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PREFACE.

R —

IT was not till the year 1810, when the Academy of
Copenhagen proposed as a prize question, the curve that
a rocket describes, when projected, in any oblique direc-
tion, in vacuo, that I was led to consider the theory of
the motion of rockets in different mediums. Since that
period, I have at different times published, in the Philo-
sophical Journal, some short and incomplete papers on
this subject 3 but finding that my enquiries would extend
to a considerable length, and make a tolerable size trea-
tise, which to military and other students would not be
altogether useless, I resolved to arrange the matter
which those contained with that of my other investiga-
tions, and publish them with another new theory on
Naval Gunnery, in a volume collectively.

This, then, may be considered my apology for laying
before the public the present work ;—of the plan of ar-
rangement of which, and of the principal articles which
it contains, the following is a brief outline.

Previously to entering upon the theory of rockets, I
have judged it not improper to lay down such parts of
the doctrine concerning variable quantities, and of con-
stant and variable forces, as are usually employed in the
solution of mechanical problems, not merely for the ease
and convenience of reference, but for the more important
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object of giving to the young student a clear notion of
the meaning and application of those quantities; for it
deserves to be remarked, that in most of our minor
works on mechanics, which are usually put into the
hands of beginners, they are not given in that eligible
and practical form, or treated with that clearness and
perspicuity, as immediately to satisfy the minds of learners
in general of their nature; or of determining their pre-
cise values in the resolution of problems in which they
may bé concerned ; a defect, let me add, that cannot be
too much guarded against-by writers of scientific and
elementafy treatises.

The first section on rockets, includes the theory of
these bodies, considered as moving in a non-resisting
medium. It commences with the proposition respecting
the time of motion of a rocket in a vertical ascent, and
the height to which it will rise before all its motion is
destroyed by gravity ; then follows the investigation of
~ the curve that the body describes ; then that of its velo-
city at any given instant of its flight ; and lastly, that of
the range of the rocket on the horizontal plane.

Section 2, embraces all the theory concerning the re-
sistance to planes, cones, spheres, and cylinders, moving
in fluids, that was necessary to establish the subsequent
theory of rockets.—The investigations of the resistance
to a cylinder moving in a fluid in any direction different
from that of its axis are, I believe, new ; no work with
which I am acquainted containing a solution to this pro-
blem generally, but merely of the common particular
case where the solid is supposed to move in the direction
of its axis; and perhaps, the theory of the flight of
rockets is one, out of but very few, in which the sub-
ject is at all applicable. ‘
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The third section., contains the theory of rockets in
resisting mediums.  First, the motion of the body in a
vertical ascent in the atmosphere is considered, and not
only the height to which it will rise before all its motion
is destroyed is determined, but also the time of its ascent
and descent ; a problem of no small labour, even upon
the hypotheses which I have assumed ; then the proposi-
tion concerning its motion in a medium independent of
gravity is resolved, and all the circumstances relating
to it most fully developed; next that of the effects of the
wind upon the rocket in deflecting it from the plane of
projection; and finally, the computation of the errors of
bomb-shells and cannon-balls in any given case and
velocity of the wind.—In this section I do not pretend to
have given a complete theory of rockets ;=~the numerous
difficulties that attend the perfection of even what is here
offered, lead me to doubt of this from the ablest hands.
All T can say in its behalf is, that the several subjects of
which it treats, are at once of a néw and natural descrip~
tion, containing many facts of importance, investigated in
such a manner, as, it is hoped, cannot fail to benefit the
young student who is just entering upon such enquiries.

Section 4, relates to the motion of wheels, suspended
on fixed horizontal axes, as impelled by the force of
rockets attached to their circumferences. And in the
following section is-given such part of the theory of pen-
dulums, abandoned to the action of these machines, as is
most useful in practice; as the estimation of the arc
through which the pendulum is urged by ‘the rocket
during the time of its combustion, from which, an easy
and correct method is derived for finding the strength
of its composition.

Next follows a complete essay on naval gunnery, as
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relating to the most effectual means of destroying the
fleets of our enemies, when not far distant from the
artillery. It rests on the problem, which determines
the charge of gunpowder for any given piece of ord-
nance, to cause its shot to produce the greatest pos-
sible damage to any splintering object of given thick-
ness; for it is well known that ships of war are built of
wood of this nature—and as the issue of a contest greatly
depends upon the damage done to the vessel, it follows,
that those charges that will effect the most mischief pos-
sible, and in the shortest iime, are the fittest to be
used in all cases of actual service. Itis a fact deserving
observation, that with some charges, a complete broad-
side fired into the enemy’s ship, would not in any ma-
terial degree disable it for fighting; whilst with others,
even half the number of guns would sink her on the first’
discharge ; and surely, it is hence not unreasonable to in-
fer, if the destruction of an enemy’s vessel when in
action be an object, to effect it by a few guns at one
blow, is preferable to that from any distant cannonading,
kept up perhaps for hours together, with frequent dis-
advantage to ourselves, in loss of men, injury to our ships,
and unnecessary expenditure of ammunition.

But it may be asked, are not the charges here recom-
mended generally used by our officers, and do they ever
combat the enemy, except in unavoidable instances, but
when they are nearly in contact with him? I reply that
they do not; yet from the quantity of firing that some-
times takes place before the enemy is sunk or captured,
it is to be suspected, that the charges employed, are not
always the most eflicacious; and I speak further from
experience, for I have seen in his Majesty’s dock-yard at
- Woolwich, prize men of war having many shot holes in
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them, almost wholly closed by the wood’s own efforts,
and that required nothing more than a small wooden
peg, or a piece of cork, to stop them up perfectly.
Whence it is evident, that the charges in those cases
were much too great, and gave to the shot an improper
force, insomuch, that no sensible effect was produced by
them in disabling the ships for action.

In some sanguinary conflicts, recourse has been had to
the double shotting of the guns, in order to produce
more extensive damage to the enemy ; thus, it has been
observed, that in the glorious (and unparalleled im-
portant) battle of Trafalgar, the gallant Nelson bore
down upon the enemy with his artillery double shotted,
which he discharged into the Santissima Trinidada, (the
Spanish admiral’s flag ship,) as soon as he approached
her within pistol shot. The effect was complete. It was
not, however, altogether, in consequence of the guns be-
ing double shotted that the Santissima was at that blow
so dreadfully disabled, but chiefly from the nicety of
charge of gunpowder that was employed; for had not
this been the case, although double or triple the number
of shot should have pierced the side of the vessel, yet
that circumstance would . have added but little to its de-
struction, had they not passed through it with a proper
motion. _ '

Far be it from me to impeach the judgment of our
officers in the distribution of charges that do not always
produce the most desired effects; I am too well aware of
the impossibility of this under the numerous opposing
circumstances that attend a naval engagement; nor am
I ignorant of the necessity of experiments to prove, that
the charges which are here offered to their notice have
any decided worth over those which they employ in the
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case of service for which these are calculated ; but this
-1 must say, that the standard experiments with which

' they are connected, were never more accurately made
by any experimentalists in any age or country, and if
my endeavours prove not for their benefit, I have still
the satisfaction of having meant well .towards, them, and
the honour of offering something for their censure, if not
for their applause.

Lastly, in order to render this work as useful as possi-
ble, I have subjoined to it a table of hyperbolic logarithms,
for all numbers from one to two thousand ; most of the
computations in the theory of rockets requiring the use
of a table of such numbers.

In concluding this preface, I must observe, that in all
my researches, I have strictly adhered to the fullest il-
lustration of them by example, conceiving that, a theory
is never so well felt or understood by a learner, as when
the several subjects it considers are properly exemplified
in numbers; it is also gratifying in many instances, to
know the results under particular data, while at the
same time it checks in most cases the correctness of the
investigations. .

Such, then, are the outlines of the present work,
and such my. motives for publishing it; I trust it will meet
a fair examination—that it will prove useful to those for
whom it is designed—and thus gratlfy my wishes, and
realize my intentions.

‘WILLIAM MOORE.
Royal Military Academy,

Woolwich.
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VARIABLE QUANTITIES

DEFINITION AND NOTATION.

IF A, B, C, &c. denote any variable quantities, and a, 8,
¢, &c. other values thereof ; and if their magnitudesbe so
dependent on each other that when a is increased or
diminished to a; B, ¢, D, &c. become b, ¢, d, &c.: then
if it be said that A varies directly as B, the assertion im-
. A B '
pliesthat A:a::8:5. Or, =73
. If A vary, reciprocally as B, it denotes that A:a ::
1 1

A b
_B— H 'b—‘. Ol', 'a—_‘B“o
And if A vary as B and c directly, and D reciprocally,

T . BC be . A Bcd
it signifies that Aiazi_— i Or,a::,-b;.

Also if the product of A and B vary as c dii-gctly, and

D reciprocally; it implies that AB:ab:: E : -:7 Or,
- 48 _cd .
ab~ e
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And on the contrary, if aB : ab :: 52 then AB
vary as c directly and b inversely.

PROP. 1.
If any quantity A vary as another B ; B will also vary as A.
For by Def. A:a :: B: 4 ; or whichisthe same B : 4
:: A:a; therefore B varies as A also by Definition.

PROP. 2.

If one quantity A vary as another B, and B as another c,
and C as another D 5 the first A will vary as the last D.

For 4 : a:: B:4 :: €:e:: D:d; therefore seeing,
that A : a:: D : d, it follows from Definition that A varies
a% D, ' '

Cor.—If one quantity 4 vary as another B, and- ¥ reci-
procally as another c; the first A-will vary reciprocally as c.

1 .1 . . I |
ForA:a::B:b::;::;thereforeAvanesas;.

~ PROP. 3.
Eztber side of a gemeral Proporiwn may be mulhplted or
divided by any given quantity.
Thus if A varying as B constitute any general propor-
tion then A will vary as #5.

B b .
ForA:a::B:b::mpinbi: —t'~j therefore A varies

: B
as #B, and also as =

PROP. 4.

Any general proportion may be transformed into an equation,
and the gederal value of each of the terms eonstituting it deter-
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mined, by first multiplying one side of it by a proper hamologous
quantity.
If A vary as Bc, then A = n X Bc; where » is some
given quantity composed of other values of A, B and c.
For since a varies as B¢, therefore A : 4 :: BC :bc; and

A BC a . e e
hence — =-—; or A = BC x 5—: therefore # in this in-
a b be -

. a .
stance is = W And B and c are found in the same
manner.

Cor.—Hence, if in the solution of any problem the
quantity required be expressed in a general proportion or
be one term of the same; its general value will be had
by referring all the variable quantities contained in the
proportion to other known values thereof as standards,
and finding the homologous multiplier as above.

PROP. 5.

If both sides of a general proportion be multiplied or divided
by any variable quantity; the results will still constitute a ge-
neral proportion.

If A vary as B, and c be any variable quantity, then

A B
Ac will vary as Bc; and P

ForA:a::B:b; and c: ¢ ::C:c; therefore com-

poundedly AC : ac :: BC : bc; and hence Ac varies as BC.

_ A . B
In the same manner it is proved that < variesas —.

PROP. 6.
Any gliantity which is proportional to any other quantity in
q general proportion may be substituted for it in the gemeral
proportion.
B2
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If A vary as Bc, and c vary as D3 then will A vary as
BD. . .
For since C varies as D, Bc will vary as BD,. Prop. 5.
Hence, A varying as the former, will also vary as the
latter by Prop. 2.

PROP. 7.

.{f the corresponding like sides of two or more gmeral pro-
portions be multiphied or divided by each other, the products
and quotients will constitute two other general proportions.

If A vary as B, and C vary as D
Then Ac will vai'y as BD; and % as -f;-.
For A:a::B: b

and c:c::D:d; ‘
Therefore AC : ac :: BD : bd; and consequently Ac varies
as BD. *

~

S . A . C
In the same manner it is shewn that o Veries as .

Cor.—The equal powers or roots of the sides of a ge-
neral proportlon, constitute a general proportion.
fl n
If A vary as B, then, A‘m will vary as Bm where = de-
notes any number whole or fractional.” -
For o :a ::B :b
V n ﬂ n n
and A™ : g™ ::B® 'b;

. . ,
Therefore A varies as B;n. 3

PROP. 8.

If any qliantity A vary as BXCX D, &c; and cx D, &
be given, A will vary as B; and if BC, &c. be given A will
vary as D. :
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For A varying as Bcp, it follows from Prop, 4, that if
BC be given A will vary as p; and as.B when cpis

. . A_ D .
given. Thatis a:4:::D :d, or—=- when Bc is

. A B ..
given; and — =7 when cbD is given.

Note.—When any quantity is said to be given it is
meant that the relation of it to some fixed quantity of
the same kind considered as a standard is known, and
with which it is always suppdsed to be connected; in like
manner, when any quantity is sought, it is required to
“find the relation of this unknown quantlty to some ﬁxed
standard: of the same kmd Do T e

-t

PROP. 9.

.

If any variable quantity A depend on several other variable
guantities B, C; and if when B is invariable A varies as c,
and as B when C is invariable; then will A vary asBxcC
when both are variable. ’

For when A becomes a, let B become 4, and ¢ become
¢ according to Definition. -And suppose, that had ¢ con-
- tinued constant A would have become 4, when B became
b: then since by supposition A varies as B when c is
constant, A: & :: B : b. But b continuing the same when
a bec;)mes 4, ¢ becomes ¢; and since A varies as ¢ (by
supposition) when B orbis constant, therefore 2:a::c:¢;
and by compoundmg these two proportions, we have AZ :
4a :: BC:bc, and by division A :a::Bc:bc. Hence A
varies as BC. . , " A

Cor.—If there be any number of quantities, and A va-
ries as each of them whén the rest are considered constant,
it will vary as their product when all are variable. '
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ON MOTION, FORCES, &c.

DEFINITIONS.

1. Matter, is that of which all bodies are constituted.

2. Body, is the mass or quantity of matter in any
material substance ; and it is always proportional to its -
weight, whatever its figure may be.

_8. Bodies are either hard, soft, or elastic. A Aard
body, is that which cannot be changed by any stroke.
A soft body, is that which yields to any impression, but
does not restore itself to its former figure. An clastic
body, is that which after yielding to a stroke recovers its
former shape; and ‘is such that if it were let fall on a
hard plane it would rise to precisely the same hexght'
from which it fell.

No bodies, either perfectly hard or perfectly elastic,
such as are here defined are to be found in nature, but
all partaking these properties in some intermediate degree.

‘4. Density, is -the proportional weight, or quantity of
matter in any body. So in two vspher'es, or cubes, of
‘equal size or magnitude, if the one weighs 1/. and the
other 2/5., then the density of the latter is double the
density of the former; if it weigh 3/b. its density is triple ;
and so om. '

‘5. Motion, is that state in which a body is, when pass-
ing from one place to another.

6. Motion is either uniform, accelerated, or retarded.
Uriform matien, is that when a body describes equal spaces
in equal successive portions of time. Aicelerated motion,

\
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is that when a body describes unequal increasing spaces in
equal successive portions of time. Retarded mation, is
that when a body describes unequal decreasing spaces in
equal successive portions of time.

7. Velocity, is that quality of motion, by which a body
passes over a certain space in a certain time.

8. Force, is that which causes a,change in the state of
motion or rest of a body.

9. An Accelerative force, is that which respects the com-
munication of velocity only, any difference in the quan-
tities of matter moved not being considered. It is
proportional to the velocxty which it generates in a given
time.

10. A Retardive force, is that which relates to the de-
struction of velocity only ; and it is as the velocity which
.it destroys in a given time.

11. A Constant accelerative or retardive force, is that by
which equal velocities are generated or destroyed in equal
successive portions of time.

12. A Variable accelerative or retardive force, is that by
which unequal velocities are cammunicated or destroyed
in equal successive portions of time.

13. Momentum, is the product of the mass of a body
intp its velocity. It is the same as quantity of mo-
tion.

14. A Mative or moving force, is that which relates to the
communication 6f momentum; and it is as the momentum
which it generates in a given time.

15. A Resisting foree, is that which relates to the destruc-
tion of momentum; and it is as the momentum which
© it destroys in a given time.

16. Gravity, is that force by which a body endeavours
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to descend towards the centre of the earth. It is called
absolute gravity when the body is in empty space, or'in
vacuo; but relative gravity when immersed in a fluid.

17. Specific gravity of a body, is the proportional weight
~ of a given magnitude of the matter of which it is com-
posed. The specific gravity of a body is therefore pro-
portional to its density.

18. Centre of gravity of a body, is that pomt whxch
being supported, the body itself will rest in any position;
no other force acting upon it but that of gravity.

The centre of gravity of a body, is considered to be the
place of the body; since whatever supports this centre
supports the body and bears all the weight of it.

19. Inertia, is that by which a body endeavours, as much
as in it lies, to retain the state in which it is, whether
of rest or motion, when any force is impressed.upon.
it to cause a change. The inertia of a body is proportional
to the quantity of matter contained in it, or to its weight.

20. A Fluid, is a body, the parts of which yield to the
smallest force impressed, and by so yielding are easily
" moved among each other. '

This is the definition of what is called a perfect fluid :

if the fluid require some force to move its parts, it is im-
perfect, and so much so; in pi'oportion to that force : such
are perhaps all the fluids in nature with which we are
acquainted.
. 21. A Medium, is any fluid through which a body passes
in its motion towards any point. Thus the air or atmo-
sphere is the medium in which birds and other animals
move; and in which projectiles move; and water is the
medium in which fishes move.

22+ A Non-resisting medium,is one that affords no resist-
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ance to bodies passing through it; and a resisting me-'
dium, is that in which the motion of bodies are re-
tarded.

AXIOMS.

1. Every body will continue in its state of rest or uni-
form motion in a right line until it is compelled to change
that state by the action of some external force.

2. Any change effected in the motion of a body is in
the direction of the force impressed, and is proportional
to it in quantity.

8. To every action there is always opposed an equal
re-action ; or the mutual actions of two bodies on each
other are always equal and directed towards contrary
parts.

Thus, in the communication of pressure upon any im=
moveable plane, whether arising from the protrusion,
gravity, or impact of a body, the sense of the axiom is,
that the resistance of the plane, and an opposite force
equal to that producing the pressure, have each of them
the same effect, as either of them only destroys the
force of protrusion, gravity, or impact. In the commu-
nication of motion, by one body striking another, the
axiom asserts that the momenta lost and gained by the
bodies are equal, when estimated in opposite directions.
In the communication of motion by unknown means, as
by magnetism, or electricity; it affirms that the body
attracting or repelling moves in an opposite direction to
that of the body attracted or repelled, and with an equal
momentum. Thus to propose an instance in the case of
attraction :—when a loadstone and a piece of iron, equal
in weight, float in water upon equal and similar pieces of
cork, they are found to approach each other with equal
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velocities ; and when they meet, or are kept asunder by
any obstacle, they sustain each other by equal and op- -
posite pressures.

ON THE GENERAL LAWS OF MOTION.

PROP. I.

. ART. 1.—The moving forces which communicate the same
velocity in a given time to different bodies will be as the quantities
of matter contained in these bodies. ‘

For suppose one body to contain ten times the quan-
tity of matter of another. Then because that greater
body may be divided into 10 masses, each equal in quan-
tity of matter, to the less body; it is evident that what-
ever force be required to produce a certain velocity in
the lighter body, that 10 of such forces will be required
to impel the 10 bodies through the same space in the
same time respectively, so that the velocity of all the
bodies shall be equal at the end of that time; and it sig-
nifies not, with regard to the velocity, whether the
bodies be separated or united, if the said 10 forces still
‘act upon them.

Cor.—Hence, because it is found by experiment, that
all bodies whether heavy or light, great or small, near the
earth’s surface descend through equal spaces in equal
times (the resistance of the air not being considered); it
follows that the moving forces exerted by gravity on bo-
dies are proportional to the quantities of matter contained
in them.
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PROP. II.

2. The moving forces acting upon bodies and the momenta
communicated to them in a given time; dre proportional to the
quantities of matter moved, and the velocities communicated
Jointly: or putting M and m for any two moving forces, @ and
q the quantities of mutter moved, and ¥, v, their velocities ;
M _ a v
m= g v

For by the preceding proposition, when the velocity
communicated in any given time is the same, the moving

. M a
force is as the matter moved, or p 7; and when

the quantity of matter moved is the same, the moving
force is as the velocity communicated in the same time
(Def. 14, and Prop. 6, Var. Quan.); therefere, when
neither the quantity of matter or velocity communicated

. . . . M Q \4
in the same time is given P 7 X by Prep. 9. Var.

Quan.

PROP. III.

3. The accelerating forces which commiinicate velocities to
bodies, are as the moving forces directly, and the quantities of
matter moved reciprocally: or putting ¥ and f to denote any
two accelerative forces, and retaining the letters for the other

P g F M g
quantities in the last proposition ; 7 =— X

For by the last proposition the moving force is as the
quantity of matter into the velocity generated in a given

. M Q v . .
time; or — = " X—: and since the accelerative force
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; we shall, substituting

el

. . F
is as the velocity, or — =

f

¥ v M a F

— —1 — == Xx— hence
7 for 5 in the above, have - 7 f and
F_M 4

f m Xa

It may here be remarked once for all, that in the fol-
lowing propositions F and f are always understood to
mean the accelerative forces, proportional to the velocities
generated in a given time.

PROP. 1V.

4. In bodies moving unifirmly, the spaces described are in
the compound ratio of the velocities and times of their descrip-
.. s _V_ T ‘
twns: or —=— X —,
5 v 1
For by the nature of uniform motion, the greater the
velocity, the greater will be the space described in a given

time; that is when the time is given the spaces will be
o0 s._ v . .
as the velocntxes;’or-—s— == And if the velocity be

given, the spaces will be as the times of descnbmg them;
that is, in a double time, a double space will be described;

- s T .
in a triple time, a triple space; and so on: or —=

Therefore when neither the velocities or times are given,
the spaces by Prop. 9, Var. Quan. will be as the velo-
v .

s T
cities and times con)unctly or—=_—X—.

Cor. 1,

Q<

s 4 . .o
=T X That is, the velocities of
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bodies moving uniformly, are as the spaces described
directly, and times of describing them inversely.
T s v . .
Cor. 2. T=TXG Or the times of bodies de-
scribing any spaces with uniform motions, are as the spaces
directly, and velocities reciprocally.

. SCHOLIUM.

This proposition is applicable to bodies of all kinds
‘moving with uniform velocities over any kind of spaces;
as the hands of a clock or watch round the dial-plate ;
the motion of sounds of all kinds, as those from the dis-
charge of artillery, the roar of rockets, thunder, &c. also
the sounds from woodmens’ strokes, and of echoes, which
are found by experiments to move uniformly.

PROP. V.

5. The velocities gmerated in bodies by the action ef constant
Sorcesy are as those forces ‘and the times in wbu'b they act
vV 'F T
Jointly : or-;—}.—-x—t— o |
For when the times are the same, the veldciti_és gene-
rated, will be as the forces of acceleration : the velocities

. . et . Vv F
being their natural and general effects; that is =7

But the forces being the same, the velocmes generated
are as the tunes ‘wherein the forces: act ; ; because when
“the force is ngen,:equal velocmes are generated in equal
times (Def. 11.); and consgqyently the whole velocities
acquired are as the times wherein the given force acts :
that is when P=f, or —;—.—: 1, % = '—:— Therefore both

times and forces being variable, the velocities generated.
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will be as the forces and times of their acting conjunctly

(Prop. 9, Var. Quan.); or %: -; X —.:;.

PROP. VI.

6. If a body from rest be impelded by amy constant force act-
ing upon it for a given time the space described will be to the
space described in the same time by the body moving uniformly
awith the last acquired velocity, in the ratia of 1 to 2.

For let the given time be divided into equal evanescent
instants, the number of which is #; then the velocity
generated being, by the foregoing proposition, as the
time, and continuing uniform during any one instant,
we shall have the space described in any proposed in.
stant proportional to the number of instants comprehend~
ed in the time of motion; so that if during the first instant
the space described be g, in the next instant the space
described will be 2s, in the third 3s, and in the first three
instants the spaée described will be s 4 25+ 35s=6s5 : so
in the first # instants, the space described will s+ 2s+

1 .
85+ 454+ &c. to ns = ﬁt—-;—-—)—?-{-: and since by pre-

ceding Prop. the velocity last acquired is as the time (the
force being given); and the space described by any
uniform velocity, is as the time and velocity jointly
(Prop. 4.); it follows that the space described by the last
acquired velocity continued uniform for the time of the
accelerated motion, will be as the square of that time.
So that if s be the space uniformly described in the first
instant of motion, n*s will be the space described in 7
instants with the velocity last acquired. Wherefore the
space described by acceleration from rest, is to the space
described uniformly with the last acquired velocity, in
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+l) ns

the same time, as to n’s; or as n+1 to 2n:

and since the force acts not by successive impulses,
but by unceasing acceleration, the magnitude of each
instant must be diminished, and consequently their num-
ber increased sime limite ; therefore n being ultimately
infinite, the last proportion of n+1 to 2n wxll become
that of mto 2 or 1 te 2.

SCHOLIUM.

. It is found by very nice experunents that the space
thtough which a body descends near the earth’s surface
in 1 second is 16, feet; and in this descent it appears
by the proposition that such a velocity is acquired as would
carry the body uniformly over 32 feet, or twice that space
in the same time, 1 second. Wherefore, if 16, feet
be put = g, then will the velocity per second, gene-
rated by the constant dccelerative force of gravity be 2g;
which may therefore be considered the measure of the
intensity of that force, and a standard to which all other
accelerative forces may be referred.

PROP. VII.

1. The spaces which bodies describe from rest by the action
~of constant forces, are in a compound ratio of the velocities last
. . . S v T
acquired and times of mation: or ~ =T x5
For by Prop. 4, the spaces described by the last ac-
quired velocities continued uniform are as thosé velocities
and the times of motion jointly: and the spaces described
by the accelerating forces acting constantly for equal

respective times being by the last proposition, half the

R
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former spaces; are also as the velocities last acquired and
V. T

. I . 8
times of motion jointly: that is = X7

PROP. VIII.

8. The spaces passed over by bodies urged by any constant
Jorces, are as the forces and squares of the times jointly: or
] F T
—;— = -j—: X s
For by the foregoing proposition the spaces described
by bodies estimated from rest, are as the velocities last

. . e § V. T
acquired and the times of motion jointly; or —=— X —-
T s T o T

Also by Prop. 5, — = % %: herefore by substitu-
. s F_T '
tion we have T= 7 =

PROP. IX.

9. The constant jforces, which accelerate bodies from rest,
are as the squares of the velocities generated directly, and the
spaces de:cri&ed inversely: or -} = :—,,, x -i-.

v _t ' t_
For by Prop 85, —«= f -;;X?; and by Prop. 7, T

F

AV - _V s
- X5 therefore by substitution we have 7w X —

—
SCHOLIUM.

Whatever has been demonstrated concerning con-
stant accelerative forces, holds equally true for uniform
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retardive forces; since it is evident, that whatever velo-
city is generated by the former in any time, the same
forces would destroy in the same time if they acted in the
manner of retardive forces. In like manner, if any mov-
ing force act upon a body constantly for any time, and
generate a certain quantity of motion or momentum ; the
same force would, in the same time, destroy the same
. momentum if it acted as a resisting force. Thus if a
body falling freely from rest near the earth’s surface by
the constant acceleration of gravity acquire in any time a
certain velocity, the same velocity will be destroyed in
the same time by the (now) retardive force, if the body
be projected upwards with that velocity. In the former
case v being the velocity acquired or last velocity, and in
the latter the first, or initial velocity. And the same
quantity of motion that was generated in the descent by
gravity considered as a moving force, would be destroyed
by the same gravity considered as a resisting force, in the
same time in its ascent. Also, in all the intermediate
points, the velocities and quantities of motion or mo-
menta would be the same in both cases.

10. The various relations between constant forces,
times, velocities, and spaces described, demonstrated in
the foregoing propositions, and others immediately de-
duced from them, put down in order will be as follows.

IN CONSTANT FORCES.

’t*v £f _ W'F

s

1 s ™V TF vif

2 v _ It _ T ___(f.r \+
v FT st \Fs)
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3 t_Fv _ w _[Fs\4
oo fv T “\fs)

. I_= Tv='r’:=v’s
) F tv s vis

Hence, if the forces be referred to that of gravity at
the earth’s surface, or F be considered that force acting
for 1 second, or corresponding time T, and be called 1;
then since the space s described in that time is 16 feet
(Schol. to Prop. Art. 6), and the velocity acquired (v)
324 feety or 2g calling 16, feet g. Then the above
formule in this case will become as under.

5. s=-}w=gﬁ‘=%
6. v=2—: = 9t = (4gfi)F
2s v s 2
1 t = — = — = (=)
v 2gf (&f
v s L7
8 = — = =

2gt — gf  dgs

Hence also, from the equations v = 2gf¢ and s = v
for constant forces here deduced, may the following
theorems expressive of the relation of the fluxions of the
time, velocity, force and space described by bodies in
motion when acted upon by any variable accelerating
force be derived; considering the portion of time infi-
nitely small, so that the force for that time may be con-
sidered constant. So,

IN VARIABLE FORCES.

. . W
9. :—”t—§g7
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10. 'v ¥ = -@

= 2&]9 °

. n v

1. I = — = =
! v ng
12. f = 2 = -:J-:
2gs 2gt

For v being = 2gft, we shall, (f being constant for
the infinitely small time #,) have v = 2g_ﬂ.; alsos = oy,
therefore s = ;tv; + ivt = (substituting the values of w-
and v above) . Whence all the equations in the above
table are readily deduced. :

If a motive force happen to be concerned in the pro-
blem or investigation, the accelerative force (f) in the
above theorems will be had by dividing the motive force
by the quantity of matter moved. For by Prop. 3. we

S

have = % X —‘;—; wheré taking F, M, and @ each equal

Jl/ﬂi;/fi .

to 1 (to which the corresponding terms f, m, and ¢ will -

each be expressed proportionally), the equation will be
m
f= -;. . .
It is to be observed that the above theorems hold
equally true for constant, and variable retardive forces.

Note.—The utility and convenience of these theorems
will abundantly appear in the following work.

PROP. X.

11. The weights or quantities of matter in all bodies are
in the compound ratio of their magnitudes and densities; or
% = % x %: where C, ¢y denote the magnitudes or capacities
of the bodies, and N, n, their respective densities: -

c2
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-For by Def. 4. when the magnitude is constant, the
quantity of matter is as the density; or % = % ‘And
the density being constant, the quantity of matter will
evidently be as the magnitude; that is ’—;— = —‘:’7 Hence,

when neither the magnitude or density is constant, the
quantity of matter is as the magnitude and density com-

poundedly; or —:—= -:-:- X -g—: Prop. 9. Var. Quan.

Cor. 1.—In spheres, the quantities of matter are in
the joint ratio of the cubes of their diameters and
densmes, or — e -—;;: X — d . And in all similar bodies the
masses are Jomtly as the cubes of their like linear sides
and densities.

For the magnitudes of all similar bodies are as the
cubes of their like sides. :

Cor. 2.—~The quantities of matter in spheres, are as
the cubes.of their diameters and specific gravities; or
e » a
p T=S x : where G, g, are the respective specific
gravities of @and ¢. And in all similar bodies the quan-
tities of matter are as the cubes of their like linear dimen-
“sions and specific gravities.

For by Df 11, the specific gravities of bodies are as

the densities of the same; or% = -z—; wherefore, substi-
tutingg—for-g in the preceding corollary, it is —;— =
PP @
ikl

Cor. 3. -Hence also the weights of spheres are as the
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cubes of their diameters and specific gravities jointly; or
w_ D G
w_ g
For the weights of bodies are as the quantities of matter
T w_a » G
contained in them, or s —q—; therefore,—%r- = X 7 .

12. Let G denote the specific gravity of water, then
since it is found that 1 cubic foot of water weighs just
1000 ounces avoirdupoise, let G represent 10003 in which
case we may not only exhibit the specific gravity of any
other body in numbers.compared with this as a standard,"
but also the weight of 1 cubic foot of the same; and
hence the weight of a greater bulk of the same matter
' D ¢
F X
we shall, taking a sphere of water of 1 cubic foot content,
12407 1

4 €’

will be had by common proportion. Since % =

and assuming G = 1000, have =

_ 12403 xw

and g = — Therefore,
1.2407w
l. g = -——?3——

2. d= 1.2407(%’)T

g4’
1.24073
which theorems will give either the specific gravity of any
sphere of matter, the diameter of the same, or its weight
in ounces, when the other two quantities are knewn.

Ex. 1.

Let it be required to find the specific gravity of cast
iron; a ball of the same metal of 4 inches diameter weigh-
ing 9lbs.

3. w=
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By substituting for 4 and w, in the first of the above
formulz the values here given, we shall have the specific
3 3
gravity g = 1.24-(;'73 X w — 1.240;x 144 = 7420.2668,
which is also the weight of a cubic foot of the same me-

tal in ounces.

Ex. 2.
Required the weight of a leaden ball of 6.6 inches
diameter.
The specific gravity of lead, compared with that of
water here denoted by 1000 is 11825.
gd®  _ 11325x 55
12407 1.2407°
or 61.62lbs the weight required.
Ex. 3.
Required the diameter of a 421b. iron ball, the specific
gravity of which is 7425 as expressed in the followmg
table of specific gravities.
Here using the secoud of the foregomg theorems, we

Hence w =

= 1.2407 x (—)° = 1.240 LR
have d = 1.2 X ( ) 1.2407 x (7425) 557049
feet, or 6.684588 mches

TABLE.

Of the specific gravities of bodies as compared with that of
water denoted by 1000,
Lead - - - - - - - 11325

Gun-metal - = = - - 8784

Cast-brass - - - « - - 8000 B
Iron - - - - - - - 7645 ‘
Castiiron =~ = - - - - 7425
Clay - - - = - - . 2160

Brick - - - - - - - 2000
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Chalk - - - - - - - 2184
Clay - = = = = = = 2160
Common earth - - - - 1984
Sand - - - - . . - 1520
Hard stone - - - - - 2700
Flint - - - -« - . - 2570
Common stone - - - - 2520
Nitre - - -« - - - . 1900
Native sulphur 2033
Solid gunpowder - - - - 1745
Gunpowder close shaken - 937

~Do. in aloose heap - - - 836
Seawater - -« -« . - - 1030
Common water - - - - 1000
Oak - = = « = - - 925
F.lm - - ’ .- o @& e = 600
Ash ~ e = = = = = 800
Beech - - =« -« o - . 852
MaleFir - - - - . - 550
Female do. - - - - - 498
Hazel - - - - - . . 600
Mahogany - = = - .- 1063

Maple - <« - - - - - 175
Poplar - - - - - - - 383
‘Walnut - - = = -« = 671
Dutch Yew - - - - . 788
Spanish do. .- o o = = 801

Airatameanstate - - - - 13

Note.—~The numbers in this table express also the re-
spective weights of a cubic foot of each substance in avoir-
dupoise ounces.
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ON THE MOTION, &c. OF ROCKETS.

DEFINITION.

13. RockET, in Pyrotechnics, is a2 machine, the form of
the body of which is cylindrical, and its head conical.
Its inside is filled with very inflammable materials; on
the combustion of which the body is impelled forward
with a continued acceleration. '

14. On the combustionof the compositionof a rocket, an
elastic fluid is generated, the full force of which is exerted
in the first instant alike in all directions, whether there
be any other substance for it to act against or not.
Hence, if in a vacuum; the combustion took place as
freely as in common air, the force of a laminum of the
composition in its transformed state (equal to the initial
strength of the same into the rocket’s base), would be
that which constantly acted upon the rocket during the
time of its burning. For it is only the first force of the
gas in this case that has effect upon the body to move it,
it 'Beiﬂng the very next succeeding instant so greatly dimi-
nished from the extreme veldcity with which it rushes
into the vacuum, that it affords, comparatively speaking, -
no resistance whatéver to the fluid next generated,
whereby more motion to the rocket would be communi-
cated *. -

¢ Supposing the elastic force of the gas from the rocket compo-
sition to be 1000 tintes as.great as the elastic force of the atmosphere
at the earth’s surface; it will be found by accurate computation

_ that the velocity with which it would rush into a vacuum is nearly
at the rate of 8 miles per second!
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" Each laminum of gas as it is produced, acts upon and
firés “at the same time the following laminum of compo-
sition; when the prdduce of this exerts its force upon,
and converts into fluid in the same manner the next
contiguous laminum of matter, which acts upon and fires
the next, and so on continually, till the whole body of the
rocket is consumed. If the rocket burns in a medium,
then, as there is a body reacting against the fluid that
rushes from the rocket, there is not so instantaneous a -
dissipation of the force of the latter the moment after it
is generated; but a time of its action upon the rocket
which is greater or less according as the surrounding
medium is more or less dense and elastic. In this case,
therefore, more motion is communicated to the body.
than in the former, and but for the resistance to the
forepart of the rocket it would move farther in a me-
dium than in a vacuum. A gun recoils farther when
fired with powder and ball, than when it is charged only
with powder; from the same cause of a longer action of
the fluid against the breech of it.

15. To estimate the quantity of action of the fluid at any
given instant after its production, would be to find with
what force and velocity it then expanded itself, Vgx
if not greater than the velocity with which the rd¥ket
moved, it would have no effect whatever upon the rocket,
and in any other case it will act only with their differ-
ence. ' ‘
 In the following theory of the .motion of these ma-
chines, I have considered the first force only of every la-
minum of composition (indefinitely thin) to have effect, |
or the rocket to be urged during the time of its burning
by this force acting constantly for that time; and it is
imagined that the results determined from this supposi-
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tion will not be found to differ very sensibly from these
derived from experiments; the exact strength of the
rocket composition being here supposed.

OF
THE THEORY OF THE MOTION OF ROCKETS

IN NONRESISTING AND RESISTING MEDIUMS,

16. To establish a theory of rockets that shall be con-
sonant to the real phenomena from practice, or at all
useful in it, it is necessary that the exact strength of the
rocket composition be given. Such important datum, for -
any particular description of rockets, I have not been
able, for want of experiments, to ascertain; but it is pre-
sumed that the force of the composition of those now
used by the English ih bombardment, &c. cannot, from
their immense powers, differ very materially from half
that of gunpowder; which is supposed to be nearly 2000
times as great when converted into fluid, as the elastic

- ;ﬁof the atmosphere *.
» f this supposed strength of the rocket matter, for the nature

of those for which it is assigned, or for any other species of rockets
be not correct, it will only be necessary, when the real force of it
for any proposed description shall have been determined, to sub-
stitute it for s in the several investigations that follow to get the true
values of the results there deduced; for s being a constant quantity
will not at all affect the steps of those investigations. I have merely
assumed the above for the numerical illustration of my theory.

-1 have taken the initial force of gunpowder what Dr. Hutton
imagines it must be from the various nice experiments and accurate
computations which he has made to ascertain this important point.
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1t will be, therefore, with this assumed power of the
composition, and the supposition that the lamina of it
fire uniformly and burn parallel to the rocket’s base, that
I shall praceed to the investigation of the several effects
of these michines; the nature and times of their motion
in different mediums; their powers at any given instant,
* &c~For all these are very interesting and important
- particulars for rocket artillerists to know, to whom the
management of them generally devolves, and whose im-
mediate concern it is to make themselves acquainted with
every fact which the theory as well as the practice of
throwing rockets may discover to them.

SECTION I

ON THE MOTION OF ROCKETS IN A NONRESISTING
MEDIUM.

PROP. I.

17. The strength or first force of the gas from the inflamed
composition of a rocket being given; as also the weight of the
quantity of composition the rocket contains, together with the
time of its burning, and the weight and dimensions of the .

‘Perhaps no person ever came nearer the truth of the thing than Dr.
Hutton. Robins computed the force at just half what Dr. Hutton
makes it ; but it was independent of particulars which the enguiry
evidently involved, and which would materially have affected his
conclusion had they been considered. These particulars have been
pointed out by Dr. Hutton in his edition of that author's distin-
guished work, entitled ¢¢ New Principles of Gunhery ;" and also by
Eauler in his excellent and learned Comment on the same perform-
ance; and it is to these works I refer the reader for every informa-
tion he may require on the subject.
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rocket ; to find the height it will ascend if projected perpendi=
cularly, and also the velucity acquired at the end of that time;
the lamine of the composition being supposed to fire uniformly,
and to burn parallel to the rocket’s base.
Put w = weight of the case of the rocket and
head
¢ = weight of the whole quantity of matter -
with which it is filled
a = time in which the same is consuming
itself uniformly L P
n = 230 ozs.the medium pressure of the atmosphere
on 1 square inch
s = 1000 times the pressure of the atmosphere ; or
force of the inflamed composition
d = diameter of the rocket’s base
x = P D the space the rocket describes in the time
¢, and .
v = the acquired velocity in that time. Then,
ed® is equal to the area of the rocket’s base (¢ being *7854
the area of a circle the diameter of which is 1), and ned*
the pressure of the atmosphere on a surface = ed*,
Hence sned* is the constant impelling force of the com-
position.
Now the weight of the quantity of rocket matter that

. . . . et ct.
is fired or consumed in the time ¢ is > therefore ¢ — —
a
is the weight of the part unconsumed, which added to w
. ct ct . )
gives w+c——;=m-—7 (by putting m=w+¢) for the:

weight of the whole mass at the end of the time #, or
when the rocket has ascended to D, and so far as weight
resists the motion of the rocket, this must be deducted .

.
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from the impelling force. Hence :ned’-4(m—%t-) is the

med’-—(m—d)
a

motive force of the rocket at D, and

ct
m——
a
asned®
am—ct

— 1 the accelerative force.

By theorem 10. of variable forces we have generally v:
ngi (where f denotes the accelerative force and g =

2agsnedt . :
£ ———2%" the fluent of

164; ft). Thérefore v=

ag.med’

which is v = — X hyp log. (— —1) —2gt.

Now when ¢ = 0, v = 0; therefore the fluent corrected
will be
2ga.med’

(hyp-log. '~ hyp. log. ) ot
__ Qagsned*

c

am
hyp. log. s %t

which, when # becomes a is
Qagmea’z

o= hyp. log. ——2ag, or,

because ﬂl=’w+t, it will be
2 d*

V= ______agme hyp. log.
which therefore is the velocity of the rocket when all
the matter of inflammability in its body is just consumed.

For an example in numbers, suppose the weight, di-
mensions, &c. to be as below; namely,
s = 1000
n = 230 ozs.

wte — 2ag;
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18 lbs. = 288 ozs.

Q =
¢ = 10Ibs. = 160 ozs.
a= 3 sec.
d= 3in. = i ft.
g= 16ft
e = 1854
' 2agsned®
Then the above expression for v, namely —gc——x
w4+ c 2 x 3 x 16 x 1000 x 230 x
hyp. log. - —2ag= — Teo
11854 X 42 448
2277 rs x hyp. log. §§§_96 = 6774°075 x hyp. log.
14 .
3-—96=2992'9895—96:2896'9895 feet, the velocity

of the rocket per second at the instant of exhaustion of
the composition.

To find the space x, we have by theorem 9th, variable
am
am—ct
2agsned*

—2gt¢ (where & re-

forces #=vi=>bt x hyp. log.

presents the fractién )=b¢ hyp. log. am—b

hyp. log. (am~ct) — 2gtt.
Now the fluent of the former part of this is evidently

b hyp. log. am, and the fluent of ¢ hyp. log. (am—at)

=t hyp. log. (am —ct)4-fluent of =¢. hyp. log.

am—ct
m

(@m—ct)—t— 07. hyp. log. (am~c)=(t — a‘_—m). hyp. log.

(am—ct)—t = — - (am—ct). hyp. log. (am—ct)—t. So

that the whole fluent will be x=# . hyp. log. am+-f—
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(am=~ct) . hyp. log. (am— cf) + bt — g*; which when x=o,

. b .
andZz=o 1sa7m-. hyp.log.am. Hence thefluent corrected is

ba b '
x=(bt— —%l)hyp.log.am +- (am — ct). hyp. log. (am —ct)

.. abc— abm
+8t—gt*, and in the case where z=a it is x= (

)

c
hyp. log. am+a‘%(m—c.) . hyp. log. (am—ac)+ab—a’g
—(t—m) hyp. log. am+(m—c) . hyp. log. (am—ac)+c
--—— ——((m—c) (hyp. log. (am—ac)—hyp. log. am)+

c-—bé =—+((m—c) hyp. log-—

This in numbers is =127-0139 (‘288+16'0. hyp. log.
Y5 —1°183734)=4015'9827735 ft. the space the rocket
ascends through during the 3 seconds it is on fire.

18. Since we have found the velocity at the end of this
space to be 2896+9195 feet per second, we shall, on the
stpposition that the retardive force of gravity remains
constant from D have, by the theory of uniform forces

(2896-9895) ’
4&,“ 64 X 19993709
to which the rocket will farther ascend; which being”
added to that just determined 4015-9827185 ft. gives
1352771137785 feet for the whole height of the rocket
above the surface of the earth when it has just lost all its
motion, which is nearly equal to 27 miles.

But if the height to which it will farther rise be de-
manded on the true principle, that gravity varies inversely
as the square of the distance from the earth’s centre;
Then,

=131261°131 feet for the height
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Putting r=cL the rad. of the earth .

a=cp the distance of the point to which ¢k

the rocket has already ascended from [y,

- the centre c L

x¥=C1 any variable distance from ¢
v=velocity at 1

and c=velocity at D=2896'9895 ft. - le

: r
Then x*:#*::1: the retardive force of gravxty at 1
_when that at the surface L is considered as unity.
Hence —vv=2gfx= —f—? (the negative sign being

used because the velocity decreases) whose fluent is v*=
agr . . dgr
14 , which, when ¥=g, and v=¢, is ’= %—;therefore

dgri(a—=x)

the fluent ‘corrected will be v*=c*+ So

ax
that when v =0, we shall have +fgr‘(a x)_o, and »
4agr’
4gr" —ac*
2114514365521 feet, the whole height of the rocket from
the centreof the earth, and consequently 2114514365521
—r=136023'65521 feet is the whole height from the
surface. Whence also the height to which the rocket
rises from the point where the impelling force of the com-
positien ceases or is destroyed is 132007°67221 feet.
Hence it appears, that, in consequence of the diminu-
tion of the force of retardation from gravity upwards
according to the inverse square of the distance from the
earth’s centre, the rocket will ascend nearly 74654121

=(taking the earth’s radius at 3979 miles)
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feet higher from a point 4230609 feet above the earth’s’
surface with a velocity of 2896:9895 feet per second,
than it would do if the same force as at the point D had
continued constant, or had continued to act upon the
body always with the same intensity. Hence also, if the
rocket had a velocity of 2896:9895 feet per second up-
) . . 4
wards when at a height from the earth’s surface:—fz—rz
—r, it would never return, ‘but continue to move. for
ever, 6r fly off to an infinite distance. ‘For the expression

. dagr’ 4agr* .. R .
) forms;g—.r;%, or x:;;w, where it is evident

that on ac* becoming =4gr*, x will be infinite 5 and there-
fore to find a4, put 4gr*—ac*=o0 and reduce the equa-
tion.

19. Whence, having the height from which the body
must fall to acquire a velocity, which, bemg added to
that of 2896:9895 feet per second, shall cause it to move
perpetually when projected with the velocity of their
sum; we can readily determine” what that velocity is;
and it being a very curious fact to know, we .will- there-
fore give a solution to the problem in this place.
Putd = ffz—rz = c1 the given height from the cen- 1

tre C
% = CD, any variable height from the same

' point greater than the rad. cL -L

r = CL . C

2 2
Then ;;_

that.at the surface is 1. Therefore vv=—2gf#; and

, . 4gr* o
the fluent of the same is v’=-gT; which when properly _

-D

is the accelerative force of gravity at D when

D
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corrected is v=4gr (-i——%)=(when x=r) 4gr'x

l l 2 d—r 4gr‘&
(7—7) = 4gr ( dr) = (because d=—(;—-)4-gr’x
—pt
fg:g ; =4gr—c*. Therefore the velocity acquired in

descending through d—r is v=(4gr—c)3= 365533482
feet per second; which, added to the given velocity
2896°9482 feet per second, gives 394502377 feet, or
7-471768 miles for the velocity of projection to cause a
body to move to an infinite distance.

PROP. 2.

20. To find the period of the rocke’s motion; or the time
Jfrom its first going off to that of its return to the earth.
- This is equal to the time of its ascent and of its de-
scent.—To find the time of the rocket’s ascent from the
point where: it first ceases burning.

Put » = cL the radius of the earth .
a = cD the height of the rocket from the .
centre C at the end of its burning - L
" d = cs the distance of the limit of the rocket’s 4D
ascent from the same point L

¥ = cI any variable distance from c greater

than cp :

v = velocity at 1 1

t = time of its motion from D to 1
¢ = velocity at D at the end of its burning
£ = 16 feet
Then, since we have found the general value of v =

{ &+ ﬁ%—?}% '(‘SeeprecedingProp.); we shall



THEORY OF THE MOTION OF ROCKETS. 35

x

have f = = = ; = (putting A
v {at’x+4gr‘(a—x)}{-
ax .

R 2 T, .
=4g'2"a¢"3ndé=4agr") a x'i-’xl = aT xx : =<-Z—)T
(B—bx)r  (kx—bx*)T
x% £ Yagr* .
X (dx—a?)y’ 5(—43,,1_“, being =d. Hence

an % . -.
¢ = (7)1 { cir. arc to rad. id and versed sine » —

§ -
(dx —a®)* }; which, on correction will, in the extreme

case where x =d, bez = (%) * {(ad -t 4 arc to

rad. 3d and versed sine (d—a) }; as will be evident by .

conceiving a semicircle described on cs as a diameter.
For an example. Let it be the same rpcket as in the

example to the foregoing proposition. Then we shall
have ' : ‘

r = 8979 miles, or 21009120 féet.-

a = 21013135°6 feet.

d = 21145148°655 feet.

¢ = 2896°9895 feet.

g = 16 feet. - .

b= 4gr*—ac = 28012165812115919 feet.

Whence ¢ = (—%—)7 {‘(ad- )T + arc to rad. id
and versed sine (d — a) } = 45°55647 + 457666 =

9132307 seconds ; and consequently the whole time of
the rocket’s ascent is 94°32307 seconds.

Now. to determine the time of its descent. Let as
before .

D2



36 THEORY OF THE MOTION OF ROCKETS.

r = cL the rad. of the earth. (See preceding figure.)
d = cs the extreme height of the rocket from the
centre C.

- x = cD any var. dist. from c.

v = vel. of the rocket at 1.

t = time of falling to that point.

g = 16 feet.

‘We have already found the general value for v under

these circumstances. (See last Problem.) = {4-gr‘x

(d_'”> }% or > (i:ﬁ)’} . Therefore ¢ = —F _
pE i\ _

dt  —ax _d%{ i .
S_rxmandt—t?r (dx—=x%)T — cir. arc to

rad. $d and vers. sin. » § 5 and the correct fluential equa-
. dt aE o

tion is ¢ = B (d»—**)T + cir. arc to rad. id and

ver. sin, (d—x) } : whence in the case where x=r, it is#=

g—f { (dr — r’){‘ + cir. arc to rad. {4 and vers. sin. (d—r)}
This in numbers is equal to 46:448185 4 46°250625 =
92:69831 seconds, whence the whole time of the rocket’s
motion is 187°02188 seconds, or 3 min. 7 sec.
Cor. When b (=4gr*—ac’)=o0, the first value of #
above is infinite as is evident by inspection.

PROP. III. .

21. To determine the path of a rocket near the earth’s sur-
face, neglecting the resistance of the atmosphere.
If during the time the rocket was on fire, the weight of
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the whole mass remained constant, the path of the rocket
would, by mechanics, be a straight line: but this not
being the case on account of the continual wasting of the
matter which feeds the flame of the rocket, the accelera-
tive force of the body will be different at every instant ;
and therefore, since the accelerative force of gravity (as
‘we will suppose) is constant to the height to which rockets
generally ascend, the route of the rocket will consequently
be a curvilinear one.

Let ac be the first direction of
the rocket, and AD the curve in
which it moves, and draw cDB per-
pendicular to the horizontal line aB.
Now the path of the rocket will be
determined by finding the relation
between Ac and cp. Let us then A"
suppose gravity not to act, and that the rocket arrives at
the point c, in the line ac, in the time #. For although
the contrary be the case, yet gravity does not hinder the
rocket from arriving at the line cB, parallel to the direc-
tion in which that force is exerted, in the same time that
it would have done by the single action of its own impel-
ling force. Therefore, put aAc=x; and we shall have

(Prop. Lyy= (bt — fé—_'f-) hyp. log. am + —i(am—ct) hyp.

log. (am—ct) + bt.
This expression for »# being in terms of- loganthms
and other quantities; the general value of ¢ in terms of
x (which is what we want to find), is not immediately to
be obtained ; therefore some other expression must be
sought. Now under the present case, ¥ = bt hyp. log.

d( Prop. 1.); the fluent of which may be had by

am
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pt’ which is done by first putting

finding the log. of

it into fluxicns :md then ﬁndmg its fluent in a series.

am ct
i . bein we
Thus, the fluxion of the log o, being ———,

ct
shall by expanding the fraction and taking the fluent of

each term have, for the log. — = the series L x (t4

ot ap ot

:‘t
2am + 3a'm* + e o B Sl S &c.). Hence the

: . be .
above fluxional expression becomes # = am % (2 +

ot a3t + St A5t
2am 3am* 4a°m? 5a*m*

Va2 Pl & c*ts

sx= —( +%+6am + 10a°ms* + 15a*m*

+ &c.); whose fluent

+ &c.

2
wanting no correction. Or, multiplying by %n’ (=sup-

pose @) and calling the coeficients of the several terms
of the series A, B, C, &c. ; it will be ax=r*+ A+ B4+
ct’+Dt‘+ &c.); which reverted into a series of x, is 2 =

3 2
, (Q-\‘)" ——; ax + 547 (qx) + San—24-c 2A Q*x’
' 5A* —
+&C.=Q%(x':‘—%ql'x+_A_—iqu%+

3AB—243 —c
2
distance ¥, along Ac, from the commencement of mo-
tion.
Now cp (y) being the distance descended by gravny

a i 4 &c.); the time of describing the

in the same time ; we therefore get % y (omitting the
+'z) for the time of the rocket’s describing cp by the force
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of gravity : and conséquently y;' =af x (#* — -%—

A"

af x 4 5 _“om" + &c)

Hence, knowing the equation which subsists between
Ac and cp, the track which the rocket describes may be
drawn ; for it will only be necessary to give some value
to x in order to determine the corresponding value of y;
and to lay off this upon cp drawn perpendicular to AB,
and thus finding several points of the curve, the curve
itself may be described.

‘We have here supposed gravity to act in parallel hnes,
which is not strictly true; but the distance to which a
rocket ranges on the earth’s surface being very small
compared with its circumference, the error arising from
the contrary supposition will not in any material degree
affect our conclusions.

PROP. IV.

22 To _ﬁnd the velocity of the rocbt in the curve at any
given instant,

In the preceding diagram let Ac = x, and AD = z be-

ing the space described by the rocket in the time#: then

calling the velocity at ¢ (=4 x hyp. log. ;:%’(Prop. 1.)
v the velocity at D, in the curve, will be expressed ge-
nerally by Z—.!, following from the laws for the resolution

of motion. Now by the theory of falling bodies in vacuo
Cb = g*: and putting £ and / for’the natural sine and
co-sine (to rad.1.) of the angle caB of projection; we
shall have AB = /¥, CB &= kx, and DB (the ordinate of
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the curve) = kx—gs*. Therefore z = {(l.i‘ —2gtt) +

. Ry I
d 12"& P tl z
zv=g x'+(b.t.' 2gt)§ X v

x x

I‘a’-‘g"; and v =

Again,' by the theory of variable motions # = v£, Conse=
g v g (évi - 2gtt.)‘ E z

quently o= 5 XV = {v’l‘ + (kv
v
— 2 2 —_ 2p2 : 2 :
2gt) § = {1 4* hyp. log. T T @ hyp. log.
- am

v ct' —_ zgt)‘i‘i‘, the velocity of the rocket at D

which wants no correction, because when v = 0, # = o,

and the whole vanishes : therefore v = {l‘b2 hyp. log.?

am am

+ (& hyp. log. pr—

29 1
— 20t z
am—ct g)}

‘When the angle of projection is 90°, /=0, and k=1
am

therefore v in this case will be 4 x hyp. log. e

2gt ; as determined in Prop. 1: and when # = 0, or the

action of gravity is 0, the velocity of the rocket in its rec-
am

: am —ct

what has already been observed.
‘When the angle of elevation is 30°, =3 and / = (,})’" :

tilinear path is 4 x hyp. log. 3 which agreeswith

am am

—; + (35 hyp.log.

. J— 372 2
Su= {zb hyp. log. o im—a

—2gt)‘}%. And when the angle of elevation is 60°,
then  being = (3)%,and / = £; v = { 15 hyp. log

am
am—ct

am

I
(7
po -2gt)§ .

am

3%
+( 26 hyp. log.
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PROP. V.,

23. To find the borizontal range of the rocket, baving the angle
of elevation of the engine, and the time the rocket is on Jire
given.

Let D be the place of the
rocket when all the matter
it contains is just exhausted;
and cm and c# the measures
of the velocities of the rocket
in the directions Ac and DI,
the latter of which is a tan-
gent to the curve at 1 : then
by trig. sin. zcam (=ncB=

cm Cm . .
IDB) = . sin. zomn = o+ Co-sin. of the angle of

velocity at

—~——. co-sin. of the
velocity at D

elevation of the engine =

LCAB."
- Whence calling the velocities at ¢ and D, v, and v
(computed from the 3rd Prop.), we have sin, 2IDB =

v . . '
o co-sin. zcanB. And since we have found the z1DB,

it will be easy to determine that p#& of the range de-
noted by BL. For the curve from D being a parabola

uv® “v*
D —:g , and VE = {;E (from the laws of projectiles

in ‘vacuo); where s and # represent the sin. and co-sin.

of the ZIDH = £IDB — 90° ; consequently VF=VE 4 EF
2

sSv
=vVE + DB = Ty + kx — gt*; whereof x is given by

the first proposition.
Again, by the nature of the parabola, VE:VF :: EH*

Rt ARSI
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s B (T e —ep); —w (’l”
u._g (% + kx gt“),andn_(‘ 4g+

kx — !,2>’ . Whence AL = u‘%(:::_‘ +bx—gt‘) T+
% + Ix, the entire range of the rocket, which was re-
quired.

For an example in numbers : suppose the engine from
whence the rocket is thrown to make an angle with the
horizon = 45° : and let all other things remain as in the

first proposition. Then v, the velocity of the rocket in

the curve at the end of its burning = {I’b‘ hyp. log.*

m m ’ 2 X .
== + (b hyp.log. —"— — ¢g) }1‘ = (4479024 +.

+40804-OO)’: = 2925°6 ; and sine angle IDB = % X co-

2998
. — 0 p’ n
29256 co—sm LCAB=134° 6" 38", Whence

ZIDH=44° 6’ 38" ; the nat. sin. and co-sin. of which are

6960172 and 7180251 = s and « respectively :' and the

values of the letters in the above expression for the range

collectively are as under.
s

sin. ZCAB =

‘696
718
2925°6
7071
7071
41596
- 16
t = 3
Whence the range itself is readily found equal to
273116°29 feet, or 51°72657 miles.

b

u
v
k
/

x

I 4
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EXAMPLES FOR PRACTICE.
[2

v EXAMPLE 1.
Given the diameter of a cylindrical rocket 4 inches,

the length of the case 2 feet, and the weight of the case
81Jb. to find to what height the rocket will rise in a ver-
tical projection*.

EXAMPLE II.

All things reméining as in the foregoing example, to
determine the time in which the rocket will lose alt its
motion upwards; or before it will begin to descend.

EXAMPLE III.

The same data being retained, to find the period of
the rocket’s return to the earth from the first moment
of projection.

EXAMPLE IV.

Having given the diameter of a rocket equal to 7
inches, and its length 25 feet; also the weight of the
case of the rocket 13/bs. and the angle of projection 30°;
to find the range of the rocket on the horizontal plane.

EXAMPLE V.

Let the same rocket be supposed to contain a ball
(of the same diameter) at the end of it; and to be im~
pelled after the consuming of the wild-fire by the explo-
sion of a charge of gunpowder that fills the last 3 inches

* The weight of the composition of the rocket, and the time of
fts burning, may be had, by reference to these given in the example
at Art, 17. ’

’
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of the case of the rocket ; to find the range of the shot
on the horizontal plane.

)
EXAMPLE VI.

All things remaining as in the 4th example; to find
the velocity with which the rocket is moving at the end
of 4 seconds. : ’

EXAMPLE VII.

To find the height of the same rocket from the earth

at any given instant ; as at the end of 5 seconds.

EXAMPLE VIII.

Required the time of flight of the same rocket on
the horizontal plane.

' EXAMPLE IX.

The weight of the case of a rocket is 10/. its length
21 feet, and the diameter of its base 6 inches: What will
be the oblique range and the time of flight of this rocket,
reckoning from the point where it ceases burning to the
point where it falls upon the horizontal plane ?

_ SECTION II.

ON THE RESISTANCE TO BODIES MOVING IN FLUIDS .
WITH GIVEN VELOCITIES.

24. As frequent mention will be made in what follows
on the theory of Rockets concerning the resistance that
planes, cones, spheres, and cylinders suffer when moving
in given directions in fluids; it will here be proper to
lay down such matter on this head as will suffice for our
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further enquiries on that subject ; especially. as no book
extant (with which at least I am acquainted) contains the
principal part of the information that will be required, to
which reference could otherwise be made.

PROP. VI.

25. To determine the resistance a plane meets with from a
Suidy in which it moves, in an inclined position, with a given
velocity.

It is universally allowed, and indeed it is evident, that
the resistance to a body moving through an infinitely com-
pressed fluid at rest (such as is here supposed), is the same
in effect as the force of the fluid in motion with equal
velocity, on the body at rest: therefore, as it will be
somewhat more convenient to consider the fluid in mo-
tion, and the body quiescent, I shall pursue the several
investigations in this section upon this hypothesis.

Let AB be the given 5 D
position ‘of the plane; "
and ca the direction of
the fluid moving against
it. - Draw Bc perpen-
dicular ‘to AB, and let
BD be perpendicular to line Ac; also draw EBF parallel
to Ac. ,

Let ac denote the full force of the fluid against.aB;
or the force with which the plane would be struck there-
by, if it were perpendicular to the direction of the fluid’s
motion, Then this being resolved into the two forces
AB, CB, the former AB being parallel to the plane has no
effect to move it in any direction whatever, but only the
force cB in direction cB, perpendicular to AB; which is

E B ¥
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to the whole force ca as sine angle A to rad. (1); and
this force cB to urge the plane AB in the direction cA is -
as.cn, which is te the force cB assin. 2CBD, or sine angle
A torad. (1): cp therefore being that part enly of the
full force ca which has efficacy in moving the plane in
the direction of the fluid, and in proportion to the whole
force CA as sin.® zA to 1; the full force of the fluid on
the plane will be diminished from the obliquity of the
impact in the ratio of 1 to the square of the sine of the
angle of incidence. But the whole force will be further
diminished in the ratio of 1 to sin. zA, on account of no
more fluid striking the plane aB than what passes be-
tween the parallels Ac and EF, or that meet the vertical
section BD, which is to Ac as sin. £A to rad. (1); and
therefore, on both these accounts, the full force of the
fluid on Ac will be diminished in the ratio of 1 to the
cube of the sine of the angle of incidence.
Let A = the area of the given plane.
Jf = the sine za to rad. 1.
v = velocity of the (supposed) movmg Auid.
n = density of the fluid.
Then by the nature of fluids, the force with which
any one in motion strikes a plane perpendicularly, being
equal to the weight of a column of such fluid, the base of
which is equal to thatof the given plane, and altitude the
height through which a body must fall to acquire- the
velocity of its metion ; the full force of the fluid- on the
plane, denoted abqve by the line Ac, willbe = A x n x -

vl, . T . - e .
v (where g = 164;). And therefore, as 1:sin.3 zA

(/f?):: —4_{ : i the absolute force of the fluid on
the plane AB, in direction cA, when.the siae of the angle
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of incidence is . Hence, conversely, the real resistance
vif3

to the plane is » as was required.

26. If AB represent a line the length of which is L,
and /'be the sine of the angle of incidence, or angle at
which the line is inclined to the direction of its metion ;
then the resistance to the line estimated in the directly
Lnvef3
. tg

27. And if a cylinder, the radius of the base of which
is , move in a fluid in the direction of its axis with ve-
locity v; then the end of the cylinder opposing in this
case the full inertia of the fluid; the real resistance to

opposite direction to that of its motion will be

s v
the cylinder will be tz:;—v-; p being = 31416 and # the

density of the medium as before.
_28. Also if a cone move in a fluid in the direction of
‘ its axis with its vertex foremost; the resistance.it suffers
will be 227/
4
locity of motion, and /'the sine of the angle of incidence
of the reacting fluid against the solid. :

For here, as many particles strike. the surface of the
solid as would meet the base; and therefore the full force
of the fluid against- the base can oply be diminished in
the ratio of 1 to sin.* of the angle of ingidence (suppos-
ing throughout rad. 1.); or of the angle which the slant ‘
side of the cone makes with the dxis, which is equal to it.

29. And if r be the radius of a circular plane moving
obliquely in a fluid, and the sine of the angle of incidence,
or angle at which the plane is inclined to the direction
of its motion, be /; the resistance opposed to the plane

3 r being the radius of its base, v the ve-
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in the directly contrary direction to that in which it
moves will be er_’n_v’_j
4
Thus much concerning the resistance to planes, cones,
and cylinders, when these move in the direction of their
axes in fluids : I shall now proceed to determine the re-
sistance to a sphere, or any segment of a sphere moving

in the direction of the versed sine.

PROP. VIIL.

30. To determine the resistance to a sphere or a cylinder,
with a bemispheric end, moving in a fluid with a given ve-
locity, in the direction of its axis.

Let ATECA be any '
section of the sphere
through the axis DE, in : A
the direction in which
the solid moves. Draw
TI a tangent to any
‘point of the curve as (:L/L
T, meeting the axis produced in 1, and draw also TR per-
pendicular to DE, and join DT.

Put DR =#, TR =9y, BT = 2, and DT =r. Then
the sine (/') of ‘the angle of incidence PTI or its equal

‘ DR _ x .
angle DTR = ——=—. Now 2py% is the fluxion of

the surface of the spherical zone generated by AT, and
i .

—— x.2py% (Prop. 6.), the fluxion of the force of resist-

ance on the same ; where 2py< denotes the same quantity

here that A does in that proposition. But f’ = -E:— 3 and
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) . . .
x= -;f— Therefore the fluxion of the force (= %
pnvinE
2gr*
the resistance to:the sphere as far as relates to the action
of the fluid against the surface of the said spherical zone
vy’
. 8¢
which is therefore the whole resistance to the sphere AE
CA, or cylinder, the end of which is the hemisphere:aEc;
and the directfon of whose axis is that of DR, -
The resistance to the spherical segment TEL, when mov-
v
8gr*

vyt . . .
X (rt—af)= g where yis the radius of its base, and

7 the rad. of the sphere of which TEL is the segment.

pnvixt .

’

X 2py%) =

3 the fluent of which is

ATLC. And when ¥ = r the expression becomes

ing in the direction RE, is hence determined to be

PROP. VIII.

81. To determine the resistance & eylinder meets with in a

. fuid when moving in a direction-perpendicular to its axis
with a given velocity. : g '
Let ABcD be the
cylinder, and ETF any
section parallel to the
base. Let a particle
strike this section at T
in the direction PT,
perpendicular, by sup-
position,. to BD; and
draw TO to the centre
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- 03 draw also the tangent T to the circle ETF or cylinder
at T, upon which let fall the perpendicular ra, and let
fall the perpendicular ar upon TP. '

Let st be denoted by =, and Ta represent the fluxion
- of %= £; then it is evident by bare inspection of the
figure (where TP may represent the fi// forge of the fluid
against 'rc,&c),andfmmdrt 25, that :1;- x sintirTe
will be the real force that urges ar in the direction T3
and comeequently the fluxion also of the force of the
fluid against the circular arc to move & in the same

Put st = »,
LT =39
oT =1,

and /= the sine of the angle rra.
Then & = (# + 5)%; and y = (2rw — +)¥ by the

rEx—sx

property of the circle : mquemly:— TGP and

q:(x’-[-j’)? =(_‘¢’;¢_:;"§ Also by reason of similar
triangles,%:- =%'-:—= L. whence £ being = --wm

also be equal to % Therefore by substitution the fluxion

o

Tt @ ke
[y P "(zrar-s-)i‘ifv

of the force of the fluid on u=-"%ﬁ=%xf—

Srai—

Srn-x'.v), of which the fluent i is = (w;w— WaRke

e

{

/ \
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ing no correction ; so that when x = 2r, the fluent will
be -’-‘-Y-;-"- 3 which is the effective force of the fluid on the
semicircumference of a sectmn of the cylinder parallet to

into the height of the

the base. Consequently
nvirh

%
the whole semicylindric surface; or the resistance that
the cylinder suffers when it moves in a direction perpen-
dicular to its axis with the velocity v.

Cor.—Because it is found, that a sphere, the radius of
which is r, moving in a fluid of the density », with the
p";:'; we shall have the resistance of the
sphere to the resistance of its circumscribing cylinder as

S, .
”8;'3 to 2—%v-g’-"-, or as 1 to — (whete P=8°1416); the
Iatter therefore being resisted mere than the former by
about 69829 of the former. Whence, the resistance to
a sphere being given, the resistance to its circumscribfiig

cylinder will be had by multiplying the former by
1°69829.

cylinder (5) = » will be the force of the fluid on

velocity v, is

PROB. IX.

. 82, To determine the same as in the lasty when the cyl'mder
moves in any Jirection oblique to its axis,

Let Tp in the following diagram be the direction of
the eylinder moving,in the fluid, or et that of the fluid
wgainst.the eylinder.

a2
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At any point T in the m
.circumference of the
section EFT (parallel to
the base cD), draw the
tangent Tw; also let
LTQ be perpendicular
to the diameter vos,
which is at right-angles
to the axis xv; and
draw ra, aw, and wr -~ v
perpendicular to TQ; TW and TP respectively. Join Pw,
which will evidently be perpendicular to TW. -

Now because of the oblique motion of the cylinder in
the fluid, the full resistance to the same will, on this ac-
count, be diminished in the ratio of 1 to the cube of the
sine of the angle of incidence (J72.25). Or, supposing the
fluid to move against the cylinder at rest, its full force
against the cylindeg-,' from the obliquity of the direction
of the impact with regard to the positions of the cylinder,
will be diminished in the ratio of 1 to sin.? of the angle
Pro of incidence. Let FT = z and = represent the
fluxion of z. Let the full force of the fluid striking % as

’z g > . . - S
above diminished ( = ""4/; £, calling sin. zpT6, /) be de-

noted by TP; then resolving this force into the two
forces Tw, Pw ; and the latter of these into the two PR,
WR ; the former only PR, which has effect in moving the
solid in the direction pT, will be to the whole force TP as
sin.? zp TW to 1 (rad. being 1), or as sin.® of its supplement
to 1; and the force TP being also further diminished in
the ratio of 1 to sin. ZPTW, on account ‘of the number of
particles striking %, being so diminished (ftom the obli-
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«quity of the line £ with regard to PT); and therefore
the real force upon % to urge it in the direction pT,
from the consideration of both the oblique motion of the
fluid, and the oblique surface of the cylmder, wﬂl be

213,

v‘é % x sin.? ZPTW whnch is also the fluxion of the
force of the fluid on the arc Fr.

Put r = oT, x = oL, and y = TL. Then by reason
of the similitude of the triangles OLT, QTW, we obviously

obtain the sine of the angle Taw (= LT0) = _x_ Call
TP unity, and we get Ta = f also sin. zTaw bexng €x=

pressed by , by Trig. ™ = '/: . Hence in the

right-angled triangle Tew, Pw = (TP* — 'rw“)% =

f’x’)%‘ (,.z_, f:xz)% '

] =Y )? m ——t
r r

5 which in the present case is

equal to the sine of the angle prw. Therefore by sub-
stitution, the fluxion of the force of the fluid on FT

2 > — 2 %
will be L, FE=LFP e uent of which is

4grr *  (P—aR
nvf3 3/*—1 3(/‘ - l)z
TF . {r’x - 6 x4 407 * +
Q‘+51)1-2£{" 1y 4+ &c,} w]nch on:ebeco:'nmg"ls
nv[ iy 1 - :y‘z_l 3(/"—1)"
4g ' { '
NOEDE (/’—1)'

m e }

Ttns therefore is the effective force of the fluid on the
quadrantal arch ¥rs. Hence the force on the wholg
setmcyhndnc surface mDurBs is
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nvirhf? 3/*—1 3(/*— 1)
Bl R i T

— 2 - )
g"+5)l-l;f‘ L, +&c.},whichisalsotheresist-

ance to the cylinder when this moves in the fluid at rest,
so far as relates to the surface mburBs only.
Now the resistance arising from the fluid against the
24,8
top AsBm is nv{; . co-sin? zpTw (Art.25.). Hence
the whole resistance to the cylinder is
nvirh f3 3/1—-1 8(f* 1)
ra 1 - == %0 +
*+5).(—1) nv'pr® 3
> + &c.} + i a-pk
Cor.~~When the angle TPa is 90° or the solid moves
" in a direction perpendicular to its axis ; then / becoming
1, all the terms of the above series except the first two
will vapish (each and all of them containing the facter

J* — 1), and the resistance will be ”"Q;b (1 - 3,;1

nvirh

= re as detarmined in Prop. Art. 31,

EXAMPLES FOR PRACTICR.

EXAMPLE 1.

A cylinder, the radius of the base of which is 8
inches, is terminated by a cone whose base is the same
as that of the cylinder, and altitude 17 inches; what will
be the resistance to this cylinder, moving in the atmo-
sphere in the direction of its axis, with a velocity of 1200
feet per second ?
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RESISTANCE TO BODIRS MOVING IN FLUIDS., 5§

EXAMPLE Ii.

What will be the resistance to a cylinder, whose
diameter is 3 f. and length 17 ft. moving in water in a
direction perpendicular to its axis with a velocity of 2
ft. per second ?

EXAMPLE I11,

The velocity of the wind is 88 feet per second: te-
quired its force to upset the monument of London, the
radius of the base of which is 7'5 feet, and its helght 202
feet, bemg that of an upright cylinder.

EXAMPLE IV,

The radius of the base of a cylinder is 11 inches;
and its height 7 feet; what will be the resistance to this
cylinder moving in air in a direction inclined to that of
its axis ih an angle of 54° with a veloclty of 1500 feet

per second ?
EXAMPLE V,

The resistance to a sphere is 54/55. when moving
with a certain velocity in a certain medjum: required
the resistance to.its circumscribing cylinder moving with
the same velocity in the same medium perpendxcular to

its axis.
RXAMPLE VI.

The velocity of the wind is 50 miles per hour: re-
quired its force against a cylinder of 3 inches in radius
and 50 inches in height, standing inclined to the horizon
in an angle of 30°.

' EXAMPLER ViI.

Given the base of a cylinder, to determine its
henght' so that the resistance to the cylinder when it
moves in the ditection of its axis, may be equal to the'
resistance when the direttion of its motion is perpendx—
cular o the axis: the velocity being given.
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~ SECTION III.
ON THE MOTION OF ROCKETS IN RRSISTING MEDIUMS.

PROP. IX.

- 88, The time of burning, &c. of a rocket being given ; to
Jind the height to which it will rise in the atmosphere in a
wertical ascent ; and also the wvelocity acquired at the end of
that time ; the resistance being as the square of the veluity
directly. ,

Put w = weight of the case of the rocket and
head, : o
¢ = weight of the whole quant.lty of mat-
ter with which it is filled,
a = time in which the same is consuming
itself uniformly,
n = 230 ozs. 2
§ = 1000, -
d = diameter of the rocket’s base,
¥ = PD, the space the rocket describes in the
time ¢,
v = the acquired velocity in that time,
R = the resistance of the air to the rocket when
B movmg witha velocxty of feet per second

Ro?
Then F:oriir e the resistance at D3 and con-

sequently sned* — (m— —-) - (see Prop. 1.) will be

the motive force of the rocket at D m this case; and
(sned*8* — Rv*)a

“am =) — 1the acceleratwe force. Therefore

3 (sned*b* = rv*) 2gat L
v=2gft = = (am"—d)b‘g — 2gt; or putting
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2ag X sned** = b, 2agR = k, amb*® = I, and cB* = p, we
shall have v =—£E_—:;—t—- - Qgi; and lq;—ptv3 =ht -

kot — 2gh + Qgph:; and ﬁﬂher, putting b — 2g/ =g to.

render the expression as simple as possible, it will be
Iy — 1o — gt + kvt — 2gptt = Q; whence v may be
determmed in terms of # as follows :

Assume v=at+ B+t it + BIS + &c then
makmgt = 1; we havevy = A + 2Bf + 8¢# + 4DF +
5Et* 4 &c. : and substituting these in the given equation
it becomes as follows : :

IA4 2B + 38lkc + 4 4 5/

.= PpA — 2pB — $8pc — 4pD
2 3
—-q t ! : £ , t =0
+ ka* + 2kan/ + 2kac
- 2gp ‘ ' + B8

‘Whence equating the co-efficients of the homologous
terms to find the quantities A, B, ¢, &c. they become

PO IS L. N L L ikl
1’ T 3/3 ?
_ e+ %V — %q' - Qgipql
. 44 - .
_ lopg+ 24gp‘1— 85kpg* — 52ghp*el — 12801k + 8K ¢
©60P
&e. ! 8fc. &ec.

Therefore the fluent required is v = g, s MGk ? “‘ Qgp 1
g + %pt — kg g+ 2gp’1 Qhpg — ngpql
+ <5 £+
B 4
+ &c. = (in the ultimate case where ¢ = a)

agt2) o, 2
wsi Y= ?,7z§?(9-+28’>-‘9'}+

IENAS. andb ANRSTE g
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a ) .
;‘,‘5{}’(7 + 2g) = 2bpq (g +g1)} + &c.}; the velo-

city us required by the proposition.

Now to determine what this velocity is, we must first
find the value of R for the given casé of velocity &.
Now under the conditions, that the particles of the
medium are perfectly nonelastic, and that the medium is
infinitely compressed and affords no resistance to the
motion of the rocket but what arises from the inertia of
its particles, (which is the ground of our hypotheses con-
cerning the law of resistance), we shall, putting » for the
radius of the rocket’s base, or of the head of the rocket ;
J = the sine of the angle, which the slant side of the
head (supposing it conical), makes with the axis; p =
314163 s = the specific gravity of the medium, which .
is here considered as- the atmosphere; and g &= 16 feet,

(omitting the %) have R = —”%'-. (4rt. 28.)

Let b = 1, in order to render the expression as simple
as possible ; and the angle, the sine of which is /; 30 de-
grees; then = *5 or § (to rad. 1.): and taking the spe-
cific gravity of air at a medium, or 8 = 1%, Rr will be
found = ‘0002343 ounces ; which is the absolute resist-
ance the rocket suffers when moving with a velocity of 1
foot per second. Hence in numbers we shall have v =
w3 (1040832 + 193542 + 5616 — 9792 — 3896) =2733 ft.
when the first five terms only of the series are taken; a
number quite sufficient for our further enquiries.

As to the space described by the rocket it is # = fluent

. / * 8 —
o = ,,+pq+2g1> +M+'~l’g21;31. B oo 4

&c. = (whént :a)—-g—l- {9‘-‘!— %%‘ (g + 2gD) + b
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{ ‘(¢+2zl)-lq’} + 105 (Pa+ead-snG+en}

+&c.} 596

= 8010 feet ; the height of the rocket at the end of its
burning.

From the numbers here brought out, the above series is
shewn to be of a remarkable nature; and such, it is pre-
sumed, as very seldom occurs in practice. We observe
the first three terms to be positive, and to decrease with
common regularity ; when a sudden violation of law takes
place, and the fourth term becomes negative, and much
greater than that which immediately precedes it. The
fifth term being also negative and not uncommon with
regard to the fourth, we may conclude perhaps (as the
finding and working out more terms to give certainty to
the thing is extremely laborious), that the series will now
observe a proper law; in which case a very few feet
more would be added to the foregoing velocity by the
summation of a great number of its terms. Indeed it can
be shewn that it is very nearly equal to the truth by re-
ference to the similar result obtained in the 7th proposi-
tion, and the destruction of velocity By the retardive

force of gravity in the time of the rocket’s burning.

"~ 84, To find how far the rocket will farther ascend
with its acquired velocity.

Let x = any variable distance from the point to which

- the rocket has already ascended,
v = the velocity at that point,
a = 2733 feet the acquired velocity.

— (1040852 4129028} 2808 — 3916 — 649)

Then : will be the resistance of the medium to the

rocket when moving with velocnty v; or puttmg b=1as



60 THEORY OF THE MOTION OF ROCKETS.

w+ RY*

before, Rv* will express that resistance. Hence

will be the retardive force to the rocket; and conse-

._—w  —w W o
quently % = wf = % wiws’ the fluent of
which is ———, hyp. log. (w+R¥*).

4gR
Now ¥ = 0 when v = a; therefore the fluent cor-
rected is

w 2 2 .
x = ey {hyp. lIog. (w + Rms*) — hyp. log. (w+Rv )};
which in the extreme case where v = 0, is

w w <+ Rra*
) X = —g— hyp. ]og. - .

. In numbers, this expression will be found equal t§
79143 feet; which added to 3910 feet the space before
ascended, gives 118243 feet for the height to which the
rocket will rise before all its motion is destroyed, which
is rather more than 2% miles.

w w + Ra '
e hyp. log. R e shall have

2

Since

. Ra® 4
hyp. log. ::IR == il: x 5 and putting ¢ = 2-718282

w + Ra*
w4 RV T

the number whose hyp. log. is unity,

4,
fv ¥ . Whence v is found equal to
€ 4gRx
{w(t Y r1+ Ra"}i':
(rRo)d

the velocity of the rocket corresponding to the space
ascended ».
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35. To determine the time of motion of the rocket
through the above space. ‘We have found the retardive
w+RY?

l'.

force to the rocket movmg with veloc1ty v'to be
Th f o e = ===, hd

erefore ¢ % " mwIeH I w g
.

the ﬂueﬁt of which is

-—y R v
P —— (-—) cir. arc to rad l, and tan. H
%R \w (i"_ 3
(= )
-1

w \L . v
= — (—)7 cir. arc to rad. 1, and tan.
R . (w){,
R

--—(——-) %arc to rad. l, and tan, e o

()

which corrected is

arc to rad. 1, and tan. ———

e

whence, in the case where v vanishes, we shall have

( ¥

" which in numbers (retaining the same values of g, R, &c:
as before) = 974834 x 1'457 = 142 seconds or 14%
seconds. \, -

Hence the whole time of the rocket’s ascent is 174
seconds. 4

86. But to determine what time will elapse from the
rocket’s first going off to its return to the earth; we
must find how long it will be in descending from the

<

1= - (—) cir. arc to rad. 1, and tangent

!
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whole height to which it has risen. Te this end it will
be first necessary to enquire what velocity will make the
rexistance of the medium to be an exact counterbalance
to gravity ; and thence cause the motion of the rocket to
become uniform.

Now w ~ gv* being in this case the moving force ;

- RU*
B il be the accelerative force ; which when the

body moves uniformly, is nothing. Therefore putting
w —~ A

]

= 0, and reducing the equation we shall have

v= ( —’:—)‘i‘ for the velocity of the rocket when the

resistance will be equal to the force of gravity ; or when
the motion of the machine becomes equable.

By the theory of variable motions,
- v wv _w v
PE % T w2 W >
— -
whereof the fluent is
. w \p
w () +v

1
[ 21 n . z(__“f’__)%' hyp. log. (-vzv———-):{-:-:
R R

w \k
= — (). hyp.log. (_-——_E_____..> v
4g(a ) (-:%.)%-.-

Now when ¢# =0, v=0, and the whole vanishes.
w \;

Therefore in that case of the fluent wikere v ~F>
we shall have, -
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() C —)"

equal to infinity ; which shews that the rocket can never
acquire the exact velocity (%)*, but in an infinite

tzﬁf?(—':—)’} hyp. log

time.

To find # therefore, we must first determine what
velecity the rocket will acquire in descending the space a;
whieh being substituted in the expression for #, the value
of this will then be obtained.

v — 'wm; ' lw ‘v!;
2f T 2g(w—re*) = 2¢ ° w—RY
the ﬂuent of which corrected, is

Now %=

* = g B o
- Let ¢ = 2-718282, the number whose hyp. log. is
unity.

w
x w —_,
Thene = ( z) 4gm
w— RY

{w (c -—l)}
2gkx

X
rR% o

In which, writing 118243 for %, and the several nu-
meral values for w, R, &c.; v wilt be found equal to

61568 3
{288 (21828 -y §7

. 3078238
*0153 x 271828
= 3502 feet, Whence,

and v =% e
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ad )l +v
( ) hYP log. ~ 2 L =48, 2984
(o) —
And consequently the time that elapses from the going
off of the rocket to its return to the earth, is 65". 498, or
1 min. 5"% nearly. : »
" 87. In the solution to this problem, the density of the
medium (that of our atmosphere) is supposed to be the
same throughout the rocket’s ascent ; and the force of
gravity also uniform.. Now neither of these suppositions
strictly obtains; the former varying in such manner
that when the heights increase in arithmetical progres-
sion, the densities decrease in geometrical progression ;
and the latter varies as the inverse square of the distance
from the earth’s centre. Uhless, therefore, the decrease
of the force of gravity balances in a great measure the
decrease of density of the medium, the rocket’s height
will be affected from such circumstance; and will -be
somewhat greater than what we have above determined
it, :

In the same solution also, the resistance of the air to
the motion of the rocket is supposed to vary directly as
the square of the velocity ; an hypothesis which experi-
ments disprove when applied to military projectiles
with cannon balls. But ‘it is to be apprehended, that in
the motion of rockets, the deviation from this law is
scarcely to be regarded; since what takes place in the
flight of shot and shells to violate it, is in a great measure
obviated in the rockets, by the extreme heat of the flame
that rushes from them ; which rarifying the ambient air
promotes the motion of the particles striking the head of
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the rocket, towards its hinder parts; and since it is only
the immediate motions of such particles backwards that
can cause the law to obtain (for it would obtain precisely,
if; after the impact of the particlés they had no power to
impel others lying before them, but either glided off
from the surface struck; or had their force annihilatéd
by it at the moment of striking), it is to be expected that
the conclusions here brought outy which are gtourided on
this law of resistance, will be found to agree pretty cor-
rectly with the results determined from experiment.
But if they should not, let then the law of resistance
be as the nth power of the velocity, and the method of
solution will remain precisely the same as before. For
it is only the fourth equation in the preceding process,
namely, k" 7 = &c. that will vary or become affected by
any deviation from the law we have assumed; and there-
fore when this shall have been settled by experiment (the
only way in which it ever can be settled), and the absolute
resistance determined in any one case of velocity, and the
real strength of the rocket composition ascertained ; then 2
and 7ot till then, shall we be ablé to offer any unerrmg
rules to the military practmoner. )

PROP. XI..

88. To determine whether the motion of a récket ascend-
ing vertically in the atmosphere can ever become wniform ;
the law of resistance being directly as the square of the velocity,
as before. ‘

‘When the motion of a body becomes uniform, or the
velocity a maximum, the accelerative force is then
(sned’s* — rV?

(am=ct). b‘
celerative force (see the last Prqb) = 0, and reducing

T

nothing : therefore putting — 1 the ac-
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sned*a — am + ct )%
22 .
Whence it appears, that the velocity, and consequently
the motion of the rocket can never become equable ; be-
ing in terms of 7, the time of its burning; but will be greater
and greater unto the end of the time #, when the velocity
will continually decrease till the whole is destroyed by the
retardive force of gravity. And it is moreover evident,
that the motion of a rocket can never become uniform
under any law of resistance whatever.

the equation, we have v = 5. (

PROP. XII.

89. AUl things remaining as in the 10th Proposition, fo
find the velocity and space described by the rockety when it is
influenced only by the impelling force of the composition and the
resistance of the medium.

Here, gravity not acting, the accelerative force of the
(sned** ~ rv)a
(am—ct) &

as determined in Prop. 9. Therefore v = 2gf; =

(sned*$ — Rv?).2agt
(am — ct).b*

rocket at the end of the time 7 will be

= (l;utﬁng b=2agsned’¥’, k=24gR,

v i
h—kvt — I—pt?

() +e.
_) -

1 k ey
e hyp. log. (7 - t); which, when v=0,and #=0,

bi— kvt
l1—pt

l..am&’,andp_cb) > and

. 1
whereof the fluent is Z.0hE hyp.log. 22 7 ____

L1 , .
s 0="— 7 “hyp. log. -l-f-: therefore the correct fluent is
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ity
g‘i, "t oL i

1
SUPT GhE hyp. log.

— hyp. log. (—-— - ) 2 - hyp. log. 5 lpt and

hence by the nature of loganthms '
(—b—)%+ v ‘2 (ii)% Fi . A\E -
(—) Y = —pt :'or, putting (—k-) =

e ”
J:and-(—;)— = qv, we shallhzve :’;t: = EZW’

C i —j (=pt)”

and by reducing this equa. v="gT =gty 3 which,
S/t A U .
when =g, is v = Fy d=pi the velocity of the.

rocket when it just ceases burning. Or, restoring the
values of 7, w, /, b, &c., the velbcity of the rocket in this
_case will be expressed by

4-agd(men)"' _M(men)%

(me) 3 (amb*) , 7 - (amb’ —-ack) ? %

4'agd(mek) ) 4apd(sner)s 7
% ch
(amb*) C e (amk—ack?)
or taking R = 0002843, and 4 = 1, a5 ia Prop, 9, it is
r 5 Cooospasencst 2% ooopssamet
( 0009343) {(m) ~(am—ac) - N }

44 : ,;
2 0002383sm)* -{i"(-ooomm);-

(am) + (am=~ac)

4agd
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and substituting the values for , ¢, d, &c., which are as
follow : namely,

s = 1000.
n = 230 ozs.
w = 18 lbs. = 288 ozs.
¢ = 101bs. = 160 ozs.
= w4 c = 448 ozs.
a = 3 sec.
d=1ft
g=16 ft.
e = *7854.
1-95171 195171
. 694-1’5'15( 1844 — 864 )
tiso= 195171 195171
1344 + 864
—6941158154.;(:637094: 2820°825 feet; which is there~

fore the greatest velocity the rocket can acquire, and
which it does acquire at the end of its burning.

It is somewhat remarkable, that the whole resistance
of the air to the rocket, on the supposition that gravity
does not act, should so nearly approximate to the effect
of this force (reckoned as constant), when there is no
consideration of any resistance from the former; the de-
viation causing no more than (2896°9895 — 2820°325=)
. '"16°6645 feet per second difference in the greatest velocity
of the rocket on the side of gravity.

To find the space described: By theorem the 10th of va-

. I . o 1 e P
_riable motions #=u¢ = W =gt —
o5t (I—pt)”

™y @=py Pot J=pt = T; then T = —p;,and;
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=TT Whence 5= TR Y _TE_
"p'Whencex=p+p‘1‘”+T"‘ = (by
expanding Iz +T in a series) — '—’}— 2; - _T;;L -
3w, 410
;‘I‘:‘ Ij;;T S + ‘&c. ); the fluent of which
_ —JT __2!_ T+! T2 +1
i A O L T
T,'...l T“"‘l —jT
GuwtDi™ ~ Gwini® T &c') = Ty
el ( 1 T ™
7 wil ~ @uhi T @i
i ] 20— pt)~+}
T &) =4 § - + TG
( L G ) (=p*®
w1 Qw+1), /® (3w+1) I*™ -

(I—pt) > .
m T + &c. ) z, ,and_tbe,ﬂuent'gorrected isa=

1 1 1
? %’ —o. (w-l-l = el T Bwil
1 1.7 2 —pryv+1
ZoxT T &C-) _}:l- e { ==+ —F—

) (ko o L
w1 Qw+1). I -7 (3w+1) I

U=pty™ ' ;

G tee) = b s =0 fot

e (l—ap)® ( 1 _ U-gr | U-ap™
" \w+1 | (Quw+1). GBw41). p

B ) - L (B -
T (Bwt1). P ¥ "Nw+l 2wt
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41
3w+t

rocket at the end of the time #

- &c.) g; for the space described by the

40. Now to determine how far the rocket will farther
move before its motion is wholly destroyed. Put ¢ =
the velocity at the end of its burning = 2820°325 feet
per second, and v any variable velocity corresponding to
the space »; w = weight of the rocket = 448 ozs., and
R = "0002343 ounces, the resistance of the medium to
the rocket when moving with a velocity of 1 foot per
second. Then rv* will be the resistance to velocity v,

and R% the force by which the rocket is retarded by

Ay .= __ wo _
the fluid. Hence # = 2% = agwe and » =

Er hyp. log. v; and the fluent corrected x =

Q:; . hyp. log. 4. Which by substitution of numbers
is = 21672 feet.

Hence, it api)ears, that after the burning of the rocket
ceases, it will move to a distance of 21672 feet, or some-
what more than 4% miles, before all its motion is de-
stroyed, when it will remain at rest in the medium, there
heing no force to influence it in any manner or direction
whatever, and having no power to create motion in it-
self. :

41. Asto the time that the rocket would be in moving
through this space, it will be had as follows. The same
substitution as above being retained, the general fluxional

expression for the time ( #) namely — will be found =

2f

-




- ' THBORY OF THE MOTION OF ROCKETS. 11

-v -1
2gRV* T 2R’

. L 1
the fluent of whichis t = —— . Now when # = 0,
2gRV
) N 1

v==a, therefore the correct fluent of the time is t=x ~=——
2gRv

~ Zeva which, on v becoming nothing, will be infinite.

So that it appears, that the rocket will not describe the

above space but in an infinite time.

Suppose v =1 foot; then # =

a—1
= 183°344 se-
2gRa
conds or 2 min. 13 seconds. That is, the rocket will
only have been in motion 2 min. 13 sec. after it has ac-
quired the greatest velocity from its burning, before the
celerity of its motion will be reduced to 1 foot per se-
cond; and yet, notwithstanding this great annihilation .
of velocity in so short a time, the remaining small part
‘will not in any finite time be destroyed, though we know
the limit at which the rocket would attain a state of
.quiescence.

And from the result here determined, we couclude,
that into whatever medium a body is projected with any
given velocity, great or small, it will in no finite time lose
all its motion, So that, if the planetary bodies were
moving in a resisting medium, and gravity should sud-
denly be destroyed, the bodies would all pursue recti-
linear paths (that would be tangents to their orbits) to cer-
tain finite distances, which would not be wholly described
by them but in infinite times.

O

PROP. XIII.
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PROP. NIII.

42. Given the time that dapses from the first going off of

a rocket to its return to the earth, considering it to have ascend-
ed vertically ; and the velocity or foree of the wind ; to find
at what distance from the point gf prgwtzon the rocket will
fall.
 Before entering upon the solution of this problem, it
will be proper to make a few preliminary observations.
In the first place, then, we are to consider, that when a
body from rest is put into motion by a fluid, it can never
acquire a velocity greater than that with which the fluid
#wves 5 that when it has acquired that velocity, it will he
relatively at rest, or move uniformly and in common
with the fluid with its velocity. And in all other
cases tlie velocity with which the fluid strikes the body
to accelerate its motlon, w1ll be equal to the difference
of the given veloc1ty of the fluid and the veloaty acquired
only by a current, can ne’»;érﬁécqmre a velocxty greater
than that thh whlch the current moygs; nor indeed ex-
a:tly equal tq it in any finite time, as shall be hereafter
shewn; and in any intermediate state the current wxll
act upon the body only with the difference of i 1ts vclocxty
and the acquired velocity of the body. If another force
as that of the wind conspire with that of the stream, the
body may acquire a greater velocity than the stream ;
that is to say if the velocity of the former be greater than
that of the latter; but it can never ‘arrvi've at a velocity
equal to that of the wind, on account of the resistance
that will be opposed to its motion after it has attained
A greater \_'qlocity than that of the stream. Therefore, in
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the case before us, the rocket in its sideral motion will
never arrive at a velocity greater than that of the wind,
nor precisely equal to it in any finite time; and conse-
quently will suffer no resistance from the medium in its
deflection from the original line of projection.

Again, the direction of motion of the wind being
horizontal, the action of the same upon the rocket will
be at right-angles to its axis, provided there be no rota-
tion of the rocket throughout its motion, which we will
suppose there is not. Therefore the force of the wind
to move the rocket in its own direction in the first

. virh o .
instance will be — r-, as determined in Prop. Art. 313

* and at any other instant, calling the velocity acquired v,
o h .
it will be % (v— )t the force varying as the square

of the velocity directly.
nrh
T’g—:
w = weight of the case of the rocket, considered
as merely cylindrical,
= weight of the matter contained in at,
m = w+c the weight of both the case and the
composition, :
a = time of the rocket’s burning,
v = velocity of the rocket in its sideral motion at
the end of the time 2.
Then » (V—v)" being the impelling force of the wmd

Let R =

am —

and —a———- (See Prop. Art. 17.) the weight of the

ar(V—v)?

mass at the end of the time ¢; will be the

accelerative force of the rocket at the end of that time.
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2agR (V—v)*

Now v=2gﬂ= o~ ; and '-(v—_-;’-)-; =
afn"g‘; 5 the fluent of which, is
1 2agm ‘
Y = - g hyp. log. (am —ct),

which con'ected, is

2
b e o hyp. log. -;53'—-, and hence

vi—-vy ~ ¢ —at
. QagRV’
e by log 2T
v = )
2ugrv am
M hyp. log. pr— +1

2 .
or, putting p = 2gRY » the equation will be

am
vp . hyp. log. —

am
¢ hyp. log. g 1
Now writing £ for hyp. log. am + —:;-, we shall have for

the fluxion of the space (. s ') = ot, after reduction,
) vt

Y- ? 3. k — hyp. log. (am — ct) } ’

z
Letam—ct = z; thent_—-—and;_—-'f-.y
; c ¢

zZv
pc (£ — hyp. log. z)

. z ) vz z
k — hyp. log. z e + T tE hyp log

= (by expanding the fraction
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z+-—~hyplog z+7hyplog 84 = k’ hyp.

log.* z -+ &c. } 5
the fluent of which is
-vz v z 1 1
s=—+ 7%7 + = (zhyp.log.z—z)-i-T

1
( z hyp. log.* z — 2A) + 5 (z hyp. log? z — SB)
+ &ec. } ; where 4, B, C, &c. denote the foregoing terms

with their proper signs. Or from further reduction, s =
1 1
- + cip i 14 -+ (hyp. log. 2z — 1) + —E—(hyp.

log* z—2a +—%3— (hyp. log? z — 33) + &ec. } Ay

B, &c. denoting in like manner the foregoing terms with
their proper signs; and so forward.
Now when s = 0, t =0, and z = am; therefore the
correct equation or fluent will be ,
vam vam

s= = -'pck%l-l-é(hyp log. am — 1) +

Z:,_— (hyp. log2am—2a} + = (hyp. log.s am — 33)

v (am—ct) v (am—ct) 1
+ &C.} - z + cﬁp { 1 4 —; (hyp.

log. (am—ct)—1) + -—kl;- (g hyp. log. (am — ct) 2’—2.&)
+ -—;z— ( g hyp. log. (am—ct) }3 -—33) + &ec. % =

vt (k— 1) vam
k pek

log* am — 2}\) + ?— (hyp. logJ3 am-—33> + &e. )

%(hyp log. am —1) + - (hyp
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—ct) § 1
+ _!(L;:.,?_'t)_{ (hyp. log. (am=—ct) - 1) + T(% hyps

log. (m-ct)%‘— 2A) + T:‘ ( { hyp. log. (am—d)} :

- 313) + &ec. % ; from whence, writing a for #,the de-

flection of the rocket at the end of its burmng will be

determined.
vz
The fluent of pc (k—hyp. log. z)
otherwise derived by dividing # by % minus the series
expressing the hyp. log. of z, and then taking the fluent
of each term separately. Thus the hyp. log. 2 =(z~1)
—3(z—1)*+ 3 (x—1) = 1 (z—1)* + &c.; therefore
by division we have,

might have been

Vé - v é l) kq-Q

pc(k —hyp.log. z) — pc Tt k‘ G T
. - P+ .

(z—1)% 4 T (z—1)% — &c. %; the fluent of

. v (1 1 . #=2
which is -F{Tz+w(z—l,) ~ “GR (z—-1)

k’.
+ :‘;4 (z—1)*— &c. } So that s, or the fluent of
—vz vz . —Vz v
¢ +pc(k—hyp.log.z)’ls ¢ +—p-;i z +
B+3
2£ (z—1)— (z 13 4 25 (z—})‘—&c.gi

which corrected, is

vam _v 1 1) -2 s
¢ P‘* + .E;- (am— ) - b2 (am—‘l) +
kBt v (am—ct) v

3
S e 1)t — -
Top \am: 1) &c.% — + —F
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g (am—ct) + — (am—ct b — %2— (am — ct —1)}

. B48 v
+W(am-:t—l)‘— &c. } = vt — P_Fk- (% am +
1 k= F3ES

25 (am—1) — -—Gk?— (am—])3 25 (am—-l)‘ -

&c. % g(am ct)-!- (am—ct-—l) _%;2__

b2
X (am—ct—1) + T-E’i (am—ct—1)* — &c. % )

Where ¢ being made = a, will give the deviation of the
rocket from the line of projection at the end of its burn-
ing as before.

43. To find how much the rocket will be farther de-
flected during the remainder of the given time.

Let v now-denote the velocity with which the wind
strikes the body at the end of its burning; and v any ac-
cession of velocity of the rocket in its sideral motion after

— gy \¥
that period in the time #. Then R—(va) will be the

accelerative force of the rocket ; the weight of the-whole
mass being now a constant quantity. Hence,

. . 2gni(v—v)‘ v 2gR? .
v(:2gft)=———;;———; or, =2y = i’

. 2¢R '
whereof the correct fluent, putting ¢ = -—fy— » will be

v —vv =gt

whence by reduction, we shall have
viqt
’ vgt + 1 3
where it is evident that  can never be equal to v, ex-
cept in the case where # is infinite. Again,

o=
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:_‘v_t'qt+l =V vqt+1’
. and
1
::vt——}-hyp.log.(vgt+ 1),

wanting no correction, since when ¢ = 0, # = 0, and the
whole vanishes. Therefore the additional deflection of
the body from its original line of projection during the
remainder of the given time is expressed by

vt — %hyp. log. (vgz + 1).

44, For an example. Let us suppose that the wind is
blowing the common gale of 15 miles an hour; or with
the velocity of 22 feet per second ; and that the time of
motion of the rocket as given by the proposition is 63”3
also let the values of the other letters included in the

problem be as follow : namely,

. w = 181bs = 288 ozs. h=3Hf.
¢ = 101Ibs. = 160 ozs. v = 22 ft. (as just men-

" m = 28 lbs. = 448 ozs. n=1z2 tioned.)
a = 3sec.r = £ ft. g = 16 feet.
- Then p (first part of the investigation) = 2‘5‘“ =
2agRV 2agv nrh _ 2anrbv 121
e~ ¢ X8 T s T gaps amdi

1
= hyp. log. am + r = 9°186876 ; which values, with

the rest, being substituted in the first 20 terms of the first

series expressive of the deflection of the rocket at the
end of the time 4, will be found = 7°10096 feet. Now
am

am—ct

am 4
# - hyp. log. e +1

vp . hyp.log.

v= . .
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Therefore making ¢ = a, and reducing the expression, v

== 4 feet ; and hence the value of v in the second part

of the process will be =2 18 ft. Also ¢ = 2R _ %2
" w w
nrh nrh 11

- —_ . — 4 .
x 5% = Sw = 2599 5 and ¢ = 60". 'Whence,

1 :
§F= V- 7 hyp. log. (vg¢z+1) =
2592

' 6
1080 — hyp. log. -—-l% = 67415589 feet.

And consequently the whole deflection of the rocket
. 15 681°45685 feet.

" ‘When the velocity of the wind is not so considerable,
the deflection will be accurately enough had from the
latter formula only ; for the deviation in such cases at the
end of the rocket’s burning will be very trifling, whether
we consider the mass to vary (as it really does) during
that time, or the constant weight of the rocket when its
body is consumed. And the difference of the acquired
velocities in the two cases will be too small to cause any
sensible alteration in the final results.

45. For another example. Suppose the wind to blow
at the-very gentle rate of two feet per second, and the
time of motion of the rocket as given by the proposition
50" also

w = 14 lbs. = 224 ozs. b = § feet.
¢ = 8lbs, = 128 ozs. n = ikt
r = % foot. g = 16 feet.

Then s = v¢ — %hyp. log. (vt +1) =

18144
55
If the velocity of the wind be that of 11 feet per se-

100 —

5911
hyp, log. 2336 = 12°655 feet.
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cond ; the deflection of the rocket will be 79 yards very
nearly. But in neither of these examples is the weight
of any appendage to the rocket taken into the account,
which would alter the results very materially ; making
them much smaller than they are here found.

~ 46. It may not be amiss now to enquire, how far a shell
would be driven by the wind from the vertical line of
motion during the whole time of its ascent and descent,
which we will suppose to be 63", as in the first of the
foregoing examples. Let the shell be that, the external
diameter of which is 13 inches, the weight whereof
prvrt

8

(where p = 3°1416) being the expression for the force of
the fluid (Ar¢. 30.) on the whole hemisphere of the

2

when loaded is 2 cwt. or 3584 ounces. Then

body, we shall have R in this case = il sandg =
2R % pnrt  pnrt 243343
w = w X8y T 4w = 3006576 ' VY bence
1
s=v— ) hyp. log. (vgt + 1) =
1386 3096576 h 1 27252:7741 — 1386
T Teaz3a3 TP OB Taasie T -

1315°19 = 7041 feet.

Therefore, notwithstanding the immense weight of
the projectile, the wind acting upon it. with a velocity of
22 feet per second, for 1 min. and 8 sec., will cause it
to fall 70°41 feet from the point whence it was projected,
an astonishing deviation for so ponderous a mass.

If the wind struck the body throughout its flight with
the same velocity as at first, the deflection of the shell
would be 75480294 feet ; or 23% yards nearly.

Ex. 2.—Let the same shell be thrown obliquely in a
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glven direction, and suppose the time of flight 40"; alsé
the wind to blow directly across the line of fire with the
same velocity as before; then will the extreme error
of the projectile be found = 31 féet.

If the ditection of the wind niakes any given angle
‘with that of projection, the result as above determined
must be lessened in the tatio of radius to the sine of that
angle, to get the true distance of the body from the plane
of projection at the end of its flight. '

Another example of a cannon ball. ~ Suppose a vtwelve- _
pounder, and the time of its motion at a certain eleva-
tion, 32” ; moreover let the wind be supposed to blow
perpendicularly to the vertical plane of projection with a
velocity of 29% feet per second, or at the rate of 20 miles
an hour, then we shall have for the maximum error in
this case 67'S feet nearly.

These examples are sufficient to demonstrate the
effects of a disturbed atmosphere upon military pro-
jectiles, in driving them from their original courses, as
well as to caution the practitioner, when in service, of_
the necestity of attending to this circumstance in cases of .
detached objects, where these are to be destroyed, and the
air happens to be violently agitated ; for without some
alteration being made in the direction of the engine, the
projectile may, in many instances, fall 30 or 40, or even
50 yards from the object, and conisequently produce no
sort of imjury to it whatever. But when the wind is
moderate, and does not blow so directly across the pro-
jectile, the directing the piece in the plane of the object, -
will be attended with more certainty perhaps, than
when it is pointed somewhat different, from the small
ness of alteration that will be required, which, if not

G
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strictly maintained, would incur greater error than if it.
were totally neglected.

PROP. XIV.

£7. Given the time of flight of a vocket, and the angle and
direction in which it is thrown, also the divection and velo-
eity of the wind; to determine at what distance from the plane
of projection, the rocket will fall; it being supposed ot to
‘revolve, but always to retain the position in which it first moved
of ; or to be parallel in its sideral motion to the Kne of
Projection.

The method of solution to this problem is precisely
stmilar to that of the foregoing. The angle of incidence
of the wind against the rocket (considered as a mere cy-
linder) is given by the proposition : therefore, if this be
denoted by /; we shall get for the force of the wind,
~ moving with the velocity of 1 foot per second,

CRT e } + 22 a-pt,
(where p' == 3°1416); which is the value of what R repre-
sents in the last problem. Hence p = 2ogRY ,andg:z

sgn will be known ; andalsok hyp. log. am + 7;

whlch being severally substituted in the general expres-
sion for the whele' deflection of the rocket in the direc..
tion of the wind; (determined in the foregoing proposis
tion), namely,

ve(b—1)  vam 1 .
—7 - o {(hyp. log. am—1) +—&(hyp.log.'

o
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am—z#) + —:— (hyp; log? am =35 ) -{—&c.%.-l—-:

v (am—ct) . i, .
*—Z—LT { (hyp. log. (am —ct)~1) 4 T( {hyp‘

iog.' (am--ct)}‘—QA) + —},— ( {hy‘p. log. (am'—-vt)}:

, 1 ,
-SB) + &e. } + vt — w3 hyp. log. (vt +1);

the deflection as required by the propesition may hencé
be determined : the angle which the line of direction of
the wind makes with that of projection being given, and
the several letters denoting the same quantities in both
investigations.

SCHOLIUM.

48. The solution to this problem, undet the various
considerations that it involves, even regarding the rocket
a mere cylinder, without any appendage whatever, will,
perhaps, long remain a desideratum in the true theory of
rockets. The force of the wind upon the body at any
given instant, as depending upon its position at that in-
stant, is a circumstance which a correct solution must
necessarily embrace ; and this is of itself no easy thing to

_ determine, including in it the computation of two sepa=
tate rotations ; namely, the one resulting from the action
of the wind; and the other as produced by the resistance
of the air to the rocket in its descent to the earth by
gravity. That there will be thes¢ two rotatory motions
is evident. For with regard to the first; though the
rocket in its sideral motion can never meet with any re-
sistance from the medium, yet the inertia of the varying
mass will, in conjunction with the force of the wind
(the centre of which force never lying in the same right-

€2
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line with the centre of gravity of the varying mass), pro-
duce rotation in the body; making that end of it move
to leeward which is less heavy than the other. This ro-
tation of the body, like that of the other, will be effected
about an imaginary axis, always passing through the
centre of gravity of the whole mass; the place of which
axis will, therefore, be variable, as long as the rocket con-
tinues to burn ; receding from the centre of the axis of
the rocket towards the head, till a certain quantity of the
composition is consumed, when it will return again to-
wards that centre, and at last come into it*. And the
angular velocity at any given instant, will be the same
about the centre of gravity of the body at that instant,

* To find the greatest distance of the varying centre of gravity of
the mass from the centre of the axis of the rocket. Put @ =£ the
length of the cylinder or axis, and x = the length of the uncou-
sumed cylinder of composition : then a — z will be the distance of
the centres of gravity of the case and of the consumed column of
composition, Let w=weight of the whole of the composition; and
d that of the case of the rocket ; and we shall have 2a : w : : 22

%’1 for the weight of the unfired cylinder of composition: whence
d4 :;f-, will be the weight of the entire mass. And by the na-

ture of the common centre of gravity dep — : — :: 6 =z
a

wr wr
e
w (ax—2%)
ad -+ wa
axis of the rocket, which when a maximum, its fluxion, will be
w (ax—-2? -
al(l-i—wx) , or of :L_::_, being\

taken and put =0; we shall get finally, x=% ( dw +d'>% -

for the distance of that centre from the centre of the

=0; therefore the fluxion of

.ad A
:’0—.; whence the question itself becomes determiaed.



N

THEORY OF THE MOTION OF ROCKETS. 8%

-as about the .corresponding centre of spentaneous reta-
ition, ' '

As to the second rotatioh, it is obvious, that if any
body, the ends of which are unequally heavy, move in a2
resisting medium towards a centre .of force, that the
heavier end, having greater power to overcome any re-
sistance, will preponderate, and consequently will ‘cause
the body to revolve; and the revolution will continue
until the body comes into a vertical position, when if no
«other force acted upon it, it would proceed forward in
that position.

The first of these rotations will evidently be the cause
-of a sensible deflection of the rocket from the plane .of
‘Projection, when the force of the wind is considerable,
and the action of the same against the surface of the
rocket not very oblique : nor will this deviation seem
strange, when we consider the great velocity that the
‘body acquires during the time it is on fire, and thecon-
‘sequent .extensive range afterwards ; that if the quantity
‘of rotation be but small at the end of its burning, the ultis
mate error must be important.

Let us suppose, that at the complete exhaustion of the
-composition, the rocket should have revolved through an
angle of 8°; or that its pesition at that instant, should
make with the position in which it was prejected, an
angle of that magnitude: also, that it shoyld have ac-
«quired a velocity that will carry it tothe distance of 1000
yards on the horizontal plane, reckoning from the point
where a perpendicular from the rocket falls upon that
plane : then it wil be found, that independent -of the
~ action of any other force, the greatest deflection of the
rocket is 199 yards ; which if diminished by the distance
that it is carried through by the wind, the remdinder
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would still be a difference too considerable to be disre-
garded in practice. It is on this account that the rocket is
thrown in a side wind, in any particular warfare with these
sachines, somewhat to leeward of the object it is meant
to destroy, for if this were not done, it is obvious, from
what has been observed, that the weapon could have no
effect whatever upon the object, from the distance it
syould fall from it, and even under the above circum-
stances, if the wind blew -very strongly across the body
of the machine, its effect, like all ether projectiles, Would
be sometimes uncertain.

The rotation of a rocket, from windward to leeward, as
produced by the action of the wind against it, being in-
evitable, unless the rocket’s motion be directly with, or
contrary to the motion of the wind, the rocket-engineer
will do well, when in actual service, to bear in remem=
brance this particular, and to choose such a spot,if possible,
from whence he can throw the rockets either directly
with, or directly against the wind, at the object to be
destroyed ; when its effects cannot but be certain, if the
object be within its sphere of conflagration. But although
circumstances should not be favourable to the choice of
such a position when the exigencies of the moment re-
quire the throwing of rockets, the certainty of their ef-
fects, #ven upon a single object, will be greatly secured
by attending to the foregoing observations : but from no
other knowledge than that derived from practice, can any
system of warfare with rockets, be so much advanced and
brought to perfection.

Having thus far proceeded in the theory of reckets
moving in an abandoned state, in different mediums, and
pointed out some of the difficulties that must be encoun-
tered to the farther extension of it, as well as to its pers
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fection ; I shall, after giving a few examples for practice
in this section, proceed to determine the circumstances
attendant on the motion of wheels, when influenced by
the impelling force of rockets attached to their circum-
ferences ; the wheels being suspended on fixed horizontal
axes,

EXAMPLES FOR PRACTICE.

e

EXAMPLE 1.

The weight of thecase and head of a cylindrical rocket
is 141bs.; the radius of the base, and length of the case
5 and 38 inches ; and the radius of the base, and height
of the conical head 5 and 12 inches respectively: to find
to what height the rocket will rise in the atmosphere in
a vertical ascent.

EXAMPLE IT.

Let a rocket of the above dimensions, &c. move off
in a direction inclined to the horizon in an angle of 30°;
to find the height of the rocket from the earth at the
end of its burning; granting it not to revolve, but to
retain throughout the positioa in which it was projected.

: EXAMPLE IH.

The weight of the case and head of a rocket is given
equal to 161bs. ; the radius of its base and also that of
the head (which is conical) 5% inches; the length of the
cylindric case ‘3 feet; and the altitude of the head 9 inches,
If when the rocket is thrown perpendicularly to the ho-
rizon it attains the height of 1§ mile from the earth,
what will be the time of its motion ?

EXAMPLE 1V. -
How high would a 2¢-pounder cast iron ball rise in
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the atmosphere, if projected perpendicularly to the hori-
zon with a velocity of 1200 feet per second ?

EXAMPLE V., -

Let a 10-inch shell, the weight of which unloaded is

§91bs., be projected vertically in the air with a velocity

of 1700 feet per second ; to determine where it will fall,
the velocity of the wind being 19 feet per second.

, EXAMPLE VI. .

Suppose a solid cylinder of brass of 3 inches radius,
and 2 feet in altitude, and having a hemispheric end of the
same diameter as the base of the cylinder, to be projected
vertically in the atmosphere with a velocity of 1500 feet
per second: to determine the period of its return tq
the earth, it being supposed not to revolve, or to change
the position in which it was projected ; which it will not
if the atmosphere continues calm.

EXAMPLE VII.

Given the same as in the last, and the time of the
cylinder’s return as thence determined; to find where
- it will fall; supposing the wind to have blown the smart
gale of 40 miles an hour,

EXAMPLE VIil.

" The time of flight of the rocket, Ex. 3., is given equal
to 26", and the angle at which it is thrown 43°; also
the direction of projection north-east by north. The
wind blows at the rate of 26 miles an hour directly from
the south. 'What then is the maximum deflection of
the rocket from the plane of projection ?



SECTION 1YV.

©N THE APPLICATION OF THE FORCE OF ROCKETS TO
THE MOTION OF WHEELS SUSPENDED ON FIXED HO-
RIZONTAL AXES. ’

LEMMA l.

49, Let oD be a circhlar plane, vibrating about an hori-
govtally fixed axis nsm, parallel to the diameter AB 3 and in+
clined to SG, in any given angle SGC : to find the force of the
plane cD to effect rotation about nsm.

Draw G perpendicular to the
plane cD at G, and sL perpendi-
cular to GL at L. Draw the dia-
meter cD perpendicular to AB,
and 1H any chord parallel to the
same, and join Es, Gs; also let
£F and cT be parallel to L, and
meeting sL in F and T.

Put a = sT,
b = oL, or EF, or CT,
r = CG, the rad. of the given circle,
x = CE,
p = 8°1416,

‘Then pr* is the area of cp. Now By the circle En =

(2rx —-x’)’l", also SE? or the square of the distance of 11
- from the axis of motion = sF* + EF* = §* 4 (a + x)%.

Thereforev{ b+ (a+ x) % (2rx—x“)'7, will be the force

.Df all the particles in the semi-chord EH, and # {bf +

’
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(s + x‘)‘} (2rx - x;) the fluxion of the force of EcH,
which, putting f instead of 4* 4- 4, is equal to
I% (2rx —x’){' + 2axx (2rx — x‘){' + x‘_a'r(er—x’);',
and the force of ECH itself
(2rx = s b

3 4

S area ECH + 2ar area ECH —

3 3
(@rx —*)% x (2rx — x*)*
x ( r area ECH — 3 ) - 2 =

(when x=0)0. Therefore making #==2r, we shail have
1 5r*
Lo(rrars &)
. for the force of the semicircle cED, and consequently
5r*
27 (F+ 2or + =)
for the force of the whole circle as required : or restor-

ing the value of £, and calling the distance s¢ = {b‘ 4

(@ + r)‘} % 4, the foree of the whole circle will be
truly expressed by
e+ o .

‘Whence it appears, that the problem is i no way af-
fected by the inclination of the circle to §G; the result
being independent of any quantity expressive of that in-
clination. Hence, in all positions of the given circular
plane, if the axis nsm, be constantly parallel to the dia-
meter AByits force to produce rotation about nsm, will be
the same. And hence the distance of the centre of oscil-
lation of cp, equal to this force divided by g into pr*, will
not be changed from the circumstance of inclination of
the plane. :
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LEMMA 2.
50. Let the cylinder AB vibrate about an borizontally fixed
.axis n&m, parallel to the diameter CD of the circular section

CHDI, and in any inclined position SIF 3 to find its cewtre of
escillation.

Let 4 = sP,
b = AP,
d = aB, the length of the cylinder,
r = the radius of its base,
x = AL, any variable distance from a,
£ = the distance of the centre of gravity of the
solid from s,
p = 3'1416.
By the preceding lemma, the force of the section &F,
o cause rotation about nsm is
o (sL* + %- ).

I

‘Whence pr*z {(b— * +a* + —;— rt E , is the fluxion
of the force of that part of the cylinder,’ the length of
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which is x ; therefore the fluent
pf’x(g‘-]— -—-x" + -—r‘),

eanting no correction, is the force itself of that part.
‘Wherefore, when & =.d, we shall have

dpr*(g’+——d‘+ —r‘)

for the force of the whole cylinder. This divided by g
into the solid gives,
a: r
g+ —1-2}- + ? -

for the distance so of the centre of oscillation from s ;
which being also independent of any quantity expressing
the inclination of the cylinder, shews, that whether the
solid vibrates in a horizontal, vertical, or any oblique
position, if the axis nsm, continues parallel to cp, the

solution to the problem will be the same as aboves

Cor.—Because by mechanics, the distance of the centre
of gyration of a body, from the axis of motion, is a mean
proportlonal between the distances of the centres of gra-
vity and of oscillation ; we shall have for the distance of
the centre of gyration of a cylinder vibrating horizontally
or vertically, or in any inclined position, about an hori-
zontal axis, as nsm, parallel to cD,

1
(g1.+ dz+_z)’

where g and d denote the same quantities as in the pro-
blem.

PROP. XV,

51. Let ABCD be a solid cjlindriml awheel, of any given
substance, suspended on an horizontal axis X¥, passing through
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the centre of yravity 13 and supposing a rocket RO, considered
as a mere cylinder, and whose case is so light that its weight
may be neglected, to be strongly attached, at its middle point,
to the circumference at T; to determine the velucity of the
wheel’ s motion at any given instant.

Let ¢ = weight of the wheel,
r = IT its radius, ' '
¢ = weight of the rocket composition,
a = time in which the same is consuming itself uni-
formly, :
L = length of the rocket,
d = diameter of its base,
h=1p=r+ 1,
s = sned* (See Art. 17, Prop. 1st.) = the force of a
laminum of the composition when inflamed,
v = velocity of the point p at the end of the time 7,
r
/=16 < = = T
gyration of the wheel from its centre of

gravity.

/
Then by the laws of revolving motion, —%— is the mass

)the distance of the centre of

which being condensed into p, and the matter of the whole
wheel removed, will resist the motion of p, in the same
manner, as the wheel itself does in its natural state. Now
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to determine, at any time, what similar mass must be sub~
stituted in p, for the matter in the rocket ; the centres-of
gyration and of gravity of the latter must be first found 5
as the places of these points will not be fixed (4rz. 48.),
but will vary during the whole time of the rocket’s com«
bustion.

To find the places therefore of these two points at the
end of the time t. Let g (in the axis Ro) denote the

" .
centre of gravity, and join 1g. Now ¢ — —c;— will be the
weight of the unconsumed cylinder of composition at the'
end of the time #, and L — —Li its length; also L —

Lt
2a
the said cylinder from either end of it; and 4L —

——, the distance of the place of the centre of gravity of

Ls . .
— — v— - — t:
( 5L 2a) 5, the distance of the same point

243

from p. Hence 1g* = 1p* + pg* -"b‘+ id —— is the square

of the distance of g from the centre of motion I.
Now the square of the distance of the centre of gyra-
tion (s1?) from the same point, by Cor. to last lemma, is

1 1
g+gd+gr
where d is the length of the cylinder, and g = 1g.

Lf + 488 L(a—i) ”
Whence 1r* = o + et T
3L’t’ + 12a°%%* + L* (s —¢)* + 3a°r* .
124° T
and therefore,

(312 + 1285 + L* (a—1)* + 30°) ¢ (a—1)
124°5°
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: - R
is the mass which being substituted in p, will afford the
same resistance to the motion of that point as the mass of
the rocket at the end of the time 2. To this add the mass

¢_‘
b!.
1248307 + ¢ (3L 4 124°h* + L (a—£)* + 8a%*) (a~1)
12a%h*
will be the whole inertia that resists the communication
of motion to the point p*. Hence,
124°5*s
12408 + ¢ BL'F + 1245 + L* (a—2) + 3@ (a—1)
is the actual force accelerating the point p at the end of
the time #.

» and the sum

Now v = 9fgt; therefore

. 24a’g *st
Y = T2ael'tc BUP L1280+ 1 (a=# +34) @a—1)
Let 2 =a—t; then t =a—z, and t = — %, Therefore
. —24a%gk s
v =
124%0/* +c2 {SL‘ (a—=2)*+12a°5*+ L’z’+3a’r‘.§
, or, |
. 6 :
o= — qgl:’s_l_ :z e
3SR AU AAE YA 8
cr 4L* 2 az' +
To find the fluent of this equation. Let 3 -wheecl te
K * g ¥y Khas 1} %720t
z—k + z—u + z—w = V&w)

* I do it consider the weight or gravity of the rocket to have
any effect upon the wheel’s motion. For, supposing any autiber
of eomplete revolutions, the retardation and acceleration from this
circumstance, must so nearly counterbalance each other, that no
sensible error can possibly arise from the neglect of it. And in any
given part of a revolution, it can make but a very small impression.
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1 ) .
N 3 3a* (L24-4b* 1) | Sael’
3 _ 2 2
z 2 az’ + 4L z+ cL?

%, 4, and w being the roots of the denominator assumed
=0: then working according to the known rules for

- these cases, we shall get
1

K=T—w) (b—w)
1

YT e
W = !

(w—%) (w—u)
Hence x, U, and w being known, and the given fluxion

. . K

justly characterised by the sum of the fractions = z P
Uz wZ N . . 6a’gh’s

+ = + ——-into the given quantity — —=—,

Z—u
h*s o
-—%——-—, p,) will be

2

its fluent, (calling
7 { K hyp. log. (x—k) + U hyp. log. (z—#) + w x

hyp. log. (z-—w)} . Now z =a—#. And when t=0,

v =0. Therefore the correct fluent or general expres- °
sion for the actual velocity of the point y will be

( K hyp. log

o 2E).

zZ—w

é
+ u hyp. log + w hyp.

_If two of the roots of the foresaid denominator be
equal, as £ and %, then assuming
1.
« 3 8a (1 + 45 + r) sa ol
% S 2
% g 9% + e z + o
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LZz4+ M N
T L —
and teducing the fractions to a common denominator,
and -equating the numerators, we shall find

=1 2k — w
L= M =

Hence the fluent of
v %

8a* (L' + 45 + 7) Sarpl®
41> z+ cL*

1
G—wy "

,,and N =

3
3 — 2
=3 4 7 9% + .
Lzz + Mz Nz ’
CY; -+ Pk where L, M,
and N are known. And the fluent of this i is

%—4% 4+ ~ hyp. log (z=w),

= the fluent of

L hyp. log. (z—#) —

(as will be readily perceived by substituting a smgle vari-
able letter for the compound quantity z - #), which mul-
tiplied into — P, and corrected, gives

1
» { L hyp. log. oy

<+ ~ hyp. log. g for the general value of the

actual velocity of the point p in thxs case.

But in the above solutions we take for granted that the
roots of the denominator of the fraction are all of them
possible, which may not be the case under numerous par-
ticular data of the problem. It will therefore be proper
to integrate the fluxion. upon the supposition that the
cubic involves imaginary roots. Let these be % and »
(for being a cubic equation it must have two impossible
roots, if any,) and the real root w: then the two

T K% Uz
ﬂuxxona.l fractions pom—— and o in which the
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imaginary roots enter, being incorporated together in
order that the impossible parts may vanish, we shall have
N n .
_Pg(K-I-U 2z — (Ku + Uk) + wz %

2 — (b + u)z + bu zZ—w

for the transformed given fluxion; the fluent of which
is resolved as follows.
Supposec =k 4+ v, d=Ku+ ub, a =k 4 u, and
b = ku; then will
(F+v)z2 — (ku+ Uk & cxk—dz
Zt— (b + u) 2+ bu T z—az b’

a a
Let, now, » = x — rh then z = & + o z = X'+
* 2

az, l; and 2* —az +b=x+b — %—:(writingm"

a!.

e which is a positive quantity by supposition)

for  —

»* + m’. Therefore since & = %, the given fluxion

cxx + (%c- ;—4) %

i—di o) be transformed into , ,
z*—az+b x* - m*
. & _4
the fluent of which is - ¢ hyp. log. (+*+m*) + -
”m

into a cir: arc of rad. m and tangent x = (restoring the

values of a, b, m, %, &c.)

1 k : k
-2—(x+u)hyp.log. {(z - ;“ + ku — ( +'Qz.§
3 (K + U) (k4 u) — (x& + UE).

b — (‘_':_9_

+

X

into a cir. arc. of rad. { by - -(-l—i;-ﬁ—zr and tan.
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£
(z—- +“). Consequently the whole fluent is — »

{-—(K-{-U)hyp.log. §(s— +u> + by —

(k + ) 2(K — v) (k — 2)
4 } ‘ dhy— (k + u)*

{_‘tku-— (i+u)’}* and tan. (z - :

1
cir, arc of rad. Y

u)-l.-wx

hyp. log. (z — w) } This corrected, taking z=a when

v=0,gives, for the general value of the actual velocity of ,

—(E+ %) a+ ku
(ﬁ+u)z+h¢

into the difference of two circular

{ (x + ©) hyp. log +

2(x + v) (k4 &)
4ku — (B4 u)*

1 x
arcs (A —5) whose common rad. is 3 i 4hu— (k4 u) } z,

4.
and tangents & — £ : 2 andz - —%—‘-‘- respectively

- 1
-+ w hyp. log. :_Z }:P {-2— (r + ©) hyp. log.

a*— (k+u)a + ku 2(xk+U) (k4 u)
z*—(k+u)z+ ku . 4fu— (B4 )P

circular arc of ra?dius -;‘l,— { 4ks— (§+ u)z}-}and tangent
fru- SN (- - (=1,

by — (b-:u)' + ( _ k+ﬂ> (z__k+u)'

-
w hyp. log. m } .
Let us now restore the values of X, U, and w, and
we shall have,
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1 1 1
(k—u) (k— aw) + (v—k) (8—w) = (w—#k) (s—w)
1 1
T~ G—w)  @-h (=)
vtk — 2w
=) - w) (- w)’
2Qk+u) — 4w
(f —w) (¥ —w)
Therefore by substitution and reduction, the above ex-
pression becomes

K4+Uu=

K~U =

and, 2(k — ) (k—w) =

R i hvo. 1 a* — (k+u)a+ku
{ 2(w—k) w—w) TP B T Gtu)zthu
e(k+u) —bw ) .
into the circular

(bu— (k + o) w + w?) (4hu — (k+u)*)
arc of rad. %{m — (k4 u) }*and tangent

(h‘ _ G ju)’_) (a— )

k+u
2

o1
+ (w—#)(w—u) hyp -log.

bu 4 az ~

(@ + )

oa—w . ' '
v-z_—‘wf - And jnthe extreme case where t=4, or z=0,

1 & — (b w)a + bu
{ YO oy hyp. log. >

itis, p

2(‘4”‘)— LY’ .
+(ku—-(j+u)w+,wz)(““_(b+u),) into the arc

whose rad. is i{ 4ku ~ (F 4+ u) }J‘ and tangent

2
(g,,_..(b_"'_’.‘)_)a . .
4 e hvoidow XA
b G D s TTw=k) (w—u) TPB T
2 . . .

where it is evident that the impossible quantities % and #
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(partaking of the forms +n+my/ —1and £n—my/ —1)
are so involved as to make all the terms in which they
are contained real.
To illustrate this by an example.
Let T = } ft. the thickness of the wheel which we
will suppose of sound dry oak,
r = 2% ft. its radius,
¢ = 160 ozs:
a = 4 sec:
L= 3ft , R ¢ S
= }ft: ' '
b=r+4+id 4—2’ feet.

P_( 2&) #_f‘
a'gh's

Then ¢ = 9081'2875 o0zs. and p= —————1457178 8.

Now substltutmg the above valucs in the equauon

3argl*- 84* (L"+4-F‘+r’) 8 ...
7Le + e ; 2az+z_o, it

2 4 946 = 0; whereof

will become 23 — 62 +

one of the roots, by Cardan’s rule, is — 6'609 nearly;
and the other two are 6°305 + 4/ — 104 and 6305 —

. 1 ’
¥ — 104. HenceP { 5 (o k) =) x hyp. log.

@ —(k+u)athu 2 (k+4) — 4w
Fu Y -Gt a)w + w) Gh—(F6))

1 T
intoa circular arcof rad. 5 { 4hu— (k+u)* } and tangent

k'_l_-_u)z ' .
(hl_ (“4.'_, )a " . l _’ﬁ:ﬁ_}=
Trna T wHw—w WP log:
“-T
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1 109 194
~Fars32 VP 198 13365 ~ Tizsoos6
1 10°61
X 83812 + 270665 hyp. log. 561
(400051043 — 00003723 + *00174833) = 3237.1664
feet ; which is the actual velocity per second of the point
p of the circumference of the wheel at the end of the
rocket’s burning ; and consequently the angular velocity
of the wheel itself, at that time, is 1294.8665 feet.
Hence, knowing the actual velocity of the point p, the
number of revolutions per second that the wheel will for
ever continue to make (no extraneous or other causes be-
ing here supposed to operate) may be determined : since
it is only to divide the actual velocity of this point by the
circumference of the wheel, In the present example
therefore, where the circumference = 15708 feet, the
number will be 206.

1457178'8{

} = 145711788

PROP. 15.

52. To find the number of revolutions the wheel maln dwr-
ing the time of the rocket’s combustion.

In the solution to this problem, I shall confine myself

to the most difficult and laborious case, where the ge-
neral value for the velocity found in the preceding pro-
position has been obtained onthe supposition that the
denommator of its fluxion contains two impossible, and

one real root. Therefore » {mmtw—) hyp. log.

a*—(k+u)athu 2(k+u) —dw :
22— (h-pu)yz4-ku (ku— (k+ w)w+ w)(4ke— (k+ u)’)

X cir. arc of rad. % g 4ku — (k + u)‘} and tangent
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(ku - “—tﬂ) (a—2)
by (B +u)* +(a_ k+u\< - é+u)
4 B

1
+ (w—#k) (w—u)
city, let us, in order to render the expression as simple

1 .
TR’ 2= E4e)
2k + u) —4w
— (bt u) w+ w) (4hu — E+uwr)

hyp. log. -‘-’z—:%} being the velo-

as possible, put A =

Xa+ku, D=

= -;—§4Lu—(k+u)‘§", n="F%+u, and m =ku; then

. B
it becomes P{ A hyp. log:r. m + b arc of rad.
n? '

% a—x '
E . log.
and tan - ~ X o + WhYP log

. _n o ——

a= 7

a—wW
—w

%. Therefore since the fluxion of the space (#)°

=vi=_—-u§; we get a= —P%As& hyp. log.

z*—nz+m
”l

L ”— ,

4+ Dz ‘into arc of rad. E and tan. 4 X
a— —"—
-2

A
(a-2z)+|———+=z +W:'=xhyp.log.of:

3~ —

2

-y ¢
.
-w
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The fluent of the first term £ hyp. log. pr -

(®) omitting for the present the constant multiplier — pa,

SF=2 Hyp. log. _'%:i:;; ‘— fluent z x flux. of

hyp. log. ————— = = hyp. log. ——’—— + flu.

—nz -+ m —nz+t+m
22z nzir. : B
z —nztm flu. z"—-nz+m —-zhyp.lqg. 2 —nz+m

+ 2z + flu. ———(H) e gl C
1 1
Letw =2z — ™ then #=%, also x> =2z*—nz + - iy

1
and 22— nz 4 m= x*— :n’ 4+ m = (writing ¢* for —

1 .. e ooN .
-;n‘ <+ m, which is a positive quantity) #* + ¢*. There-

p - nxz __ n(xx + ini) d’ _
ore B = ez dm s+ 7 amd H =
T a2

% hyp. log. (#* + &) + ’:’ cir. arc of rad. ¢ and tan.

ki arc of

fedi ’— Ty
,,._.2 yp. log. (z* —n%x + m) + “irtm
rad. (—in*+4m)* and tan, (x— in). Also G= —_—z'-'::+m

= '}%; and € = :;;',—,'-_'7 érc. of rad. (—;r:’-]-m){'

and tan (z—4n).
So that.F X — PA or the fluent of the first term of the

given ﬂuxion, is — PA {z hyp. log +2z+4-

—nz$-m
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(—in* + m)* and tan. (z—3n) — — arc of rad.
m—3n
(—in* + m)% and tan. (z-—%n)} = — PA {z hyp. log. B

3nt—m

" .
+ (‘? -2 ) hyp. Iog. (z‘—nz + m) + m—’;—
arc of rad. (— n*+m)? and tan. (z—$n)}; which being

corrected, will be ug (a—=) hyp. log. B 4 (—;— - a)

hyp. log. (a*—na+m)— (—g— - z) hyp.log. (z* —nz+m)

. %,,2_,,, X 1,1 3

+ Tirtm arc of rad. (—3n* 4 m)* and tangent
(=3t m) {(a—im—(z—im!
“iF T m A (a— ) (2 )

t=a) PA ga hyp. log. B + (-g— - a) hyp. log. (a* — na

% = (when z=0 or

| n = T
+ m) — - byp. log. m + “Irim :frcofrad.(—;n
. . (=12
' m— Lan
Next for the fluent of the second term of the given
nt
ey a—z
flux. zinto arc of rad.Eand tan.
n an
a— — - =
2 2 ..

(;'), (omitting for the present the multiplier — pb).
n ’ an
m— — ”w— — _

;—,andpfor—-—”,then F=%X

‘Writing ¢ for
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arc of rad. E and tan. -9—(1—_—-2—)- —fluent of z into the flux.
pt+=

of the arc of rad. g and tan. _q_%l_‘;z_Z)_ (L). Now the
fluxion of an arc, in terms of the tangent, is equal to the
square of the radius into the fluxion of the tangent,
divided by the sum of the squares of the radius and of

—gE‘(p-I—a)zz'r. .

the tangent : therefore L= ¢+ 2)r
Efp+ z) + ¢ (a—2) —gE* (p +a)z%
(¢ +2r T OE(p+2)+ @2y

_ —gE* (p + a) 22 _
Ezpz_'_azqz + (E‘p—aq’)‘Zz + (& + q;) 2
—gE*(p+a) " 2%
E*+ ¢ Ep* + a’¢ E'p—aq’
0 3
E"+q" + B:._'__qz "'z+z
Now if the roots of the denominator of this fluxion be
—qE" f[) +a) Ezpz+az9;
2 2 y» V5 11 2 7
E*+ ¢ E' ¢
Ep—ag . - 2%
g »S; sothatL = — v X rEoz iz’

we shall have when 2s is affirmative,

impossible, then calling

R; and

1 . s
L= -V g-z—hyp.log. (= +2sz+n)-—-—:?ﬁx
arc of rad. (—s* 4 n)".f and tan. (z 4- s)}; and when 2s
is negative, L= -~ v g —;— hyp. log. (2* — 2sz 4+ R) +

S 1
:5’—-I-T arc of rad. (—s* 4 R)? and tan. (z = s)z .
‘Whence, — PD X F, or the whole fluent of the second
term of the given fluxion uncorrected, will be

M-ang—gl-hyp.

—PDz arc of rad. E and tan.
P+ =z
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log. (z* £ 2z + r :s—,s—arc of rad. (—s*+ r)¥

+ R
and tan. (z * s)}. Now z = a, when the space and
time are each = O; therefore this fluent corrected is

g(a+=) 1
—P—+——z— + PDV { 2 hyp.

arc of rad (—s*+r)}

—PDz arc of rad. £ and tan.

o a* 2sa 4+ R s
o8 z2*+ 2z 4+ R T —s'+R
(=s*+R) {(axs) = (z £5)}
—s*+R+(@@xs) x(z*t5)
: 1 il ] R .
z =0 or # = a) PDV %Ehyp.log. - :a+ F
(-3’+R)a§.

R * sa

and tan.

% = (when |

-:s_’f-r; arc of rad. (—s* +'R)} and tan.
This is the case when the roots of the quadratic deno-

minator (assumed equal to 0) are impossible. But if the

roots are real, and be denotéd by ¢ and; ; then assum-

. X 4 1

g s t 2. T FExe=+a

tion, &c. we get

s by reduc-

Whence L = — vg xzz + -—z—?-z—.g, and
z—i z—j

L= —vx{z +i byp.log. (s=i) } — vz {x+/hyp.
log: (z—j)}. ‘Whence also,—Pp X F will be = —pbpx x

g(a—%)
(z - i) } —rovz{ =+ hyp. log. (z -J')};

arc of rad. E and tan. — PDVX {z-{-ihyp.log. |
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which corrected, is
angx (a— z +1 hyp. log. —:———:) + z(a—z +7 X

hyp. log. ::j) % = (when z=0) PDV {x (a+i hyp. log.

'—’,a )+z(a+jhyp.log. ";a )5

Lastly, to find the fluent of the remaining term — PwWx
a—-

z —

hyp. log. : (k) of the original fluxion, itis K = —

2% _ fluent zinto the flux. of hyp.
z—w

PW {z hyp. log.
a—w
Z—w

log. z:—rw{zhyp.log. —;:—:%+z+wx

hyp. log. (z — w)} 3 which corrected is —Pw{ a—z 4

a

aw hyp. log. z:Z —~ z hyp. log. -fz:_—:%—%: Pw{a—z

— (z=—w) hyp. log. ::Z g = (whenz = 0)pw x
.{a+w hyp. log. 'w;a %

‘Whence, the whole space passed over by the point p
in the wheel, during the burning of the rocket, being
now determined, the number of revolutions :made dur-
ing that time may be computed.

In the solutions of the foregoing propositions, we have
supposed no other resistance to the wheel’s motion than
that which arises from the inertia of the mass about its
axis. But if the wheel revolve in a medium (as in air
for example), its motion will be further resisted from the
action of the same against the rocket, and that very
sensibly, when the velocity of revolution becomes great.
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And there will be but this force of the air upon the
rocket, opposed to the whole compound mass; unless it
be said that some slight resistance is occasioned by the
friction of the wheel against the fluid, which in air must
be too inconsiderable to affect in any degree the result
determined from the contrary supposition. That there
will be considerable friction of the wheel upon its axis is
evident, if the former be supposed possessing much
weight, and ought to enter as an additional datum into
the computation. Calling, therefore, the resistance to
the rocket to any given angular velocity (1) of the wheel
R, and v the corresponding velocity to time #, Rv* will
be the resistance to that velocity, and F being taken for
the quantity of friction on the axis, the fluxional expres-

sion for the velocity, namely, o= 2fgt will become (Vide
Prop. 14, Art. 51.)
—2g% (12a%h's —rv -r)
1205 F ez (L' (e—2) + e T 1975 F 357
or,

- Mz + 0v'z
P+ @z — NZ* 423
the fluent of which may be found by the method of in-
finite series, similarly to that at Arz. 33. Prop. 9. and
hence the space described be obtained.

Note.—When the rocket is fixed to the wheel in the
manner prescribed by the proposition, the value of R will
be had by a comparatively easy process, referring to what
has been laid down in section 2. And when it is screwed
upon the wheel, at the very extremity, so that no part of
the surface of the cylinder meets the fluid, the resistance
will be barely that upon the circular end, and conse-
quently a problem of still easier solution.

-

.
v =
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SECTION V.

OF THE APPLICATION OF THE FORCE OF ROCKETS TO
THE MOTION OF PENXDULUMS.

* 58. The pendulum, of which I here propose to consider
the motion; is that denominated the ballistic; and as it will
be required, in what follows on the subject, to know the
centres of gravity and of oscillation of the machine; it
will not be improper to give the methods by which the
places of these points may be determined mechanically
and previously to which, a short description of the pen-
dulum itself.

The ballistic pendulum is a massy ‘s
block of wood w, hanging freely upon -
a strong horizontal fixed axis AB, at s,
which axis is a part of the pendulum,
to which the block w is connected by
a strong inflexible wire or stem sT. It
was invented by our late ingenious L
countrymin Mr. Benjamin Robins, for the purpose of
ascertaining the initial velocities of cannon balls, or the
velocities with which they issue from the engines, and
is, as Euler observes, one of the most useful discoveries
ever made in artillery.

1. o find its centre of oscillation. It is well known that
bodies vibrating in the arc of a cycloid, perform all their
vibrations in the same time, from whatever point in the
arc the vibration commences. But this is not the case
when bodies vibrate in circular arcs, except those arcs be
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wery small. Therefore, to find the centre of oscillation,
or which is the same thing, the length of a simple pen-
dulum which shall vibrate isochronously with that of
the ballistic, suspend it freely by a given point, and
make it vibrate in a small arc not exceeding 4 or 5 de-
grees on each side of the vertical line of suspension, and
by a good time-keeper, observe how many oscillations
the pendulum makes in a given time (#), for instance
3 minutes, and call that number 7 ; then by the theory
of penduiums #* : # : : 394 inches (the length of a'simple

pendulum that vibrates seconds) : L x': %% s the length

, .
of the pendulum required ; or the distance of the eentre

of oscillation from the point of suspension; where it is
to be observed, that # must denote the number of seconds
in the experiment,

2. To find its centre of
gravity. Let a string or
ribbon be fixed to the
block at L, by means of
which, raise the pendu-
lug to a horizontal po- )
sition ; then let the string be put over a pulley M, so
placed, that LM may be perpendicular to the horizon, or
to the extremity iL, of the surface 1x. The pendulum
being horizontal, hang a weight w, at the end of the
string LMW, just sufficient to keep it in that position.
Then is sGL a lever of the second kind, the weight
acting at G, the centre of gravity, is equal to that of the
whole pendulum ; and the weight or power w, acting in
direction LM, preserves an equilibrium ; therefore, call-
ing the weight of the pendulum P, and the whole length
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. W, .
of it sL, g3 we shall have p: w:: g: -;g—, the distance

of the centre of gravity from the point of suspension s.

Note.—It is plain, that P, the entire weight of the pen-
dulum, is equal to the weight of the block and all its ap-
pendages, since in vibrating, the whole is in motion upon
the pivots A and x.

PROP. 16.

54. Let a rocket of given dimensions be strongly attached to

2he face of a given ballistic pendulum, so that the axis of the

Wormer, when produced, may intersect the axis of the latter per-

pendicularly : to determine the greatest arc through which the
pendulum will be impelled.

A little reflection on the nature of this problem,
renders it obvious, that the pendulum will not have
acquired its greatest ascent till the complete exhaustion
of the composition of the rocket; for though the force
of the mass, to prevent rotation about the axis of suspen-
sion at any intermediate time, may be an exact counter-
poise to the force of the rocket, yet on account of the
after combustion of the rocket, and consequent diminu-
tion of the weight of the remaining mass, the pendulum
will ascend, and so continue, as long as the rocket re-
mains on fire. To determine the problem, therefore, we
have simply to find an expression for the gravitating
force of the body under the circumstances here men-
tioned 5 which being made equal to the constant impel-
ling force of the roeket, the equation thus resulting will
afford us the means of determining the height required
by the proposition.
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Let the weight of the case of the rocket be inconsider-
~able with respect to the weight of the pendulum ; and
put

w = weight of the latter,

g = distance of its centre of gravity from the axis

+ of suspension, '
o = distance of the centre of oscillation,
(ge)3 = distance of the centre of gyration,

i = distance of the axis of the rocket,

» = radius of the rocket’s base,

n = 230 ozs. the medium pressure of the atmo-
“sphere upon one square inch, L 4

s = 1000, )

2 = 31416,

x = natural sine of the angle which the axis of the
pendulum makes with the vertical line, when
at its greatest altitude,

Then snpr® is the force of a surface of composition equal
to the rocket’s base, or the constant impelling force of
the rocket. Now by the theory of rotatory meotion,

8.2 is the mass which being condensed into that point
i

of the axis of the pendulum the distance of which from
the axis of suspension is represented by 4, the motion,
and every circumstance attending that motion of the pen.
dulum, will he the same, as when it revolved in its na-

tural form. Whence, gn:ux will be the gravitating force

of the pendulum when in the required ‘position: there-

S
fore putting go-:ux s snpr*, we shall have x = Jnprs

.

for the natural sine of the angle sought.
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For an example in numbers.
Let w = 570 lbs. or 9120 ozs.

mpr*i 1000 x 280x 3:1416 x 1 X 60
ow 183 X 843 X 9120
= *7143045, the natural sine answering to 45° 85".
If the arc through which the pendulum is impelled be
given, the value of s, expressive of the force of the com-
position, in reference to the force of the atmosphere, de-

noted by 1, will be i:::: . .
~ Hence, a very easy and simple method of determining
the strength of the composition of any species of rocket,
or pyrotechnic arrow, by means of the pendulum: for
in the experiment, it will be merely required to mark
the precise height of the pendulum at the final instant
" of the burning of the rocket, and substitute the natural
_sine of the angle which it subtends, with the other
known quantities contained in the foregoing expression
for that strength. Thus, suppose the diniensions of the
pendulum and of the rocket to be as in this proposition,
and that the pendulum is urged through an arc of 30°,
the natural sine of which is £ ; then will s ( = i;:‘:’: )
be found in this case equal to 700 very nearly, for. the
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strength of the composition, which is therefore 700 times
the elastic force of the atmosphere at a medium.
But in order to have the force of the composition as

precise as possible, let us take into the account the weight

of the case of the rocket ; that is, instead of finding the

centre of oscillation of the pendulum only, by the method

laid down at Art. 53, find this point when the case of

the rocket is fixed to the pendulum at the point where it

is intended that the force of the latter should be ap-
plied. Also, for the centre of gravity of the compound
* pendulum, it will be had by a very easy process ; for the

centre of gravity of the pendulum without the case of

the rocket annexed, is found by Art. 53; and the centre

of gravity of the latter is known, being the middle point

of its axis, the length of which is given ; therefore, hav-

ing also the distance between these two centres given,

and the weights of the two bodies, their common centre

of gravit} will be had by saying, as the sum of the

weights of the two bodies, is to the weight?’of either offw;';f“e‘ -
‘them  so is the whole distance of their centres of gravity -
from each other, to the distance of their common centre
of gravity from that of the centre of gravity of the other
body; and this being known, the distance (g) of the
same point from the axis of suspension may be deter-
mined.

- As to those circumstances which may seem to cause
some error in the result by diminishing the arc that the
pendulum describes, such as the friction upon its axis,
and the resistance of the air to the back of the pen-
dulum, they are sufficiently balanced (so little as they'
exist) by the effect of the former upon the number of
vibrations made by the pendulum in the experiment
which determines its centre of oscillation. (See Dr.
12
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Hutton’s Tracts, 4to. ed. p. 120, &c.) Therefore, the
force of the composition as above deduced, is perhaps as

accurately defined by the fraction %;l:,—:, as the nature

of the thing will possibly admit of.

Several other curious problems might now be proposed
concerning the application of rockets to the motion of
pendulums ; but as they would be more speculative than

practical, I shall pass them over, and conclude the section

by a brief and popular account of the experiment for
ascertaining the force of the composition.

The most striking object,in the experiment being
that of ascertaining the arc described by the pendulum
the means by which it is effected, cannot be too simple,
and free from causes, that may tend to prevent its pre-
cise determination ; considering how much the truth of
the thing sought depends upon the accurate measurement
of that arc. Now the best method with which I am ac-
quainted is that given by Dr. Hutton (and invented by
him), at p. 112, of the volume of Tracts before mentioned.
It is as follows :—Let a sharp spear or stylette be con-
ceived fixed in the centre of the bottom of the pendulum,
and a block of wood to be placed immediately under
the same having its upper surface formed into a cir-
cular arc, the centre of which is in the middle of the
axis, and its radius equal to the length from the axis to

" the upper surface of the block;~—then, in thé middle of

this arc, make a shallow grove of 3 or 4 inches broad,
running along the middle through the whole length of
the arc, and fill it with a composition of soft-soap and
wax of about the consistence of honey, or a little firmer,
and having its upper surface smoothed off quite even
with the general surface of the broad arc; then the
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whole being put into .motion, the stylette proceeding
from the bottom of the block, will move along the
surface of the composition, and trace the precise vibra-
tion of the pendulum; the measure of which may be
accurately determined by means of a scale of chords
(previously constructed), answering to the radius, whose
length is the distance between the axis of suspension and
the upper surface of the block, by‘measuring first the
chord of the arc marked out in the groove of composi-
tion, and then applying it to the said scale of chords.
And thus having found the number of degrees in the
arc of vibration, its natural sine (x), will be known.
‘Whence, the values of the several letters contained in the
expression for the force of the composition being now
found, by substituting them in that expression, the force
itself will be had in referen ce to the similar elastic force
of the atmosphere denoted by unity.

ON
- NAVAL GUNNERY. :

55. Whatever is advanced towards the perfection of
any system of warfare, whether for the use of the navy
or for the army, must in the present day be considered
as entitled to every attention. The following enquiries in
naval gunnery are intended to obviate the evil arising from
any undue allotment of charges for the artillery when in
close action, for it has already been conjectured (See Pre-
face) that the charges made use of are not always the most
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eligible for producing the greatest destruction to the
enemy’s shipping; owing to their being too great; a cir-
cumstance that ought ever to be attended to in all cases
of practice, as well military as naval.

The charges here given (which are computed for all
the natures of ordnance generally used at sea) rest upon
experiments, which, for accuracy, have never been ex-
celled; and every circumstance that was likely to affect
materially the quantity of them has been duly consider-
ed in the theory whence they are deduced. Many re-
marks might here be made in favour of their hoped-for
utility ; but as they will appear in the body of the work,
if is unnecessary to repeat them in the introduction, -

LEMMA 1,

56. If tawo spheres of different diameters, and different spe-
cific gravities, impinge perpendicularly on two uniformly re-
sisting fixed obstacles, and penetrate into them; the forces
which retard the progress of the spheres, will be as the absolute
resisting forces or strengths of the Jibres of the substances
directly, and the diameters and specific gravities of the spheres
inversely.

Let ® and r denote the absolute resisting forces of the
two substances; F and f the retardive forces; D, d, the
diameters of the spheres; q, g, their quantities of mat-
tér; and N and # their respective specific gravities,
Then the whole resistance to the spheres being propor-
tional to the quantities of motion destroyed in a given
time, will be as the absolute resisting forces of the two
substances and quantities of resisting surfaces jointly ; or,
as the resisting forces of the substances and squares of
the diameters of the impinging spheres; because the
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surfaces of spheres are as the squares of their diameters;

. M R p*
thatis — = — —_ )
m Fr X T -
T M F Q
But in general, — = — X ~——. Therefore eqnat-
m f q
ing these two values of the whole resisting forces, we
F Q R o' F R
have — X — =2 — x —/yand— = — X
f 79 T g T @ f
n* q . .. .
F = o} and since the quantities of matter in spheres

are in the conjoint ratio of their magnitudes and densities,
or of the cubes of their diameters and densities ; it is

r_'nxnv’xcﬁxn__nxdxn
f r a D3 N r D N

That is, the forces retarding spheres penetrating uniform-
ly resisting substances, are as the absolute strengths of the
fibres of the substances directly, and the diameters and
specific gravities of the spheres inversely. )

Cor.—Because the whole resisting forces depend on the
quantities of resisting surfaces, equal to the superficies of
the spheres; it is evident that these forces will not be
constant_until after the spheres have penetrated to the
depth of their radii. - This circumstance however will not.
materially affect the conclusions we have derived from
considering these forces as constant from the moment of
impact, when the depths of penetration are considerable
with respect to the radii of the spheres. And the times
of penetration, the velocities, &c. when the depths are
small, compared with the radii are considered in a sub-
sequent part of the essay.



120 CHARGES OF GREATEST EFFICACY

LEMMA 2.

The whole space or depths to which spheres impinging on
differently resisting substances penetrate, are as the squares of
the first velccities and the diameters and specific gravities of the
spheres directly, and the absolute strengths of the resisting suba

s v? D N r

stances snversely : or, — = X -5 X — X —.
J ’ s ot d ”n R

%
For by mechanics,-; = ‘:’—l; X —{- : and by the pre-

r D N S
ceding lemmia -L = — —- X —;therefore —
g F r X4 n’ 5
v* x D % N r
- o d n X R ' :

These being premised, I now proceed to the following
impertant subject

ON
THE DESTRUCTION OF AN ENEMY’S FLEET AT SEA BY
" ARTILLERY.

PROP: I.

5%. To find a general formula which shall express the
charge of gunpowder for any given piece of artillery, to produce
the greatest destruction possible to an enemy’s ship at sea ; it
being supposed of oak substance of given thickness, and at a
distance not affecting in any sensible degree the initial velocity
of the shot.

By the last of the foregoing lemmata we have gene-

sdnrv? ).}

SDNr
vary as the squares of the velocity and weight of the ball

rally, v = ( - Also the charges of powder
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- jointly. Hence, since it has been determined from ex-
periment that a charge of half a pound, impelled a shot
weighing one pound, with a velocity of 1600 feet per
second, we shall, considering v the velocity of any ball
impinging on the side of the vessel, have for the expres~
sion of the charge.impelling it through the space s
srRdnv*w '
2DNrs X 1600

Now to apply this in the present instance, it is first
necessary that a case be known concerning the penetra-
tion of a given shot into oak substance. Such a case we
are furnished with at page 273 of Dr. Hutton’s Robins’s
New Principles of Gunnery. It is there asserted, that
an 18-pounder cast-iron ball penetrated a block of well
seasoned oak (such as ships of war are generally built
with) to the depth of 8% inches, when fired with a velo- °
city of 400 feet per second. Making therefore this the
standard of comparison for all cases where the object is
of oak substance, we shall have for the charge generally,

400> x *42 SR7W
2 x 1600* x % X “onr °

or, because the balls are of the same specific gravity, and
the substance the same, or R = , and N = #; it will be

400* x 42 sw sw
X = 045 X —;
2 X 1600* X .4 D D

" that is, the charge varies as the space to be penetrated
and weight of ball directly, and diameter of the ball in-
versely. ) '

But the charge, by the problem, being to prodace the
greatest effect possible in the destruction of the vessel;
8, in the above formula must always be put equal to the
given thickness of the side ; sipce it is well ascertaimred,

~ e e ™ v, - e N T N— o~ © e TN AN s e — o p——
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that, for a shot to produce the most damage to any
splintering object, such as oak, it must lose all its motion
just as it ceases to be resisted by the object, which hap-
pens when the ball has forced its first hemisphere out of
the farther surface of it. And the quantity of motion"
destroyed during the penetration of the first hemisphere
of the ball into, and the exit of the same out of the ob-
ject, is precisely equal to what would be destroyed during
the penetration of the ball through one of its radii if the
quantity of resisting surface was equal to half its entire
superficies. Hence the charge in question will be
o5 x 52,
D

s being the thickness of the side of the ship, w the
weight of the ball, and b its diameter.

If it be desirable that the shot should pierce both sides
of the vessel, and the greatest damage to the ship take
place on the hithermost side; it will only be necessary
to double the thickness of the side of the vessel, and
take that charge in the following table corresponding
with the result. It appears to me that this would be the
most advantageous practice; for not only will there, in
this case, be a chance of killing a greater number of men
of the enemy, but of the ball’s striking the masts of the
ship; and every sailor who has experienced such an im-
pact on a mast in the hull of the vessel, need not be in-
formed of the resulting consequences.

REMARKS.

In this solution, no allowance is made for the splitting
of the timber that may take place when the ball has
nearly penetrated to the farther surface of the object, by
which the shot would be there less resisted, and its force

et P g e S S e~ T
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not wholly expended when it quitted the side of the
vessel.—This circumstance would be a matter of some
importance did not others of a contrary nature interpose
to counterbalance its effects. Thus, the loss of motion
which the ball suffers in passing through the intercepted
space of air between the two vessels, has this tendency ;
for it must not be imagined that the firing commences,
or can commence, when the ships are absolutely in con-
tact with each other, this being impossible ; nor can it
be supposed that the shot will impinge in any instance
precisely perpendicularly on the face of the ship, but will
strike it somewhat a little obliquely, and thence cause a
further compensation (from the greater space through
which it will in such case have to penetrate) to the effects
of splintering. These, and other considerations of less:
moment, but of an opposing nature to the one in ques-
tion, will, it is hoped, be sufficient to justify the prin-
ciples upon which the general expression for the charge
has been computed, (and from which the following table
of charges is derived), and render it of that signal prac.
tical advantage which it is desirable it should possess,
but which no other criterion than that which long practice
and experience afford, is able fully to confirm.

But it may now be urged that the foregoing solution
does not apply to the case in hand, insomuch that the
objects of penetration are at liberty to move, being afloat
upon a very yielding fluid ; whereas in the experiments
upon which the theory hinges, the penetrated bodies
were blocks of wood solidly fixed. The objection ap-
pertains to those cases where the weight of the shot
bears a sensible proportion to that of the object; but in the
instance of a ship of war, with all its immense weight of
rigging, ordnance, and other appointments, it exists not

e e —— i —— .\
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to that degree as to make the difference in the depth of
penetration an object of the smallest consideration in the
allotment of the charge.

EXAMPLE.

An enemy’s ship is in sight : required the charge for
the 42-pounder guns to destroy her as quickly and com-
pletely as possible, when the ships have approached near
to each other. The side of the enemy’s vessel, a 74,
being 14 foot thick of oak timber. .

The diameter of a 42-pounder of cast iron being =
*557 ft. we get

sw Fx
‘045 x T=‘O4~5 X 5571
for the weight of the charge sought.

42
=5"938061bs. or, 51b, 150zs.

ANOTHER EXAMPLE.

A piece of fortification is to be destroyed, consisting of
a bank of firm dry earth 2 yards thick supported on each
side by planks of oak $ foot thick ; required the most
efficacious charge for the battering 42-pounders.

A 24-pounder, fired with a velocity of 1300 feet per
second, into a bank of the above soil, penetrates it to the
exact depth of 15 feet. Wherefore, the quantity of
charge that would just cause a 42-pounder to penetrate

sdviw
Y25 x 1600*
6% °46 x.1300" x 42
2 x 156 x 557X 1600*

through the bankin question will be denoted b

(Art. 55.), which in numbers =

= 4°5796 lbs.

And that which will just force it through the thickness
of the planks (3 feet), by 5:0841561bs. (See Table.)
Whence, the charge required is 9°663786 Ibs.
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58. Containing the various charges for the 12,18,24,82,
36, and 42-pounder guns for producing the greatest effect
in the damage of the vessel in all cases of close action;
the substance or object being of oak materials from the
thickness of 1 foot to that of 6 feet, regularly ascending
by 1 in the inches.

Na;;}"‘ Thickness of the side of the Vessel.
Ordunance. 1 ft. 1ft. 1 in. 1ft. 2in. 1ft 3in.
Pounder. ibs, 1bs. bs. tbs.
12 1471870! 1°504526| 1-717182| 1'830838
18 1-928571| 2:0809285| 2:240099| 2-410713
24 2:336445| 2°531149| 2725853 2:020557
32 2:830208| 3-066059| 3°301910| 3537761
36 3061608| 3:316742| 3:571876] 3'827010
42 3-391191]|. 3-673790] 3'956389| 4-238988
1ft.4in. 1fe. 5in. | 1 ft.6in. 1 ft. 7in.
12 1'962404| 2°085150| 2:207806| 2330462
18 2:571427| 2:732141| 2:892855| 3-053560
24 3:115261| 3:300065| 3-504669| 3:699373
32 3:773612] 4°000463| 4'245314| 4'481165
36 4°082144| 4°337278| 4'502412| 4'847546
42 4°521587| 4'804186| 5°084186| 5°360384;
T 1Tfe.8in. | 1ft.9in. [ TR 10in. [ Tf 11in.}
12 2453118 2575774 2°6098430| 2°82108
18 3-214283| 3374997| 3°535711| 3-606425
24 3'804077| 4088781 4'283485| 4478180
32 4'717016| 4°052807| 5°188718| 5°'424569
36 5°102680| 5:357814| 8612048| 5'868082f,
42 5651083 5°034582| 6217181| 6°409780] -
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N"O‘;"‘ Thickness of the side of the Vessel.
Ordnance. | 2 ft. 0 in. 2 ft. 1 in. 2 ft. 2 io. 2 ft. 3 in.
Pounder. 1bs. Ibs. Ibs. Ibs.

12 2:043742| 3°066308| 3°189054| 3°311710,
18 3-857139] 4°017853| 4°178567| 4'339281
24 4672893 4'867597| 5'062301| 5257005
32 5'660420| 5'896271| 6°132122| 6367973
36 6-123216] 6-378350| 6-633484| 6888618
42 6-782379| 7°064978| 7:347577| 7°630176)

2 ft. 4 0. 2 tt. 5 1n. 2 tt. 6 0. 2tt. 7 10,
12 3:434366| 3:557022| 3°679678| 3°802334
18 4°490005| 4°660700| 4-821423| 4982137
24 5'451709] 5°646413| 5841117 6-035821
32 6-603824| 6:839675| 7°075526| 7:311377
36 7143752 7:3098886| 7°654:20| 7°000154
42 7°012775| 8105374| 8477973] 8760572

21t. 8 in. 21t.9m 20 1010, ) 24 1) .
12 3'924900| 4°047646| 4:170302| 4292958
18 5:142851| 5:303565' 5464279| 5624093
24 6230525 6-425229] 6610033 6814637
32 7:547228| 7:783079| 8018030' 8254781
36 8-164288| 8410422| 8'674556] 8929600
42 9043171| 9325770] 9-608369] 9°890968

,31t0in. 3ft.1in. S ft. 2 in. 3 ft. 3 in.
12 4'415614! 4:538270| 4:660926| 4783582
18 8785707, 5046421 6-107135| 6-267849
24 7:000341| 7-204045! 7:308749| 7°593453
32 8'490632| 8'726483| 8962334 0198185
36 0°184824] 0439958| 9°695002| 0'9050226
42 10173567 10:456166| 10-738765| 11°021364|
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N‘:;."‘ Thickness of the side of the Vessel.
Orduance. | 3 ft. 4 in. 3 ft, 5in. 3 ft. 6 in. 3 ft. 7 in.
Pounder. 1bs. 1bs. Ibs. ibs.

12 4'006238| 5028804] 5°'151550| 5'2742006
18 6°428563| 6:5892771 6:749901| 6910705
24 7:788157| 7°082861| 8'177565| 8372269
32 0434036 9 669887| 9 905738| 10°141580
36 10°205360] 10°460494| 10715628| 10970762
42 11°303963| 11°586562| 12°869161| 12°151760
R 3 tt. 8in. 3ft.9m. | 3tt. 100 | 3 ft. 11 10,

12 5:306862| 5°510518] 5°642174] 5-76483n
18 7°071419| 7°232133| 7°392847| 7-553561
24 8'566973| 8761677| 8956381] 9°'151085
32 10377440| 10613291 10-849142| 11084993
36 11°225806| 11°481030| 11-736164| 11.991298
42 12°434350| 12°716958| 12:009557| 13°282156

4ft.Om. | 4ft. 1in. | 4ft. 2in. | 4 ft. 3in.
12 5887486 6.010142| 6°132798| 6°255454
18 7+714275| 7.874980| 8'035703| 8196417
24 0345780] 9.540493| 0°735197| 9929901
32 11:320844| 11.556605| 11:792546| 12:028397
36 12:246432] 12.501566| 42°756700| 13011834
42 18:564755| 13.847354, 14°120053| 14°412552

4 ft. 4 in. 415 iu. 4 ft. 6 in. 4 ft. 7 in. I
‘12 6'378110| 6°500766| 6:623422| 6746078
18 8'357131| 8517845| 8678550| 8839273
24 10124605| 10'319309| 10°514013| 10'708717
32 12:264248| 12:500099| 12:735950] 12°971801
36 13266968 13522102} 13-777236| 14:032370
42 14'6095151| 14:977750] 15°260349| 15542048
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N“;'f"‘ Thickness of the side of the Vessel.
Ordnance. | 4 ft.8in. 4 ft.9in. | 4ft. 10in. | 4 ft. 11 in.
| Pounder. Ibs. tbe. Ibs. Ibs.
12 6-868734| 6-001390| 7°114046| 7-236702
18 8'999987! 0°160701| Q321415 9482129
24 10:003421| 11°008125| 11°292829| 11°487533
32 13°207652| 13-443503| 13:679354| 13°915205
36 15287504 14'542638| 14°797772| 15052906
42 15-825547] 16°108146| 16:300745| 16°673344
5it. 0. St lin, S5tt. 2in. 51t. 3in.
12 7:3509358| 7°482014| 7°604670| 7°727366
18 0°642843| §°803557| 0°964271| 10°124085
24 11°682237| 11-876941] 12°071645| 12:266349
32 14°151056| 14°:386907 | 14:622758| 14'858609
36 15°308040| 15°563174| 15°818308| 16°:073442
42 16°955043| 17°238542| 17°521141| 17803740
H ool 41 KRN N 5 .6'n.
12 7:840082 7:972638 8005204
18 10°285099 10°446413 100607127
24 12°461053 12°655757 12:850461
32 15°0094460 15°33::311 15:566162
36 16'328576 16'583710 16'838844
42 18'086339 18:368038 18651537
ST HIR N L9 .
12 8217950 8340600 8°403202
18 10707741 100025555 11°089269
24 13'045165 132309860 13°434573
32 15°802013 16°037804 16°273715
36 17°003978 17°340112 17:604246
42 18'034136 102106735 10°44y;331
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N‘;“!"e Thickness of the side of the Vessel.
Ordnance. 5 ft. 10 in. 5 ft. 11 iu. 6 ft. 0in.
Pounder. Ibs. 1bs. Ibs.

12 8:'585018 8708574 8°'831230
18 11-249983 11-410697 11°571411
24 13:629277 13°823081 14°018685
32 16500566 | 16745417 16-081268
36 17°850380 18°114514 18:369648
42 19781933 20°064532 20°347131

59. In this table, the first column contains the nature
of the ordnance, and the numbers in the other columns
are their respective charges of gunpowder in pounds,
when the thickness of the object to be destroyed is as
specified at the top of the columns. If the thickness be
given in inches and parts of inches, take such parts of
the difference between the charge for the given number
of inches and that number increased by one, or the next
greater, and add them to the charge first found for the
given number of inches for the charge required.

The value of the decimal part of each will be had by
multiplying it by 16, the number of ounces in a pound,
and pointing off in the product from the right hand to-
wards the left, as many places for decimals as are con-
tained in the given decimal, and retaining the number on
the left of the point for ounces, increasing it by £, 3, 4,
or 1, when the first figure of the decimalis 2, 3 or 4;
5or6; 7or8; and 9 respectively. This hint is merely
given for those practitioners, into whose hands the table
may fall, who are not very conversant with decimal arith-

metic.
K
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Ex.~Suppose we wanted to find the charge for the
24-pounder guns, for a thickness of 23} inches. By the
table, the charge answering to 23 inches or 1 ft. 11 in. is
4°4785801bs; and for 24 inches 4°673300lbs. the differ-
ence of which is ©194720 Ib. this difference multiplied by
8 and divided by 4 gives '146041b. for the quantity of
charge for 4 of an inch. Now let this be multiplied by
16, and the product is 288664 ozs. Whence, the first
figure of the decimal being 3, a quarter of an ounce more
must be added to the 2 ozs. cut off on the left; so that
the charge required is 4lbs. 2% ozs. And thus for other
like cases of thickness.

60. The foregoing table of charges is not only useful
for the navy (for which it is more expressly intended),
but in many instances of operation for the artillerist on
shore; as the bursting open gates of besieged towns with
promptitude and effect; and breaking up all fortifica-
tions composed of wooden materials ; especially those of
a splintering nature, to which the charges apply most
correctly. In the case of a naval action, where the object
to be penetrated is of oak substance; the ball, by having
a small motion when it quits the side of the ship, tears
and splinters it excessively, breaking away large pieces
before it, which are not so easily supplied in the repara-
tion; whereas, on the other hand, if the shot had any
considerable velocity when it quitted the side, the effect
#t produced would be merely a hole, which would be
stopped instantly by the mechanic employed for that
purpose, and indeed in a great degree by the wood itself
from its own efforts of sptinginess. And therefore the
sole mischief that the balls can do under such circume

- stances of extreme velocity is, the killing or wounding

R e e Y -
PP e e e e e —— e e £ b o pe
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those men who may chance to stand in the way of their
motion.

If any object to be destroyed be so thick that it cannot
be completely pierced by any common engine, or if it be
of a very brittle nature, such as stone or brick ; then that
charge is to be used, which will give the greatest velocity
to the shot to produce the greatest effect. But in many
cases of bombardment this charge is by no means to be pre-
ferred ; for although the effect produced each individual
time be greater, yet in any considerable time the whole
effect would be less than that from a smaller charge
oftener fired, on account of the extreme heat it would
give to the engine after a few discharges ; and in conse-
quence of which greater time would be required for
eooling the gun and preparing it for farther service.

EXAMPLE.

61. Required the charge for a 24-pounder shot to
force the gates of a city with the greatest ease possible,
the substance of them being elm, 1 foot thick.

Here the object to be penetrated being elm, the small
letters in the general formula for the charge, namely

sdv*w
2Ds X 1600*

must be made to express the several numbers. of some
experiment made in the penetration of this substance.
Now by a mean of many very accurate experiments
made by Dr. Hutton at Woolwich, in the years 1783,
1784, and 1785, he found, that a cast iron ball of two
inches diameter impinging perpendicularly on the face
of a block of elm~wood, with a velocity of 1500 feet per
second, penetrated 18 inches deep jnto its substance;
K2
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hence we shall have d = % ft. v = 1500, and s = }} ft.;
also by the question, s = 1 ft. D = *46, and w = 24 Ibs.’
Therefore ‘
sdv'w  _ 1xFx1500*x 2+ _ 45Xx9
ZDsx 1600° — 2x 46X +3x 1600*  104x1'I11'
3:50881 Ibs. or 3 Ibs. 8% ozs. for the weight of charge re-
quired in this case.
Retaining the experiment of Dr. Hutton as a standard

for all cases where the object to be penetrated is of elm,
we shall get by reduction

sdviw sw
2Ds x 1600* 0676 x D

the charge for any piece of artillery, the diameter of the
shot of which is D, and weight w ; s being the thickness
of the object as before.

It is not unworthy of remark, that the gates of a
besieged town, or any like things, might be effectually
broken open by the gun itself, charged only with
powder, by placing it close to the gates, with its muzzle
from them; the momentum of recoil being generally
sufficient to force such objects completely. But this me-
thod for several reasons is not to be insisted upon. .

From the circumstance, that no English admiral, or
‘commander, seldom or ever commences firing till his
ships are about to be grappled with those of the enemy,
or until they have approached them so nearly as to effect
in no sensible degree the first force of the shot; the
above paper has, it is presumed, as much claim to utility
as any that has ever yet been offered to the navy in the
science of - gunnery: and even if the vessels be not so
closely engaged, but are fighting at the distance of about
30 or 40 feet from each other, no uncertainty of effect
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would result from the above charges, provided that the
shot impinged perpendicularly on the side of the vessel;
on account of the splitting of the timber in some degree,
which would make ample compensation for the defect
of velocity occasioned by the resistance of the medium.
It is impossible to deduce charges, that shall produce
invariably the effect above stated, when fired at any con-
siderable distance from the ship. The uncertainty of the
impact being perpendicular, from the unsteadiness of the
vessels, renders the thing at once nugatory, without any .
consideration of the real resistance of the medium to the
ball, and the deflection of the latter from a right-lined
direction. If the obliquity of the impact be given, or can
be determined, then the problem being otherwise rightly
solved, a charge can be found which shall produce the
same effects as those.above given; but if this be im-
possible (which it most decidedly is), then will the pro-
blem be at best but speculative upon certain hypotheses.
I shall, however, give an investigation of the problem
on the principles of resistance generally allowed, and then
conclude the subject by a few observations. But it will
'be proper first to peruse the following :
4

LEMMA.

62. To determine the velocity of a cannon-ball after passing
through any space in air, into which it is projected with a
given velocity. X C

Put 2 = the projectile velocity,

s = any variable space described in the time ¢,
v = the velocity. Then, :
Proposition 1, the retardive force of the ball at the

. . 3nv*
end of the time ¢ will be m, where N and 7 de-
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note the respective specific gravities of the ball and air,
and d the ball’s diameter. Therefore — oo = gfs=

$nv's y
%ﬁ‘;; andhenoe———:— = -- ==(puttingé for

———) bs: whereof the correct fluent is
hyp. log L =t

‘Whence, if ¢ be put = 2°71828, the number, the hyp.
log. of which is 1, we shall get

—:— =& s and v = —-:;— the velocity required.

Hence the velocity lost in describing the space s, is

b _ a(ch —1)
iy P PR
¢ c
o find the time of describing the said spate; we have
bs .
s s

—- Putz=ch;thenil5:=hyp.

o)

v

log. 2, and bs = —:—- or 5 = T:_ Consequently ¢ =

&s bs
e s 28 . ®
_;—_—;-—7’;—;andt=7=——-'; Now
c‘ 1
when # == 0, s =0, and -5 =g Therefore the
correct fluential equation is
c bs —1 .
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or restoring the value of 3, it is

Sns
8Nd —

t )

_ 8wd(c
- 3an

68. Having determined an expression for the time in
- which a ball moves through any space in.a resisting me-
dium, it will not be unworthy now to enquire, whether
there be a ball, which of all others, when projected with
a given velocity, will describe a given space in the least
time possible. To this end we have only to consider the
diameter d as variable, and make the fluxion of the
formula for the time = 0, and then solve the equation.

8ns

Let therefore -9—3:’"5-(‘: 8nd _ l) be put into fluxions,
8ns

or because N, o, #, &c. are given quantities, d (c 8nd - l)

L Z
= (puttingq:—ss%)dc d —d; and we get de 4 _
v PR
9*7-3=o;ord:,d-ch—d=o. ‘Whence

it evidently appears, that there is a ball which will answer
the conditions of the énquiry; aad it is further obvious
that the said ball will be different for different values of
sy this quantity being included in the expression for ¢.
The value of d will be readily found for any given space
by the method of approximation.

Note.—In this proposition, it must be observed that

\
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the ball is supposed to move in a right-line, or very
nearly so; or to be fired horizontally from the engine.

.

PROBLEM 2.

64. To determine the same as in the last problem, when'the
engine is at any considerable distance from the object, and the
resistance of the air taken into the account.

Here, as in the former proposition, the velocity v =
o

( Si‘l: )r is to be esteemed the velocity of impact. Now

on the principles of resistance before adverted to, which
considers the fluid as infinitely compressed, and the par-
ticles thereof perfectly nonelastic, and affording no re-
sistance to the body but what arises from their inertia;
if a denote the first or initial velocity ; « the distance of
the gun from the object, ¢ = 2:71828 the number, the
3

hyp. log. of whichis {, and 4 = —-—SN’;, where N and #
represent the respective specific gravities of the ball and
medium, we shall, by the foregoing lemma, have

' a= v |
Hence by the law of variation of the charges, and proper
substitution, the true expression for the charge in ques-
tion will be | |

) ,
sdv*we ey
2ps 1600*
for a perpendicular impact, and

Inx
sdvtwe ——
4ND

2Ds / 1600*
“for. an oblique ohe ; /being the sine of the angle of inci-
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dence ; the space (s) to be described in this case being the
hypothenuse of a right-angled triangle, when the effect
is the same. :

EXAMPLE.,

Resuming the first of the foregoing examples, what
must be the charge of powder to cause the shot to pro-
duce the same effect in the vessel when fired at the
distance of 300 feet from it ? ,

Substituting for the several letters in the general ex-
pression for the charge

2,
sdvtwe yreey
2ps 1600* . -

their proper numerical values, namely,

s=13ft. )

Ak sdvtwe Snx
d=}ft. i ,
p=-557f | "¢ 8% 2ns 16007 0 o00628lbs.

v = 1500 ft. \ or 91bs. 8% ozs. nearly for the weight
% = 300 ft. of the charge sought; being 8 Ibs.
aw = 42 lbs. 91 ozs. more in this case than when
N =% the vessels are in close action.

n = *0012.

J )

Hence, not only is the destruction of the vessel more
certain when the firing commences just as the ships
touch -each other, but a great saving of powder takes
place besides, insomuch that not more than two-thirds
of the quantity is expended, that would be requn'ed at
the distance of 300 feet.

From this circamstance then, and the impossibility of
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solving the problem rightly, from the various causes al-
ready enumerated, the effects of which are not reducible
to any regular laws; we conclude, that the foregoing
table of charges for close fighting, is the only one that
can be of the smallest service in practice; and that all
attempts at others must be rendered completely futile
from the nature and constitution of things.

PROBLEM 4., )

65. To determine the charge for any given piece of artil-
lery, to cause its shot to penetrate a block of well seasomed
oak, to any given depth not exceeding its radius.

Before entering upon the solution of this problem, it is
necessary that the strength of any given surface of fibres
of oak, to resist a force acting perpendicularly against it
be given. Let us, therefore, first determine this point,
by referring to some known experiment concerning the
penetration of a shot into a block of oak substance
some considerable depth. For it must be observed, that
the greater proportion the depth of penetration bears
to the radius of the ball, the nearer we shall be to the
truth of the thing in question, by supposing the resistance
throughout uniform. Now the greatest penetration with
which I am acquainted, is that of 34 inches, from an
experiment made by Robins with an 18-pounder cast-
dron ball, fired with a velocity of 1200 feet per second.
The radius of the ball being 2} inches, we shall be ex-
tremely near the truth therefore, to consider the pene-
tration under the supposition of the resistance being uni-
form from the moment of impact, 88 inches deep; since
it is obvious, that the resistance cannot be uniform until

ghe ball has penetrated to the full depth of its radius.
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A body being vertically projected in vacuo with the
velocity of the above impinging sphere (1200 feet per
second), would, by the laws of ascending bodies near the

earth’s surface, rise to a height denoted by ‘% (where

v = 1200, and g = 16 feet) or 82500 feet; and the re-
sisting forces being as the spaces described when the mo-
menta are the same, we shall have the uniform resist-
ing force to an 18-pounder penetrating oak to that of

33 .
gravity, as 22500 to ——, or as 8182 to 1 nearly.

Therefore the force that uniformly resists the ball is
equal to 8182 X 18 = 147276 lbs.; and this is the
strength of a laminum of oak fibres equal to half the
surface of the shot (39'27 sq.in.), and consequently the
force of 1 square inch of such fibres will be 3750-34381bs.
Call this r.

Put r = the radius of the ball given in the proposition,
a = the hemispheric surface of the same,
= the weight of the ball,
d = the depth to be penetrated,
x = any variable depth less than d.
Then the surfaces of sphencal segments being as theu-

heights, we have r :a:: ¥: —7- the surface of the seg-
. Rax . e
ment penetrated; and — s the resisting force to the

ball at the depth ¥, and —t—‘%— the retardive force. Now

by the theory of variable forces — w0 = 2fg# (the nega-
tive sign being taken because v is 2 decreasing quantity)

QagR¥F : ey . 2¢gRx*
= ud ; the fluent of which is — ¢* = 2% s
rw

rw
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which corrected, for the case where ¥ = d, is
Qagrd*®
"

Again, the charges vary as the square of the first velo-
city and weight of ball conjunctly. And it has been
found, that a charge of half a pound, impelled a ball
weighing 11b. with a velocity of 1600 feet per second.
Therefore the general expression for the charge is

agrd*
r1600* ° v

For an example, suppose the ball a 32-pounder, the
radius of which is ‘254 feet, and that it is to penetrate
the block to the exact depth of its radius; then the
hemispheric surface of the shot being 5845 square inches,
and r = d; we shall have

%% = 847992 Ibs. or 5'56787 ozs.
. for the charge required.

U =

EXAMPLES FOR PRACTICE.

BXAMPLE I.
. 'What charge will be required for a 24-pounder cast-
iron ball to cause it to penetrate to the depth of 1} inch
in a block of well seasoned oak ? :

EXAMPLE II.
For a 42-pounder shot, what charge is necessary to
force it into a ship’s side to the depth of its diameter ?

EXAMPLE III
The gate of a castle is closed against us by the enemy;
it is of elm wood, and 1} foot thick ; required the charge
for the 18-pounder carronade to force it at once com-
pletely?
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» EXAMPLE IV,

The firing upon an enemy’s frigate commences at the
distance of 108 yards; the guns are 24-pounders; to
find the charge that will cause the shot to do the most
execution with regard to the destruction of the vessel ?

EXAMPLE Vv,

‘What must be the radius of that cast-iron ball that
shall penetrate to the depth of its radius in’a block cf
oak when fired with a velocity of 800 feet per second ?

EXAMPLE VI,

Required the diameter of that ball which just pierces
a ship’s side of oak 1} foot thick; its initial velocity
being of 2000 feet per second ?

EXAMPLE VII.

Required the most efficacious charge for the battering
68-pounders, to demolish the fortifications of a citadel,
consisting of a bank of firm dry earth 8 feet thick, and
supported on each side by elm planks (solidly fixed) of
the thickness of 9 inches.

EXAMPLE VIII,

A piece of brick fortification is to be destroyed, the
thickness of which is 44 feet: required the fittest charge
for the 42-pounder guns; or that which will cause its
shot to effect the most mischief possible in a given time,
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A TABLE

OF HYPERBOLIC LOGARITHMS FOR ALL NUMBERS
FROM ONE TO TWO THOUSAND.

Inf. Neg.
0°00000000
069314718
1°09861229
1'38620436,

40
41
42
43
44

368887945
371357207,
373766962
376120012,
378418063

80
81
82
83
84

4'38202663
430444915
4°40671025
4'41884061
4°43081680

QCONS|[h WO ~=O

1-60943791
1:79175947
1'04501015

2'07944154]
219722458

45

3:80666249
382864140
3'85014760
387120101
3:89182030)

85
86
87
88
89

4°44265126:
4:45434730
4°46590812}
4:47 33681
4'48863637

2:80258500,
2:39789527
2°48490665
2-56404936
263905733

391202301

3-93182563|
3:95124372|

3970201901

3:98898405|

90
o1
92
93
94

4-49980967,
4°51085051
4:52178858|
453259940
4°54320478]

270805020
277258872
283321334
2°80037176)
2'04443898

400733319

4°02535160(

407753744,

95
96
97
98
99

4°55387689
4:56434810
4'57471098
4°58496748
4509511085

2:00573227,
304452244
300104245
313549422
317805383

4:00434450|,

4'11087386
412713439
414313473

415888308

100
101
102
103
104

4:605170109
4'6151205

4'6249728ﬂ
463472599
4644309090

321887582
3-25800654
320583687
333220451
3:36729583

417438727
418965474
420469262
421950771
423410650

105
106
107
108
109,

465390035
4:66343909)
467282883
468213123
469134788

340119738
343398720
346573500
349650756
352636052

4°24840524
426267988
427666612}
-4:20045944
-4:30406560

110
111
112
113
114

4°70048037
470953020
471849887
472738782
473619845

3:55534800
3:58351804
361091791
36375861

431748811
433073334
4°34380542]
4°35670883
4°36044785

115
116
117
118
119

474493213
47535001
476217393
4'77068462
477912

3°66356165
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TABLE OF HYPERBOLIC LOGARITHMS.

120, 478749174
121{ 479579055
122 4:804/,2104!
123! 4'81218436

124/ 482028157

165
166
167
168
169

5°10504547
511198779

5°11799381|
5°12396308|
5°12080871|

210
211
212
213
214

534710753
535185813
535658627
536129217
536597602,

125 4:82831374!
126, 4-83628191[
127; 4:84418709
128, 4-85203026,
129 4:85081240,

170
171
172
173
174

513570844
514166356
514740448
515329150
515005530

215
216
217
218
219

537063803
537527841
5'37085735
5'38449500|
538907173

130 4-86753445
131/ 487519752,
132 488280192
133 4'89034913:
134] 4'89783080,

175
176
177
178
179

516478597
5°17048400
5'17614973
518178355
518738581

220
221
222
223
224

539362755
530816270
510267738
540717177
541164605

135 4'90527478,
136) 491265489

137] 491998093
138 4'92725369
139| 493447393

180,
181
182
183
184

5°19205685
5'19849703
5 20400069

5200948615
521493576

225
226,
227
228
220

541610040
542053500
542495002
542034563
543372200

140 4:94164242!
141} 4:94875989
142| 4-95582700
143| 4'96284463
144 4-96981330!

185
186
187
188
189

522035583
522574667
523110862
523644100
5°24174702

230
231
232
233
234

543807031
5:44241771
5°44673737
545103845
545532112

145| 497673374
146 4'98360662]
147| 499043259
148 4'99721227
149} 500394631

190
191
192

194

524702407
525227343
525740537
526269019
526785816

235
236
237
238,
239

545058551
546383181
516806014
547227007
547646355

150| 5°01063529
151| 501727984
152| 502388052
153| 5°03043702
154{ 5°03695260!

195
196
197
198
199

5272009956
527811466
525320373
528826703
520330482

240
241
242
243
244

548063892
548479693
5'48803773
540306144
540716823

155| 504342512
156| 504985601
157| 5°05624581
158| 5062509503
159| 5°06890420

200
201
202
203
204

520831737
5'30330491

5°30826770)
531320508
531811990

245
240
247
248
249

550125821
550533154
550038834
551342875
551745290

160 5‘07517.:82}
161 '5-013140436l
162} 5087509634

163 5-093750201

164] 509986643

200)
207

209

532300998
532787617
533271879
533753808
534233425

250
251
252
253

25

552146092}
552545204/
552042900
553335049
553733427}
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145

| 255

2506| 554517744
257|5'54907608
258! 5°552050958
259 5°55082800

5'54126355)|

300
301
302
303
304

5770378247,
570711026
571042702
571373281
571702770,

345
346
347
348
349

5-84354442
584643878
5'84032478
585220248
585507102

260 5°56068163
261| 556452041
262! 5:50834450!
263’ 5:57215403
-264! 557504910

305
300
307
308
309

572031178
572358510,
572084775,
573009978,
573334128,

350
351
352
353
354

5'85793315
5 86078622
580363118
586646800
586020601

205; 5°57972983
266 5°58349031
267| 5°58724866|
263| 5:50008698

26| 5°50471138

310
311
312
313
314

573657230
573979291
574300319
574620319
574939299

355
356
357
358
359,

587211779
567493073
587773578
588053200
588332230}

270, 5°509842190
271|5°60211882
272! 560580207
2731 560047180
274561312811

315
316
317
318
319

575257264
57557422 1|
575890177,
576205138|
576519110

360
361
362
363
364

588610403
5888877961
589164421

5'89440233Q
580715387

275|5°61677110
276/ 562040087
- 277| 562401751
278 5°62762111
:270| 5°63121178

320
321
322
323
324

5'76832100i
577144112
577455155
577765232
578074352

365
366!
367
368
369|

580080735
590263333
590536185
5'00808294
5°910790664]

260/ 5°63478960
281| 563835467
282| 564190707
283{ 564544690
284 5°64897424

325
326
327
328
329

578382518
578680738
578996017
570301361
579605775

370!
371
372
373
374

5'01350301
501620206
5°01880385
5'02157842,
5°02425580]

285/ 5:65248018
286/ 565500181
287! 5:65048222
288| 566290048
289} 5-66642669

330
331
332
333
334

5'79909265
5'80211838

580513497
580814249
581114000

375
376
377
378
379

502692603
502058014
593224510
503489420
5°03753621

566988002
567832327
567675380,
568017261
568357977

335
336
337
338
339

581413053
581711116
5°82008293
582304500
5'8260001 1

'381
382

380

383
384

5°94017125
504279938
5'94542061
5°04803499
5'95064255

568697536
569035045

569373214
5697009349
570044357

340
341
342
343
344

582804562
5'83188248
583481074
5'83773045,

584064166 |

385
386
387
388
389

505324333
595583737
505842460
5°96100534
506357934/

L



146

TABLE OF HYPERBOLIC LOGARITHMS.

390
301
392
303
304

5-06614674]

596870756
507126184
507380961
597635091

4335
436
437
438
439

607534603
6 07764224
607993320
608221891
6-08449041

480
481
482
483
484

617378610
6 17586727
6°17704411
6°18001665
618208491

395
396)
397
398
399

597888576

508141421
508303628
508645201
508896142

440
441
442
443
444

6:08677473
6:08004488

609356977

609130088
6-09532456|

485
486,
487
488

489

618414880
618620862
6-18826412
6-19031541
6-10236249

400
401
402

5'09146455

403 5°

404

600141488

445
446
447
448
449

600807428
6°10031895
6:10255859
6-10470323
610702280,

490 6°10440539

491
492
493
404

610644413
619847872
620050917
620253552

405
406
407
408

409,

600388707
6-00635316
6-00881319
601126717
601371516

|

450
451
452
453
454,

6°10024758
61114673

611368218,
6115809213
6°11809720

6 20455776
620657593
6°20859003
6'21060008
621260610

410
411
412
413
414

6:01615716
601859321
602102335
602344759
6°02586597

455
4506]
457
458
459

6°12020742
612249281
612468339
612686918
6:12905021

6-21460810
621660610
6-21860012
622059017
622257627

415
416
417
418
419

602827852
60306852

6:03308622
603548143
603787002

460
461
462
463
464

613122649
613330804
613556489
613772705
6:13988455

622455843
622653667
6-228511

6°23048145
623244802

420
421
422
423
424

604025471
604263283
6-04500531
604737218
604973346

465
466
467
468
469

614203741
6-14418563
614632926
614846830
615060277

623441073
623636950
623832463
624027585
624222327

425
426

6:05208917
6-05443985

427
428
429

6-05678401
605912320
6-06145692

470
471
472
473
474

615273269] 515

615485809
615697899,
615009539
616120732

624416600
624610677
624804287

6249975
625100388

430
431
432
433

434

6-06378521
6-06610800
6-06842559
607073773

607304453}

475
476
477
478

479

616331480
616541785
616751649
616061073
6171700060

625382881
625575004,
625766759
625058146

626149168
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525
526
527
528
529

626339826
626530121

626720055|]

626900628
627098843

570]
571
572
573
574

634563630
634738021
634913899
635088572
635262940

615
616
617
618
619

6-42162227
642324606
642486902
642648846
642810527

530
531
532
533
534

627287701
627476202
627664349
627852142
628030584/

575

635437004
6°35610766
6°35784227
6:35057387
6-36130248

620
621
622
623
624/

642971948
643133108
643294009
6°43454652]
643615037

535
536
537
538
539

629226675
628413416
6285099800
628785856,
628971557,

636302810
636475076,
636647045
6'36818719I
636990098/

625
626
627
628
629

643775165

643935037

644094651
7

6-4425401
6-44413126

540
541
542
543
544

629156014
620341928
62952
629710932,
620804025

6-37161185
637331979
637502482
637672695
637842618

630)
631
632
633
634

644571082
644730586
644888939
645047042
6°4520489

545
546]
547
548
549

630078579
630261898
63044488
63062752
6:30800844

6°38012254
6°38181602
6°38350603

638519440
638687932

635
630
637
638
639

6453625
6°4551985
645676966
645833828
6°45000445

550
551
552!
553
554

630001828
631173481
6'31354805
631535800
6°31716469

638856141
6'30024067
639191711
639359075
6-39526160]

640;
641
642
643
644;

646146818,
6°463020946
646588930
646614472,
646769873

555
556
557
558
559

631896811
632076829
632256524
632435896
632614047

6:39692966
630850493

6°40025745
640191720
640357420

645
646)
647
648
649

6:46925032
647079950
647234629
647389070
647543272|

560
561
562,
563
564

632793678
632972091
633150185
633327063
633505425

640522
640687
640852879
641017488
641181827

650
651
652,
653
65

6-47697236
6478

6°48004456
6-48157713
648310735

565
566
567
568

569

633682573
633850408
63403593

634212142
6:34388043

641345806

641509696
641673228
6°'4183

641999493

655
656
657
658

659

648463524
6-48616079
648768402
648920493
6:49072353
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6°4022308-4
6°403753 4
640520556
6°49677-109
6°40828215

705
706
707
708
709

6558107 80)
6:55001524
6:56103007
65244400
0:56385553

750
751
752
753
754

6:62007321
662140565
662273632
662400523
6:62539237|

649978704
650128067
6:50270005
6'50428817
650578406

710
711
712
713
714

650520407
056607243
656507701
0'50048142
657088200

755
750
757
758

759

6:62671775,
662804138
6°62036325
6 63068330
6°6320017 8|

650727771
6°50876014
6'5102583-1
651174533
651323011

715
716
717
715

719

657228254
657368017
657507584
657640957
657780136

760,
761
762
763
764

003331843
6:03463336
0 03594656
663725803
663856779

651471269
6:51610308
651767127
6510914729
6°52062113

720!
%91
722
723
724

6:57025121
658003914/
658202514
658340022
658470139

765
766f
767
768|
769

663987583
664118217
6:64248680
664378973
6-64509097

652200280
652350231
6°52502066
6°52640486
652705792

725
726]
727
728
729

658617165
658755001
6588092648
650030105
650167373

770
771
772
77
774

6°64639051
0:64768837
664898455
665027905
605157187,

652041884
653087763
653233420
653378884
653524127

730
731
732
733
734

0°50304453
6°50441340
650578051
650714570
6'59850003

775
770
777
778

779

6°65286303
6:65415252,
665544035
665672652
665801105

653669160
6:53813082
6°530958596
654103000
654247106,

735
736,
737
738
739

6°50087050
6:60123012
6 60258789
6°60394382
6:60520792

780)
781
782
783
784

6:05929392
6:60057515
6:06185474
666313270
6 66440902

654301185
654534066
654078541
654821910
6°54065074

740
741
742
743
744

660005019
660800063
6-60934924
6 61069604
661204103

785
786
787
788
789

666565372
666695679
666822825
666949809
667076632

4| 655677836

655108034
655250789

6:55393340f
655535080,

745
746
747

748
749

661338422
6:614725060
6:31606519

661740298
6:61873898

790
791
792
793

6°67203295|
667329797
667456139
667582322

794

667708346
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795
796}
797
798
799

6:67834211
667959919
6:68085468
668210860
6-68336095

840
841
842
843
844

673340180
673459166
673578001
673696696
673815249

885
880
887
888
889

0-78558705
678671695
678784498
678897174
6°79009724

801

803
804

668461173
6-68586005
668710861
668835471
668950927

845
846
847
848
849

673933663
674051936
674170069
6°74288064
674405919

890
891
892
893
894

670122146
679234443
679346613
670458658
679570578

805
806
807
808
809

669084228
669208374,
669332367
660456206

669579892

850
851
852
853
854

674523035
674641213
674758653
674875955
674993119

805
89V
897
898
899

079082372
679794041
679905586
680017007
6°80128303

810
811
812
813
814

669703425
6-60826805
669950034
6°70073111
670196037

855
856
857
858
859

675110147
675227038

675343702
675460410
675576802

000)
901
902
903
004

6°80230470)
680350526,
6°80461452|
6°80572255
680682036

815
816
817
818
819

670318811
670441435
6 70563909
670586234
6-70808408

860|
861
862
863
864

6:75693239
675800450,
675925527
6706041469
676157277

905
900
907
908
999

680793494
68000393 1
681014245
681124438
6'81234509).

820
821
822
823
824

670930434
671052811
6+71174040
671295620,
671417053

865
866
867
868
869

676272051
6763884901
676503808
6:76610171
670734313

910
911
912
913
914

081344460,
681454290,
681563999
681673588
661783057

825
826
827
828
829

671538330
671659477
671780470
671901315
672022016

870
871
872
873
87

676849321
6-76004108
677078942
677103556

677308035

915
916
917
918

919

681892407
682001630
682110747
682219730
6°82328612,

830
831
832
833
834

672142570
672262979,
672383244
672503364
672623340

875
870
877
878
879

677422389
677536609
677650609
677764659
677878490

1920

921
022
923
924

6824373067
682546004
682654522
6'82762923
6°82871207

835
830
837
838

839

672743172
672862861
672032407
673101810
673221071

880
881
882
883

884

677992191
678105763
678210206
678332520
678445706

925
926
927
028

929

682079374
6:83087423
6'83105357
0°83303173
0'83410874/

—————d
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930
03i
Y32
033
934
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683518459
0'85625028
0'83733281
083840520
0'83047044

975
976
977,
978
979

6'88243747
688346259
6°88448665
686550067
688653164

1020|
1021
1022
1023
1024

692755790
6-92853782
6'02051677
6 93049477
6'93147181

935
036
957
038
939

684051653
0°84161548
184208328
684374005

{ 084

080
981
082

| 083

1025
1026
1027
1028
1029

6'8875 257
088857246
6880959131
689060912
689162590

6 03244789
6'93342303
603439721
6'93537045
693634274

040j
941
042
043
044

6:84481548
6‘84587988; 085
1i84604314), 986
6'84500527| 987
6-84000628! 988
989

689264164
6'89365635
689467004
6'89568270
680669433

1030
1031
1032
1033
1034

6-93731408
6-93828448
6°93925395
694022247
6-94119006

045
940
947,
048
949

685012617
685118493| 090
6'85224257|! 991
6'85320000!! 092!
993
994

1035
1036
1037
1038
1039

6'80770494
680871453
689972311
690073066
6:90173721

604215671
604312242
6 94408721
694505106
694601399,

950)
951
952
053
954

6'65435450

6'85540880

6'85646108|l 995
6857514006 096
6'85856503|| 997
6'85061400| 998
6 86066367| 999

1040
1041
1042

690274274,
690374726
6'00475077
6905753281043
6-90675478|1044

604697599,
6'04793707
694889722
6:04985646
695081477

055
056
957
958
959

6861711341000
6:86275791(1001
6863803391002
6864847781003
686589107 |/1004

6'90775528/|1045
6'00875478!11046
6°90075328|1047
6°91075079/(1048
691 174730| 1049

6:95177216
6:05272864|
6'05368421
6'95463886
6°05559261

960
961
962
963
964

6866933281005
6867974411006
6:86901445(1007
6°87005341(1008
6871001291009

6'91274282|{1050]
6:91373735/{1051
6'9147308911052
6-91572345|(1053
6'91671502|1054

695654544
695749737
695844839
695039851
606034773

967,
968
969

065| 6872128101010
066] 6:87316383](1011

687419850/(1012
6875232091013
6:87626461|1014

6:91770561(|1055
6:91869522|1056
6'91968385/1057|
6'92067150//1058,
6°92165818]|1059

6'96129605
6°96224346|
690318999
6-96413561
696508035

570
971
972
973

6877296071015
6878326471016
6'87935580( 1017
6880384081018

974

6-92264380|{1060
6:92362863|1061
6°92461240/|1062,
6'9285952011063

6°92657703(|1064]

6'96602419]

6°966967 14;
6'96790920
696885038
6-96979067

6 88141130]1019
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1065| 6:97073008|[1110] 7:01211529||1155| 7 05185562
1066/ 6:97166860||1111| 7:01301579{|1156| 7°05272105
1067|6 97260625({1112] 7°01391547(|1157}| 7°053585%.

1068| 6:97354302{1113| 7°01481435{|1158| 7°05444966i
1069! 6:07447891|11114| 7°01571242{{1150! 7°0553 1284
1070} 6.97541393|/1115| 7:016600968||1160| 7°05617528
1071}6:97634807({1116| 7-01750614}|1161| 7°05703698
1072|6°97728134{{1117| 7°01840180||1162| 7:05780794
1073| 6:07821374||1118| 7:01020665({1163| 7°05875815
1074| 6:97014528|/1119| 7°02019071(/1164| 7°05061763
1075| 6:98007504{1120| 7°02108396i|1165| 7-06047637).
1076| 6:08100574(|1121| 7°07197642|1166 7°06133437
1077| 6:98103468||1122| 7°022868C0|1167| 706210163
1078 6-08286275(|1123| 7°02375895(|1168| 7°06304816;
1079| 6:98378997|(1124] 7°02464903| 1169 7°06390305
1080) 6:98471632(|1125| 7°0255383 11170} 7:00475903
1081| 6:0856-4182||1126| 7:02642681{{1171| 7:06561336
1082| 6:98656646||1127| 7°02731451|[1172| 7:05646697
1083} 6°98749025||1128| 7°02820143|1173; 7:06731985
1084| 6:0884 1318|1120 7°02908756./1174! 7:068172001
1085 6:08933527|{1130{ 7 02097291|/1175| 7°06902343]
1086 6:99025650|(1131| 7°03085748|1176! 7°06087413
1087 6°00117680i(1132] 7°03174126i{1177| 7°07072411
1088| 6:09200643|{1133| 7°03262426!/1178' 7°07157336

1089] 6-99301512|1134| 703350645 1179 707242190

41090] 6°99393298|(1135| 7°0343870311180; 7°07320972]
1091 6:99484900|1136| 7°03526860({1181| 707411682
1092{ 6 99576616i1137| 7°03614840;1182| 7°07496320),
1093| 6:9g9668149(|1138| 7°03702761 ||1183| 7°07580886]
1094] 6:09759598||1139| 7°03790596| 1184| 7:07665382}
1095 6:9985006.4|{1140| 7°03878354/1185| 7:077409805
1096| 6:99942247||1141| 7°03966035|(1186| 7°07834158
1097| 7-00033446] 1142} 7°04053639;1187| 7°07918439
1098| 7°00124562||1143| 7°04141166{|1188| 708002650
1009| 7°00211595/1144] 7°04228617|1189] 7:08086790;

1100| 7°00306546]|1145| 7:04315992| 1190 7°08170850
1101| 7°00397414]|1146} 7°04403200{/1191| 7:08254857
1102| 7:00488199! 1147| 7°04490512(|1192| 7:08338785
1103| 7°00578902//1148| 7°04577658] 1103 708422642
1104| 710669523|| 1149} 7-04664728]|1194| 708506420
1105| 7:00760061|/1150] 7:047517221195| 708590146
1106] 7°00850518|[1151| 7048386411196/ 7°08673793L
1107| 7°00940893|(1152| 7:04925484,|1197| 70877537 1
1108| 7°01031187|(1153| 7°05012252]|1198| 7:0884087 8
l1109| 7°01121399][1154] 7050989451199 7°:08924316]
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1200
1201
1202
1203
1204

709007684
708090052
700174212
709257352
71003-10463

1245
1240
1247
1248
1249

7:12680081
7127609370
7°¥2849505
7120209755
7°13000851

1290
1201
1292
1293
1204

7°16239750]
2416317239
716304668
716472038
7-16549348

1205
1206
1207
1208
1209

700423485
7:00506435
7:00580322
7:09672138
700754885

1250
1251
1252
1253
1254

7-13089883
7:13169851
713249755
7°13320595
713409372

1295
1296
1297
1208
1299

716026597
716703788
716780918
7°16857000
716935002

1210
1211
1212
1213
1214

| 7°10085191

7 09837564
7°09920174
710002717

1255
1256
1257
1258

710167597

1259

7:13480085
7:18568735
7-13648321
713727844
713807303

1300
1301
1302
1303
1304

7°17011954
7°17088848
717165682
717242458
717319174

1215
1216
1217
1218
1219

7°10249036
7°10332206
7°10414409
7°10496545
7°10578613

1260
1261
1262
1263
1264

7°13886700
7°13966034;

7°14045304
714124512
71420365ﬂ

1305
1300
1307
1308
1309

7-17305632
717472431
7°17548071
7°17625453
717701877

1220
1221
1222
1223
1224

7°10660614
7°10742547
7°10824414
7°10906214
7°10987046

1265
1266
1267
1268
1269

714282740

7°14361760
7:14440718
714519613
7°14508447

1310
1311
1312
1313
1314

7°17778242
7°17854548
7°17930797
7°18000987
7°18083120

1225
1226
1227
1228
1229

7-11069612
711151212
711232744
7°11314211
711305611

1270
1271
1272
1273
1274

714677218
714755027
714834574
7°14913160

[
7°14991684,

1315
1316
1317
1318
1319

718150104
718235211
7°18311170
718387072
7°18614455

1230
1231
1232
1233
1234

711476945
2°11558213

1275
1276

7:11639414
#+11720550
711801620

1277
‘1278

11279

715070146
715148546
715226886
7°15305163
7+15383380

1320
1321
1322
1323
1324

718538702
7°1861443
7°18690102
71876571
71884127

1235
1236
1237
1238
1239

711882625
711963564
7:1204443%
2712125245
7122050988

|
1283

}1280
1281
11282

1284

715461536
7°15539630
745617664
7°15695636
715773548

1325
1326
1327
1328
1329

7°18016774
7°18992217|
7:19067603
7°10142033
7°19218206

1240
1241
1242
1243
1244

7-12286666
7412367279
712447826
712528309
712608727

1285

1286
1287,
1288
1280

7°15851400
7°15920190
7°16006921
7°16084591

1330
1331
1332
1333

716162200

719203422
719368582
710443685
.7°19518732

1334

719593723
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11335
1336
1337
1338
1339

719668657
7°10743535
7°10818358
7°10893124
7°19967835

1360

1381
1382
1383
1384

7:22083878
7°28056315|
7°23128700,
7+23201033 |
723273314

1425
1426
1427
1428
1429

7'26192709
7°26262860
7-26332062
726403014
7-26473018|

1340
1341
1342
1343
1344

7°20042480)
7°20117088
7°20101632!
7°20266120)
7+20340552,

1385
1386
1387
1388
1389

7-23345542
7:23417718
723480842
723562914
723633934

1430
1431
1432
1433
1434

7'26542973'
72661287

726682735]
7°26752543
7°26822302

1345
1346
1347
1348
1349

720414929
7°20489251
7:20563518
720637729
720711886

1390
1391
1392|
1393
1394

7°23705003
723777819
7°23840684
7°23021497
723993259

1435
1436
1437
1438|
1439

7:26802013] -
726061675
7:27031280}
7:27100854]
7°27170371}

1350
1351
1352
1353
1354

720785087
720860034
7'20034026
721007963
721081845

1395
1396
1397
1308
1399

7°24064969
724136628
724208236
7°24279792
7°24351297

1440
1441
1442
1443
1444

727230839
727300260
727378632
7:27447956
72751723

1355
1356
1357
1358
1359

721155673
721220447
221303166
#21376831
721450441

1400,
1401
1402
1403
1404

724422752,
724404155
724565507,
724636808
7°24708058

1445
1446}
1447
1448
1449

7277586460
7°27655640
7'27724773
7'27793857
727862804

1360
1361
1362
1363
1364

721523098
721507500
721670949
721744143

7°21817684)

1405
1406
1407
1408
1409

7'24779238
724850407
724921500,
724002554
725003551

1450
1451
1452
1453
1454

727031884
7°28000825
7°28069720)
7+28138566]
7+28207366

1365
1366
1367

368,
1369

7°21890071
721064204
7220373 84|
722110510
7°22183583

1410
1411
1412
1413
1414

725134498
7°25205395
725276242
7°25347038
7'25417785

1455

14564

1457
1458
1459

7°28276118}
7+28344823|
7°28413481
7+28482001
726550655,

370]
1371
1372
1373
1374

7°22256602
7+22329568
7122402481
722475341
722548147

1415
1416|
1417
1418
1419

7°25488481
7°25559127
725529724
725700271
7°25770768

14

1461
1462
1463
1464

7°28619171
7+28687641}
7°28756064}
72882

728802769

1375
1376
1377
1378

1379

7:22620001
7-22693602.
7'22766250l

7°22838845
722011388

1420
1421
1422
1423

1424

7°25841215]
725011613
725981961
7260522

726122500

1465
1466
1467
1468

7+28061052
7°2902928

7°29197578
7:20165621

1469

720233718

M

153
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1470
1471
1472
u73
1474

1515
1516}
1817
"1518|
1519

7'29301768
729369772
7°20437730,
720505642
7°29573507

7:32317072(/1560
7323830571561
7:32448008//1562
7°32514806(1563
7:32580750( 1564

7352441

735308192
735372233
735436202
7+35500190)

1475
1476
1477
1478
1479

11520,
1521
1522
1523
1524]

729641327
7729700101
7°29776828
720844510
720912146

7:32646561|1565
7327123201560
7327780541567
7°32843735|/1568
7°32000374/1569

73556411
7-35627988
7-356918:
735755
735819375

1481
1482

-7:3Q182234

1525
1526,
11527
1528

7°29979737
7:30047281
730114781

7:30249642

1529

7°32074969|1570
7°33040521|1571
7°33106031/1572,
7°33171497|11573
7:33236921( 1574

7°35883

7'35945(7%3!
7°36010397]
7:36073990
736137543

1530
1531
1532
1533
1534

730317005
730384333
730451505
7°30518822
730586003

7°33302301[1575
7:33367640|/1576
7334320351577
7-33498188| 1578
7°33563398/ 1579

7'36201055
736264527
7°36327959
7'36391350
7'36454701

1535
1536
1537
1538,
1539

7-30653140
7'30720231'
7'30787278
730854280
7°30921237|

7°336285606]/1580
7-33693691|1581
7-33752774/1582
7°33823815/1583
7+33888813(1584

7-36518013
7'36581284
7°36644515
7:36707706
7-36770857

1540
1541
1542
1543
1544

7-30088149
731055016,
731121838,
7'31188616
7:31255350

7-33953770|1585
7:34018684|/1586
7-34083555|/1587
7'34148385/(1588
7'34213173/(1580)

7-36833969
7+36897
7:36960072|
7°37023
7°37086017

1545
1546

7°31322030
7°31388683
7:31455283,1547
7:31521830/(1548|
7'31588350/1549

7°34277919|'1590
7'34342623|1501
7°34407285|1592
7-34471905((1503
7'34536484|1504

7°3714893

7°37211803
7'37274637.
7.37337431
7:37400186

1508
1509

7°316548181550)
7°31721241/1551
7'31787620(1552
7-31853055|(1553
7°31020246|(1554

7'34601021/1595
7:34665516]11590
7°34720070{1507
7-34704382](1598|
7-34858753(1599

7°37462902
7°3752557

7°37588215
7°37650813
7°37713371

1510
1511
1512
1513
1514

7°31986493(1555
7:32052696/(1556]
7-32118855|(1557

7°32184971(|1558
7°32251043(|1559)

7-34923082](1600]
7+34987370}|1601
7°35051617(/1602
7:35115823(/1603

7+351799871|1604

7:37775801}
7+37838371
7°37900813
7°37963215|
7:38025579]




TABLE OF HYPERBOLIC LOGARITHMS.

1605
1606
1607
1608
1609

7-38087904||1650
7+38150180|(1651
7-38212437(|1652
7+38274645(1653
7°38336815/(1654

7-408530571695

7°40013644/1696
7 4097419.((1697
7°41034710)[1698
7°41005188/1699

7°43543802
743602782
7°43661727
7743720637
7°43779512

1610
1611
1612
1613
1614

7°383080406|(1655
7+38461038|[1656
7-38523002//1657
7'385851061658
7+38647085(/1059

7'41155629|1700
7°41216033(1701
7°41276402|(1702
7°41336734(1703
7°41397029)(1704

7°43838353
743897159
7°43955931
7:44014668| .
7°44173371

1615
1616
1617
1618|

. 1619

7+38709024//1660
7:38770924//1661
7°388327861662
7+38804610]1663
7+38956395((1664

7°41457288|/1705
7°41517511|/1706
7°41577698|1707
7:41637848|/1708
7416979621709

7-44190673
7°44249272
7°44307837
7°44366368

7-44132039!

1620,
1621
1622
1623
1624

7°39018143(1665
7:39079852|1666
7°30141523(1667
7°30203157|/1668
7:39264752(1669

7°41758040/1710
7°41818082||1711
7°41878088|(1712,
7°41938058||1713
7°41997992((1714]

7-44424865
744483327
744541756
7°44600150
744658510

1625
1620
{1627
1628
1629

7+39326309|1670
7-39387829/1671
7304493111672
7'30510755/1673
7°39572161|/1674)

7°42057891|/1715
7°42117753(1716
7°42177579|(1717
7°42237370|1718
7+42207125(/1719

7-4471683
7°44775128
7°44833386
7°4489161
7°44949801

1630
1631
1632
1633
1634

7°39633529|(1675
7'30404860|1676|
7°39756154|1677
7'39817409|1678
7°30878628|(1679)

7°42356844{1720| 7°45007957,

7°42416528(/1721
7°42476176|[1722|
7°42535789||1723
7°42505366|(1724]

7°45061
7°45124168
7°451822!
7°45240245

1635
1636
1637
1638
1639

7°3993980s||1680
7°40000952/(1681
7°40062058/1682|
7:40123126//1683
7°40184158|/1684|

7°42654907||1725
7427144131726
7427738841727
7-42833319|/1728
7°42892719|11729

745208223
7°45356187.
745414108
745471005
7°45529849)

1640
1641
1642
1643
1644

7'40245152(/1685
7-40306100/!1686
7'40367029|.1687|
7°40427912 1688}
740488758 1689

7-42052084](173
7430114141731
7'43070708((1732
7-43120968|(1733
7431891921734

7+45587669)
745645456
7°45703200)
745760929
7°45818616)

1645
1646/
1647

{1648

1649

7°40549500|11690
7°40610338|,1691
7°40671773|:1692|

7°40731771 ‘1693
7407924321164

7°43218381(1735
7:43307535||1736]
7°43366654|/1737
7°43425738

1738 7

7434847881739

7°45876269)
7°45933890)
7‘4599147{

4604903
746106551

155-
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TABLE OF HYPERBOLIC LOGARITHMS.

17

1741
1742
1743
1744

7461640301785
7:46221404(1786
7-46278016/1787
7+46336305(1788
7°46393760(/1789

7-48717360([1830)
7:48773376/1831
7°48829352|1832
7-48885200) 1833

7°48041208| 1834

7-5120717%
7°51261554
7°51316355;

7°51370025;
7°514254565;

1745
1746
1747
1748
1749

7-46450083/(1790)
7:46508273|1791
7°46565531|(1792
7+46622756/1793
7466799471794

748997090/ 1835
7°4052040/1836
7°49108759) 1837
7°40164547/ 1838
749220304{/1839

7:51470076!
7°51534457
7:51588000,
7-51643330]
7°51697722]

1750
1751
1752
1753
1754

7°406737107(1795
7°46704233|1796
7°46851327(1797
7:46008388|'1708|
7:469654171799!

7-49276030|1840
7-49331725/1841
7-493873860)|1842
7:40443022/1843
7494086231844/

7°51752085
7:51800418
7°51860722]
7°51914906
7-51060240)

1755
1756
1757
1758
1759

7°47022414] 1800
7°47079377|1801
7°47136300) 1802
7471032081803
7°47250074)1804]

7-49554104|1845
7°49600735|1846
7496652441847
7°49720722| 1848
749776170/ 1849

752023456,
7°52077642]
7°52131798|

7°52185025
7°52240023

1760
1761
1762
1763
1764

7°47306909)1805|
7'47363711|1806]
7°474204811807
7°47477218|1808
7°47533924/1809|

7°49831587|1850
7°49886973||1851
7'40942329|1852
7°40997654(1853
7°50052049)1854

7°522040092
7°52348131
7°524021

7°52456123
7:52510075

1765
1766
1767
1768
1769

7°47590597|11810
7°47647238/1811
7:47703847|(1812
7°47760424/(1813
7°47816960|1814

750108212/1855
7+50163446||1856
7+50218649/|1857
7:50273821|[1858
7-50328963|/1859

752563008
752627801
752671756
7-52725500|
752779399

1770
1771
1772
" 11773
1774

7°47873483(|1815
7°479200064(11816
7479864131817
7°48042831((1818
7°48009216|(1819

~50384075(1860
7°50430156/1861
7°50494207| 1862
7505492271863
7-50004218)1864

7-52833 1;75
7+528869

7°52040640!
7:52904337
753048000}

1775
776,
1777
1778
1779

7°48155570)1820
7°48211802/1821
7°48268183}1822
7°48324442/1823
7-48380069 1824

7:50650178| 1865
7°307 141081866
7:50779008||1867
7:50823878/1868
7:50878717//1869|

7°53101633;
7:53155238
7°53203814
7:53262362;
7°53315881

1780
1781
1782
1783

748436864 /1825
7°48493028'1826]
7°48540161 (1827
7°48605262 1828

1784

7486613311829

7-50033527|1870
7:50988300]|1871
7+510430506]1872
7:51007775/(1873]

7:51152465/1874)

7:53369371
7.534228%
7-53476266
7°53529670
7°53583
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7°53636304][1920] 7:56008047
7°53680713(1921| 7°:56060116
7+53743004{(1922| 7:56112150
7+53706266)/1923| 7°56164175
7+53840500|/1924, 7:56216163

1965
1966
1967
1968
1969

7-58324752)
7-58375630
758426482
7:58477308
7°58528108]

7-53002700)(1925| 7-56268125
7-53055883|((1926, 756320059
7+54019032/(1927| 756371967
7+54002153([1928| 7-56423848
7+54115246](1929, 756475701

1970
1971
1972
1973
1974

7-58578882
7+58629631
7+58680354
7°58731051
7°58781722

7:54168310|(1930| 7°:56527528
7°54221346((1931| 7:56579328
7:54274355((1932| 7°56631101
7-54327335((1033| 7°56682848
7'54380287||1934| 7:56733568

1975
1976
1977
1978
1979

7°58832368
7:58882088
7:58033582
7°58084151| -
7°50034695)

7544322111935 7:56786261
7544861071936/ 7:56837927
7:54538075|(1937| 7:567809566
7-54501815(|1938 7°56941179!
7-546446271939| 756092766

1980
1981
1082
1983
1084

7:50085212
750135705
750186171
7°50236613
7:50287029

7-54607412(1940| 757044325
7°54750168|1941| 7°57095858
7-54812807[1042| 757147365
7°54855508|/1043| 7°57488845
7°54908271(|1944| 7°57250299'

1985
1086
1987
1088
1989

7509337419
750387784
750438124
7°50488439
750538728

7°54960017|1945| 7:57301726,
7-55013534(|1946| 7°57353126
7:55066124|1947| 7:57404501
7°55118687(/1048| 7°57455848
7°55171222||1949| 7°57507170,

1990
1991
1992
1903
1994

750588002
7:50639230
750680544
750730632
7°59789795

7°55223720|(1950| 7:57558465
7:55276208l(1951| 7 57609734
7-55328661{1952| 7:57660977
7°55381085(1953| 7°57712193
7:55433482((1954] 7:57763383

1995
1996
1997
1998
1999

7:50830033
7°50890046) .
7°50040133
7°59990196
760040233

7°55485852!11955| 7°57814547
7:55538104!/1956| 7:57865685
7:555905091957| 7:57916797
7:55642797|(1958| 7:57967882
7:55695057([1959| 7°:58018042

2000
2001
2002
2003
2004

760090246
7-60140233
760190196
7°60240134
7-60200046

7:55747290]1960| 7:58069975
7°55799496|11961| 7°58120983
7:55851674|(1962| 7:58171964|
7:55003820(|1963| 7:58222919

2005
2006
2007
2008

2000

755060950 1964] 7°58273849

4

7-60339934/
7:60389797
7-60430635
7-60480448)
7+60539236

THE END.



ERRATA.
Page 9, 1. 2, for are, read is.
19, 1. 6, for v, read t.
21, L. 4, after therefore, add, T2 xS
95, 1. 16, for <}, read X. ”
115, 1. 19, for weights of either, read weight of either.
116, 1. 27, for grove, read groowe.
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