457178 \cdot \mathrm{~s}$.
Now substituting the above values in the equation $\frac{3 a^{2} \phi l^{2}}{c L^{2}}+\frac{3 a^{2}\left(\mathrm{~L}^{2}+4 b^{2}+r^{2}\right)}{4 L^{2}} z-\frac{3}{2} a z^{2}+z^{3}=0$, it will become $z^{3}-6 z^{2}+\frac{188}{3} x+946=0$; whereof one of the roots, by Cardan's rule, is -6.609 nearly; and the other two are $6.305+\sqrt{ }-104$ and $6.305 \rightarrow$ $v-104$. Hence $P\left\{\frac{1}{2(w-k)(u-w)} \times\right.$ hyp. log. $\frac{a^{2}-(k+u) a+k u}{k u}+\frac{2(\dot{k}+u)-4 w}{\left(k u-(k+u) w+w^{2}\right)\left(4 k u-(k+u)^{2}\right)}$ into a circular arc of rad. $\frac{1}{2}\left\{4 k u-(k+u)^{2}\right\}^{\frac{1}{2}}$ and tangent $\frac{\left(k u-\frac{(k+u)^{2}}{4}\right) a}{k u-\frac{(k+u) a}{2}}+\frac{1}{(w-k)(w-u)}$ hyp. log. $\left.\frac{w-a}{w}\right\}=$
$1457178.8\left\{-\frac{1}{541 \cdot 332}\right.$ hyp. log. $\frac{109}{143.69}-\frac{1 \cdot 24}{112597.056}$
$\times 3.3812+\frac{1}{270 \cdot 666}$ hyp. log. $\left.\frac{10 \cdot 61}{6 \cdot 61}\right\}=1457178 \cdot 8$
$(+\cdot 00051043-00003723+\cdot 00174833)=3237.1664$
feet; which is the actual velocity per second of the point p of the circumference of the wheel at the end of the rocket's burning; and consequently the angular velocity of the wheel itself, at that time, is 1294.8665 feet.

Hence, knowing the actual velocity of the point p, the number of revolutions per second that the wheel will for ever continue to make (no extraneous or other causes being here supposed to operate) may be determined : since it is only to divide the actual velocity of this point by the circumference of the wheel. In the present example therefore, where the circumference $=15.708$ feet, the number will be 206.

PROP. 15.
52. To find the number of revolutions the wheel makes during the time of the rocket's combustion.

In the solution to this problem, I shall confine myself to the most difficult and laborious case, where the general value for the velocity found in the preceding proposition has been obtained on the supposition that the denominator of its fluxion contains two impossible, and one real root. Therefore $\mathrm{P}\left\{\frac{1}{2(w-k)(u-w)}\right.$ hyp. log.
$\frac{a^{2}-(k+u) a+k u}{z^{2}-(k+u) z+k u}+\frac{2(k+u)-4 w}{\left(k u-(k+u) w+w^{2}\right)\left(4 k u-(k+u)^{2}\right)}$ x cir. arc of rad. $\frac{1}{2}\left\{4 k u-(k+u)^{2}\right\}^{\frac{1}{2}}$ and tangent

$$
\frac{\left(k u-\frac{(k+\tilde{u})^{2}}{4}\right)(a-z)}{k u-\frac{(k+u)^{2}}{4}+\left(a-\frac{k+u}{2}\right)\left(z-\frac{k+u}{2}\right)}
$$

$+\frac{1}{(w-k)(w-u)}$ hyp. log. $\left.\frac{a-w}{z-\frac{w}{w}}\right\}$ being the velocity, let us, in order to render the expression as simple as possible, put $\mathrm{A}=\frac{1}{2(w-k)(u-w)}, \mathbf{B}=a^{2}-(k+w)$ $\times a+k u, \mathrm{D}=\frac{2!k+u)-4 w}{(k u-(k+u) w+w)\left(4 k u-(k+u)^{2}\right)}$ $\mathrm{E}=\frac{1}{2}\left\{4 k u-(k+u)^{2}\right\}^{\frac{1}{2}}, n=k+u$, and $m=k u$; then it becomes $P\left\{\right.$ A hyp. log. $\frac{B}{z^{2}-n z+m}+D$ arc of rad. E and $\tan . \frac{m-\frac{n^{2}}{4}}{a-\frac{n}{2}} \times \frac{a-z}{\frac{m-\frac{a n}{2}}{a-\frac{n}{2}}+z}+$ whyp.log.
$\left.\frac{a-w}{z-w}\right\}$. Therefore since the fluxion of the space (\dot{x}) $=v \dot{t}=-v \dot{z} ;$ we get $\dot{x}=-\mathrm{P}\left\{A \dot{z}\right.$ hyp. log. $\frac{\mathrm{B}}{z^{2}-n z+m}$
$+\mathrm{D} \dot{z}$ into arc of rad. E and tan. $\frac{m-\frac{n^{2}}{4}}{a-\frac{n}{2}} \times$
$(a-z) \div\left(\frac{m-\frac{a n}{2}}{a-\frac{n}{2}}+z\right)+w \dot{z} \times$ hyp.log. of $\left.\frac{a-w}{z-w}\right\}$.

The fluent of the first term \dot{x} hyp. log. $\frac{B}{\dot{z}^{2}-n z+m}$ (\dot{F}) omitting for the present the constant multiplier - PA , is $F=z$ hyp. log. $\frac{B}{z^{2}-n z+m}-$ fluent $z \times$ flux. of hyp. log. $\frac{B}{z^{2}-n z+m}=z$ hyp. log. $\frac{B}{z^{2}-n z+m}+f l u$. $\frac{q z^{2} \dot{z}}{z^{2}-n z+m}-$ flu. $\frac{n z \dot{z}}{z^{2}-n z+m}=z$ hyp. log. $\overline{z^{2}-n z+m}$ $+2 z+\mathrm{flu} \cdot \frac{n z \dot{z}}{z^{2}-n z+m}(\dot{\mathrm{H}})-\mathrm{flu} \cdot \frac{m \dot{\mathrm{z}}}{z^{2}-n z+m}(\dot{\mathrm{G}})$. Let $x=z-\frac{1}{2} n$, then $\dot{x}=\dot{z}$, also $x^{2}=z^{2}-n z+\frac{1}{4} n^{2}$, and $z^{2}-n x+m=x^{2}-\frac{1}{4} n^{2}+m=$ (writing c^{2} for $\frac{1}{4} n^{2}+m$, which is a positive quantity) $x^{2}+e^{2}$. Therefore $\dot{H}=\frac{n x \dot{z}}{z^{2}-n z+m}=\frac{n\left(x \dot{x}+\frac{1}{2} n \dot{x}\right)}{x^{2}+\epsilon^{2}}$, and $\mathrm{H}=$ $\frac{n}{2}$ hyp. $\log .\left(x^{2}+c^{2}\right)+\frac{\frac{1}{2} n^{2}}{c^{2}}$ cir. arc of rad. e and tan. $x=\frac{n}{2}$ hyp. log. $\left(x^{2}-n x+m\right)+\frac{\frac{1}{2} n^{2}}{-\frac{1}{4} n^{2}+m}$ arc of rad. $\left(-\frac{x}{4} n^{2}+m\right)^{\frac{x}{2}}$ and tan. $\left(x-\frac{1}{2} n\right)$. Also $\dot{G}=\frac{m \dot{z}}{x^{2}-n z+m}$ $=\frac{m \dot{x}}{x^{2}+\epsilon^{2}}$, and $\epsilon=\frac{m}{-\frac{1}{4} n^{2}+m}$ arc. of rad. $\left(-\frac{1}{4} n^{2}+m\right)^{\frac{x}{2}}$ and $\tan \left(z-\frac{1}{2} n\right)$.

So that.F \times - PA or the fluent of the first term of the given fluxion, is - PA $\left\{z\right.$ hyp. log. $\frac{B}{z^{2}-n z+m}+2 z+$ $\frac{n}{2}$ hyp. $\log .\left(z^{2}-n x+m\right)+\frac{\frac{1}{2} n^{2}}{-\frac{1}{4} n^{2}+m}$ arc of rad.
$\left(-\frac{1}{4} n^{2}+m\right)^{\frac{1}{2}}$ and tan. $\left(z-\frac{1}{2} n\right)-\frac{m}{m-\frac{1}{4} n^{2}}$ arc of rad. $\left(-\frac{1}{4} n^{2}+m\right)^{\frac{1}{2}}$ and $\left.\tan \cdot\left(z-\frac{1}{2} n\right)\right\}=-\mathrm{PA}\{z$ hyp. log. B $+\left(\frac{n}{2}-z\right)$ hyp. log. $\left(z^{2}-n z+m\right)+\frac{\frac{1}{2} n^{2}-m}{-\frac{1}{4} n^{2}+m}$ arc of rad. $\left(-\frac{1}{4} n^{2}+m\right)^{\frac{1}{2}}$ and $\left.\tan .\left(z-\frac{1}{2} n\right)\right\}$; which being corrected, will be PA $\left\{(a-z)\right.$ hyp. log. B $+\left(\frac{n}{2}-a\right)$
hyp. log. $\left(a^{2}-n a+m\right)-\left(\frac{n}{2}-z\right)$ hyp.log. $\left(z^{2}-n z+m\right)$ $+\frac{\frac{1}{2} n^{2}-m}{-\frac{1}{4} n^{2}+m}$ arc of rad. $\left(-\frac{1}{4} n^{2}+m\right)^{\frac{1}{2}}$ and tangent
$\left.\frac{\left(-\frac{1}{4} n^{2}+m\right)\left\{\left(a-\frac{1}{2} n\right)-\left(z-\frac{1}{2} n\right)\right\}}{-\frac{4}{4} n^{2}+m+\left(a-\frac{1}{2} n\right)\left(z-\frac{1}{2} n\right)}\right\}=$ (when $z=0$ or $t=a)$ PA $\left\{a\right.$ hyp. $\log . \mathrm{B}+\left(\frac{n}{2}-a\right)$ hyp. log. $\left(a^{2}-n a\right.$ $+m)-\frac{n}{2}$ hyp. log. $m+\frac{\frac{1}{2} n^{2}-m}{-\frac{1}{4} n^{2}+m} \operatorname{arcofrad}$. $\left(-\frac{1}{4} n^{2}\right.$ $+m)^{\frac{1}{2}}$ and $\left.\tan : \frac{\left(-\frac{1}{4} n^{2}+m\right) a}{m-\frac{1}{2} a n}\right\}$.

Next for the fluent of the second term of the given
flux. $\dot{\text { into }}$ arc of rad. E and $\tan . \frac{m-\frac{n^{2}}{4}}{a-\frac{n}{2}} \times \frac{a-z}{\frac{m-\frac{a n}{2}}{a-\frac{n}{2}}+z}$
$(\dot{\mathrm{F}})$, (omitting for the present the multiplier - PD).
Writing q for $\frac{m-\frac{n^{2}}{4}}{a-\frac{n}{2}}$, and p for $\frac{m-\frac{a n}{2}}{a-\frac{n}{2}}$, then $\mathrm{F}=\pi \times$
arc of rad. E and $\tan . \frac{q(a-z)}{p+z}$-fluent of z into the flux. of the arc of rad. E and $\tan . \frac{q(a-z)}{p+z}(i)$. Now the fluxion of an arc, in terms of the tangent, is equal to the square of the radius into the fluxion of the tangent, divided by the sum of the squares of the radius and of the tangent : therefore $\dot{\mathrm{L}}=\frac{-q \mathbf{E}^{2}(p+a) z \dot{z}}{(p+z)^{2}} \div$

$$
\begin{aligned}
& \frac{\mathrm{E}^{2}(p+z)^{2}+q^{2}(a-z)^{2}}{(p+z)^{2}}=\frac{-q \mathrm{E}^{2}(p+a) z \dot{z}}{\mathrm{E}^{2}(p+z)^{2}+q^{2}(a-z)^{2}} \\
& =\frac{-q \mathrm{E}^{2}(p+a) z \dot{z}}{\mathrm{E}^{2} p^{2}+a^{2} q^{2}+\left(\mathrm{E}^{2} p-a q^{2}\right) 2 z+\left(\mathrm{E}^{2}+q^{2}\right){z^{2}}^{2}}= \\
& \frac{-q \mathrm{E}^{2}(p+a)}{\mathrm{E}^{2}+q^{2}} \times \frac{z}{\frac{\mathrm{E}^{2} p^{2}+a^{2} q^{2}}{\mathrm{E}^{2}+q^{2}}+\frac{z \mathrm{E}^{2} p-a q^{2}}{\mathrm{E}^{2}+q^{2}} 2 z+z^{2}}
\end{aligned}
$$

Now if the roots of the denominator of this fluxion be impossible, then calling $\frac{-q E^{2}(p+a)}{\mathrm{E}^{2}+q^{2}}, \mathrm{v} ; \frac{\mathrm{E}^{2} p^{2}+a^{2} q^{2}}{\mathbf{E}^{2}+q^{2}}$, R ; and $\frac{\mathrm{E}^{2} p-a q^{2}}{\mathrm{E}^{2}+q^{2}}$, s ; so that $\dot{\mathrm{L}}=-\mathrm{v} \times \frac{\boldsymbol{z} \dot{\boldsymbol{z}}}{\mathrm{R} \pm 2 \mathrm{~s} \boldsymbol{z}+\boldsymbol{z}^{2}}$, we shall have when 2 s is affirmative,
$\mathrm{x}=-\mathrm{v}\left\{\frac{1}{2}\right.$ hyp. $\log \cdot\left(z^{2}+2 \mathrm{~s} z+\mathrm{R}\right)-\frac{\mathrm{s}}{-\mathrm{s}^{2}+\mathrm{R}} \times$ arc of rad. $\left(-s^{2}+R\right)^{\frac{1}{2}}$ and tan. $\left.(z+s)\right\}$; and when 2 s is negative, $\mathrm{L}=-\mathrm{v}\left\{\frac{1}{2}\right.$ hyp. log. $\left(z^{2}-2 \mathrm{~s} z+\mathrm{R}\right)+$ $\frac{\mathrm{s}}{-\mathrm{s}^{2}+\mathrm{R}}$ arc of rad. $\left(-\mathrm{s}^{2}+\mathrm{R}\right)^{\frac{1}{2}}$ and $\left.\tan .(z-\mathrm{s})\right\}$.
Whence, $-\mathrm{PD} \times \mathrm{F}$, or the whole fluent of the second term of the given fluxion uncorrected, will be
-PDz arc of rad. E and tan. $\frac{q(a-z)}{p+z}-\operatorname{PDV}\left\{\frac{1}{2} \mathrm{hyp}\right.$.
$\log \cdot\left(z^{2} \pm 2 s z+R \mp \frac{s}{-s^{2}+R} \operatorname{arc}\right.$ of rad. $\left(-s^{2}+R\right)^{\frac{2}{2}}$ and $\tan .(z \pm \mathrm{s})\}$. Now $z=a$, when the space and time are each $=\mathbf{0}$; therefore this fluent corrected is $-\mathrm{PD} z \operatorname{arc}$ of rad. E and tan. $\frac{q(a+z)}{p+z}+\mathrm{PDV}\left\{\frac{1}{2}\right.$ hyp. $\log \frac{a^{2} \pm 2 \mathrm{~s} a+\mathrm{R}}{z^{2} \pm 2 \mathrm{~s} z+\mathrm{R}} \mp \frac{\mathrm{s}}{-\mathrm{s}^{2}+\mathrm{R}} \operatorname{arc}$ of $\mathrm{rad}\left(-\mathrm{s}^{2}+\mathrm{R}\right) \frac{\text { x }}{3}$ and $\left.\tan \cdot \frac{\left(-\mathrm{s}^{2}+\mathrm{R}\right)\{(a \pm \mathrm{s})-(z \pm \mathrm{s})\}}{-\mathrm{s}^{2}+\mathrm{R}+(a \pm \mathrm{s}) \times(z \pm \mathrm{s})}\right\}=$ (when $z=0$ or $t=a$) PDV $\left\{\frac{1}{2}\right.$ hyp. $\log \cdot \frac{a^{2} \pm 2 s a+\mathrm{R}}{\mathrm{R}} \dot{\mp}$ $\frac{s}{-s^{2}+R}$ arc of rad. $\left(-s^{2}+R\right)^{\frac{1}{2}}$ and tan. $\left.\frac{\left(-s^{2}+R\right) a}{R \pm s a}\right\}$.
This is the case when the roots of the quadratic denominator (assumed equal to 0) are impossible. But if the roots are real, and be denoted by i and j; then assuming $\frac{\mathrm{x}}{\mathrm{z}-i}+\frac{\mathrm{z}}{\mathrm{z}-j}=\frac{1}{z^{2} \pm 2 \mathrm{~s} z+\mathrm{R}}$, by reduction, \&c. we get

$$
\mathrm{x}=\frac{1}{i-j} \text { and } \mathrm{z}=\frac{1}{j-i}
$$

Whence $\dot{\mathrm{L}}=-\mathrm{v}\left\{\frac{\mathrm{xz} \dot{\tilde{z}}}{z-i}+\frac{z z \dot{z}}{z-j}\right\}$, and
$\mathrm{L}=-\mathrm{vx}\{z+i$ hyp. $\log .(z-i)\}-\mathrm{vz}\{\mathrm{z}+j$ hyp. $\log \cdot(z-j)\}$. Whence also, $-\mathrm{PD} \times \mathrm{F}$ will be $=-\mathrm{PD} \boldsymbol{P} \times$ arc of rad. E and tan. $\frac{q(a-x)}{p+x}-\operatorname{pDVX}\{z+i$ hyp.log. $(z-i)\}-\operatorname{PDVz}\{z+j$ hyp. log. $(z-j)\} ;$
which corrected, is
$\operatorname{PDV}\left\{\mathrm{x}\left(a-z+i\right.\right.$ hyp. log. $\left.\frac{a-i}{z-i}\right)+\mathrm{z}(a-z+j \times$ hyp. log. $\left.\left.\frac{a-j}{z-j}\right)\right\}=($ when $z=0) \operatorname{PDV}\{x(a+i$ hyp.log. $\left.\frac{i-a}{i}\right)+z\left(a+j\right.$ hyp. $\left.\left.\log . \frac{j-a}{j}\right)\right\}$.

Lastly, to find the fluent of the remaining term $-\mathrm{PW} \dot{\boldsymbol{x}}$ hyp. log. $\frac{a-w}{z-w}(\dot{\mathrm{x}})$ of the original fluxion, it is $\mathrm{k}=-$ PW $\left\{z\right.$ hyp. log. $\frac{a-w}{z-w}-$ fluent z into the flux. of hyp. $\left.\log \cdot \frac{a-w}{z-w}\right\}=-\mathrm{PW}\left\{z\right.$ hyp. log. $\frac{a-w}{z-w}+z+w \times$ hyp. log. $(z-w)\}$; which corrected is $-\mathrm{PW}\{a-z+$ w hyp. $\log \cdot \frac{a-w}{z-w}-z$ hyp. log. $\left.\frac{a-w}{z-w}\right\}=\mathrm{Pw}\{a-x$ $-(z-w)$ hyp. log. $\left.\frac{a-w}{z-w}\right\}=($ when $z=0) \mathrm{pw} \times$ $\left\{a+w\right.$ hyp. log. $\left.\frac{w-a}{w}\right\}$.

Whence, the whole space passed over by the point p in the wheel, during the burning of the rocket, being now determined, the number of revolutions made during that time may be computed.

In the solutions of the foregoing propositions, we have supposed no other resistance to the wheel's motion than that which arises from the inertia of the mass about its axis. But if the wheel revolve in a medium (as in air for example), its motion will be further resisted from the action of the same against the rocket, and that very sensibly, when the velocity of revolution becomes great.

And there will be but this force of the air upon the rocket, opposed to the whole compound mass; unless it be said that some slight resistance is occasioned by the friction of the wheel against the fluid, which in air must be too inconsiderable to affect in any degree the result determined from the contrary supposition. That there will be considerable friction of the wheel upon its axis is evident, if the former be supposed possessing much weight, and ought to enter as an additional datum into the computation. Calling, therefore, the resistance to the rocket to any given angular velocity (1) of the wheel R , and v the corresponding velocity to time $t, R v^{2}$ will be the resistance to that velocity, and F being taken for the quantity of friction on the axis, the fluxional expression for the velocity, namely, $\dot{v}=2 f g^{i} \dot{t}$ will become (Vide Prop. 14. Art. 51.)
$\frac{-2 g \dot{z}\left(12 a^{3} b^{2} S-R v^{2}-F\right)}{12 \varphi a^{3} l^{2}+c z\left(3 L^{2}(a-z)^{2}+L^{2} z^{2}+12 a^{2} b^{2}+3 a^{2} r^{2}\right)}$
or,

$$
\dot{v}=\frac{-M \dot{z}+O v^{2} \dot{z}}{P+G z-N z^{2}+z^{3}}
$$

the fluent of which may be found by the method of infinite series, similarly to that at Art. 33. Prop. 9. and hence the space described be obtained.

Note.-When the rocket is fixed to the wheel in the manner prescribed by the proposition, the value of $R_{\text {will }}$ be had by a comparatively easy process, referring to what has been laid down in section 2. And when it is screwed upon the wheel, at the very extremity, so that no part of the surface of the cylinder meets the fluid, the resistance will be barely that upon the circular end, and consequently a problem of still easier solution.

SECTION V.

OF TRE APPLICATION OF THE FORCE OF ROCEETS TO THE MOTION OF PENDULUMS.
53. The pendulum, of which I here propose to consider the motion; is that denominated the ballistic; and as it will be required, in what follows on the subject, to know the centres of gravity and of oscillation of the machine; it will not be improper to give the methods by which the places of these points may be determined mechanically; and previously to which, a short description of the pendulum itself.

The ballistic pendulum is a massy block of wood w, hanging freely upon a strong horizontal fixed axis $A B$, at s, which axis is a part of the pendulum, to which the block w is connected by a strong inflexible wire or stem sT. It was invented by our late ingenious
 countryman Mr. Benjamin Robins, for the purpose of ascertaining the initial velocities of cannon balls, or the velocities with which they issue from the engines, and is, as Euler observes, one of the most useful discoveries ever made in artillery.

1. To find its centre of oscillation. It is well known that bodies vibrating in the arc of a cycloid, perform all their vibrations in the same time, from whatever point in the arc the vibration commences. But this is not the case when bodies vibrate in circular arcs, except those arcs be
very small. Therefore, to find the centre of oscillation, or which is the same thing, the length of a simple pendulum which shall vibrate isochronously with that of the ballistic, suspend it freely by a given point, and make it vibrate in a small arc not exceeding 4 or 5 degrees on each side of the vertical line of suspension, and by a good time-keeper, observe how many oscillations the pendulum makes in a given time (t), for instance 3 minutes, and call that number n; then by the theory of penduiums $n^{2}: t^{2}:: 39 \frac{1}{8}$ inches (the length of a simple pendulum that vibrates seconds): $\frac{t^{2} \times 39 \frac{1}{3}}{n^{2}}$, the length of the pendulum required; or the distance of the centre of oscillation from the point of suspension; where it is to be observed, that t must denote the number of seconds in the experiment.
2. To find its centre of gravity. Let a string or ribbon be fixed to the block at L , by means of which, raise the pendulup to a horizontal po-
 sition; then let the string be put over a pulley m , so placed, that lм may be perpendicular to the horizon, or to the extremity il, of the surface ir. The pendulum being horizontal, hang a weight w , at the end of the string Lmw, just sufficient to keep it in that position. Then is sGl a lever of the second kind, the weight acting at G, the centre of gravity, is equal to that of the whole pendulum; and the weight or power w , acting in direction LM, preserves an equilibrium ; therefore, calling the weight of the pendulum P, and the whole length
of it SL, g; we shall have $\mathrm{P}: \mathbf{W}:: g: \frac{\mathbf{W} g}{\mathbf{P}}$, the distance of the centre of gravity from the point of suspension s.

Note.-It is plain, that P, the entire weight of the pendulum, is equal to the weight of the block and all its appendages, since in vibrating, the whole is in mution upon the pivots A and x.

PROP. 16.
54. Let a rocket of given dimensions be strongly attached to the face of a given ballistic pendulum, so that the axis of the Sormer, when produced, may intersect the axis of the latter perpendiculariy: to determine the greatest arc through which the pendulum will be impelled.

A little reflection on the nature of this problem, renders it obvious, that the pendulum will not have acquired its greatest ascent till the complete exhaustion of the composition of the rocket ; for though the force of the mass, to prevent rotation about the axis of suspension at any intermediate time, may be an exact counterpoise to the force of the rocket, yet on account of the after combustion of the rocket, and consequent diminution of the weight of the remaining mass, the pendulum will ascend, and so continue, as long as the rocket remains on fire. To determine the problem, therefore, we have simply to find an expression for the gravitating force of the body under the circumstances here mentioned; which being made equal to the constant impelling force of the rocket, the equation thus resulting will afford us the means of determining the height required by the proposition.

Let the weight of the case of the rocket be inconsiderable with respect to the weight of the pendulum; and put
$w=$ weight of the latter,
$g=$ distance of its centre of gravity from the axis of suspension,
$0=$ distance of the centre of oscillation,
$(\mathrm{go}) \frac{1}{2}=$ distance of the centre of gyration,
$i=$ distance of the axis of the rocket,
$r=$ radius of the rocket's base,
$n=230$ ozs. the medium pressure of the atmosphere upon one square inch,
$s=1000$,
$p=3.1416$,
$x=$ natural sine of the angle which the axis of the pendulum makes with the vertical line, when at its greatest altitude.
Then $s n p r^{2}$ is the force of a surface of composition equal to the rocket's base, or the constant impelling foree of the rocket. Now by the theory of rotatory motion, $\frac{\text { gow }}{i^{2}}$ is the mass which being condensed into that point of the axis of the pendulum the distance of which from the axis of suspension is represented by i, the motion, and every circumstance attending that motion of the pendulum, will be the same, as when it revolved in its natural form. Whence, $\frac{\text { goww }}{i}$ will be the gravitating force of the pendulum when in the required position: therefore putting $\frac{\text { gowx }}{i}=\operatorname{snpr} r^{2}$, we shall have $x=\frac{s n p r^{2} i}{\text { gow }}$ for the natural sine of the angle sought.

For an example in numbers.
Let $w=570 \mathrm{lbs}$. or 912002 s.

$$
g=78 \frac{1}{2} \mathrm{in} .
$$

$0=84 \frac{7}{8} \mathrm{in}$.
$i=60 \mathrm{in}$.
$r=1$ inch.
$n=230 \mathrm{ozs}$.
$n=1000$.
$p=3.1416$
Then $x=\frac{\text { snpp }^{2} i}{\text { gow }}=\frac{1000 \times 230 \times 3.1416 \times 1 \times 60}{78 \frac{1}{2} \times 84 \frac{7}{\frac{2}{2}} \times 9120}$ $=\cdot 7143045$, the natural sine answering to $45^{\circ} 35^{\circ}$.

If the arc through which the pendulum is impelled be given, the value of s, expressive of the force of the composition, in reference to the force of the atmosphere, denoted by 1 , will be $\frac{g o w x}{n p r^{2} i}$.

Hence, a very easy and simple method of determining the strength of the composition of any species of rocket, or pyrotechnic arrow, by means of the pendulum : for in the experiment, it will be merely required to mark the precise height of the pendulum at the final instant of the burning of the rocket, and substitute the natural sine of the angle which it subtends, with the other known quantities contained in the foregoing expression for that strength. Thus, suppose the dimensions of the pendulum and of the rocket to be as in this proposition, and that the pendulum is urged through an arc of 30°, the natural sine of which is $\frac{1}{2}$; then will $s\left(=\frac{g o w n}{n p r^{2} i}\right)$ be found in this case equal to 700 very nearly, for the
strength of the composition, which is therefore 700 times the elastic force of the atmosphere at a medium.

But in order to have the force of the composition as precise as possible, let us take into the account the weight of the case of the rocket; that is, instead of finding the centre of oscillation of the pendulum only, by the method laid down at Art. 53, find this point when the case of the rocket is fixed to the pendulum at the point where it is intended that the force of the latter should be applied. Also, for the centre of gravity of the compound pendulum, it will be had by a very easy process; for the centre of gravity of the pendulum without the case of the rocket annexed, is found by Art. 53; and the centre of gravity of the latter is known, being the middle point of its axis, the length of which is given; therefore, having also the distance between these two centres given, and the weights of the two bodies, their common centre of gravity will be had by saying, as the sum of the weights of the two bodies, is to the weight of either of $\operatorname{Sing} u l a v$ them; so is the whole distance of their centres of gravity from each other, to the distance of their common centre of gravity from that of the centre of gravity of the other body; and this being known, the distance (g) of the same point from the axis of suspension may be determined.

As to those circumstances which may seem to cause some error in the result by diminishing the arc that the pendulum describes, such as the friction upon its axis, and the resistance of the air to the back of the pendulum, they are sufficiently balanced (so little as they exist) by the effect of the former upon the number of vibrations made by the pendulum in the experiment which determines its centre of oscillation. (See Dr.

Hutton's Tracts, 4to. ed. p. 120, \&c.) Therefore, the force of the composition as above deduced, is perhaps as accurately defined by the fraction $\frac{\text { gowx }}{n p r^{2} i}$, as the nature of the thing will possibly admit of.

Several other curious problems might now be proposed concerning the application of rockets to the motion of pendulums; but as they would be more speculative than practical, I shall pass them over, and conclude the section by a brief and popular account of the experiment for ascertaining the force of the composition.

The most striking object, in the experiment being that of ascertaining the arc described by the pendulum; the means by which it is effected, cannot be too simple, and free from causes, that may tend to prevent its precise determination; considering how much the truth of the thing sought depends upon the accurate measurement of that arc. Now the best method with which I am acquainted is that given by Dr. Hutton (and invented by him), at p. 112, of the volume of Tracts before mentioned.

- It is as follows:-Let a sharp spear or stylette be conceived fixed in the centre of the bottom of the pendulum, and a block of wood to be placed immediately under the same having its upper surface formed into a circular arc, the centre of which is in the middle of the axis, and its radius equal to the length from the axis to the upper surface of the block;-then, in the middle of this arc, make a shallow grove of 3 or 4 inches broad, running along the middle through the whole length of the arc, and fill it with a composition of soft-soap and wax of about the consistence of honey, or a little firmer, and having its upper surface smoothed off quite even with the general surface of the broad arc; then the
whole being put into motion, the stylette proceeding from the bottom of the block, will move along the surface of the composition, and trace the precise vibration of the pendulum; the measure of which may be accurately determined by means of a scale of chords (previously constructed), answering to the radius, whose length is the distance between the axis of suspension and the upper surface of the block, by measuring first the chord of the arc marked out in the groove of composition, and then applying it to the said scale of chords. And thus having found the number of degrees in the arc of vibration, its natural sine (x), will be known. Whence, the values of the several letters contained in the expression for the force of the composition being now found, by substituting them in that expression, the force itself will be had in reference to the similar elastic force of the atmosphere denoted by unity.

NAVAL GUNNERY.

55. Whatever is advanced towards the perfection of any system of warfare, whether for the use of the navy or for the army, must in the present day be considered as entitled to every attention. The following enquiries in naval gunnery are intended to obviate the evil arising from any undue allotment of charges for the artillery when in close action, for it has already been conjectured (See Preface) that the charges made use of are not always the most
eligible for producing the greatest destruction to the enemy's shipping; owing to their being too great; a circumstance that ought ever to be attended to in all cases of practice, as well military as naval.

The charges here given (which are computed for all the natures of ordnance generally used at sea) rest upon experiments, which, for accuracy, have never been excelled; and every circumstance that was likely to affect materially the quantity of them has been duly considered in the theory whence they are deduced. Many remarks might here be made in favour of their hoped-for utility; but as they will appear in the body of the work, if is unnecessary to repeat them in the introduction.

LEMMA 1.

56. If two spheres of different diameters, and different specific gravities, impinge perpendicularly on two uniformly resisting fixed obstacles, and penetrate into them; the forces which retard the progress of the spheres, will be as the absolute resisting forces or strengths of the fibres of the substances directly, and the diameters and specific gravities of the spheres inversely.
Let \mathbf{r} and \boldsymbol{r} denote the absolute resisting forces of the two substances; F and f the retardive forces; D, d, the diameters of the spheres; Q, q, their quantities of mattèr; and N and n their respective specific gravities. Then the whole resistance to the spheres being proportional to the quantities of motion destroyed in a given time, will be as the absolute resisting forces of the two substances and quantities of resisting surfaces jointly; or, as the resisting forces of the substances and squares of the diameters of the impinging spheres; because the
surfaces of spheres are as the squares of their diameters; that is $\frac{\mathrm{M}}{m}=\frac{\mathrm{R}}{r} \times \frac{\mathrm{D}^{2}}{d^{2}}$.

But in general, $\frac{M}{m}=\frac{\mathbf{F}}{f} \times \frac{\mathbf{a}}{q}$. Therefore equating these two values of the whole resisting forces, we have $\frac{\mathrm{F}}{f} \times \frac{a}{q}=\frac{\mathrm{R}}{q} \times \frac{\mathrm{D}^{2}}{d^{2}}$, and $\frac{\mathrm{F}}{f}=\frac{\mathrm{R}}{r} \times$ $\frac{D^{2}}{d^{2}}=\frac{q}{a}$; and since the quantities of matter in spheres are in the conjoint ratio of their magnitudes and densities, or of the cubes of their diameters and densities; it is

$$
\frac{\mathrm{F}}{f}=\frac{\mathrm{R}}{r} \times \frac{\mathrm{D}^{2}}{d^{2}} \times \frac{d^{3}}{\mathrm{D}^{3}} \times \frac{n}{\mathrm{~N}}=\frac{\mathrm{R}}{r} \times \frac{d}{\mathrm{D}} \times \frac{n}{\mathrm{~N}}
$$

That is, the forces retarding spheres penetrating uniformly resisting substances, are as the absolute strengths of the fibres of the substances directly, and the diameters and specific gravities of the spheres inversely.
Cor.-Because the whole resisting forces depend on the quantities of resisting surfaces, equal to the superficies of the spheres; it is evident that these forces will not be constant until after the spheres have penetrated to the depth of their radii. This circumstance however will not materially affect the conclusions we have derived from considering these forces as constant from the moment of impact, when the depths of penetration are considerable with respect to the radii of the spheres. And the times of penetration, the velocities, \&cc. when the depths are small, compared with the radii are considered in a subsequent part of the essay.

LEMMA 2.

The whole space or depths to which spheres impinging on differently resisting substances penetrate, are as the squares of the first velocities and the diameters and specific gravities of the spheres directly, and the absolute strengths of the resisting sub. stances inversely : or, $\frac{\mathrm{S}}{\mathrm{s}}=\frac{\mathrm{v}^{2}}{v^{2}} \times \frac{\mathrm{D}}{d} \times \frac{\mathrm{N}}{n} \times \frac{r}{\mathrm{R}}$.

For by mechanics, $\frac{s}{s}=\frac{\mathbf{v}^{2}}{v^{2}} \times \frac{f}{F}$: and by the preceding lemma $\frac{f}{F}=\frac{r}{R} \times \frac{D}{d} \times \frac{N}{n} ;$ therefore $\frac{s}{s}$ $=\frac{\mathrm{V}^{2}}{\boldsymbol{v}^{2}} \times \frac{\mathrm{D}}{d} \times \frac{\mathrm{N}}{n} \times \frac{r}{\mathrm{R}}$.

These being premised, I now proceed to the following important subject

ON
thb destruction of an enemy's fleet at sea by ARTILLERY.

PROP. 1.

57. To find a general formula which shall express the sharge of gunpowder for any given piece of artillery, to produce the greatest destruction possible to an enemy's ship at sea; it being supposed of oak substance of given thickness, and at a distance not affecting in any sensible degree the initial velocity of the shot.

By the last of the foregoing lemmata we have generally, $v=\left(\frac{\mathrm{S} d n \mathrm{R} v^{2}}{\mathrm{SDN} r}\right)^{\frac{1}{2}}$. Also the charges of powder vary as the squares of the velocity and weight of the ball
jointly. Hence, since it has been determined from experiment that a charge of half a pound, impelled a shot weighing one pound, with a velocity of 1600 feet per second, we shall, considering v the velocity of any ball impinging on the side of the vessel, have for the expression of the charge impelling it through the space s
$\frac{\operatorname{SR} d n v^{2} w}{\text { 2DNrs } \times 1600^{2}}$.

Now to apply this in the present instance, it is first necessary that a case be known concerning the penetration of a given shot into oak substance. Such a case we are furnished with at page 273 of Dr. Hutton's Robins's New Principles of Gunnery. It is there asserted, that an 18 -pounder cast-iron ball penetrated a block of well seasoned oak (such as ships of war are generally built with) to the depth of $3 \frac{1}{2}$ inches, when fired with a velocity of 400 feet per second. Making therefore this the standard of comparison for all cases where the object is of oak substance, we shall have for the charge generally,

$$
\frac{400^{2} \times \cdot 42}{2 \times 1600^{2} \times \frac{7}{24}} \times \frac{\mathrm{SR} n w}{\mathrm{DN} r}
$$

or, because the balls are of the same specific gravity, and the substance the same, or $\mathrm{R}=r$, and $\mathrm{N}=n$; it will be

$$
\frac{400^{2} \times \cdot 42}{2 \times 1600^{2} \times \frac{7}{24}} \times \frac{5 w}{\mathrm{D}}=.045 \times \frac{\mathrm{Sw}}{\mathrm{D}} ;
$$

that is, the charge varies as the space to be penetrated and weight of ball directly, and diameter of the ball inversely.
But the charge, by the problem, being to prodace the greatest effect possible in the destruction of the vessel ; f, in the above formula must always be put equal to the given thickness of the side; since it is well ascertained,
that, for a shot to produce the most damage to any splintering object, such as oak, it must lose all its motion just as it ceases to be resisted by the object, which happens when the ball has forced its first hemisphere out of the farther surface of it. And the quantity of motion destroyed during the penetration of the first hemisphere of the ball into, and the exit of the same out of the object, is precisely equal to what would be destroyed during the penetration of the ball through one of its radii if the quantity of resisting surface was equal to half its entire superficies. Hence the charge in question will be

$$
.045 \times \frac{\mathrm{Sw}}{\mathrm{D}},
$$

s being the thickness of the side of the ship, w the weight of the ball, and D its diameter.

If it be desirable that the shot should pierce both sides of the vessel, and the greatest damage to the ship take place on the hithermost side; it will only be necessary to double the thickness of the side of the vessel, and take that charge in the following table corresponding with the result. It appears to me that this would be the most advantageous practice; for not only will there, in this case, be a chance of killing a greater number of men of the enemy, but of the ball's striking the masts of the ship; and every sailor who has experienced such an impact on a mast in the hull of the vessel, need not be informed of the resulting consequences.

REMARKS.

In this solution, no allowance is made for the splitting of the timber that may take place when the ball has nearly penetrated to the farther surface of the object, by which the shot would be there less resisted, and its force
not wholly expended when it quitted the side of the vessel.-This circumstance would be a matter of some importance did not others of a contrary nature interpose to counterbalance its effects. Thus, the loss of motion which the ball suffers in passing through the intercepted space of air between the two vessels, has this tendency; for it must not be inagined that the firing commences, or can commence, when the ships are absolutely in contact with each other, this being impossible; nor can it be supposed that the shot will impinge in any instance precisely perpendicularly on the face of the ship, but will strike it somewhat a little obliquely, and thence cause a further compensation (from the greater space through which it will in such case have to penetrate) to the effects of splintering. These, and other considerations of less moment, but of an opposing nature to the one in question, will, it is hoped, be sufficient to justify the principles upon which the general expression for the charge has been computed, (and from which the following table of charges is derived), and render it of that signal practical advantage which it is desirable it should possess, but which no other criterion than that which long practice and experience afford, is able fully to confirm.

But it may now be urged that the foregoing solution does not apply to the case in hand, insomuch that the objects of penetration are at liberty to move, being afloat upon a very yielding fluid; whereas in the experiments upon which the theory hinges, the penetrated bodies were blocks of wood solidly fixed. The objection appertains to those cases where the weight of the shot bears a sensible proportion to that of the object; but in the instance of a ship of war, with all its immense weight of rigging, ordnance, and other appointments, it exists not
to that degree as to make the difference in the depth of penetration an object of the smallest consideration in the allotment of the charge.

EXAMPLE.

An enemy's ship is in sight : required the charge for the 42 -pounder guns to destroy her as quickly and completely as possible, when the ships have approached near to each other. The side of the enemy's vessel, a 74, being $1 \frac{1}{4}$ foot thick of oak timber.

The diameter of a 49 -pounder of cast iron being $=$ -557 ft . we get
$.045 \times \frac{\mathrm{s} v}{\mathrm{D}}=.045 \times \frac{\frac{7}{4} \times 42}{.557}=5.93806 \mathrm{lbs}$ or, 51 b .150 zs . for the weight of the charge sought.

ANOTHER EXAMPLE.

A piece of fortification is to be destroyed, consisting of a bank of firm dry earth 2 yards thick supported on each side by planks of oak $\frac{3}{4}$ foot thick; required the most efficacious charge for the battering 42 -pounders.

A 24-pounder, fired with a velocity of 1300 feet per second, into a bank of the above soil, penetrates it to the exact depth of 15 feet. Wherefore, the quantity of charge that would just cause a 42 -pounder to penetrate through the bank in question will be denoted by $\frac{s d v^{2} w}{2 s \mathrm{D} \times 1600^{2}}$ (Art. 55.), which in numbers $=\frac{6 \times 46 \times 1300^{2} \times 42}{2 \times 15 \times 557 \times 1600^{2}}$ $=4.5796 \mathrm{lbs}$.

And that which will just force it through the thickness of the planks ($\frac{3}{2}$ feet), by $5 \cdot 0841 ヶ 6 \mathrm{lbs}$. (See Table.) Whence, the charge required is $9 \cdot 663786 \mathrm{lbs}$.

TABLE:

58. Containing the various charges for the $12,18,24,32$, 36 , and 42 -pounder guns for producing the greatest effect in the damage of the vessel in all cases of close action; the substance or object being of oak materials from the thickness of 1 foot to that of 6 feet, regularly ascending by l in the inches.

Nature of Ordnance.	Thickness of the side of the Vessel.			
	1 ft .	1 ft .1 in .	1 ft .2 in .	1 ft 3 in.
Pounder.	lbs.	Ibs.	lbs.	ibs.
12	1.471870	$1 \cdot 594526$	$1 \cdot 717182$	1.839838
18	$1 \cdot 928571$	$2 \cdot 089285$	$2 \cdot 249999$	$2 \cdot 410713$
24	$2 \cdot 336445$	$2 \cdot 531149$	$2 \cdot 725853$	$2 \cdot 920557$
32	$2 \cdot 830208$	$3 \cdot 066059$	3.301910	3.537761
36	3.061608	$3 \cdot 316742$	3.571876	$3 \cdot 827010$
42	3•391191	$3 \cdot 673790$	3.956389	$4 \cdot 238988$

	$1 \mathrm{ft} 4 in.$.	$1 \mathrm{ft}$.5 in .	$1 \mathrm{ft} 6 in.$.	$1 \mathrm{ft} 7 in.$.
12	1.962494	2.085150	$2 \cdot 207806$	$2 \cdot 330462$
18	$2 \cdot 571427$	$2 \cdot 732141$	2.892855	3.053569
24	3.115261	3.309965	3.504669	3.699373
32	$3 \cdot 773612$	4.009463	$4 \cdot 245314$	4.481165
36	$4 \cdot 082144$	4337278	$4 \cdot 592412$	4.847546
42	$4 \cdot 521587$	4804186	5.084186	5-369384

	$1 \mathrm{ft} 8 in.$.	$1 \mathrm{ft.9} \mathrm{in}$.	1 ft .10 in.	$1 \mathrm{ft.11in}$.
12	$2 \cdot 453118$	$2 \cdot 575774$	$2 \cdot 698430$	$2 \cdot 821086$
18	$3 \cdot 214283$	$3 \cdot 374997$	$3 \cdot 535711$	$3 \cdot 696425$
24	$3 \cdot 894077$	4.088781	$4 \cdot 283485$	4.478189
32	$4 \cdot 717016$	$4 \cdot 952867$	$5 \cdot 188718$	$5 \cdot 424569$
36	$5 \cdot 102680$	$5 \cdot 357814$	$8 \cdot 612948$	$5 \cdot 868082$
42	5.651983	$5 \cdot 934582$	$6 \cdot 217181$	$6 \cdot 499780$

$\begin{gathered} \text { Nature } \\ \text { of } \\ \text { Ordnance. } \end{gathered}$	Thickness of the side of the Vessel.			
	2 ft 0 in .	2 ft 1 in .	2 ft .2 in.	2 ft 3 in.
Pounder.	lbs.	lbs.	lbs.	lhs.
12	2.943742	3.066398	3•189054	3.311710
18	3.857139	4.017853	$4 \cdot 178567$	4.339281
24	$4 \cdot 672893$	4.867597	5.062301	$5 \cdot 257005$
32	5660420	5.896271	6.132122	6367973
36	6. 123216	$6 \cdot 378350$	6.633484	6.888618
42	6.782379	7.064978	7.347577	$7 \cdot 630176$

	$2 \mathrm{ft} .4 \mathrm{li}$.	$2 \mathrm{ft}$.5 m .	$2 \mathrm{tt} .6 \mathrm{m}$.	2 tt 7 m.
12	3.434366	3.557022	3.679678	3.802334
18	$4 \cdot 499995$	4.660709	$4 \cdot 821423$	4.982137
24	5.451709	$5 \cdot 646413$	5841117	66035821
32	6.603824	6.839675	$7 \cdot 075526$	7.311377
36	7-143752	$7 \cdot 398886$	$7 \cdot 654$ 20	$7 \cdot 909154$
42	$7 \cdot 912775$	8.195374	8.477973	$8 \cdot 760572$

	$\underline{2} \mathrm{it} .8 \mathrm{in}$.	211.911	2.10 .10.	21.11.0.
12	3.924990	4.047646	4-170302	4.292958
18	5-142851	5.303565	5.464279	$5 \cdot 624993$
24	6.230525	6.425229	6.619933	6.814637
32	$7 \cdot 547228$	$7 \cdot 783079$	8018930	$8 \cdot 254781$
36	8.164288	$8 \cdot 419422$	8.674556	$8 \cdot 929690$
42	9.043171	9325770	9.608369	9•890968

	3 f .10 in .	3 ft 1 in.	3 ft .2 in.	$3 \mathrm{ft}$.3 in .
12	4.415614	4.538270	4.660926	4.783582
18	8.785707	$5 \cdot 946421$	6.107135	6-267849
24	$7 \cdot 009341$	$7 \cdot 204045$	7.398749	$7 \cdot 593453$
32	$8 \cdot 490632$	$8 \cdot 726483$	8-962334	9-198185
36	$9 \cdot 184824$	9•439958	9•695092	$9 \cdot 050226$
42	10173567	$10 \cdot 456166$	10\%738765	11.021364

NatureofOrduance.	Thickness of the side of the Vessel.			
	3 ft 4 in .	3 ft .5 in .	3 ft 6 in .	$3 \mathrm{ft}$.7 in .
Pounder.	lbs.	lbs.	lbs.	lbs.
12	4.906238	5.028894	5.151550	5.274206
18	$6 \cdot 428563$	$6 \cdot 589277$	$6 \cdot 749991$	6.910705
24	$7 \cdot 788157$	$7 \cdot 982861$	8-177565	8.372269
32	9*434036	9669887	9905738	$10 \cdot 141589$
36	$10 \cdot 205360$	10-460494	10715628	10970762
42	11.303963	11.586562	12:869161	$12 \cdot 151760$

	$3 \mathrm{tt} 8 \mathrm{in}$.	3 ft 9 in .	3 ft . 10 in	3 ft 11 mu
'12	5.396862	5.519518	5.642174	5.76483
18	$7 \cdot 071419$	$7 \cdot 232133$	$7 \cdot 392847$	$7 \cdot 553561$
24	8.566973	$8 \cdot 761677$	8.956381	9.151085
32	10377440	$10 \cdot 613291$	$10 \cdot 849142$	11.084993
36	11225896	11.481030	11.736164	11.991298
42	12.434359	12.716958	12.999557	13.282156

	$4 \mathrm{ft.0} \mathrm{in}$.	4 fr .1 in .	$4 \mathrm{ft} 2 in.$.	4 ft 3 in .
12	5.887486	6.010142	6.132798	6.255454
18	$7 \cdot 714275$	7.874989	8.035703	8-196417
24	9.345789	9.540493	9•735197	9.929901
32	$11 \cdot 320844$	11.556695	$11 \cdot 792546$	12.028397
36	$12 \cdot 246432$	12.501566	$12 \cdot 756700$	13.011834
42	$13 \cdot 564755$	13.847354	$14 \cdot 129953$	14.412552

	$4 \mathrm{ft}$.4 in .	$4 \mathrm{ft} .5 \mathrm{in}$.	$4 \mathrm{ft}$.6 in .	$4 \mathrm{ft} .7 \mathrm{in}$.
'12	6.378110	6.500766	6.623422	6.746078
18	$8 \cdot 357131$	8.517845	8.678559	8.839273
24	10.124605	10-319309	10.514013	10.708717
32	12.264248	12:500099	$12 \cdot 735950$	12.971801
36	13:266968	$13 \cdot 522102$	$13 \cdot 777236$	14.032370
42	14.695151	14.977750	$15 \cdot 260349$	15.542948

NatureofOrdnance.	Thickness of the side of the Vessel.			
	4 ft .8 in .	4 ft .9 in .	4 ft .10 in .	4 ft .11 in .
Pounder. 12	Ibs.	lbs. 991390	lbs. 114046	lbs. 236702
18	$8 \cdot 999987$	9-160701	9.321415	9482129
24	109003421	11.098125	11.292829	11.487533
32	$13 \cdot 207652$	$13 \cdot 443503$	13.679354	13.915205
36	15.287504	14.542638	14.797772	15052906
42	15.825547	16.108146	16.390745	16.673344

	$5 \mathrm{it} 0 im.$.	5 tr 1 in.	5 ft .2 ili .	5 it .3 in.
12	7.359358	$7 \cdot 482014$	$7 \cdot 604670$	$7 \cdot 727366$
18	9-642843	9•803557	9.964271	10.124985
24	11.682237	11.876941	12.071645	12.266349
32	14.151056	14:386907	14.622758	14.858609
36	$15 \cdot 303040$	15.563174	$15 \cdot 818308$	16.073442
42	16.955943	17•238542	17.521141	17.803740

	$\underline{3} 1.4$ in	$?$	$5 \cdot 6$ n.
12	$7 \cdot 849982$	7.97'2638	8095294
18	10.285099	10446413	10607127
24	12.461053	12.655757	12.850461
32	$15 \cdot 194460$	$15 \cdot 33$ 311	$15 \cdot 566162$
36	16.328576	16.583710	16.838844
42	18.086339	18.368938	18.651537

	47 F	\%.3	$5+1.9$
12	8.217950	$8 \cdot 340606$	8.463202
18	10.767741	10.928555	11.089269
24	13.045165	$13 \cdot 239869$	$13 \cdot 434573$
32	15.802013	16.037804	10.273715
36	$17 \cdot 093978$	17.349112	$17 \cdot 604246$
42	18.934136	19.210,35	19.49933.

Nature of Ordnance.	Thickness of the side of the Vessel.		
	5 ft .10 in .	5 ft .11 in .	6 ft .0 in .
Pounder.	lbs.	lbs.	lbs.
12	8.585918	8.708574	8.831230
18	11.249983	$11 \cdot 410697$	11.571411
24	$13 \cdot 629277$	$13 \cdot 823981$	14.018685
32	16.509566	16.745417	16.981268
36	17.859380	18.114514	$18 \cdot 369648$
42	$19: 781933$	$20 \cdot 064532$	20.347131

59. In this table, the first column contains the nature of the ordnance, and the numbers in the other columns are their respective charges of gunpowder in pounds, when the thickness of the object to be destroyed is as specified at the top of the columns. If the thickness be given in inches and parts of inches, take such parts of the difference between the charge for the given number of inches and that number increased by one, or the next. greater, and add them to the charge first found for the given number of inches for the charge required.

The value of the decimal part of each will be had by multiplying it by 16 , the number of ounces in a pound, and pointing off in the product from the right hand towards the left, as many places for decimals as are contained in the given decimal, and retaining the number on the left of the point for ounces, increasing it by $\frac{3}{4}, \frac{1}{2}, \frac{3}{4}$, or 1 , when the first figure of the decimal is 2,3 or 4 ; 5 or $6 ; 7$ or 8 ; and 9 respectively. This hint is merely given for those practitioners, into whose hands the table may fall, who are not very conversant with decimal arithmetic.

Ex.-Suppose we wanted to find the charge for the 24-pounder guns, for a thickness of $23 \frac{3}{4}$ inches. By the table, the charge answering to 23 inches or 1 ft .11 in . is 4.478580 lbs ; and for 24 inches $4 \cdot 673300 \mathrm{lbs}$. the difference of which is 194720 lb . this difference multiplied by 3 and divided by 4 gives $\cdot 14604 \mathrm{lb}$. for the quantity of charge for $\frac{3}{4}$ of an inch. Now let this be multiplied by 16 , and the product is 2.33664 ozs . Whence, the first figure of the decimal being 3 , a quarter of an ounce more must be added to the 2 ozs . cut off on the left; so that the charge required is 4 lbs . $2 \frac{\pi}{4}$ ozs. And thus for other like cases of thickness.
60. The foregoing table of charges is not only useful for the navy (for which it is more expressly intended), but in many instances of operation for the artillerist on shore; as the bursting open gates of besieged towns with promptitude and effect; and breaking up all fortifications composed of wooden materials; especially those of a splintering nature, to which the charges apply most correctly. In the case of a naval action, where the object to be penetrated is of oak substance; the ball, by having a small motion when it quits the side of the ship, tears and splinters it excessively, breaking away large pieces before it, which are not so easily supplied in the reparation; whereas, on the other hand, if the shot had any considerable velocity when it quitted the side, the effect it produced would be merely a hole, which would be stopped instantly by the mechanic employed for that purpose, and indeed in a great degree by the wood itself from its own efforts of sptinginess. And therefore the sole mischief that the balls can do under such circumstances of extreme velocity is, the killing or wounding
those men who may chance to stand in the way of their motion.

If any object to be destroyed be so thick that it cannot be completely pierced by any common engine, or if it be of a very brittle nature, such as stone or brick; then that charge is to be used, which will give the greatest velocity to the shot to produce the greatest effect. But in many cases of bombardment this charge is by no means to be preferred; for although the effect produced each individual time be greater, yet in any considerable time the whole effect would be less than that from a smaller charge oftener fired, on account of the extreme heat it would give to the engine after a few discharges; and in consequence of which greater time would be required for cooling the gun and preparing it for farther service.

EXAMPLE.

61. Required the charge for a 24 -pounder shot to force the gates of a city with the greatest ease possible, the substance of them being elm, 1 foot thick.

Here the object to be penetrated being elm, the small letters in the general formula for the charge, namely

$$
\frac{\mathrm{Sd} v^{2} w}{2 \mathrm{D} s \times 1600^{2}}
$$

must be made to express the several numbers of some experiment made in the penetration of this substance. Now by a mean of many very accurate experiments made by Dr. Hutton at Woolwich, in the years 1783, 1784, and 1785, he found, that a cast iron ball of two inches diameter impinging perpendicularly on the face of a block of elmwood, with a velocity of 1500 feet per second, penetrated 18 inches deep into its substance;
hence we shall have $d=\frac{1}{6} \mathrm{ft} . v=1500$, and $s=\frac{13}{\frac{3}{2}} \mathrm{ft}$; also by the question, $s=1 \mathrm{ft} . \mathrm{D}=\cdot \mathbf{4 6}$, and $w=24 \mathrm{lbs}$. Therefore
$\frac{s d v^{2} w}{2 \mathrm{Ds} \times 1600^{2}}=\frac{1 \times \frac{1}{6} \times 1500^{2} \times 24}{2 \times 46 \times \frac{1}{\mathrm{~T}} \times 1600^{2}}=\frac{45 \times 9}{104 \times 1 \cdot \mathrm{I} 1}=$ 3.50831 lbs . or $3 \mathrm{lbs} .8 \frac{\mathrm{I}}{\mathbf{8}} \mathrm{ozs}$. for the weight of charge required in this case.

Retaining the experiment of Dr. Hutton as a standard for all cases where the object to be penetrated is of elm, we shall get by reduction

$$
\frac{s d v^{2} w}{2 \mathrm{D} s \times 1600^{2}}=0676 \times \frac{\mathrm{S} w}{\mathrm{D}}
$$

the charge for any piece of artillery, the diameter of the shot of which is D, and weight w; s being the thickness of the object as before.

It is not unworthy of remark, that the gates of a besieged town, or any like things, might be effectually broken open by the gun itself, charged only with powder, by placing it close to the gates, with its muzzle from them; the momentum of recoil being generally sufficient to force such objects completely. But this method for several reasons is not to be insisted upon.

From the circumstance, that no English admiral, or commander, seldom or ever commences firing till his ships are about to be grappled with those of the enemy, or until they have approached them so nearly as to effect in no sensible degree the first force of the shot; the above paper has, it is presumed, as much claim to utility as any that has ever yet been offered to the navy in the science of gunnery : and even if the vessels be not so closely engaged, but are fighting at the distance of about 30 or 40 feet from each other, no uncertainty of effect
would result from the above charges, provided that the shot impinged perpendicularly on the side of the vessel; on account of the splitting of the timber in some degree, which would make ample compensation for the defect of velocity occasioned by the resistance of the medium.

It is impossible to deduce charges, that shall produce invariably the effect above stated, when fired at any considerable distance from the ship. The uncertainty of the impact being perpendicular, from the unsteadiness of the vessels, renders the thing at once nugatory, without any consideration of the real resistance of the medium to the ball, and the deflection of the latter from a right-lined direction. If the obliquity of the impact be given, or can be determined, then the problem being otherwise rightly solved, a charge can be found which shall produce the same effects as those above given; but if this be impossible (which it most decidedly is), then will the problem be at best but speculative upon certain hypotheses.

I shall, however, give an investigation of the problem on the principles of resistance generally allowed, and then conclude the subject by a few observations. But it will be proper first to peruse the following

LEMMA.

62. To determine the velocity of a cannon-ball after passing through any space in air, into which it is projected with a given velocity.

Put $\bar{a}=$ the projectile velocity,
$s=$ any variable space described in the time t,
$v=$ the velocity. Then,
Proposition 7, the retardive force of the ball at the end of the time t will be $\frac{3 n v^{2}}{16 g d \mathrm{~N}}$, where N and n de-
note the respective specific gravities of the ball and air, and d the ball's diameter. Therefore $-v \dot{v}=2 g f \dot{s}=$ $\frac{3 n v^{2} s}{8 N d}$; and hence $-\frac{\dot{v}}{v}=\frac{3 n \dot{s}}{8 N d}=$ (putting b for $\left.\frac{3 n}{8 N d}\right) \dot{b} s^{\prime}$: whereof the correct fluent is

$$
h y p . \log \cdot \frac{a}{v}=b x .
$$

Whence, if c be put $=2.71828$, the number, the hyp. log. of which is 1 , we shall get

$$
\frac{a}{v}=c^{b s}, \text { and } v=\frac{a}{c^{b s}} \text { the velocity required. }
$$

Hence the velocity lost in describing the space s, is

$$
a-\frac{a}{c^{b_{s}}}=\frac{a\left(c^{b_{s}}-1\right)}{c_{s}^{b_{s}}}
$$

To find the time of describing the said space; we have $i=\frac{\dot{s}}{v}=\frac{c^{b s} ;}{a}$. Put $z=c^{b s}$; then is $b_{s}=$ hyp. $\log . z$, and $\dot{b s}=\frac{\dot{x}}{x}$ or $\dot{s}=\frac{\dot{x}}{b x}$. Consequently $\dot{i}=$ $\frac{a^{b s} \dot{s}}{a}=\frac{2 \dot{s}}{a}=\frac{\dot{x}}{a b} ;$ and $t=\frac{m}{a b}=\frac{c^{b s}}{a b} \quad$ Now when $t=0, s=0$, and $\frac{c^{b}}{a b}=\frac{1}{a b}$. Therefore the correct fluential equation is

$$
t=\frac{c^{b s}-1}{a b}
$$

or restoring the value of b, it is

$$
t=\frac{8 \mathrm{~N} d\left(c^{\frac{3 n s}{8 N d}}-1\right)}{3 a n}
$$

63. Having determined an expression for the time in which a ball moves through any space in a resisting medium, it will not be unworthy now to enquire, whether there be a ball, which of all others, when projected with a given velocity, will describe a given space in the least time possible. To this end we have only to consider the diameter d as variable, and make the fluxion of the formula for the time $=0$, and then solve the equation.

Let therefore $\frac{8 \mathrm{~N} d}{3 a n}\left(c^{\frac{3 n s}{8 \mathrm{~N} d}}-1\right)$ be put into fluxions,
or because $\mathrm{N}, a, n, \& \mathrm{cc}$. are given quantitief, $d\left(c^{\frac{3 n s}{8 \mathrm{~N} d}}-1\right)$
$=\left(\right.$ putting $\left.q=\frac{3 n s}{8 \mathrm{~N}}\right) d c^{\frac{q}{d}}-d$; and we get $\dot{d}^{\frac{q}{d}}-$ $\frac{q \dot{d} c^{\frac{q}{d}}}{d}-\dot{d}=0$; or $d c^{\frac{q}{d}}-q c^{\frac{q}{d}}-d=0$. Whence it evidently appears, that there is a ball which will answer the conditions of the enquiry; and it is further obvious that the said ball will be different for different values of s, this quantity being included in the expression for q. The value of d will be readily found for any given space by the method of approximation.

Nate.-In this proposition, it must be observed that
the ball is supposed to move in a right-line, or very nearly so; or to be fired horizontally from the engine.

PROBLEM 2.

64. To determine the same as in the last problem, when the engine is at any considerable distance from the object, and the resistance of the air taken into the account.

Here, as in the former proposition, the velocity $\mathrm{v}=$ $\left(\frac{s d v^{2}}{D s}\right)^{\frac{1}{2}}$ is to be esteemed the velocity of impact. Now on the principles of resistance before adverted to, which considers the fluid as infinitely compressed, and the particles thereof perfectly nonelastic, and affording no resistance to the body but what arises from their inertia; if a denote the first or initial velocity; x the distance of the gun from the object, $\epsilon=9.71828$ the number, the hyp. log. of which is 1 , and $b=\frac{3 n}{3 N D}$, where N and n represent the respective specific gravities of the ball and medium, we shall, by the foregoing lemma, have

$$
a=\nabla c^{b x}
$$

Hence by the law of variation of the charges, and proper substitution, the true expression for the charge in question will be

$$
\frac{s d v^{2} w c \frac{3 n x}{4 \mathrm{ND}}}{\text { Qnc } 1600^{2}}
$$

for a perpendicular impact, and

$$
\frac{s d v^{2} w c \frac{3 n x}{4 N D}}{2 D S \int} \frac{1600^{2}}{}
$$

for an oblique one; \int being the sine of the angle of inci-
dence ; the space (s) to be described in this case being the bypothenuse of a right-angled triangle, when the effect is the same.

EXAMPLE.

Resuming the first of the foregoing examples, what must be the charge of powder to cause the shot to produce the same effect in the vessel when fired at the distance of 300 feet from it ?
Substituting for the several letters in the general expression for the charge
$\frac{s d v^{2} w c \frac{3 n x}{4 \mathrm{ND}}}{2 \mathrm{D} s 1600^{2}}$
their proper numerical values, namely,

$$
\begin{aligned}
& s=1 \frac{3}{4} \mathrm{ft} \text {. } \\
& s=\frac{13}{2} \mathrm{ft} \text {. } \\
& d=\frac{1}{6} \mathrm{ft} \text {. } \\
& \mathrm{D}=.557 \mathrm{ft} \text {. } \\
& v=1500 \mathrm{ft} \text {. } \\
& x=300 \mathrm{ft} \text {. of the charge sought; being } 3 \mathrm{lbs} \text {. } \\
& w=42 \text { lbs. } \quad 9 \frac{1}{2} \text { ozs. more in this case than when } \\
& \mathrm{N}=7 \frac{1}{3} \text {. } \\
& \text { the vessels are in close action. } \\
& n=0012 \text {. } \\
& \text { we get } \frac{\text { sdvive } \frac{3 n x}{4 \mathrm{ND}}}{\text { 2Ds } 1600^{2}}=9.530625 \mathrm{lbs} \text {. } \\
& \text { or } 9 \mathrm{lbs} .8 \frac{\mathrm{x}}{2} \text { ozs. nearly for the weight } \\
& \text { of the charge sought; being } 3 \text { lbs. } \\
& \text { the vessels are in close action. }
\end{aligned}
$$

Hence, not only is the destruction of the vessel more certain when the firing commences just as the ships touch each other, but a great saving of powder takes place besides, insomuch that not more than two-thirds of the quantity is expended, that would be required at the distance of 300 feet.

From this circumstance then, and the impossibility of
solving the problem rightly, from the various causes al.ready enumerated, the effects of which are not reducible to any regular laws; we conclude, that the foregoing table of charges for close fighting, is the only one that can be of the smallest service in practice; and that all attempts at others must be rendered completely futile from the nature and constitution of things.

PROBLEM 4.

65. To determine the charge for any given piece of artillery, to cause its shot to penetrate a block of well seasoned oak, to any given depth not exceeding its radius.

Before entering upon the solution of this problem, it is necessary that the strength of any given surface of fibres of oak, to resist a force acting perpendicularly against it be given. Let us, therefore, first determine this point, by referring to some known experiment concerning the penetration of a shot into a block of oak substance some considerable depth. For it must be observed, that the greater proportion the depth of penetration bears to the radius of the ball, the nearer we shall be to the truth of the thing in question, by supposing the resistance throughout uniform. Now the greatest penetration with which I am acquainted, is that of 34 inches, from an experiment made by Robins with an 18 -pounder castiron ball, fired with a velocity of 1800 feet per second. The radius of the ball being $2 \frac{1}{2}$ inches, we shall be extremely near the truth therefore, to consider the penetration under the supposition of the resistance being uniform from the moment of impact, $\mathbf{3 3}$ inches deep; since it is obvious, that the resistance cannot be uniform until the ball has penetrated to the full depth of its radius.

A body being vertically projected in vacuo with the velocity of the above impinging sphere (1200 feet per second), would, by the laws of ascending bodies near the earth's surface, rise to a height denoted by $\frac{v^{2}}{4 g}$ (where $v=1800$, and $g=16$ feet) or 22500 feet; and the resisting forces being as the spaces described when the momenta are the same, we shall have the uniform resisting force to an 18 -pounder penetrating oak to that of gravity, as 22500 to $\frac{33}{12}$, or as 8182 to 1 nearly.

Therefore the force that uniformly resists the ball is equal to $8182 \times 18=147276 \mathrm{lbs}$; and this is the strength of a laminum of oak fibres equal to half the surface of the shot (39.27 sq . in.), and consequently the force of 1 square inch of such fibres will be $3750 \cdot 3438 \mathrm{lbs}$. Call this r .

Put $r=$ the radius of the ball given in the proposition,
$a=$ the hemispheric surface of the same,
$w=$ the weight of the ball,
$d=$ the depth to be penetrated,
$x=$ any variable depth less than d.
Then the surfaces of spherical segments being as their heights, we have $r: a:: x: \frac{a x}{r}$ the surface of the segment penetrated; and $\frac{\mathrm{Rax}}{r}$ is the resisting force to the ball at the depth x, and $\frac{\text { s } a x}{r w}$ the retardive force. Now by the theory of variable forces - viे $=2 f g \dot{x}$ (the negative sign being taken because v is a decreasing quantity)
$=\frac{2 a g R x \dot{x}}{r w}$; the fluent of which is $-v^{2}=\frac{2 a g R x^{2}}{r w}$;
which corrected, for the case where $\kappa=d$, is

$$
v^{2}=\frac{2 a g \mathrm{R} d^{2}}{r v} .
$$

Again, the charges vary as the square of the first velocity and weight of ball conjunctly. And it has been found, that a charge of half a pound, impelled a ball weighing 1 lb . with a velocity of 1600 feet per second. Therefore the general expression for the charge is

$$
\frac{a g R d^{2}}{r 1600^{2}} .
$$

For an example, suppose the ball a 32 -pounder, the radius of which is 254 feet, and that it is to penetrate the block to the exact depth of its radius; then the hemispheric surface of the shot being 58.45 square inches, and $r=d$; we shall have

$$
\frac{a g r \mathrm{R}}{1600^{2}}=847992 \mathrm{lbs} . \text { or } 5.56787 \mathrm{ozs}
$$

for the charge required.

examples for practice.
 bxample i.

What charge will be required for a 24 -pounder castiron ball to cause it to penetrate to the depth of $1 \frac{1}{2}$ inch in a block of well seasoned oak ?

EXAMPLE II.
For a 42 -pounder shot, what charge is necessary to force it into a ship's side to the depth of its diameter ?

EXAMPLE III.
The gate of a castle is closed against us by the enemy; it is of elm wood, and $1 \frac{1}{4}$ foot thick ; required the charge for the 18 -pounder carronade to force it at once completely?

EXAMPLE IV.

The firing upon an enemy's frigate commences at the distance of 108 yards; the guns are 24 -pounders; to find the charge that will cause the shot to do the most execution with regard to the destruction of the vessel ?

EXAMPLE V.

What must be the radius of that cast-iron ball that shall penetrate to the depth of its radius in a block of oak when fired with a velocity of 800 feet per second ?

EXAMPLE VI.

Required the diameter of that ball which just pierces a ship's side of oak $1 \frac{3}{4}$ foot thick; its initial velocity being of 2000 feet per second?

EXAMPLE VII.

Required the most efficacious charge for the battering 68 -pounders, to demolish the fortifications of a citadel, consisting of a bank of firm dry earth 8 feet thick, and supported on each side by elm planks (solidly fixed) of the thickness of 9 inches.

EXAMPLE VIII.

A piece of brick fortification is to be destroyed, the thickness of which is $4 \frac{1}{4}$ feet: required the fittest charge for the 42 -pounder guns; or that which will cause its shot to effect the most mischief possible in a given time.

143

A TABLE

OF HYPERBOLIC LOGARITHMS FOR ALL NUMBERS
FROM ONE TO TWO THOUSAND.

	Inf. Neg.	40	$3 \cdot$	\|	
	0.0000	41	$3 \cdot 7$	81	
2	O69314718	42	$3 \cdot 73766962$	82	4-40671925
3	$1 \cdot 09861229$	43	3•76120012	83	$4 \cdot 41884061$
4	1.38629436	44	3•78418963	84	$4 \cdot 43081680$
5	$1 \cdot$	45	3	85	
6	$1 \cdot 79175947$	46	3.82864	86	
7	$1 \cdot 94591015$	47	3•8501476	87	$4 \cdot 46590812$
8	2.07944154	48	3.8712010	88	4.47 33681
9	2.19722458	49	3.89182030	89	$4 \cdot 483$
10	2•3025	50	$3 \cdot 9120230$	90	
11		51			
12	$2 \cdot 48490$	52	3.9512437	92	
13	$2 \cdot 5649493$	53	3.97029191	93	4
14	$2 \cdot 63905733$	54	3.98898405	94	
15	2.7080	55	4	95	
16	$2 \cdot 7725$	56	$4 \cdot 0253510$	96	
17	2•83321	57	4.0430512	97	
18	$2 \cdot$	58	4.060	98	
19	$2 \cdot 94443898$	59	4.0775374	99	4.59511985
20	2.99573227	60	4.09	10	
21	3.04452244	61	41108	101	
22	3.09104245	62	$4 \cdot 12713$	102	$4 \cdot 62$
23	3•13549422	63	$4 \cdot 1431$	10	
24	3.1780	64	$4 \cdot 15$	10	
25		65			
26	3-25809	66	$4 \cdot 189654$	106	
27	3-29583687	67	4.20469262	107	
28	3-33220451	68	$4 \cdot 21950771$	108	4.68213123
29	3•36729583	69	$4 \cdot 2341065$	10	$4 \cdot 69$
30		70			
31	3.43398	71	$4 \cdot 2626$	111	4\%0953020
32	3-4657359	72	$4 \cdot 2766661$	112	4.71849887
33	3.49650756	73	4-290459	113	4
34	3.52636052	74	$4 \cdot 30406599$	114	
35	3.555	75	4	115	4.74
36	3.5835189	76	$4 \cdot 3307333$	116	4.75359019
37	$3 \cdot 61091791$	77	4.3438054	117	4.76217393
38	$3 \cdot 63758616$	78	$4 \cdot 35670883$	118	4 77068462
39	$3 \cdot 66356165$	79	4:36944785	11	4.77912

	,	165	5.10594547	210	534710753
121	9579055	166	$5 \cdot 11198779$	211	$5 \cdot 35185813$
122	4-804 2104	167	5•11799381	212	5-35658627
123	$4 \cdot 81218436$	168	5•12396398	213	5.36129217
124	028157	169	5•12989871	214	$5 \cdot 36597602$
125	-828313	17	5	21	
	$4 \cdot 83628191$	17	$5 \cdot 14166356$	21	$5 \cdot 3$
127	$4 \cdot 84418709$	172	$5 \cdot 14749448$	217	$5 \cdot$
	85203026	17	$5 \cdot 15329159$	218	$5 \cdot 38449506$
	85981240	174	5•15905530	219	$5 \cdot 38907173$
130	$4 \cdot 86753445$	175	5•164	220	$5 \cdot 39362755$
13	$4 \cdot 87519732$	176	5•17048400	221	$5 \cdot 39816270$
13	488280192	177	$5 \cdot 17614973$	22	$5 \cdot 10267738$
133	$4 \cdot 89034913$	178	5•18178355	223	$5 \cdot 40717177$
134	4.89783980	179	$5 \cdot 18738581$	22	$5 \cdot 41164605$
1	$4 \cdot 90527478$	180	5•19295685	225	5-
13	$4 \cdot 91265489$	181	5•19849703	2	5
137	$4 \cdot 91998093$	182	520400669	227	$5 \cdot 42495002$
138	$4 \cdot 92725369$	183	5•20948615	228	$5 \cdot+2934563$
139	493447393	184	5•21493576	220	$5 \cdot 43372200$
	$4 \cdot 94164242$	185	5-2203558	230	543807931
1	$4 \cdot 94875989$	18	$5 \cdot 22574667$	23	$5 \cdot 44241771$
1	4-95582706	187	5-23110862	23	$5 \cdot 44673737$
14	$4 \cdot 96284463$	188	$5 \cdot 23644196$	233	$5 \cdot 45103845$
144	$4 \cdot 96981330$	189	$5 \cdot 24174702$	23	$5 \cdot 45532$
	497673374	,			
1	$4 \cdot 98360662$	191	5-25227343	2	883181
	$4 \cdot 99043259$	192	$5 \cdot 25749537$	237	014
1	$4 \cdot 99721227$	193	$5 \cdot 26269019$	238	$5 \cdot 47227067$
149	$5 \cdot 00394631$	194	5•26785816	239	$5 \cdot 47646355$
	$5 \cdot 01063529$	195	$5 \cdot 2729995$		
151	$5 \cdot 01727984$	196	$5 \cdot 27811466$	241	$5 \cdot 48479693$
15	$5 \cdot 02388052$	197	$5 \cdot 2=320373$	42	$5 \cdot 48893773$
153	5.03043792	198	5-28826703	243	$5 \cdot 49306144$
154	$5 \cdot 03695260$	199	$5 \cdot 29330482$	2	$5 \cdot 49716823$
15	5-043425	200	$5 \cdot 29831737$		5.5012
15	5.04985601	20	5-30330491	246	5.50533154
157	$5 \cdot 05624581$	20	$5 \cdot 30826770$	247	5.50938834
158	5.06259503	203	5-31320598	24	$5 \cdot 51342875$
159	$5 \cdot 06890420$	20	5•31811999	24	$5 \cdot 51745290$
160	5.07517.82	205	5-32300998	250	$5 \cdot 5214609$
161	$5 \cdot 08140436$	206	$5 \cdot 32787617$	25	$5 \cdot 52545294$
162	$5 \cdot 08759634$	207	$5 \cdot 33271879$	252	$5 \cdot 52942909$
163	5.09375020	208	$5 \cdot 33753808$	253	$5 \cdot 53338949$
164	5.09986643	209	$5 \cdot 34233425$	25	5.53733427

TABLE OF HYPERROIIC LOGARITHMS.

| | 55\|| | 30 | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 256 | $5 \cdot 54517744$ | 301 | $5 \cdot 70711026$ | 346 | $5 \cdot 84643878$ |
| 257 | 5.54907608 | 302 | $5 \cdot 71042702$ | 347 | $5 \cdot 84932478$ |
| 258 | 5:55295958 | 303 | $5 \cdot 71373281$ | 348 | $5 \cdot 85220248$ |
| 259 | 5.55682806 | 304 | $5 \cdot 1702770$ | 349 | $5 \cdot 85507192$ |
| 260 | 5.56068163 | 305 | $5 \cdot 72031178$ | 350 | 5 |
| 261 | 5-56452041 | 306 | $5 \cdot 72358510$ | 35 | 586078622 |
| 262 | 5.50834450 | 307 | $5 \cdot 7.2684775$ | 352 | $5 \cdot 86363118$ |
| 263 | 5•57215403 | 308 | $5 \cdot 73009978$ | 353 | 5•8664680 |
| 264 | $5 \cdot 57594910$ | 309 | $5 \cdot 73334128$ | 354 | $5 \cdot 86929$ |
| 265 | 5.57972983 | 310 | $5 \cdot 73657230$ | 355 | |
| 266 | $5 \cdot 58349631$ | 311 | $5 \cdot 73979291$ | 356 | $5 \cdot 874930$ |
| 267 | 5.58724866 | 312 | $5: 74300319$ | 357 | $5 \cdot 87773578$ |
| 263 | 5.59098698 | 313 | $5 \cdot 74620319$ | 358 | |
| 269 | $5 \cdot 59471138$ | 314 | 5.74939299 | 359 | 5.88332239 |
| 270 | 5.59842196 | 315 | 5.75257264 | 360 | $5 \cdot 88610403$ |
| 271 | $5 \cdot 60211882$ | 316 | $5 \cdot 75574221$ | 361 | 5.88887796 |
| 272 | $5 \cdot 60580207$ | 317 | 5.75890177 | 362 | $5 \cdot 89164421$ |
| 273 | $5 \cdot 60947180$ | 318 | $5 \cdot 76205138$ | 363 | $5 \cdot 89440283$ |
| 274 | $5 \cdot 61312811$ | 319 | 5.76519110 | 364 | $5 \cdot 8971538$ |
| 275 | 5.61677110 | 320 | $5 \cdot 76832100$ | 365 | |
| 276 | $5 \cdot 6204008$ | 21 | 5•77144112 | 366 | 5 |
| 277 | $5 \cdot 62401751$ | 322 | 5.77455155 | 367 | $5 \cdot 90536185$ |
| 278 | $5 \cdot 62762111$ | 323 | $5 \cdot 77765232$ | 368 | $5 \cdot 90808294$ |
| 279 | $5 \cdot 63121178$ | 32 | $5 \cdot 78074352$ | 369 | 91079 |
| 280 | 5.63478960 | 325 | 5•78382518 | 370 | $5 \cdot 91350301$ |
| 281 | $5 \cdot 63835467$ | 32 | $5 \cdot 78689738$ | 371 | $5 \cdot 91620206$ |
| 282 | $5 \cdot 64190707$ | 327 | $5 \cdot 78996017$ | 372 | $5 \cdot 91889385$ |
| 283 | $5 \cdot 64544690$ | 328 | $5 \cdot 79301361$ | 373 | $5 \cdot 92157842$ |
| 284 | $5 \cdot 64897424$ | 329 | $5 \cdot 79605775$ | 37 | $5 \cdot 92$ |
| 285 | $5 \cdot 65248918$ | 330 | 5•79909265 | 375 | 5.92692603 |
| 256 | $5 \cdot 65599181$ | 33 | $5 \cdot 8021183$ | 376 | 5•92958914 |
| 287 | $5 \cdot 65948222$ | 332 | 5•80513497 | 377 | 5•93224519 |
| 288 | 5•66296048 | 333 | $5 \cdot 80814249$ | 378 | 5.93489420 |
| 28 | $5 \cdot 66642669$ | 334 | $5 \cdot 81114099$ | 37 | $5 \cdot 93753621$ |
| 290 | 5•66988092 | 335 | $5 \cdot 81413053$ | 380 | 5.94017125 |
| 291 | $5 \cdot 67332327$ | 33 | $5 \cdot 81711116$ | 38 | $5 \cdot 94279938$ |
| 292 | 5.67675380 | 337 | $5 \cdot 82008293$ | 38 | 5.94542061 |
| 293 | $5 \cdot 68017261$ | 338 | $5 \cdot 82304590$ | 38 | 5.94803499 |
| 294 | 5.68357977 | 339 | $5 \cdot 82600011$ | 38 | 5.95064255 |
| 295 | 5•68697536 | 340 | 5.82894562 | 385 | 5.95324333 |
| 296 | 5•6̇9035945 | 341 | 5•83188248 | 38 | $5 \cdot 95583737$ |
| 297 | 5.69373214 | 342 | $5 \cdot 83481074$ | 387 | $5 \cdot 95842469$ |
| 298 | $5 \cdot 69709349$ | 343 | $5 \cdot 83773045$ | 38 | $5 \cdot 96100534$ |
| 239 | $5 \cdot 70044357$ | 34 | $5 \cdot 8406416$ | 38 | $5 \cdot 96357934$ |

146 TABLE OF HYPERBOLIC LOGARITHMS.

390	5.96614674 ${ }^{\prime \prime}$	435	6.07534603	480	析
391	$5 \cdot 96870756$	436	607764224	4816	617586727
392	5.97126184	437	6.07993320	4826	6.17794411
393	$5 \cdot 97380961$	438	$6 \cdot 08221891$	4836	6.18001665
394	$5 \cdot 97635091$	439	6.08449941	484	6.18208491
395	5.97888576	440	6.08677473	485	6.18414889
396	5.98141421	441	6.08904488	486	6.18620862
397	5.98393628	442	6.09130988	4876	6.18826412
398	$5 \cdot 98645201$	443	6.09356977	488	6.19031541
399	$5 \cdot 98896142$	444	609582456	489	6.19236249
400	5•99146455	445	6.09807428	490	6.19440539
401	5.99396143	446	6.10031895	491	6.19644413
402	5.99645209	447	6.10255859	492	6.19847872
403	$5 \cdot 99893656$	448	6-10479323	493	6.20050917
404	6.00141488	449	6.10702289	494	$6 \cdot 20253552$
405	6.00388707	450	$6 \cdot 10924758$	495	6
406	600635316	451	6.11146734	496	6.20657593
407	6.00881319	452	6•11368218	497	6.20859003
408	6.01126717	453	6.11589213	498	6.21060008
409	6.01371516	454	6.11809720	499	
410	6.01615716	455	6.12029742	500	6.21460810
411	601859321	456	6.12249281	501	621660610
412	6.02102335	457	6. 12468339	502	6.21860012
413	6.02344759	458	6. 12686918	503	6.22059017
414	6002586597	459	6. 12905021	504	6-22257627
415	602827852	460	6.13122649	505	6.22455843
416	$6 \cdot 03068526$	461	6.13339804	50	$6 \cdot 22653667$
417	6.03308622	462	6.13556489	507	6.22851100
418	6.03548143	463	6.13772705	508	$6 \cdot 23048145$
419	$6 \cdot 03787092$	46	6.13988455	509	6.2324480
420	604025471	465	6.14203741	510	$6 \cdot 23441073$
421	6.04263283	466	6-14418563	511	6.23636959
422	6.04500531	467	6. 14632926	512	$6 \cdot 23832463$
423	6.04737218	468	6.14846830	513	6.24027585
424	6.04973346	469	6. 15060277	51	6.24222327
425	605208917	470	6.15273269	515	6.24416690
426	6.05443935	471	6.15485809	516	6.24610677
427	6.05678401	472	6-15697899	517	6.24804287
428	$6 \cdot 05912320$	473	6.15909539	518	6.24997524
429	6.06145692	474	6-16120732	519	625190388
430	6-06378521	475	6.16331480	520	6.25382881
431	6-06610809	476	6.16541785	521	6.25575004
432	6-06842559	477	6.16751649	522	6.25766759
433	6.07073773	478	6.16961073	523	6.25958146
434	6.07304453	479	6.17170060	524	6.26149168

table of hypereolic logaritmimb.
147

| 525 | 6.26339826 | 570 | 6.34563636\|| | 615 | 6.42162227 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | 626530121 | 571 | $6 \cdot 34738921$ | 616 | 6.42324606 |
| 27 | 6.26720055 | 572 | 6.34913899 | 617 | |
| 528 | 6.26909628 | 573 | 6.35088572 | 618 | 6.42648846 |
| 529 | 6.27098843 | 574 | 6.35262940 | 619 | 6.42810527 |
| 530 | 6-27 | 575 | $6 \cdot 35$ | 620 | $6 \cdot$ |
| 531 | 6.27476202 | 576 | 6.35610766 | 621 | |
| 532 | $6 \cdot 27664349$ | 577 | 6.35784227 | 622 | 6.43294009 |
| 533 | 6.27852142 | . 578 | 6.35957387 | 62 | |
| 53 | 6.28039584 | 579 | 6.361302 | 62 | 6.43615037 |
| 53 | 6.23226675 | 580 | $6 \cdot 3630281$ | 625 | |
| 536 | 6.28413416 | 581 | 6.36475076 | 626 | $6 \cdot 43935037$ |
| 537 | 6-28599809 | 582 | 6.36647045 | 627 | 6-44094654 |
| 53 | $6 \cdot 28785856$ | 583 | 6•36818719 | 628 | |
| 539 | 6.28971557 | 584 | 6.36990098 | 629 | |
| 540 | 629156914 | 58 | 6.37161185 | 63 | |
| 541 | 6.29341928 | 586 | 6.37331979 | 63 | 6.44730586 |
| 542 | 6.29526600 | 587 | $6 \cdot 37502482$ | 632 | $6 \cdot 44888939$ |
| 543 | 6.29710932 | 588 | 6.37672695 | 633 | 6.45047042 |
| 5 | 6.29894925 | 589 | $6 \cdot 37842618$ | 63 | |
| 54 | 6.3007857 | 590 | 6.38012254 | 635 | $6 \cdot 4536$ |
| 5 | 630261898 | 591 | $6 \cdot 3818160$ | 63 | $6 \cdot 45519856$ |
| 547 | 6.30444880 | 592 | 6.3835066 | 637 | 6.45676966 |
| 548 | 6.30627529 | 593 | 6.38519440 | 63 | 6.45833828 |
| 549 | 6.30809844 | 594 | 6.38687932 | 639 | 645990445 |
| 550 | $6 \cdot 30991828$ | 595 | 6.38856141 | 640 | $6 \cdot 461468$ |
| 551 | $6 \cdot 31173481$ | 596 | 6.39024067 | 64 | |
| 5 | 6.31354805 | 597 | 6.39191711 | 64 | $6 \cdot 46588930$ |
| 553 | 6.31535800 | 598 | 6-39359075 | 64 | |
| 55 | 6.31716469 | 599 | 6.39526160 | 64 | 6.46769873 |
| 555 | 6.31896811 | 600 | 6.39692966 | 64 | 6 |
| 556 | 6.32076829 | 601 | 6.39859493 | 64 | $6 \cdot 47079950$ |
| 557 | 6.32256524 | 602 | 6.40025745 | 64 | 6.47234629 |
| 558 | 6.32435896 | 603 | 6.40191720 | 64 | $6 \cdot 47389070$ |
| 559 | 6.32614947 | 60 | $6 \cdot 4035742$ | 6 | |
| 560 | 6.32793678 | 605 | 6.4052284 | 650 | |
| 561 | 6.32972091 | 606 | 6-40687999 | 65 | $6 \cdot 47850964$ |
| 562 | 6.33150185 | 607 | 6-40852879 | 65 | $6 \cdot 48004456$ |
| 56 | 6.33327963 | 608 | 6.41017488 | 653 | 6.48157713 |
| 5 | 6 | 609 | $6 \cdot 4118182$ | 65 | $6 \cdot 48310735$ |
| 565 | 6.33682573 | 610 | 6.4134589 | 655 | 6.48463524 |
| 566 | 6.33859408 | 611 | 6.41509696 | 65 | $6 \cdot 48616079$ |
| 567 | 6.34035930 | 612 | 6.41673228 | 657 | 6.48768402 |
| 568 | 6.34212142 | 613 | $6 \cdot 41836494$ | 658 | 6.48920493 |
| | 6.343880 | | 6.4199949 | 65 | 6.49072353 |

	753	706	6.55961524	751	
662	6.49526556	707	6.56103067	752	
3	6.49677499	708	$6 \cdot 50244409$	753	6
	6.49828215	709	6.56385553	754	
		710			
				756	
66	6.50279005	712	6.56807791	75	
608	6.50428817	7	$6509481+2$	75	
669	6.50578.406	714	6.57088296	759	
		71		76	
	6	71	$6 \cdot 5$	76	
	6	71		76	
67	6.5117	715	6.5764695	76	
674	$6 \cdot 51323011$	719	6.57756136	76	
67	$6 \cdot 5$	720	$6 \cdot 57925121$		
676	6.51619308	721	$6 \cdot 58063914$	76	
677	6.51767127	722	$6 \cdot 58202514$	76	6.64248680
678		723	6.583409	76	
679	$6 \cdot 52$	7		76	
680		725		77	
681	6.52356231	726	6.58755	771	
68	6.52502966	727	6.58892	77	
68	6.52649486	728	6.59030	77	
	$6 \cdot 527$	72		77	
	-			775	
	$6 \cdot 530$	73	6	77	
68	6.5323	73	$6 \cdot 59578$	777	
688	6 53	733	6.5971457	778	
68	$6 \cdot 5352$	73	$6 \cdot 59850903$	77	
		73.5			
691	6:538	736	$6 \cdot 6012301$	781	
	$6 \cdot 539$	73	660258	782	
693	$6 \cdot 5410$	738	$6 \cdot 6034$	78	
694	$6 \cdot 542$	73	6.60529792	78	
		740		78	
096	6.545349	741	$6 \cdot 608000$	78	
697	6.54678541	742	6.6093	78	
698	6.54821910	743	661069	788	
699	6.54965074	74	$6 \cdot 61204$	78	
7	6.551	745	6.61338	790	
701	$6 \cdot 55250789$	746	$6 \cdot 61472500$	791	$6 \cdot 67329797$
702	6:55393340	747	C-S1606519	79	$6 \cdot 67456139$
703	6.55535089	748	6.61740298	79	$6 \cdot 67582322$
	6. 556				$6 \cdot 6$

	-6783211	84			
796	6.67959919	841	6.73459166	88	
797	6.68085468	842	6.73578001	887	6.78784493
7	6.68210860	843	6.73696696	888	
799	$6 \cdot 68336095$	844	6.73815249	88	
	6.684611	845			
	6.68586095	846		89	
802	6.68710861	847	6.74170069	892	
803	6.68835471	848	$6 \cdot 74288064$	893	6.79458658
804	6.68959927	849	$6 \cdot 74405919$	894	
805	6.69084228	850	6.7452363	895	6.79682372
	6.69208374	85		890	
807	$6 \cdot 69332367$	852	6.74758653	89	6.79905586
808	6.69456206	853	6.74875955	898	
80	6•69579892	854	6.74993119	899	$6 \cdot 80$
810		855	6.751101		
811	$6 \cdot 69826$	85	67522		6
812	6.69950034	857	6.75343792		6.8046145
13	6.70073111	858	6.75460410	90	6-80572255
81	6.70196037	859	$6 \cdot 75576892$	90	$6 \cdot 8$
815	6		6:7569323		
816	6770441435	861	6.75809	906	
817	670563909	86	67592552	90	
81	6.70'j86234	86	6776041469	90	$6 \cdot 81$
819	6•70808408	86	6.76157277	90	
820	6.70930434	65	6	91	
821	$6 \cdot 71052311$	866	$6 \cdot 7638849$	911	6
822	$6 \cdot 711$	867	$6 \cdot 765038$	91	
82	6.71295620		6:76619171	91	$6 \cdot 81$
82	$6 \cdot 71417053$	86	6•767343		81
825	$6 \cdot 7153$	870	676849321	91	
8	6.7165947	871	6.76964198	91	6.82001636
827	$6 \cdot 7178047$	872	6.7707894	917	
	$6 \cdot 71901315$	873	677719355	91	
82	6.72022016	874	6.773080	91	6.82328612
830	6.72142570	875	6.77422389	92	
831	6.72262979	870	6.77536609	92	6
83	$6 \cdot 7238324$	877	6.7765069	92	
833	6.7250336	878	677764659	92	
83	$6 \cdot 726$	879	6.77878490	92	682871207
83	$6 \cdot 72743172$		677992191	92	-8299374
836	6.72862861	881	6.78105763	920	6:83087423
837	6:72932407	88	6.78219206	92	6.83195357
838	6.73101810	883	6.78332520	928	6.83303173
83	6.7322107	884	6.7844570		¢ 834108

table of hyperbolic logarithms.

	0-830'25928	97		10	
9	0-83733281	977	6•88448665	102	$6 \cdot 92951677$
933	© 63840520	978	$6 \cdot 88550967$	102	693049477
9	$0 \cdot 83947044$	979	$6 \cdot 88653164$	1024	
	c:8405.4653	980	6.8875 : 2.57	1025	
	6-84161548	981	6.88857246	1026	
	$\because 84208328$	982	6.88959131	1027	
9	6.84374995	983	6.89060912	102	
9	6.84481548	984	6.89162590	1029	
94		985	6.89264164	103	
	$\cdots 8469431$	98	6.89365635	31	
9	$6 \cdot 84800527$	987	6•89467004	1032	
943	6.84006628	988	6.89568270	103	$6 \cdot 94022247$
9	6.85012617	989	6.89669433	103	
94	6.85118493	990	89770494	103	
	685224257	991	6•89871453	103	-
94	6.85329909	992	6.8997	1037	
948	$6 \cdot 85435450$	993	6.90073066	1038	
949	6.855408	994	0.90173721	103	6.94601399
95	6.8564619	995	6.90274274	10	
95	6.85751406	9	6.90374720	1041	
952	6.8585650	997	$6 \cdot 9047507$	1042	
953	6.85961490	99	6.90575328	10	
954	686066367	999	6.90675478	10	6.95081
95	6.86171134	100	$6 \cdot 90775528$	1045	6.95177216
956	6.86275791	100	6.90875478	10	
957	6.86380339	1002	6.90975328	1047	6.95368421
958	6.86484778	10	6.91075079	04	
95	6.86589107	1004	6.9117473		
960	6.86693328	1005	6.9127	105	
961	6.86797441	1006	6.91373	1051	
96	6.86901445	1007	6.91473089	1052	6.95844839
963	6.87005341	00	6.9157	05	51
96	6.87109129	1009	6		6.96034773
965	6.87	1010		105	
96	6.87316383	1011	6.91869522	105	
96	6.87419850	1012	6.91968385	105	
968	6.87523	1013	$6 \cdot 9206715$		6.96413561
969	6:876		$6 \cdot 9216581$	1059	6.96508035
970	6.87729607	1015		10	
971	6.87832647	1016	6.92362863	1061	
97	$6 \cdot 87935580$	1017	6.92461240	062	
寿	6-8803840	1018	6.92559520	O6	-
97	688141130	10	6.926577		6.96979067

TABLE OF HYPERBOLIC LOGARITHMS.
151

1065	$6 \cdot 97073008$	1110	$7 \cdot 01211529$	55	705185562
1066	6.97166860	1111	701301579	1156	7.05272105
1067	697260625	1112	$7 \cdot 01391547$	1157	$7 \cdot 05358573$
1068	6.97354302	1113	$7 \cdot 01481435$	1158	$7 \cdot 05444966$
1069	$6 \cdot 97447891$	1114	$7 \cdot 01571242$	1159	$7 \cdot 05531284$
1070	6.97541393	115		1160	
1071	$6 \cdot 97634307$	1116	7.01750614	1161	$7 \cdot 05703698$
1072	6.97728134	1117	$7 \cdot 01840180$	1162	$7 \cdot 05789794$
1073	6.97821374	1118	$7 \cdot 01929665$	1163	$7 \cdot 05875815$
1074	6.97914528	1119	$7 \cdot 02019071$	1164	$7 \cdot 05961763$
1075	$6 \cdot 98007594$	1120	$7 \cdot 02108396$	5	$7 \cdot 06047637$
1076	6.98100574	1121	$7 \cdot 02197642$	1166	$7 \cdot 06133437$
1077	6.98193468	1122	$7 \cdot 02286869$	1	
1078	6.98286275	1123	$7 \cdot 02375895$	1168	$7 \cdot 06304816$
1079	$6 \cdot 98378997$	112	$7 \cdot 02404903$	116	$7 \cdot 06390395$
1080		11	$7 \cdot 02553831$		
10	6-98564182	1126	$7 \cdot 02642681$	1171	7.06561336
10	6•98656646	1127	$7 \cdot 02731451$	1172	$7 \cdot 05646697$
1083	6.98749025	1128	7-02820143	11	
1084	6.98841318	1129	$7 \cdot 02908756$		
	6.98933527	1130			
1086	6:99025650	1131	7.03085748	1176	$7 \cdot 06987413$
1087	6.99117689	1132	$7 \cdot 03174126$	11	$7 \cdot 07072411$
1088	6-99209643	1133	$7 \cdot 03262426$		7.07157336
1089	6.99301512	1134	$7 \cdot 0335$		0
	6.99393298	1135	$7 \cdot 03438793$		
1091	699484999	1136	$7 \cdot 03526860$	1	
1092	699576616	1137	$7 \cdot 03614849$	1182	
1093	6-99668149	1138	$7 \cdot 03702761$	1183	$7 \cdot 07580886$
1094	6.99759598	1139	$7 \cdot 03790596$	1184	$7 \cdot 07665382$
	6.99850964	1140	$7 \cdot 03878354$	85	
1096	6-99942247	1141	$7 \cdot 03966035$	186	$7 \cdot 07834158$
109	$7 \cdot 00033446$	1142	$7 \cdot 04053639$	1187	$7 \cdot 07918439$
1098	$7 \cdot 00124562$	1143	$7 \cdot 04141166$	1188	$7 \cdot 08002650$
1099	$7 \cdot 00211595$	1144	7•04228617	1189	$7 \cdot 08086790$
1100	$7 \cdot 00306546$	1145	7•04315992	190	708170859
1	$7 \cdot 00397414$	1146	$7 \cdot 04403290$	1191	$7 \cdot 08254857$
1102	$7 \cdot 0048819$	1147	$7 \cdot 04490512$	1192	$7 \cdot 08338785$
1103	$7 \cdot 00578902$	1148	7.045776.38	1193	$7 \cdot 08422642$
1104	$7 \cdot 10669523$	1149	7•04664728	1194	7.08506429
	$7 \cdot 00760061$	1150	7.04751722	1195	$7 \cdot 08590140$
1106	$7 \cdot 00850518$	1151	$7 \cdot 04838641$	1196	$7 \cdot 08673793$
1107	$7 \cdot 00940893$	1152	$7 \cdot 04925484$	1197	$7 \cdot 08775371$
1108	7.01031187	1153	7•05012252	1198	$7 \cdot 08840878$
110	$7^{\circ} 01121399$	115	$7 \cdot 0509894$	119	7.08924316

	7.09007684	1245			
	7.09090982	12	7	1291	
		124			
	$7 \cdot$	124	$7 \cdot$		
	$7 \cdot 093.10463$	124	$7 \cdot 13009851$	1294	
120	$7 \cdot$	125	7•13089883		
	$7 \cdot 0950643 \mathrm{~S}$	1251	$7 \cdot 13169851$	1296	
	$7 \cdot 09589322$	1252	$7 \cdot 13249$	1297	
	7.09672138	1253			
	$7 \cdot 09754885$		$7 \cdot 13409372$	129	
		1255			
	7.09920	12	$7 \cdot 13568735$	130	
121		125	$7 \cdot 13648321$	130	
1213	$7 \cdot 10085191$		$7 \cdot 13727844$	1303	
	$7 \cdot 10167597$	1259	$7 \cdot 13807$	1304	
	7-10'249	12		130	
	$7 \cdot 10332206$	12	$7 \cdot 13966034$	1306	
121	$7 \cdot 10414409$	1262	$7 \cdot 14945304$	1307	
12	$7 \cdot 1049$	126	$7 \cdot 14124512$	130	
	$7 \cdot 10578$	12		30	
	$7 \cdot 10660614$			131	
	7•10742547	12	$7 \cdot 1$	13	$7 \cdot 17854548$
	$7 \cdot 10824414$	1267	7-1444071	1312	
	7-1090	1268	$7 \cdot 1451961$	1313	
	$7 \cdot 10987$	1269	$7 \cdot 145984$		
	O69			131	
	7-11151212	1271	7-14755	131	
	7-11232744	1272	$7 \cdot 1483457$	131	$7 \cdot 18311170$
	7-11314211	1273	$7 \cdot 14913160$	1318	
12		127	$7 \cdot 14991684$	1319	
	1			1320	
	$7 \cdot 11558$	127	15		
	$7 \cdot 11639414$	1277	$7 \cdot 1522688$	1322	
	$7 \cdot 117205$	1278	$7 \cdot 1530516$	1323	
	$7 \cdot 1180162$	1279	$7 \cdot 1538338$	132	
	5	1280	153		
	$7 \cdot 11963564$	128	$7 \cdot 15$	132	$7 \cdot 18992217$
	$7 \cdot 12044437$	1282		132	
	$7 \cdot 12125245$	1283	7-15695636	1328	
12	$7 \cdot 12205988$	128	$7 \cdot 157735$	13	$7 \cdot 1921820$
	$7 \cdot 12286666$	128	7-15851400	13	
	$7 \cdot 12367279$	128	$7 \cdot 15929190$	133	$7 \cdot 193$
	$7 \cdot 12447826$		$7 \cdot 16006921$	13	
	$7 \cdot 12528309$	128	$7 \cdot 16084591$	1333	
1244	26		$7 \cdot 16$		$7 \cdot 1$

TABLE OF HYPEREOLIC LOGARITHMS.

35	$7 \cdot$	1380			
1336	$7 \cdot 197.43535$	1381	$7 \cdot 28056315$	1426	
1337	7•19818358	1382	$7 \cdot 23128700$	1427	$7 \cdot 26332962$
1338	$7 \cdot 19893124$	1383	$7 \cdot 23201033$	1428	
1339	$7 \cdot 19967835$	1384	7-23273314	1429	
1340	7	13	7	14	
1	$7 \cdot 2011708$	1386	$7 \cdot 23417718$	14	
		1387		1432	
	$7 \cdot 20266120$	1388		1433	
	$7 \cdot 203$	13	$7 \cdot 23633934$		
	$7 \cdot 204892$	1391	$7 \cdot 23777819$		
	7-20563518	1392	$7 \cdot 23849684$		
	$7 \cdot 206377$	1393	$7 \cdot 23921497$	1438	
13	$7 \cdot 207118$	1394	$7 \cdot 23993259$	1439	
		13			
	7-20860034	1396	$7 \cdot 24136628$	1	
	$7 \cdot 209340$	1397	$7 \cdot 24208236$		
	$7 \cdot 2100796$	1398	$7 \cdot 24279792$	1443	
1354	7×2108184	1399	$7 \cdot 24351297$		$7 \cdot 27517232$
	$7 \cdot 211550$	1400			
13	$7 \cdot 21229447$	1401	$7 \cdot 24494155$		
13	$7 \cdot 21303166$	1402	$7 \cdot 24565507$		$7 \cdot 277.24773$
1358	$7 \cdot 21376831$	140	$7 \cdot 24636808$		$7 \cdot 27793857$
13	$7 \cdot 21450441$	140	$7 \cdot 24708058$		$7 \cdot 27862894$
	$7 \cdot 21523998$	14	7'24779258		
13	$7 \cdot 21597500$	1406	$7 \cdot 248504() 7$	1	$7 \cdot 28000825$
	$7 \cdot 21670949$	1407	$7 \cdot 24921506$	52	
13	$7 \cdot 21744143$	1408	$7 \cdot 24992554$	1453	$7 \cdot 28138566$
13	$7 \cdot 21817684$	14	$7 \cdot 25063551$	14	$7 \cdot 28207366$
	$7 \cdot 21890971$	1410	$7 \cdot 25134498$		
13	$7 \cdot 21964204$	1411	$7 \cdot 25205395$		$7 \cdot 28344823$
1367	$7 \cdot 22037384$	1412	$7 \cdot 25276242$	1457	7×28413481
68	$7 \cdot 22110510$	1413	$7 \cdot 25347038$	1458	$7 \cdot 28482091$
1369	$7 \cdot 22183583$	1414	$7 \cdot 25417785$	1459	$7 \cdot 28550655$
1370	$7 \cdot 22256602$	1415	$7 \cdot 25488481$	14	
1371	$7 \cdot 22329568$	1416	$7 \cdot 25559127$	1461	
1372	$7 \cdot 22402481$	1417	$7 \cdot 25529724$	146	$7 \cdot 28756064$
1373	$7 \cdot 22475341$	1418	$7 \cdot 25700271$	1463	$7 \cdot 28824440$
1374	$7 \cdot 22548147$	1419	$7 \cdot 25770768$	1464	$7 \cdot 28892769$
137	$7 \cdot 22620901$	1420	$7 \cdot 2584121$		
1376	$7 \cdot 22693602$	142	$7 \cdot 25911613$	14	$7 \cdot 29029288$
1377	$7 \cdot 22766250$	1422	$7 \cdot 25981961$	146	$7 \cdot 29197578$
1378	7-22838845	1423	$7: 26052260$	14	$7 \cdot 29165621$
1379	$7 \cdot 2291138$	14	$7 \cdot 26122,50$	1	$7 \cdot 29233718$

154 TABLE OF MTPERDOLIC LOGARITHMS.

147	7.29301768	151	732317072		
1471	$7 \cdot 29369772$	1516	$7 \cdot 30383057$	1561	$7 \cdot 35308192$
1472	7.29437730	1617	$7 \cdot 32448998$	1562	$7 \cdot 35372233$
1473	729505642	51	$7 \cdot 3251489$	1563	
1474	$7 \cdot 29573507$		73258075	15	
1475	$7 \cdot$	15	7.32646561	1565	$7 \cdot 3556411$
14	$7 \cdot 29709101$	1521	$7 \cdot 32712329$	15	
1477	$7 \cdot 29776828$	1522	$7 \cdot 32778054$	1567	
1478	7×29844510	152	$7 \cdot 32843735$	156	
1479	$7 \cdot 29912146$	152	$7 \cdot 3290937$	15	
1480	$7 \cdot 29979737$	15	7.32974969	1570	$7 \cdot 35883090$
	$7 \cdot 30047281$	15	7•3304052	157	
14	$7 \cdot 30114781$	1527	$7 \cdot 33106031$	1572	
148	$7 \cdot 30182234$	1528	$7 \cdot 33171497$	1573	
14	7.30249642	1529	$7 \cdot 33236921$	1574	
	7.30317	1530	7.3330230	1575	$7 \cdot 3$
14	$7 \cdot 3038$	153	$7 \cdot 3336764$	157	$7 \cdot 36264527$
14	7-30451595	153	$7 \cdot 3343293$	157	
	7•30518822	153	$7 \cdot 33498188$	157	$7 \cdot 36391350$
1489	$7 \cdot 30586003$	153	$7 \cdot 33563398$	1579	
1490	$7 \cdot 30653140$	153	$7 \cdot 33628566$	15	$7 \cdot 3$
1491	$7 \cdot 30$	53	$7 \cdot 33693691$	158	$7 \cdot 36$
1492	$7 \cdot 307$	1537	77	1582	$7 \cdot 36644515$
1493	$7 \cdot 3085$	15	$7 \cdot 33823815$	158	
149	7-30921237	153	$7 \cdot 3388881$	15	$7 \cdot 36770857$
	7•30988149		$7 \cdot 33953770$		
1496	$7 \cdot 31055016$	154	7-34018684	15	$7 \cdot 36897040$
1497	731121838	154	$7 \cdot 34083555$	1587	
1498	7.31188616	1543	$7 \cdot 3414838$	158	
1499	$7 \cdot 31255350$	1544	$7 \cdot 3$	15	$7 \cdot 37086017$
	$7 \cdot$		$7 \cdot 34277919$	1590	
15	$7 \cdot 31388683$	154	73434202	1591	7
15	7-31455283	1547	$7 \cdot 34407285$	1592	7.37274637.
15	$7 \cdot 31521839$	1548	7:34471905	1593	7.37337431
150	$7 \cdot 31588350$	1549	$7 \cdot 3453648$	1594	$7 \cdot 37400186$
	$7 \cdot 31654818$	1550	601021	15	
15	7×31721241	155	7:34665516	159	$7 \cdot 37525578$
150	$7 \cdot 31787620$	155	$7 \cdot 34729970$	1597	$7 \cdot 37588215$
1508	$7 \cdot 31853955$	1553	$7 \cdot 34794382$	1598	37650813
1509	$7 \cdot 31920246$	155	$7 \cdot 34858753$	1599	377133
	$7 \cdot 31986493$	1555	$7 \cdot 34923082$	1600	
15	$7 \cdot 32052696$	1556	$7 \cdot 34987370$	1601	$7 \cdot 37838371$
15	$7 \cdot 32118855$	1557	$7 \cdot 35051617$	16	813
1513	$7 \cdot 32184971$	1558	$7 \cdot 35115823$	160	$7 \cdot 37963215$
	$7 \cdot 32251043$		$7 \cdot 3517998$		- 38025

TABLE OF HTPERBOLIC LOGARITHMS.

	$7 \cdot 38150189$	1651	$7 \cdot 40913644$	1696	
1607	7.38212437	1652	7-4097419	1697	661727
1608	$7 \cdot 38274645$	1653	$7 \cdot 41034710$	1698	
1609	$7 \cdot 38336815$	$165+$	$7 \cdot 41095188$	1699	
1610		16	$7 \cdot 41155629$	1700	743838353
1613	$7 \cdot 38461038$	6	$7 \cdot 41216033$	17	
16	$7 \cdot 38523092$	1657	$7 \cdot 41276402$	1702	$7 \cdot 43955931$
16	$7 \cdot 38585108$	1658	$7 \cdot 41336734$	1703	$7 \cdot 44014668$
	$7 \cdot 38647$	1059	$7 \cdot 4139702$	70	$7 \cdot 44173371$
1615	7	16	$7 \cdot 41457288$	1705	$7 \cdot 44132039$
	$7 \cdot 38770924$	166	$7 \cdot 4151751$	170	
16	$7 \cdot 38832786$	1662	$7 \cdot 41577698$	1707	$7 \cdot 44249272$
16	$7 \cdot 38894610$	166	$7 \cdot 41637848$	170	
16	$7 \cdot 38956395$	16	$7 \cdot 41697962$	1709	
1620	$7 \cdot 39018143$	166	$7 \cdot 41758040$	171	
	$7 \cdot 39079852$	16	7	17	
16	$7 \cdot 39141523$	1667	$7 \cdot 4187808$	171	
16	$7 \cdot 39203157$	1668	$7 \cdot 41938058$	1713	
16	7.39264752	1669	$7 \cdot 41997992$	171	$7 \cdot 44658510$
162	$7 \cdot 39$	1670	$7 \cdot 42057891$	171	7
16	$7 \cdot 39387$	167	$7 \cdot 42117753$	171	
16	$7 \cdot 39449311$	1672	$7 \cdot 42177579$	171	
	$7 \cdot 39510755$	1673	$7 \cdot 42237370$	171	
162	$7 \cdot 39572161$	1674	$7 \cdot 42297125$	1719	49
16	$7 \cdot 39$	1675	$7 \cdot 4235684$	172	
1631	$7 \cdot 3949486$	1676	$7 \cdot 4241652$	172	$7 \cdot 4$
1632	$7 \cdot 39756154$	1677	$7 \cdot 4247617$	172	$7 \cdot 45124168$
1633	$7 \cdot 39817409$	1678	$7 \cdot 4253578$	172	
	$7 \cdot 39878$	167	$7 \cdot 425953$	172	
	$7 \cdot 39939808$	1680	-	172	
1636	$7 \cdot 40000952$	168	$7 \cdot 42714413$	172	
16	$7 \cdot 40062058$	1682	$7 \cdot 4277388$	172	$7 \cdot 45414108$
	$7 \cdot 40123126$	168	$7 \cdot 42833319$	172	
16	$7 \cdot 40184158$	168	$7 \cdot 42892719$	172	$7 \cdot 45529849$
	$7 \cdot 40245152$	168	$7 \cdot$	173	
16	$7 \cdot 40306109$	1686	$7 \cdot 43011414$	173	
16	$7 \cdot 40367029$	1687	7-43070708	1732	$7 \cdot 45703209$
1643	$7 \cdot 40427912$	1688	$7 \cdot 43129968$	1733	
1644	$7 \cdot 40488758$	168	$7 \cdot 43189192$	17	
16	$7 \cdot 40549506$	1690	$7 \cdot 432.48381$	1735	
16	$7 \cdot 40610338$	1691	$7 \cdot 43307535$	1736	$7 \cdot 459338$
16	$7 \cdot 40671773$	1692	$7 \cdot 43366654$	1737	$7 \cdot 45991477$
164	$7 \cdot 40731771$	1693	$7 \cdot 43425738$	1738	$7 \cdot 46049031$
	$7 \cdot 407924$	169	7		

TABLE OF HYPERBOLIC LOGARITHMS.

		78			
1741	$7 \cdot 46221494$	1786	$7 \cdot 48773376$	18	
17	$7 \cdot 46278916$	1787	$7 \cdot 48829352$	32	$7 \cdot 51316355$
	$7 \cdot 46336305$	1788		1833	
17	$7 \cdot 46393760$	1789	12	1834	
17	$7 \cdot$	17			
	$7 \cdot 46508273$	1791	$7 \cdot 490529$		
1747	$7 \cdot 46565531$	1792	$7 \cdot 49108759$	1837	
	46622756	1793	$7 \cdot 49164547$	1838	
17	$7 \cdot 46679947$	179	$7 \cdot 4922030$	18	
1750	$7 \cdot$	17	$7 \cdot 49276030$		7.517520
17	$7 \cdot 46794233$	179	$7 \cdot 49331725$	18	$7 \cdot 5180$
1752	$7 \cdot 46851327$	1797	$7 \cdot 49387389$	18	751800722
17	$7 \cdot 46908388$	1798	$7 \cdot 49443022$	184	7-5191
1754	$7 \cdot 46965417$	179	$7 \cdot 49498623$	1844	
	$7 \cdot$	1800	$7 \cdot 49554194$	184	7-520234
	$7 \cdot 47079377$	18	74		
1757	$7 \cdot 47136309$	180	$7 \cdot 49665244$	18	
1758	$7 \cdot 47193208$	1803	$7 \cdot 49720722$	184	
	$7 \cdot 47250074$	180	$7 \cdot 49776170$	184	$7 \cdot 5$
	$7 \cdot 47306909$	1805		18	
	$7 \cdot 47363711$	180	仡	1851	
176	$7 \cdot 47420481$	180	$7 \cdot 49942329$	18	$7 \cdot 52$
1763	$7 \cdot 47477218$	180	7•49997654	18	
1764	$7 \cdot 47533924$	180	$7 \cdot 50052949$	18	$7 \cdot 52510075$
1765	$7 \cdot 47590597$	1810	$7 \cdot 50108212$	18	
	$7 \cdot 47647238$	181	$7 \cdot 5016344$	185	
176	$7 \cdot 47703847$	1812	7.50218649	185	
1768	$7 \cdot 47760424$	181	7.50273821	185	
1769	$7 \cdot 47816969$	18	$7 \cdot 50328963$	185	$7 \cdot 52779399$
1770	$7 \cdot 47873483$	1815	- 50384075	18	
1771	$7 \cdot 47929964$	1810	$7 \cdot 50439156$	186	
1772	7×47986413	1817	$7 \cdot 50494207$	186	
177	7×48042931	18	27		
177	$7 \cdot 4809921$	181	$7 \cdot 50604218$	186	7.53048000
1775	$7 \cdot 48155570$	182	$7 \cdot 50659178$	186	
1776	$7 \cdot 48211892$	1821	$7 \cdot 50714108$	186	
1777	$7 \cdot 48268183$	182	$7 \cdot 50779008$	1867	
177	$7 \cdot 48324442$	1823	7•50823878	186	$7 \cdot 53262362$
1779	$7 \cdot 48380669$	1824	$7 \cdot 508787.17$	8	7-53315881
1780	$7 \cdot 48436864$	182	$7 \cdot 50933527$	1870	
1781	$7 \cdot 48493028$	1826	7•50988306	1871	
1782	$7 \cdot 48549161$	1827	7-51043056	1872	7.5347620
17	$7 \cdot 48605262$	1828	$7 \cdot 51097$	187	75
	$7 \cdot 486613$				7.53583046

TABLE OF HYPERBOLIC LOGARITHMS.

1875	7-53636394	1920	$7 \cdot 56008047$	1965	7•58324752
1876	$7 \cdot 53689713$	1921	$7 \cdot 56060116$	1966	$7 \cdot 58375630$
1877	$7 \cdot 53743004$	1922	$7 \cdot 56112159$	1967	7.58426482
1878	$7 \cdot 53796266$	1923	$7 \cdot 56164175$	1968	$7 \cdot 58477308$
1879	$7 \cdot 53849500$	1924	$7 \cdot 56216163$	1969	$7 \cdot 58528108$
1880	$7 \cdot 53902706$	1925	$7 \cdot 56268125$	1970	$7 \cdot 58578882$
1881	$7 \cdot 53955883$	1926	$7 \cdot 56320059$	1971	$7 \cdot 58629631$
1882	$7 \cdot 54019032$	1927	$7 \cdot 56371967$	1972	$7 \cdot 58680354$
1883	$7 \cdot 54062153$	1928	$7 \cdot 56423848$	1973	$7 \cdot 58731051$
1884	$7 \cdot 54115246$	1929	$7 \cdot 56475701$	1974	$7 \cdot 58781722$
188	$7 \cdot 54168310$	1930	$7 \cdot 56527528$	1975	$7 \cdot 58832368$
1886	$7 \cdot 54221346$	1931	$7 \cdot 56579328$	1976	$7 \cdot 58882988$
1887	$7 \cdot 54274355$	1932	$7 \cdot 56631101$	1977	$7 \cdot 58933582$
1888	$7 \cdot 54327335$	1933	$7 \cdot 56682848$	1978	$7 \cdot 58984151$
18	$7 \cdot 54380287$	1934	$7 \cdot 56733568$	1979	$7 \cdot 59034695$
1890	$7 \cdot 54432211$	1935	$7 \cdot 56786261$	1980	$7 \cdot 59085212$
1891	$7 \cdot 54486107$	1936	$7 \cdot 56837927$	1981	$7 \cdot 59135705$
1892	$7 \cdot 54538975$	1937	$7 \cdot 56789566$	1982	$7 \cdot 59186171$
1393	$7 \cdot 54591815$	1938	$7 \cdot 56941.179$	1983	$7 \cdot 59236613$
1894	$7 \cdot 54644627$	1939	$7 \cdot 56992766$	1984	$7 \cdot 59287029$
1895	$7 \cdot 54697412$	1940	$7 \cdot 57044325$	1985	$7 \cdot 59337419$
1896	$7 \cdot 54750168$	1941	$7 \cdot 57095858$	1986	$7 \cdot 59387.784$
1897	7-54312897	1942	$7 \cdot 57147365$	1987	$7 \cdot 59438124$
1898	$7 \cdot 54855598$	1943	$7 \cdot 57-188845$	1988	$7 \cdot 59488439$
1899	7•54908271	1944	$7 \cdot 57250299$	1989	$7 \cdot 59538728$
1900	7•54960917	1945	7-57301726	1990	$7 \cdot 59588992$
1901	$7 \cdot 55013534$	1946	$7 \cdot 57353126$	1991	$7 \cdot 59639230$
1902	7-55066124	1947	$7 \cdot 57404501$	1992	$7 \cdot 59689544$
1903	$7 \cdot 55118687$	1948	$7 \cdot 57455848$	1993	$7 \cdot 59739632$
1904	$7 \cdot 55171222$	1949	$7 \cdot 57507170$	1994	$7 \cdot 59789795$
1905	$7 \cdot 55223729$	1950	$7 \cdot 57558465$	1995	$7 \cdot 59839933$
1906	$7 \cdot 55276208$	1951	757609734	1996	$7 \cdot 59890046$
1907	$7 \cdot 55328661$	1952	$7 \cdot 57660977$	1997	$7 \cdot 59940133$
1908	$7 \cdot 55381085$	1953	$7 \cdot 57712193$	1998	$7 \cdot 59990196$
1909	$7 \cdot 55433482$	1954	$7 \cdot 57763383$	1999	7×60040233
1910	$7 \cdot 55485852$	1955	$7 \cdot 57814547$	2000	$7 \cdot 60090246$
1911	$7 \cdot 55538194$	1956	$7 \cdot 57865685$	2001	$7 \cdot 60140233$
1912	$7 \cdot 55590509$	1957	$7 \cdot 57916797$	2002	$7 \cdot 60190196$
1913	$7 \cdot 55642797$	1958	$7 \cdot 57967882$	2003	$7 \cdot 60240134$
1914	$7 \cdot 55695057$	1959	$7 \cdot 58018942$	2004	$7 \cdot 60290046$
1915	$7 \cdot 55747290$	1960	$7 \cdot 58069975$	2005	$7 \cdot 60339934$
1916	$7 \cdot 55799496$	1961	$7 \cdot 58120983$	2006	$7 \cdot 60389797$
1917	$7 \cdot 55851674$	1962	$7 \cdot 58171964$	2007	$7 \cdot 60439635$
1918	$7 \cdot 55903826$	1963	$7 \cdot 58222919$	2008	$7 \cdot 60489448$
1919	$7 \cdot 55960950$	1964	$7 \cdot 58273849$	200	$7 \cdot 60539236$

THE END.

ERRata.

Page 9, 1. 2, for are, read is.
19, 1. 6, for v, read t.
$21,1.4$, after therefore, add, $\frac{W}{w}=\frac{D^{3}}{d^{3}} \times \frac{G}{g}$.
$95,1.16$, for + , read x.
115, 1. 19, for weights of either, read weight of either. 116, 1. 27, for grove, read groose.

[^0]: - The weight of the composition of the rocket, and the time of its burning, may be had, by reference to these given in the example at Art. 17.

[^1]: - To find the greatest distance of the varying centre of gravity of the mass from the centre of the axis of the rocket. Put $a=\frac{1}{2}$ the length of the cylinder or axis, and $x=\frac{1}{2}$ the length of the uncousumed cylinder of composition : then $a-x$ will be the distance of the centres of gravity of the case and of the consumed column of composition. Let $w=$ weight of the whole of the composition; and d that of the case of the rocket; and we shall have $2 a: v:: 2 x$: $\frac{w o x}{a}$ for the weight of the unfired cylinder of composition : whence $d+\frac{w x}{a}$, will be the weight of the entire mass. And by the nature of the common centre of gravity $d+\frac{w x}{a}: \frac{w x}{a}:: a-x$: $\frac{w\left(a x-x^{2}\right)}{a d+w x}$ for the distance of that centre from the centre of the axis of the rocket, which when a maximum, its fluxion, will be $=0$; therefore the fluxion of $\frac{w\left(a x-x^{2}\right)}{a d+u \cdot x}$, or of $\frac{a x-x^{0}}{a d+w x^{2}}$, being taken and put $=0$; we shall get finally, $x=\frac{a}{w}\left(d w+d^{0}\right)^{\frac{\pi}{2}}-$ $\frac{d}{w}$; whence the question itself becomes determined.

