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PREFACE.

It was not till the year 1810, when the Academy of

Copenhagen proposed as a prize question , the curve that

a rocket describes, when projected, in any oblique direc

tion, in vacuo , that I was led to consider the theory of

the motion of rockets in different mediums. Since that

period, I have at different times published, in the Philo

sophical Journal, some short and incomplete papers on

this subject ; but finding that myenquiries would extend

to a considerable length, and make a tolerable size trea

tise, which to military and other students would not be

altogether useless, I resolved to arrange the matter

which those contained with that of my other investiga

tions, and publish them with another new theory on

Naval Gunnery, in a volume collectively.

This, then , may be considered my apology for laying

before the public the present work ;-of the plan of ar

rangement of which, and of the principal articles which

it contains, the following is a brief outline.

Previously to entering upon the theory of rockets, I

have judged it not improper to lay down such parts of

the doctrine concerning variable quantities, and of con

stant and variable forces, as are usually employed in the

solution of mechanical problems, not merely for the tase

and convenience of reference, but for the more important
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object of giving to the young student a clear notion of

the meaning and application of those quantities ; for it

deserves to be remarked, that in most of our minor

works on mechanics, which are usually put into the

hands of beginners, they are not given in that eligible

and practical form , or treated with that clearness and

perspicuity, as immediately to satisfy the minds of learners

in general of their nature ; or of determining their pre

cise values in the resolution of problems in which they

may be concerned ; a defect, let me add , that cannot be

too much guarded against by writers of scientific and

elementary treatises.

The first section on rockets, includes the theory of

these bodies , considered as moving in a non -resisting

medium. It commences with the proposition respecting

the time of motion of a rocket in a vertical ascent, and

the height to which it will rise before all its motion is

destroyed by gravity ; then follows the investigation of

the curve that the body describes ; then that of its velo

city at any given instant of its flight; and lastly, that of

the range of the rocket on the horizontal plane.

Section 2, embraces all the theory concerning the re

sistance to planes, cones, spheres, and cylinders, moving

in fluids, that was necessary to establish the subsequent

theory of rockets. The investigations of the resistance

to a cylinder moving in a fluid in any direction different

from that of its axis are, I believe, new ; no work with

which I am acquainted containing a solution to this pro

blem generally, but merely of the common particular

case where the solid is supposed to move in the direction

of its axis ; and perhaps, the theory of the flight of

rockets is one, out of but very few , in which the sub

ject is at all applicable.
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The third section, contains the theory of rockets in

resisting mediums. First , the motion of the body in a

vertical ascent in the atmosphere is considered, and not

only the height to which it will rise before all its motion

is destroyed is determined, but also the time of its ascent

and descent ; a problem of no small labour, even upon

the hypotheses which I have assumed ; then the proposi

tion concerning its motion in a medium independent of

gravity is resolved, and all the circumstances relating

to it most fully developed ; next that of the effects of the

wind upon the rocket in deflecting it from the plane of

projection ; and finally , the computation of the errors of

bomb- shells and cannon - balls in any given case and

velocity of the wind. In this section I do not pretend to

have given a complete theory of rockets ;-the numerous

difficulties that attend the perfection of even what is here

offered , lead me to doubt of this from the ablest hands.

All I can say in its behalf is, that the several subjects of

which it treats, are at once of a new and natural descrip

tion, containing many facts of importance, investigated in

such a manner, as, it is hoped, cannot fail to benefit the

young student who is just entering upon such enquiries.

Section 4, relates to the motion of wheels, suspended

on fixed horizontal axes, as impelled by the force of

rockets attached to their circumferences. And in the

following section is given such part of the theory ofpen

dulums, abandoned to the action of these machines, as is

most useful in practice; as the estimation of the arc

through which the pendulum is urged by the rocket

during the time of its combustion, from which, an easy

and correct method is derived for finding the strength

of its composition.

Next follows a complete essay on nával gunnery, as
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relating to the most effectual means of destroying the

fleets of our enemies, when not far distant from the

artillery. It rests on the problem , which determines

the charge of gunpowder for any given piece of ord

nance, to cause its shot to produce the greatest pos

sible damage to any splintering object of given thick

ness ; for it is well known that ships of war are built of

wood of this nature—and as the issue of a contest greatly

depends upon the damage done to the vessel, it follows,

that those charges that will effect the most mischief pos

sible , and in the shortest time, are the fittest to be

used in all cases of actual service. It is a fact deserving

observation, that with some charges, a complete broad

side fired into the enemy's ship, would not in any ma

terial degree disable it for fighting ; whilst with others,

even half the number of guns would sink her on the first

discharge ; and surely , it is hence not unreasonable to in

fer , if the destruction of an enemy's vessel when in

action be an object, to effect it by a few guns at one

blow , is preferable to that from any distant cannonading,

kept up perhaps for hours together, with frequent dis

advantage to ourselves, in loss of men, injury to our ships,

and unnecessary expenditure of ammunition .

But it may be asked, are not the charges here recom

mended generally used by our officers, and do they ever

combat the enemy, except in unavoidable instances, but

when they are nearly in contact with him ? I reply that

they do not ; yet from the quantity of firing that some

times takes place before the enemy is sunk or captured ,

it is to be suspected, that the charges employed, are not

always the most efficacious ; and I speak further from

experience, for I have seen in his Majesty's dock -yard at

Woolwich, prize men of war having many shot holes in
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them, almost wholly closed by the wood's own efforts,

and that required nothing more than a small wooden

peg , or a piece of cork, to stop them up perfectly.

Whence it is evident, that the charges in those cases

were much too great, and gave to the shot an improper

force, insomuch, that no sensible effect was produced by

them in disabling the ships for action .

In some sanguinary conflicts, recourse has been had to

the double shotting of the guns, in order to produce

more extensive damage to the enemy ; thus, it has been

observed, that in the glorious (and unparalleled im

portant) battle of Trafalgar, the gallant Nelson bore

down upon the enemy with his artillery double shotted ,

which he discharged into the Santissima Trinidada, (the

Spanish admiral's flag ship ,) as soon as he approached

her within pistol shot. The effect was complete . It was

not, however, altogether, in consequence of the guns be

ing double shotted that the Santissima was at that blow

so dreadfully disabled, but chiefly from the nicety of

charge of gunpowder that was employed ; for had not

this been the case, although double or triple the number

of shot should have pierced the side of the vessel, yet

that circumstance would have added but little to its de

struction , had they not passed through it with a proper

motion.

Far be it from me to impeach the judgment of our

officers in the distribution of charges that do not always

produce the most desired effects ; I am too well aware of

the impossibility of this under the numerous opposing

circumstances that attend a naval engagement ; nor am

I ignorant of the necessity of experiments to prove, that

the charges which are here offered to their notice have

any decided worth over thosewhich they employ in the
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case of service for which these are calculated ; but this

I must say, that the standard experiments with which

they are connected , were never more accurately made

by any experimentalists in any age or country , and if

my endeavours prove not for their benefit, I have still

the satisfaction of having meant well towards them, and

the honour of offering something for their censure, if not

for their applause.

Lastly, in order to render this work as useful as possi

ble , I have subjoined to it a table of hyperbolic logarithms,

for all numbers from one to two thousand ; most of the

computations in the theory of rockets requiring the use

of a table of such numbers.

In concluding this preface, I must observe, that in all

my researches, I have strictly adhered to the fullest il

lustration of them by example, conceiving that, a theory

is never so well felt or understood by a learner, as when

the several subjects it considers are properly exemplified

in numbers ; it is also gratifying in many instances, to

know the results under particular data, while at the

same time it checks in most cases the correctness of the

investigations.

Such, then , are the outlines of the present work ,

and suchmymotives for publishing it ; I trust it will meet

a fair examination—that it will prove useful to those for

whom it is designed and thus gratify my wishes, and

realize my intentions.

WILLIAM MOORE.

Royal Military Academy,

Woolwich.



OF

VARIABLE QUANTITIES

DEFINITION AND NOTATION.

IF A, B , C, &c . denote any variable quantities, and a, b,

C, &c. other values thereof ; and if their magnitudes be so

dependent on each other that when A is increased or

diminished to a ; B, C, D, &c . become b, c, d , &c.: then

if it be said that A varies directly as B, the assertion im

B

:b , =6:

1 1 A

: Or, a
. .

B

plies that A : a :: B : b. Or,

If A vary reciprocally as B, it denotes that A ia ::

b

b

And if A vary as B and c directly, and D reciprocally,

bc Bcd

it signifies that A : a ::
ď 'bcd

Also if the product of A and B vary as c directly, and

D reciprocally ; it implies that AB : ab :::
d

AB

ab

BC A

Or,
D

с C

Or,
D

-

B
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will
C C

then ABAnd on the contrary, if AB : ab ::

vary as c directly, and p inversely.

D di

PROP. 1 .

If any quantity A vary as another B ; B will also vary as A.

For by Def. A : a :: B : b ; or which is the same B : 6

:: A : a ; therefore B varies as A also by Definition .

PROP. 2.

If one quantity A vary as another B , and B as another c ,

and c as another D ; the first A will vary as the last d .

For a : a :: B : b :: C : 6 :: D : d ; therefore seeing,

that a : a :: D: d , it follows from Definition that A varies

as D.

CoR.If one quantity A vary as another B, and preci

procally as another c ; the first A willvary reciprocally as c

1 1 1

For A : 0 :: B : b :: ; therefore A varies as

는C

PROP . 3 .

Either side of a general Proportion may be multiplied or

divided by any given quantity.

Thus if A varying as B constitute any general propor

tion then A will vary as nB.

b

For A : a :: B : b :: NB : nb :: therefore A varies

B

:

n

B

as nB, and also as
n

PROP. 4.

Any general proportion may be transformed into an equation ,

and the gerieral value of each ofthe terms constituting it deter
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mined , byfirst multiplying one side of it by a proper homologous

quantity.

If A vary as BC, then A = n X BC ; where n is some

given quantity composed of other values of A, B and c.

For since A varies as BC, therefore A : a :: BC :bc; and

А BC

hence -; orABC X ; therefore n in this in

bc bc

a

a

.stance is = And B and c are found in the same

be

manner.

COR.-- Hence, if in the solution of any problem the

quantity required be expressed in a general proportion or

be one term of the same ; its general value will be had

by referring all the variable quantities contained in the

proportion to other known values thereof as standards,

and finding the homologous multiplier as above.

PROP. 5.

Ifboth sides of a generalproportion be multiplied or divided

by any variable quantity; the results will still constitute a ge

neral proportion.

If A vary as B, and c be any variable quantity, then

A

AC will vary as BC ; and as

с c *

For A : a :: B : b ; and c : C :: C : C ; therefore com

poundedly Ac : ac :: BC : bc ; and hence ac varies as BC .

A

In the same manner it is proved that

B

승
varies as

с с

PROP. 6 .

Any quantity which is proportional to any other quantity in

4 general proportion may be substituted for it in the general

proportion.

B 2
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If A vary as Bc, and c vary as D ; then will a vary as

BD.

For since c varies as D , BC will vary as BD , Prop. 5 .

Hence, A varying as the former, will also vary as the

latter by Prop. 2 .

PROP. 7 .

If the corresponding like sides of two or more general pro

portions be multiplied or divided by each other, the products

and quotients will constitute two other general proportions.

If A vary as B, and c vary as D ;

Then ac will vary as BD ; and as

For A : a :: B : b

and c : 6 :: D : d ;

Therefore AC : ac :: BD : bd ; and consequently Ac varies

as BD.

In the same manner it is shewn that varies as

D

CoR . — The equal powers or roots of the sides of a ge

neral proportion , constitute a general proportion.

n n

n

de
т .

If A vary as B, then Am will vary as Bm where

notes any number whole or fractional.

For A : b: a :: B

n n n n

and Am : a
m :: Bm : bm

n

Therefore a varies as Bm

PROP. 8 .

If any quantity A vary as B XCX D, & c ; and CX D , & c.

be given, A will vary as B ; and if BC, &c. be given A will

vary as D.



OF VARIABLE QUANTITIES. or

For A varying as BCD, it follows from Prop. 4, that if

BC be given A will vary as n ; and as B when cd is

А

given . That is A : :: D : d, or
when BC is

a d

A B

given ; and when cd is given.
a b

Note.—When any quantity is said to be given it is

meant that the relation of it to some fixed quantity of

the same kind considered as a standard is known, and

with which it is alwayssupposed to be connected ; in like

manner, when any quantity is sought, it is required to

find the relation of this unknown quantity to some fixed

standard of the same kind.

PROP . 9 .

If any variable quantity A depend on several other variable

quantities B, C ; and if when B is invariable A varies as C,

and as B when c is invariable ; then will A vary as B XC

when both are variable.

For when a becomes a, let B become b , and c become

c according to Definition. And suppose, that had c con

tinued constant a would have become á, when B became

b : then since by supposition A varies as B when c is

constant, A : á :: B : b . But b continuing the samewhen

á becomes a , c becomes c ; and since A varies as c (by

supposition ).when B or b is constant, therefore á : a :: C : c ;

and by compounding these two proportions, we have Aá :

áa :: BC : bc, and by division A : a :: BC : bc. Hence A

varies as BC.

COR . - If there be any number of quantities, and A va

ries as each of them when the rest are considered constant,

it will vary as their product when all are variable .
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, &c.

ON MOTION, FORCES, &c.

DEFINITIONS.

1. Matter, is that of which all bodies are constituted.

2. Body, is the mass or quantity of matter in any

material substance , and it is always proportional to its

weight, whatever its figure may
be.

3. Bodies are either hard, soft, or elastic. A hard

body, is that which cannot be changed by any stroke .

A soft body, is that which yields to any impression, but

does not restore itself to its former figure. An elastic

body, is that which after yielding to a stroke recovers its

former shape ; and is such that if it were let fall on a

hard plane it would rise to precisely the same height

from which it fell.

No bodies, either perfectly hard or perfectly elastic,

such as are here defined are to be found in nature , but

all partaking these properties in some intermediate degree.

4. Density, is the proportional weight, or quantity of

matter in any body. So in two spheres, or cubes, of

equal size or magnitude, if the one weighs 1 lb. and the

other 2 lb., then the density of the latter is double the

density ofthe former ; if it weigh 3 lb.its density is triple ;

and so on.

5. Motion , is that state in which a body is, when pass

ing from one place to another.

6. Motion is either uniform , accelerated , or retarded .

Uniform motion , is that when a body describes equal spaces

in equal successive portions of time. Accelerated motion ,
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is that when a body describes unequal increasing spaces in

equal successive portions of time . Retarded motion, is

that when a body describes unequal decreasing spaces in

equal successive portions of time.

7. Velocity, is that quality of motion, by which a body

passes over a certain space in a certain time.

8. Force, is that which causes a change in the state of

motion or rest of a body.

9. An Accelerative force, is that which respects the com

munication of velocity only, any difference in the quan.

tities of matter moved not being considered. It is

proportional to the velocity which it generates in a given

time.

10. A Retardiveforce, is that which relates to the de

struction of velocity only ; and it is as the velocity which

it destroys in a given time .

11. A Constant accelerative or retardive force, is that by

which equal velocities are generated or destroyed in equal

successive portions of time.

12. A Variable accelerative or retardive force, is that by

which unequal velocities are communicated or destroyed

in equal successive portions of time.

13. Momentum , is the product of the mass of a body

into its velocity. It is the same as quantity of mo

tion .

14. A Motive or moving force, is that which relates to the

communication of momentum ; and it is as the momentum

which it generates in a given time.

15. A Resisting force,is that which relates to the destruc

tion of momentum ; and it is as the momentum which

it destroys in a given time.

16. Gravity, is that force by which a body endeavours
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to descend towards the centre of the earth . It is called

absolute gravity when the body is in empty space, or in

vacuo ; but relative gravity when immersed in a fluid .

17. Specific gravity of a body, is the proportional weight

of a given magnitude of the matter of which it is com

posed. The specific gravity of a body is therefore pro

portional to its density.

18. Centre of gravity of a body, is that point which

being supported, the body itself will rest in any position ;

no other force acting upon it but that of gravity.

The centre of gravity of a body, is considered to be the

place of the body ; since whatever supports this centre

supports the body and bears all the weight of it .

19. Inertia , is that by which a body endeavours, as much

as in it lies, to retain the state in which it is, whether

of rest or motion, when any force is impressed upon

it to cause a change. The inertia of a body is proportional

to the quantity of matter contained in it, or to its weight.

20. A Fluid, is a body, the parts of which yield to the

smallest force impressed, and by so yielding are easily

moved among each other.

This is the definition of what is called a perfect fluid :

if the fluid require some force to move its parts , it is im

perfect, and so much so , in proportion to that force : such

are perhaps all the fluids in nature with which we are

acquainted .

21. A Medium , is any fluid through which a body passes

in its motion towards any point. Thus the air or atmo

sphere is the medium in which birds and other animals

move ; and in which projectiles move ; and water is the

medium in which fishes move.

22. A Non -resisting medium ,is one that affords no resist
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ance to bodies passing through it ; and a resisting me

dium , is that in which the motion of bodies are re

tarded .

AXIOMS.

1. Every body will continue in its state of rest or uni

form motion in a right line until it is compelled to change

that state by the action of some external force.

2. Any change effected in the motion of a body is in

the direction of the force impressed, and is proportional

to it in quantity.

3. To every action there is always opposed an equal

re-action ; or the mutual actions of two bodies on each

other are always equal and directed towards contrary

parts.

Thus, in the communication of pressure upon any im

moveable plane, whether arising from the protrusion ,

gravity, or impact of a body, the sense of the axiom is,

that the resistance of the plane, and an opposite force

equal to that producing the pressure, have each of them

the same effect, as either of them only destroys the

force of protrusion, gravity , or impact. In the commu

nication of motion, by one body striking another, the

axiom asserts that the momenta lost and gained by the

bodies are equal, when estimated in opposite directions.

In the communication of motion by unknown means , as

by magnetism , or electricity ; it affirms that the body

attracting or repelling moves in an opposite direction to

that of the body attracted or repelled , and with an equal

momentum, Thus to propose an instance in the case of

attraction :-when a loadstone and a piece of iron, equal

in weight, float in water upon equal and similar pieces of

cork, they are found to approach each other with equal

1
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velocities ; and when they meet , or are kept asunder by

any obstacle, they sustain each other by equal and op

posite pressures.

ON THE GENERAL LAWS OF MOTION.

PROP. I.

Art. 1. - The moving forces which communicate the same

velocity in a given time to different bodies will be as the quantities

ofmatter contained in those bodies.

For suppose one body to contain ten times the quan

tity of matter of another . Then because that greater

body may be divided into 10 masses, each equal in quan

tity of matter, to the less body ; it is evident that what

ever force be required to produce a certain velocity in

the lighter body, that 10 of such forces will be required

to impel the 10 bodies through the same space in the

same time respectively , so that the velocity of all the

bodies shall be equal at the end of that time ; and it sig

nifies not, with regard to the velocity, whether the

bodies be separated or united, if the said 10 forces still

act upon them .

COR .-- Hence, because it is found by experiment, that

all bodies whether heavy or light, great or small, near the

earth's surface descend through equal spaces in equal

times ( the resistance of the air not being considered ); it

follows that the moving forces exerted by gravity on bo

dies are proportional to the quantities of matter contained

in them.
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PROP . II.

2. The moving forces acting upon bodies and the momenta

communicated to them in a given time, are proportional to the

quantities of matter moved, and the velocities communicated

jointly: or putting M and mfor any two moving forces, Q and

9 the quantities of matter moved , and v, v, their velocities ;

M Q

Х

9
m

M Q

;

m

For by the preceding proposition, when the velocity

communicated in any given time is the same, the moving

force is as the matter moved, or and when

9

the quantity of matter moved is the same, the moving

force is as the velocity communicated in the same time

( Def. 14, and Prop. 6, Var. Quan.) ; therefore, when

neither the quantity of matter or velocity communicated

M

in the same time is given

Q V

X by Prop. 9. Var.
m

Quan.

PROP. III.

3. The accelerating forces which communicate velocities to

bodies, are as the moving forces directly, and the quantities of

matter moved reciprocally : or putting F and f to denote any

two accelerative forces , and retaining the letters for the other

F

quantities in the last proposition ;
f

M
9

Х

m Q

For by the last proposition the moving force is as the

quantity of matter into the velocity generated in a given

M

time ; or : and since the elerative се
m 9
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F

is as the velocity, or :
f

V

* ;
V

we shall, substituting

F V F

M
一

加

F M

Х

m

.

Q

for in the above , have and hence

f 9

9

f

It
may here be remarked once for all, that in the fol

lowing propositions F and f are always understood to

mean the accelerative forces, proportional to the velocities

generated in a given time.

PROP. IV .

4. In bodies moving uniformly, the spaces described are in

the compound ratio of the velocities and times of their descrip

S

tions : or

T

Х

VS

For by the nature of uniform motion, the greater the

velocity, the greater will be the space described in a given

time ; that is when the time is given the spaces will be

S V

as the velocities ; ' or And if the velocity be.

S

given , the spaces will be as the times ofdescribingthem ;

that is, in a double time, a double space will be described ;

in a triple time, a triple space ; and so on : or
T.

Therefore when neither the velocities or times are given ,

the spaces by Prop. 9, Var. Quan. will be as the velo

S

-

S t

S T

cities and times conjunctly : or
V

Х

VS t

V S

Cor . 1 .

х
T
H

That is , the velocities of
V
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bodies moving uniformly, are as the spaces described

directly, and times of describing them inversely.

T

COR . 2 .

S V

Х

s V

Or the times of bodies de
t

scribing any spaces with uniform motions, are as the spaces

directly , and velocities reciprocally.

SCHOLIUM,

This proposition is applicable to bodies of all kinds

moving with uniform velocities over any kind of spaces ;

as the hands of a clock or watch round the dial-plate ;

the motion of sounds of all kinds, as those from the dis

charge of artillery, the roar of rockets, thunder, &c . also

the sounds from woodmens' strokes, and of echoes, which

arefound by experiments to move uniformly.

PROP . V.

V F T

V F

V

5. The velocities generated in bodies by the action of constant

forces, are as those forces and the times in which they act

jointly : or -- =
f* t

For when the times are the same, the velocities gene

rated, will be as the forces of acceleration : the velocities

being their natural and general effects ; that is
f.

But the forces being the same, the velocities generated

are as the times wherein the forces act'; because when

the force is given; equal velocities are generated in equal

times ( Def. 11.); and consequently the whole velocities

acquired are as the times wherein the given force acts :

that is when p = f, or T. Therefore both
f

times and forces being variable, the velocities generated ,

F V

= l ,
U
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will be as the forces and times of their acting conjunctly

V

( Prop. 9, Var. Quan .); or
f

PROP. VI.

space

6. If a bodyfrom rest be impelled by any constantforce act

ing upon it for a given time the space described will be to the

space described in the same time by the body moving uniformly

with the last acquired velocity, in the ratio of 1 to 2 .

For let the given time be divided into equal evanescent

instants, the number of which is n ; then the velocity

generated being, by the foregoing proposition, as the

time, and continuing uniform during any one instant,

we shall have the space described in any proposed in

stant proportional to the number of instants comprehend

ed in the time of motion ; so that if during the first instant

the described be s, in the next instant the space

described will be 2s, in the third 3s, and in the first three

instants the space described will be s + 25 + 35 = 6s : so

in the first n instants, the space described will st2s+

(n + 1 ) ns
3s +45+ &c. to ns = : and since by pre

ceding Prop. the velocity last acquired is as the time (the

force being given) ; and the space described by any

uniform velocity, is as the time and velocity jointly

(Prop. 4. ) ; it follows that the space described by the last

acquired velocity continued uniform for the time of the

accelerated motion, will be as the square of that time.

So that if s be the space uniformly described in the first

instant of motion , nas will be the space described in n

instants with the velocity last acquired. Wherefore the

space described by acceleration from rest, is to the space

described uniformly with the last acquired velocity, in

2
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(n+ 1 ) ns
the same time, as to nes ; or as n + 1 to 2n :

2

and since the force acts not by successive impulses,

but by unceasing acceleration, the magnitude of each

instant must be diminished, and consequently their num

ber increased sine limite ; therefore n being ultimately

infinite, the last proportion of n + 1 to 2n will become

that of n to 2n or 1 to 2 .

SCHOLIUM.

It is found by very nice experiments that the space

through which a body descends near the earth's surface

in 1 second is 16_, feet; and in this descent it appears

by the proposition that such a velocity is acquired as would

carry the body uniformly over 324 feet, or twice that space

in the same time, 1 second. Wherefore, if 1612 feet

be put = g, then will the velocity per second, gene

rated by the constant accelerative force of gravity be 2g ;

which may therefore be considered the measure of the

intensity of that force , and a standard to which all other

accelerative forces may be referred.

PROP. VII .

7. The spaces which bodies describe from rest by the action

of constant forces, are in a compound ratio of the velocities last

acquired and times of motion : or

S V T

- Х

t7S

For by Prop. 4, the spaces described by the last ac

quired velocities continued uniform are as those velocities

and the times of motion jointly : and the spaces described

by the accelerating forces acting constantly for equal

respective times being by the last proposition , half the
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former spaces ; are also as the velocities last acquired and

S

times of motion jointly : that is

V

х

S

PROP. VIII.

S F

8. The spaces passed over by bodies urged by any constant

forces, are as the forces and squares of the times jointly : or

T?

Х

f
t2

For by the foregoing proposition the spaces described

by bodies estimated from rest, are as the velocities last

acquired and the times of motion jointly ; or ~ =

S

Х

S

V

Also by Prop. 5 ,

F T

Х

t

: therefore by substitu
V f

S F

tion we have X

S

PROP. IX .

F S

9. The constant forces, which accelerate bodies from rest,

are as the squares of the velocities generated directly, and the

va

spaces described inversely: or
f

-=

va

f

Sexe

For by Prop. 5, **; and by Prop. 7,

* therefore by substitution we have

F

SCHOLIUM.

Whatever has been demonstrated concerning con

stant accelerative forces, holds equally true for uniform
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retardive forces ; since it is evident , that whatever velo

city is generated by the former in any time, the same

forces would destroy in the same time if they acted in the

manner of retardive forces. In like manner, if any moy

ing force act upon a body constantly for any time, and

generate a certain quantity of motion or momentum ; the

same force would, in the same time, destroy the same

momentum if it acted as a resisting force . Thus if a

body falling freely from rest near the earth's surface by

the constant acceleration of gravity acquire in any time a

certain velocity , the same velocity will be destroyed in

the same time by the (now) retardive force, if the body

be projected upwards with that velocity. In the former

case v being the velocity acquired or last velocity , and in

the latter the first, or initial velocity. And the same

quantity of motion that was generated in the descent by

gravity considered as a moving force, would be destroyed

by the same gravity considered as a resisting force, in the

same time in its ascent. Also, in all the intermediate

points, the velocities and quantities of motion or mo

menta would be the same in both cases .

10. The various relations between constant forces,

times, velocities, and spaces described , demonstrated in

the foregoing propositions, and others immediately de

duced from them, put down in order will be as follows.

IN CONSTANT FORCES .

S tu

1 .
tf

T?FTV

w
a
p
1

>

q ? F

v²f

fsft ST

2 .

ll ( 6))V FT st
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Fv SV

3.

( 3))T SU

=

tv

FS 1

fv

f TV T's v's
4.

t’s vas

Hence, if the forces be referred to that of gravity at

the earth's surface, or F be considered that force acting

for 1 second, or corresponding time t , and be called 1 ;

then since the space s described in that time is 167. feet

( Schol. to Prop. Art. 6), and the velocity acquired (v)

324 feet; or 2g calling 160 feet g . Then the above

formulæ in this case will become as under.

5 . S

gft
4gf

2gft = (48fo)*6. V

t

a
l
a
l
a
a

7 .

1
1

2gf

S

8. f I
I

2gt gt 4gs

Hence also, from the equations v = 2gft and s = {tv

for constant forces here deduced , may the following

theorems expressive of the relation of the fluxions of the

time, velocity, force and space described by bodies in

motion when acted upon by any variable accelerating

force be derived ; considering the portion of time infi

nitely small, so that the force for that time may be con

sidered constant . So,

IN VARIABLE FORCES.

VU

9. vi =

2gf
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2gfs
10 . U 2gfi

11 .

V

UV

12 .

= (substituting the values of * should ótt

f

2gs 2gt

For v being = 2gft, we shall, ( f being constant for

the infinitely small time i,) have = 2gft; also s = 4tv

therefore s ti + Jot

and v above) vt. Whence all the equations in the above

table are readily deduced .

If a motive force happen to be concerned in the pro

blem or investigation , the accelerative force ( f) in the

above theorems will be had by dividing the motive force

by the quantity of matter moved . For by Prop. 3. we

f
have

= x ; where taking F, M, and a each equal
9

to 1 (to which the corresponding terms f, m, and q will

each be expressed proportionally ), the equation will be

m

MF

m

=
.

f
9

It is to be observed that the above theorems hold

equally true for constant, and variable retardive forces.

Note. - The utility and convenience of these theorems

will abundantly appear in the following work .

PROP. X.

Q

II . The weights or quantities of matter in all bodies are

in the compound ratio of their magnitudes and densities ; or

-- : where c, c , denote the magnitudes or capacities
9

of the bodies, and N , n, their respective densities.

с N

Х

C n

C2
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Q N

For by Def. 4. when the magnitude is constant, the

quantity of matter is as the density ; or
And

9

the density being constant, the quantity of matter will

n

Q с

evidently be as the magnitude ; that is Hence,

9
с

when neither the magnitude or density is constant, the

quantity of matter is as the magnitude and density com

Q C N

х

C n

Q N

Х

n

poundedly ; or Prop. 9. Var. Quan.
9

Cor. 1. - In spheres, the quantities of matter are in

the joint ratio of the cubes of their diameters and

D3

densities, or And in all similar bodies the

9 d3

masses are jointly as the cubes of their like linear sides

and densities.

For the magnitudes of all similar bodies are as the

cubes of their like sides .

COR, 2. — The quantities of matter in spheres, are as

the cubes of their diameters and specific gravities; or

D3

Х - : where G, g, are the respective specific

9 8

gravities of Q and 9
And in all similar bodies the quan

tities of matter are as the cubes of their like linear dimen

sions and specific gravities.

For by Def. 17, the specific gravities of bodies are as

Q G

N G

the densities of the same; or = ; wherefore, substi
gen

N

tuting
8

for in the preceding corollary, it is
n

9

G

8

.

3 *

Cor. 3. -Hence also the weights of spheres are as the
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W

ex enw

W

W

cubes of their diameters and specific gravities jointly ; or

D3

d3
8

For the weights of bodies are as the quantities of matter

DS

contained in them, or ; therefore, Х
23

9

12. Let G denote the specific gravity of water, then

since it is found that 1 cubic foot of water weighs just

1000 ounces avoirdupoise, let G represent 1000 ; in which

case we may not only exhibit the specific gravity of any

other body in numberscompared with this as a standard,

but also the weight of 1 cubic foot of the same ; and

hence the weight of a greater bulk of the same matter

D3

will be had by common proportion . Since
di

8

we shall, taking a sphere of water of 1 cubic foot content,

1 1.24073

and assuming g = 1000 , have
d3 8

1.24073 x w

Therefore,
d

1.2407**
1 .

8
d3

W G

X ,

W

1

X 3

W

and g =

w $
2. d = 1.2407 )

8

8d
3

3 . W =

1.24073

which theorems will give either the specific gravity of any

sphere of matter, the diameter of the same, or its weight

in ounces, when the other two quantities are known.

Ex. 1 .

Let it be required to find the specific gravity of cast

iron ; a ball of the same metal of 4 inches diameter weigh

ing 9lbs.
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By substituting for d and w, in the first of the above

formulæ the values here given , we shall have the specific

1.24073 x W 1.24073 x 144

gravity g = = 7420.2668,
d3

which is also the weight of a cubic foot of the same me

tal in ounces.

Ex . 2.

Required the weight of a leaden ball of 6.6 inches

diameter .

The specific gravity of lead, compared with that of

water here denoted by 1000 is 11325.

gd3 11325 X •553

Hence w = = 985.9227 oz ,
1.24073 1.24073

or 61.62lbs the weight required.

Ex . 3 .

Required the diameter of a 421b. iron ball, the specific

gravity of which is 7425 as expressed in the following

table of specific gravities.

Here using the second of the foregoing theorems, we

have d = 1.2407x ( = 1.2407x6 ) = .557049

8
7425

feet, or 6.684588 inches.

672

TABLE .

Of the specific gravities of bodies as compared with that of

water denoted by 1000.

Lead 11325

Gun-metal 8784

Cast -brass 8000

Iron 7645

Cast -iron 7425

Clay 2160

Brick
2000

-
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..2784

2160

1984

1520

2700

2570

2520

1900

2033

1745

937

836

1030

Chalk

Clay

Common earth

Sand

Hard stone

Flint

Common stone

Nitre

Native sulphur

Solid gunpowder

Gunpowder close shaken

Do. in a loose heap

Sea water

Common water

Oak

Elm

Ash

Beech

Male Fir

Female do.

Hazel

Mahogany

Maple

Poplar

Walnut

Dutch Yew

Spanish do.

Air at a mean state

1000

925

O 600

800

852

550

498

600

1063

750

383

.

671

788

807

1

Note . — The numbers in this table express also the re

spective weights of a cubic foot of each substance in avoir

dupoise ounces .
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ON THE MOTION, &c . OF ROCKETS.

DEFINITION.

13. Rocket, in Pyrotechnics, is a machine, the form of

the body of which is cylindrical, and its head conical,

Its inside is filled with very inflammable materials ; on

the combustion of which the body is impelled forward

with a continued acceleration .

14. On the combustion of the composition of a rocket, an

elastic fluid is generated, the full force of which is exerted

in the first instant alike in all directions, whether there

be any other substance for it to act against or not .

Hence, if in a vacuum, the combustion took place as

freely as in common air, the force of a laminum of the

composition in its transformed state (equal to the initial

strength of the same into the rocket's base ), would be

that which constantly acted upon the rocket during the

time of its burning . For it is only the first force of the

gas in this case that has effect upon the body to move it,

it being the very next succeeding instant so greatly dimi

nished from the extreme velocity with which it rushes

into the vacuum, that it affords, comparatively speaking ,

no resistance whatever to the fluid next generated ,

whereby more motion to the rocket would be communi

cated * .

* Supposing the elastic force of the gas from the rocket compo

sition to be 1000 times as great as the elastic force of the atmosphere

at the earth's surface ; it will be found by accurate computation

that the velocity with which it would rush into a vacuum is nearly

the rate of 8 miles per second !
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2
5

Each laminum of gas as it is produced , acts upon and

fires at the same time the following laminum of compo

sition ; when the produce of this exerts its force upon,

and converts into fluid in the same manner the next

contiguous laminum of matter, which acts upon and fires

the next, and so on continually, till the whole body of the

rocket is consumed . If the rocket burns in a medium,

then , as there is a body reacting against the fluid that

rushes from the rocket, there is not so instantaneous a

dissipation of the force of the latter the moment after it

is generated ; but a time of its action upon the rocket

which is greater or less according as the surrounding

medium is more or less dense and elastic . In this case,

therefore, more motion is communicated to the body

than in the former, and but for the resistance to the

forepart of the rocket it would move farther in a me

dium than in a vacuum. A
gun

recoils farther when

fired with powder and ball, than when it is charged only

with powder ; from the same cause of a longer action of

the fluid against the breech of it .

15. To estimate the quantity of action of the fluid at any

given instant after its production , would be to find with

what force and velocity it then expanded itself, which

if not greater than the velocity with which the rocket

moved, it would have no effect whatever upon the rocket,

and in any other case it will act only with their differ

ence .

In the following theory of the motion of these ma

chines , I have considered the first force only of every la

minum of composition (indefinitely thin) to have effect,

or the rocket to be urged during the time of its burning

by this force acting constantly for that time ; and it is

imagined that the results determined from this supposi
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tion will not be found to differ very sensibly from those

derived from experiments ; the exact strength of the

rocket composition being here supposed .

OF

THE THEORY OF THE MOTION OF ROCKETS

IN NONRESISTING AND RESISTING MEDIUMS,

16. To establish a theory of rockets that shall be con

sonant to the real phenomena from practice, or at all

useful in it , it is necessary that the exact strength of the

rocket composition be given. Such important datum , for

any particular description of rockets, I have not been

able, for want of experiments, to ascertain ; but it is pre

sumed that the force of the composition of those now

used by the English in bombardment, &c . cannot, from

their immense powers, differ very materially from half

that of gunpowder ; which is supposed to be nearly 2000

times as great when converted into fluid , as the elastic

force of the atmosphere*.

If this supposed strength of the rocket matter, for the nature

of those for which it is assigned, or for any other species of rockets

be not correct , it will only be necessary , when the real force of it

for any proposed description shall have been determined, to sub

stitute it for s in the several investigations that follow to get the true

values of the results there deduced ; for s being a constant quantity

will not at all affect the steps of those investigations. I have merely

assumed the above for the numerical illustration of niy theory.

I have taken the initial force of gunpowder what Dr. Hutton

imagines it must be from the various nice experiments and accurate

computations which he has made to ascertain this important point.
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It will be, therefore , with this assumed power of the

composition, and the supposition that the lamina of it

fire uniformly and burn parallel to the rocket's base, that

I shall proceed to the investigation of the several effects

of these machines; the nature and times of their motion

in different mediums ; their powers at any given instant,

& c . - For all these are very interesting and important

particulars for rocket artillerists to know , to whom the

management of them generally devolves, and whose im

mediate concern it is to make themselves acquainted with

every fact which the theory as well as the practice of

throwing rockets may discover to them .

SECTION I.

ON THE MOTION OF ROCKETS IN A NONRESISTING

MEDIUM.

PROP. I.

17. The strength or first forceof the gasfrom the inflamed

composition of a rocket being given ; as also the weight of the

quantity of composition the rocket contains, together with the

time of its burning, and the weight and dimensions of the

Perhaps no person ever came nearer the truth of the thing than Dr.

Hutton . Robins computed the force at just half what Dr. Hutton

makes it ; but it was independent of particulars which the enquiry

evidently involved , and which would materially have affected his

conclusion had they been considered . These particulars have been

pointed out by Dr. Hutton in his edition of that author's distin

guished work , entitled “ New Principles of Gunnery; " and also by

Euler in his excellent and learned Comment on the same perform

ance ; and it is to these works I refer the reader for every informa

tion he may require on the subject.
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rocket ; to find the height it will ascend if projected perpendi

cularly, and also the velocity acquired at the end of that time ;

the lamine of the composition being supposed to fire uniformly,

and to burn parallel to the rocket's base.

Put w = weight of the case of the rocket and

head

c = weight of the whole quantity of matter
D

with which it is filled

a = time in which the same is consuming

itself uniformly P

n = 230 ozs. the medium pressure of the atmosphere

1 square inch

s = 1000 times the pressure of the atmosphere; or

force of the inflamed composition

d = diameter of the rocket's base

* = PD the space the rocket describes in the time

on

t, and

v = the acquired velocity in that time . Then ,

ed ” is equal to the area of the rocket's base (e being •7854

the area of a circle the diameter of which is 1 ), and ned ?

the pressure of the atmosphere on a surface = ed ”.

Hence sned ? is the constant impelling force of the com

position .

Now the weight of the quantity of rocket matter that

ct

is fired or consumed in the time t is therefore c - a
a

is the weight of the part unconsumed, which added to w

ct ct

gives wtc m
--m

a

weight of the whole mass at the end of the time t , or

when the rocket has ascended to D, and so far as weight

resists the motion of the rocket, this must be deducted
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from the impelling force. Hence sned * – (m ) is the

sned ?— (m

motive force of the rocket at D, and

ct

)

=

m

a

asneda

- 1 the accelerative force.
am - ct

By theorem 10. of variable forces we have generally v=

2gfi (where f denotes the accelerative force and g =

2agsned ?
164, ft). Therefore v = -2gi; the fluent of

2agsnede
which is v

x hyp. log. -t) - 2gt.

.

am -ct

am

с

am

с с c

Now when t = 0, v = 0 ; therefore the fluent corrected

will be

2gasned am - ct

(hyp. log: - hyp. log. - 2gt

Pagsned ?

- hyp. log - 2gt ;
am - ct

which , when t becomes a is

2agsned

hyp. log. - 2ag; or,

am

с

m

US

с m - C

because m=w+c, it will be

2agsned ?

hyp. log.

wtc

- 2ag ;
с w

which therefore is the velocity of the rocket when all

the matter of inflammability in its body is just consumed .

For an example in numbers, suppose the weight , di

mensions, &c . to be as below ; namely,

S = 1000

n 230 ozs.
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W = 18 lbs. = 288 ozs.

10 lbs. = 160 ozs.

a = 3 sec .

3 in . = ft.d =

8 =
16 ft.

e = 7854

Then the above expression for v, namely

2agsned ?
-X

C

W tc

hyp. log.

2 x 3 x 16 x 1000 X 230 X

- 2ag =
160W

17854 x = x hyp. log.
448

-96 = 6774.075 x hyp. log.
288

14

am

-96=2992:9895–96=2896.9895 feet, the velocity
3

of the rocket per second at the instant of exhaustion of

the composition .

To find the space x , we have by theorem 9th , variable

forces : = vt = bt x hyp. log. 2gti (where b re
am - ct

2agsned ?
presents the fraction -) = bi hyp. log. am

hyp. log. (am-ct)- 2gti.

Now the fluent of the former part of this is evidently

bt hyp. log. am, and the fluent of t hyp. log. (am -- ct)

cti

=t. hyp. log. (am - ct) + fluent of = t. hyp. log.

- bi
c

am - ct

ат am

.

(am - ct )-- hyp. log . (am - ct) = (t –*). hyp. log.

1

( am - ct) -t = (am - ct). hyp. log. ( am - ct) — t. So

b

that the whole fluent will be x = bt . hyp . log. amt
C
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(amn- ct) . hyp. log. (am- ct) + bt - gt ; which when x = 0 ,

bam

and trois hyp.log.am. Hence the fluent corrected is
C

b

с

barn ,

x = (bt - “ hyp.log.am +- (am- ct). hyp. log. (am – ct)

abc - abm

+ bt – gt ,and in the case where t=a it is x= - abm ,
C

m-C

+
c m

ab

hyp . log. am += (m- c. ) . hyp. log. (am- ac) + ab – a’g

= (c– m) . hyp. log. am + (m_c). hyp. log. (am - ac )to

ab

Home ( m —c).(hyp. log .(am — ac) – hyp. log.am )+

acg ab

care + ( (m—c). hyp.log.“ " ).6 b

This in numbers is = 127.0139 (288 + 16'0. hyp. log.

11-1.133734 ) = 4015.9827735 ft. the space the rocket

ascends through during the 3 seconds it is on fire.

18. Since we have found the velocity at the end of this

space to be 2896.9195 feet per second, we shall, on the

Summposition that the retardive force of gravity remains

constant from d have, by the theory of uniform forces

q² (2896.9895 )

= 131261• 131 feet for the height
4gf 64 x .9993709

to which the rocket will farther ascend ; which being

added to that just determined 4015.9827735 ft. gives

135277•1137735 feet for the whole height of the rocket

above the surface of the earth when it has just lost all its

motion, which is nearly equal to 27 miles.

But if the height to which it will farther rise be de

manded on the true principle, that gravity varies inversely

as the square of the distance from the earth's centre ;

Then ,
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Putting r=CL the rad , of the earth

a =CD the distance of the point to which

the rocket has already ascended from

the centre c

x=ci any variable distance from c

v=velocity at I

and c = velocity at D =2896.9895 ft .

ge2

Then x2 : 42 :: 1 :
::1.72 the retardive force of gravity at i

when that at the surface L is considered as unity.

Hence - uv = 2gfi =
2grå

(the negative sign being
x2

used because the velocity decreases) whose fluent is v=

4gr ? 4gr ?
which, when x-a, and v = c , is c? - ; therefore=

>

a

4gr ( a - x )

the fluent corrected will be v2=C+ . : So

ax

ax

4gr (a- * )

that when v = 0 , we shall have c + = 0, and x

4agr?
=(taking the earth's radius at 3979 miles)

4gpi - ac

21145143.65521 feet, the whole height of the rocket from

the centreofthe earth , and consequently 21 145 143.65521

-r= 136023.65521 feet is the whole height from the

surface. Whence also the height to which the rocket

rises from the point where the impelling force of the com

position ceases or is destroyed is 132007.67221 feet.

Hence it appears, that, in consequence of the diminu

tion of the force of retardation from gravity upwards

according to the inverse square of the distance from the

earth's centre , the rocket will ascend nearly 746.54121
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feet higher from a point 4230 609 feet above the earth's

surface with a velocity of 2896.9895 feet per second,

than it would do if the same force as at the point d had

continued constant, or had continued to act upon the

body always with the same intensity . Hence also , if the

rocket had a velocity of 2896.9895 feet per second up

4gr²

wards when at a height from the earth's surface
c²

-r, it would never return , but continue to move for

ever, or fly off to an infinite distance. For the expression

4agra
for xis where it is evident

4agra

4gr² — ac² "

or X =
>

4gr2 — ac

that on ac becoming = 4gr ?, * will be infinite ; and there

fore to find a, put 4gr- ac=0 and reduce the equa

tion.

19. Whence, having the height from which the body

must fall to acquire a velocity, which, being added to

that of 2896.9895 feet per second, shall cause it to move

perpetually when projected with the velocity of their

sum ; we can readily determine what that velocity is ;

and it being a very curious fact to know , we will there

fore give a solution to the problem in this place.

“4gr 1-1

Put d = = ci the given height from the cen
c2

trec

-D

X = CD, any variable height from the same

point greater than the rad . CL -L

r = CL
ic

ge2

Then is the accelerative force of gravity at D when
ef
2

that at the surface is 1. Therefore vv = -2gfr; and

4gr²

the fluent of the same is v2= ; which when properly 、

D
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corrected is vé = 4grº (-1)= (when x = r) 4grex

6 -1) = tgr) = (because d =
4g ) +g *

dr . c²

4gr - c?

= 4gr - c . Therefore the velocity acquired in
4gr²

descending through d- ris v = (4gr — c){ = 36553-3482

feet per second ; which , added to the given velocity

2896.9482 feet per second, gives 39450 2377 feet, or

7.471768 miles for the velocity of projection to cause a

body to move to an infinite distance.

PROP. 2 .

20. To find the period of the rocket's motion ; or the time

from itsfirst going off to that of its return to the earth .

This is equal to the time of its ascent and of its de

scent.To find the time of the rocket's ascent from the

point where it first ceases burning.

Put r = CL the radius of the earth

a = cp the height of the rocket from the

centre c at the end of its burning

d = cs the distance of the limit of the rocket's

ascent from the same point

* = cı any variable distance from c greater

than CD

v = velocity at 1

t = time of its motion from D to I

c = velocity at D at the end of its burning

4

8 = 16 feet

{

Then , since we have found the general value of v =

x)

c² +
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have i
0

(putting h
ac* x + 4gr (a- *){acetfort

ax

)

at xix ažxx

= 4grº — ac ? and k = 4agr ?)

(k -hx ) { (kx -hx2){

xx k tagr²

х

(dx —x?)?? ūt
being = d . Hence

4gr² — ac²

1 플

cir . arc to rad. įd and versed sine x

-

t =

* {

(dx – x2)*}; which, on correction will,in the extreme

)* {rad –c)+ + arc to

rad. }d and versed sine (d–a) } ;

case where x = d , be t =
'al --

be

; as will be evident by

conceiving a semicircle described on cs as a diameter .

For an example. Let it be the same rocket as in the

example to the foregoing proposition . Then we shall

have

p = 3979 miles, or 21009120 feet.

a = 21013135.6 feet.

d = 21145143.655 feet.

C = 2896.9895 feet.

= 16 feet.

h = 4gr?-ac? = 28072165812115919 feet .

24 를
Whence t = (ad + arc to rad. d

and versed sine (d – a) } = 45.55647 + 45•7666 =

91 •32307 seconds ; and consequently the whole time of

the rocket's ascent is 94.32307 seconds.

Now to determine the time of its descent. Let as

before

D 2
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p = cl the rad . of the earth . ( See preceding figure. )

d = cs the extreme height of the rocket from the

centre c.

* = CD any var . dist . from c .

v = vel. of the rocket at 1 .

t = time of falling to that point.

8
= 16 feet.

We have already found the general value for v under

these circumstances. ( See last Problem .)

{ tgrex

( **) }- + ( **)*
를 81 / 0-3

or

를

Therefore i =

=

.

di
V

xicd²

Х

8r (dx - **)

dz

and t = { (dx = -2)} cir. arc to

rad . įd and vers. sin. x

di

tion is t =
8r

} ; and the correct fluential equa

{ (dx =x*} * + cir. arc to rad. Id and

)}8r2

d

di S

+ cir. arc to rad. įd and vers. sin. (d-r)

This in numbers is equal to 46.448185 + 46 •250625=

92.69881 seconds , whence the whole time of the rocket's

motion is 187 ·02188 seconds , or 3 min. 7 sec.

Cor. When h ( = 4gm2 — acé) = 0 , the first value of t

above is infinite as is evident by inspection .

PROP. III.

21. To determine the path of a rocket near the earth's sur

face, neglecting the resistance of the atmosphere.

If during the time the rocket was on fire, the weight of



THEORY OF THE MOTION OF ROCKETS. 87

we

the whole mass remained constant , the path of the rocket

would , by mechanics, be a straight line : but this not

being the case on account of the continual wasting of the

matter which feeds the flame of the rocket, the accelera

tive force of the body will be different at every instant ;

and therefore, since the accelerative force of gravity (as

will suppose) is constant to the height to which rockets

generally ascend , the route of the rocket will consequently

be a curvilinear one.

Let ac be the first direction of

the rocket, and AD the curve in

which it moves, and draw CDB per

pendicular to the horizontal line AB.

Now the path of the rocket will be
1999

determined by finding the relation

between AC and co. Let us then

suppose gravity not to act, and that the rocket arrives at

the point c, in the line ac, in the time t . For although

the contrary be the case, yet gravity does not hinder the

rocket from arriving at the line CB , parallel to the direc

tion in which that force is exerted, in the same time that

it would have done by the single action of its own impel

ling force. Therefore, put AC= x ; and we shall have

abm b

bt
hyp. log. am t = (am - ct)hyp.

log. (am - ct) + bt.

This expression for x being in terms of logarithms

and other quantities ; the general value of t in terms of

x (which is what we want to find ), is not immediately to

be obtained ; therefore some other expression must be

sought. Now under the present case, : = bi hyp. log.

( Prop. 1. ) .
с с

am

( Prop. 1. ) ; the fluent of which may be had by
ctam -
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am

am- - ct

am

we
>

am am --CE

finding the log. of - ; which is done by first putting

it into fluxions and then finding its fluent in a series.

ci

Thus, the fluxion of the log. being
-ct

shall by expanding the fraction and taking the fluent of

each term have, for the log. the series * ( t+
am-ct

ct ? 6213 c3t4 Ats

+ + &c.). Hence the

2am 3a’m 403m3 5a4m4

bc

above fluxional expression becomes i = * ( ti +

am

+ +

am

ct? i

+

2am

c2131

3a -ma

+

c3441

4a3m3
+

c4758
+ & c .); whose fluent

5a4m4

cato

15a mat & c.

( sup

( ax )} -

bc ct3 c t4 c3t5

is x = (t + + + + +
2am 3am ' 6a’m 10a’ma3

2am

wanting no correction . Or, multiplying by be

pose @) and calling the coefficients of the several terms

of the series A, B, C , &c.; it will be ax = ť + Ať+ Bt+

cts + Dt + &c. ) ; which reverted into a series of x , is t =

5A?— 4B 3AB - 2A3 - C

QX + ( ex )} + Q2x

2 8 2

5A? - 4B

+ &c. = Qi ( ** Qx } +
8

3 AB - 2A3 - C
3/를

x ? + & c .) ; the time of describing the
2

distance x , along AC , from the commencement of mo

tion.

Now cd ( y) being the distance descended by gravity

in the same time; we therefore gety? (omitting the

4) for the time of the rocket's describing cdby the force

À q * * +
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A

2

at x +

1

of gravity : and consequently y = qt x (**

5A? — 4B

Qx } + &c .)
8

Hence, knowing the equation which subsists between

AC and CD, the track which the rocket describes may be

drawn ; for it will only be necessary to give some value

to x in order to determine the corresponding value of y ;

and to lay off this upon cd drawn perpendicular to AB,

and thus finding several points of the curve, the curve

itself may be described .

We have here supposed gravity to act in parallel lines,

which is not strictly true ; but the distance to which a

rocket ranges on the earth's surface being very small

compared with its circumference, the error arising from

the contrary supposition will not in any material degree

affect our conclusions .

PROP. IV .

4 22. To find the velocity of the rocket in the curve at any

given instant.

In the preceding diagram let AC = x, and ad = z be

ing the space described by the rocket in the timet : then

am

am -ct

żv

calling the velocity at c (=bx hyp . log. ( Prop. 1. )

v ; the velocity at D, in the curve, will be expressed ge

nerally by m, following from the laws for the resolution

of motion . Now by the theory of falling bodies in vacuo

CD = gta : and putting k and I for the natural sine and

co- sine (to rad . 1. ) of the angle CAB of projection ; we

shall have AB = lx , CB = kx , and DB (the ordinate of
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를

ܐܐ݁ܬܶܐ ; and v =

ży

*
X V.

the curve) = kx - ge . Therefore i = { (ki – 2568 )* +

** } " ; and
{1x2 + (ki – 2gtija} }

Again , by the theory of variable motions * = vi. Conse

{1•v* + (kvi – 2gtr);} }
quently v =

?

– 287) }* = { r's hyp. log. + ( kb. hyp. log.

2gt)*} }, the velocity of the rocket at D ;

+

XV =

VE

om

am - ct

am

am ct

which wants no correction , because when v = 0, t = 0 ,

and the whole vanishes : therefore v =

{1* hyp.log .
am am

am -ct
+ (kb hyp. log.

am -ct

When the angle of projection is 90 °, I=0, and k= 1 :

2gt )} }

am

therefore v in this case will be b. x hyp . log.
am-ct

2gt ; as determined in Prop. 1 : and when k = 0, or the

action of gravity is 0, the velocity of the rocket in its rec

am

;

am --ct

am

tilinear path is 6 x hyp. log. which agreeswith

what has already been observed .

When the angle of elevation is 30°, k = 4 and 1 = (?)? :

{ *6*hyp. log .

– 2gt}} ! And when the angle of elevation is 60°,

then k being = ( x)}, and I = 1 ; v = 462 hyp. log .

am

V -

am- ct
+ ( hyp. log.

am - ct

I

am 326 am+

2gthyp. log.
am ctam - ct 2
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.
PROP . V.

in

23. To find the horizontal range of the rocket, having the angle

ofelevation of the engine, and the time the rocket is onfire

given.

Let d be the place of the

rocket when all the matter

it contains is just exhausted ;

and cm and on the measures

of the velocities ofthe rocket H

in the directions Ac and DI,

the latter of which is a tan

gentto the curve at D : then

by trig. sin . Zcnm (

Ст

IDB) = sin. zcmn = co - sin . of the angle of
Сп

elevation of the engine =
velocity at C

co -sin . of the

velocity at D

- NCB=

cm

Сп

ZCAB .

Whence calling the velocities at c and D, v. and v

(computed from the 3rd Prop .), we have sin , ZIDB =

V

co-sin. ZCAB. And since we have found the ZIDB,
ข

DH =

it will be easy to determine that part of the range de

noted by Bl. For the curve from d being a parabola

suva 8202

and ve = ( froni the laws of projectiles

4g

in ' vacuo) ; where s and u represent the sin . and co-sin .

of the ZIDH = ZIDB 90 ° ; consequently vy = ve + Er

s²22

= VE + DB = + kx – gt ; whereof x is given by
4g

the first proposition.

Again, by the nature of the parabola, ve : VF :: EH? :
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UV (ه

(
Х ka - gt'); and FL = .

4

)gt² over
-

+ kx

u²q² su ? ?

FL ? = +

8 4g 4g

1 UV (s²q²

kx Whence AL = z+
4

•gt

4g

suv2

+ lx , the entire range of the rocket, which was re
2g

quired.

For an example in numbers : suppose the engine from

whence the rocket is thrown to make an angle with the

horizon = 45° : and let all other things remain as in the

first proposition . Then v, the velocity of the rocket in

in m

the curve at the end of its burning = {1*3* hyp. log..

6g)" }+ = (4479024 +

+4080400) =

+ (kb hyp. log .
m - C m-C

V

= 2925 6 ; and sine angle IDB= X CO

U

S

u

2993

sin . ZCAB = co -sin . ZCAB = 134° 6' 38 " . Whence
2925.6

LIDH =44° 6' 38 " ; the nat. sin . and co-sin . of which are

•6960172 and •7180251 = s and u respectively : and the

values of the letters in the above expression for the range

collectively are as under.

•696

•718

= 2925.6

k •7071

1 • 7071

= 4159.6

g
16

t 3

Whence the range itself is readily found equal to

273116.29 feet, or 51.72657 miles.

V
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EXAMPLES FOR PRACTICE .

EXAMPLE I.

Given the diameter of a cylindrical rocket 4 inches,

the length of the case 2 feet, and the weight of the case

81 lb. to find to what height the rocket will rise in a ver

tical projection *.

EXAMPLE II .

All things remaining as in the foregoing example, to

determine the time in which the rocket will lose all its

motion upwards ; or before it will begin to descend .

EXAMPLE III .

The same data being retained , to find the period of

the rocket's return to the earth from the first moment

of projection.

EXAMPLE IV .

Having given the diameter of a rocket equal to 7

inches, and its length 25 feet ; also the weight of the

case of the rocket 13 lbs. and the angle of projection 30 ° ;

to find the range of the rocket on the horizontal plane.

EXAMPLE V.

Let the same rocket be supposed to contain a ball

(of the same diameter) at the end of it ; and to be im

pelled after the consuming of the wild - fire by the explo

sion of a charge of gunpowder that fills the last 3 inches

* The weight of the composition of the rocket, and the time of

its burning, may be had, by reference to these given in the example

at Art, 17 .
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of the case of the rocket ; to find the range of the shot

on the horizontal plane .
5

EXAMPLE VI .

All things remaining as in the 4th example ; to find

the velocity with which the rocket is moving at the end

of 4 seconds .

EXAMPLE VII .

To find the height of the same rocket from the earth

at any given instant ; as at the end of 5 seconds.

EXAMPLE VIII ,

1Required the time of flight of the same rocket on

the horizontal plane.

EXAMPLE IX .

The weight of the case of a rocket is 10lb. its length

24 feet, and the diameter of its base 6 inches : What will

be the oblique range and the time of flight of this rocket,

reckoning from the point where it ceases burning to the

point where it falls upon the horizontal plane ?

SECTION II .

ON THE RESISTANCE TO BODIES MOVING IN FLUIDS

WITH GIVEN VELOCITIES .

24. As frequent mention will be made in what follows

on the theory of Rockets concerning the resistance that

planes, cones , spheres, and cylinders suffer when moving

in given directions in fluids ; it will here be proper to

lay down such matter on this head as will suffice for our
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further enquiries on that subject ; especially as no book

extant (with which at least I am acquainted) contains the

principal part of the information that will be required, to

which reference could otherwise be made.

PROP. VI .

a25. To determine the resistance a plane meets with from

fuid, in which it moves , in an inclined position , with a given

velocity.

It is universally allowed, and indeed it is evident, that

the resistance to a body moving through an infinitely com

pressed fluid at rest (such as is here supposed) , is the same

in effect as the force of the fluid in motion with equal

velocity, on the body at rest : therefore, as it will be

somewhat more convenient to consider the fluid in mo

tion, and the body quiescent, I shall pursue the several

investigations in this section upon this hypothesis.

Let AB be the given

position of the plane;

and ca the direction of

the fluid moving against

it. Draw BC perpen

dicular to AB , and let

BD be perpendicular to line AC ; also draw Ebf parallel

B

to AC .

Let ac denote thefull force of the fluid against AB ;

or the force with which the plane would be struck there

by, if it were perpendicular to the direction of the fluid's

motion, Then this being resolved into the two forces

AB, CB, the former AB being parallel to the plane has no

effect to move it in any direction whatever, but only the

force CB in direction CB, perpendicular to AB ; which is
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to the whole force ca as sine angle A to rad . ( 1 ) ; and

this force CB to urge the plane AB in the direction ca is

as cn, which is to the force CB as sin . ZCBD, or sine angle

A to rad . ( 1 ) : cd therefore being that part only of the

full force CA which has efficacy in moving the plane in

the direction of the fluid , and in proportion to the whole

force ca as sin.? LA to 1 ; the full force of the fluid on

the plane will be diminished from the obliquity of the

impact in the ratio of 1 to the square of the sine of the

angle of incidence . But the whole force will be further

diminished in the ratio of I to sin . 2A , on account of no

more fluid striking the plane AB than what passes be

tween the parallels ac and EF, or that meet the vertical

section BD, which is to Ac as sin . Za to rad . ( 1 ) ; and

therefore, on both these accounts, the full force of the

fluid on AC will be diminished in the ratio of 1 to the

cube of the sine of the angle of incidence .

Let A = the area of the given plane.

f = the sine za to rad . 1 .

v = velocity of the (supposed) moving fluid .

n = density of the fluid .

Then by the nature of fluids, the force with which

any one in motion strikes a plane perpendicularly, being

equal to the weight of a column of such fluid , the base of

which is equal to that of the given plane, and altitude the

height through which a body must fall to acquire the

velocity of its motion ; the full force of the fluid on the

plane, denoted above by the line Ac, will be = A xnx

(where g =g = 16+). And therefore, as 1 : sin . 3 LA
4g

AMV Anv /

( 83) :: the absolute force of the fluid on

4g 4g

the plane AB, in direction ca, whenthe sine of the angle

v2 .



RESISTANCE TO BODIES MOVING IN FLUIDS. 47

of incidence is f. Hence, conversely, the real resistance

to the plane is Anvel?, as was required .

4g

26. If AB represent a line the length of which is l,

andſbe the sine of the angle of incidence, or angle at

which the line is inclined to the direction of its motion ;

then the resistance to the line estimated in the directly

3
opposite direction to that of its motion will be

4g

27. And if a cylinder, the radius of the base of which

is r , move in a fluid in the direction of its axis with ve

locity v ; then the end of the cylinder opposing in this

case the full inertia of the fluid ; the real resistance to

pranya

the cylinder will be i p being = 3• 1416 and n the

4g

density of the medium as before .

28. Also if a cone move in a fluid in the direction of

its axis with its vertex foremost; the resistance it suffers

?
will be ir being the radius of its base, v the ve

4g

locity of motion, and ſthe sine of the angle of incidence

of the reacting fluid against the solid.

For here, as many particles strike the surface of the

solid as would meet the base ; and therefore the full force

of the fluid against the base can only be diminished in

the ratio of 1 to sin.? of the angle of incidence (suppos

ing throughout rad . 1. ) ; or of the angle which the slant

side of the cone makes with the axis, which is equal to it .

29. And if r be the radius of a circular plane moving

obliquely in a fluid , and the sine of the angle of incidence,

or angle at which the plane is inclined to the direction

of its motion, beſ; the resistance opposed to the plane
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in the directly contrary direction to that in which it

prinv2f3
moves will be

4g

Thus much concerning the resistance to planes , cones,

and cylinders , when these move in the direction of their

axes in fluids : I shall now proceed to determine the re

sistance to a sphere, or any segment of a sphere moving

in the direction of the versed sine.

PROP. VII .

D RI E

30. To determine the resistance to a sphere or a cylinder,

with a hemispheric end, moving in a fuid with a given ve

locity, in the direction of its axis.

Let ATECA be any

section of the sphere

through the axis DE , in

the direction in which

the solid moves. Draw

TI a tangent to any

point of the curve as

T, meeting the axis produced in 1, and draw also to per

pendicular to DE, and join Dt.

Put DR = X, TR = y, ET = Z, and DT = r. Then

the sine ( / ) of the angle of incidence Pti or its equal

DR

DT
angle DTR = Now 2pyż is the fluxion of

the surface of the spherical zone generated by At, and

nv3
x 2pyż ( Prop. 6.), the fluxion of the force of resist

4g

ance on the same ; where 2pyž denotes the same quantity

203

here that a does in that proposition. But/ = į and
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nv23
rä

Therefore the fluxion of the force ( =

y 4g

pnvxi
x 2py ) ; the fluent of which is

pnv<x +

2gr² 8 gg²

the resistance to the sphere as far as relates to the action

of the fluid against the surface of the said spherical zone

pavy?
ATLC . And when x = r the expression becomes

8g

which is therefore the whole resistance to the sphere AE

CA, or cylinder, the end of which is the hemisphere AEC,

and the direction of whose axis is that of DE.

The resistance to the spherical segment TEL, when mov

ing in the direction Re, is hence determined to be

84
pnvég4

Sgpå ; wherey is the radius of its base, and

r the rad . of the sphere of which Tel is the segment.

pny ?

8gra

PROP. VIII.

31. To determine the resistance à cylinder meets with in a

Auid when moving in a direction perpendicular to its axis

with a given velocity.

Let ABCD be the
X

cylinder, and ETF any

section parallel to the

base. Let a particle

strike this section at t

L "

in the direction PT, R

perpendicular, by sup

position , to BD ; and JY

draw to to the centre ។

EI P

E
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0 : draw also the tangent TQ to the circle ETF or cylinder

at T , upon which let fall the perpendicular pa, and let

fall the perpendicular QR upon TP.

Let st be denoted by %, and to represent the fluxion

of z = z ; then it is evident by bare inspection of the

figure (where TP may represent thefull force of the fluid

nyż

against TQ, &c .), and from Art. 25 , that x sin . LPTQ

4g

will be the real force that urges or in the direction pt ;

and consequently the fluxion also of the force of the

fluid against the circular arc to move it in the same

direction .

Put ST = x,

LT = y ,

OT FM

and ſ= the sine of the angle PTQ.

Then z = ( + ja )}; and y = (25x – x2) * by the

rå- xx

and(2-یrx)

QP LT QP

will

ТР
TP OT

property of the circle : consequentlyj=

rå

Å= ( ** + j")} =
(284 — **)

Also by reason of similar

triangles, 2 : whence /being

also be equal to . Therefore by substitution the fluxion

of the force of the fluid on ST =
avlºg ny ?

24 h

ny ? (2rx-- ***

(2r* - * ?)? 4g ( 2r * **) *

nya 3rw

GTM - W ** ), of which the fluent is ( 一 )
want

X

4g

nv ?

X X X
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nverb

ing no correction ; so that when x = 2r, the fluent will

nya

be - ; which is the effective force of the fluid on the

3g

semicircumference of a section of the cylinder parallel to

nyag

the base. Consequently into the height of the
Sg

cylinder ( 1 ) = will be the force of the fluid on

3g

the whole semicylindric surface ; or the resistance that

the cylinder suffers when it moves in a direction perpen

dicular to its axis with the velocity v .

COR . - Because it is found, that a sphere, the radius of

which is r , moving in a fluid of the density n, with the

pnv
; we shall have the resistance of the

8g

sphere to the resistance of its circumscribing cylinder as

prvot 2nv²22 16 “

to or as I to ( where p = 3• 1416 ) ; the

8g 3g 3p

latter therefore being resisted more than the former by

about •69829 of the former. Whence, the resistance to

a sphere being given, the resistance to its circumscribing

cylinder will be had by multiplying the former by

1.69829 .

velocity v, is Pnväri

PROP. IX.

32. To determine the same as in the last, when the cylinder

moves in any direction oblique to its axis,

Let Tp in the following diagram be the direction of

the eylinder moving in the fluid , or ET that of the fluid

against the cylinder.

12
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ni

)B

le

W

At any point in the

circumference of the Al
X

section Eft ( parallel to G

the base cd), draw the
R

SLT

tangent tw ; also let
Ei

LTQ be perpendicular

to the diameter vos,

which is at right-angles

to the axis Xy ; and YYD

draw PQ, aw , and WR
Per Ritodi

perpendicular to TQ , TW and TP respectively. Join pw,

which will evidently be perpendicular to tw.

Now because of the oblique motion of the cylinder in

the fluid , the full resistance to the same will, on this ac

count, be diminished in the ratio of 1 to the cube of the

sine of the angle of incidence ( Art. 25). Or, supposing the

fluid to move against the cylinder at rest, its full force

against the cylinder, from the obliquity of the direction

of the impact with regard to the position of the cylinder,

will be diminished in the ratio of 1 to sin .; of the angle

PTG of incidence. Let FT = % and x represent the

fluxion of z . Let the full force of the fluid striking 2 as

nvaż

above diminished ( : - , calling sin . ZPTG , be de
4g

noted by tp ; then resolving this force into the two

forces Tw , pw ; and the latter of these into the two' PR ,

WR ; the former only PR, which has effect in moving the

solid in the direction Pt, will be to the whole force TP as

sin .” LP TW to 1 (rad. being 1 ), or as sin .% of its supplement

to l ; and the force Tp being also further diminished in

the ratio of 1 to sin . ZPTW, on account of the number of

particles striking ź, being so diminished ( from the obli

-

ެވ
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quity of the line ź with regard to pt) ; and therefore

the real force upon ż to urge it in the direction PT,

from the consideration of both the oblique motion of the

fluid , and the oblique surface of the cylinder, will be

nval

x sin . ZPTW ; which is also the Auxion of the
4g

force of the fluid on the arc ft.

Put r = ot, * = OL, and y = TL. Then by reason

of the similitude of the triangles OLT, arw , we obviously

주r

r

(1-5*)* = (2-8*)*
1

.

obtain the sine of the angle Tow (= LTO) = Call

TP unity, and we get to =ſ; also sin . ZTaw being ex

*

pressed by 5, by Trig. TW = Hence in the

right - angled triangle TPW, PW ( TP? – Tw2 ;

(p2 -- S*
; which in the present case is

equal to the sine of the angle Ptw. Therefore by sub

stitution, the fluxion of the force of the fluid on FT

nv*f ( / x2)
will be ; the fluent of which is

( ora - **)

nv /3

{ ra- 3 / -1 3 (82 - 1)3 +

499² 40m2

(+5) . (J : - 1 )

x2 + & c.}: which on x becoming r is112,4

nv? /3r 3 ( 2-1){ 1 +

4g

(N + 5 ) · ( –1)

112

This therefore is the effective force of the fluid on the

quadrantal arch FTS . Hence the force on the whole

semicylindric surface mDurBs is

4gri

x5 t

6

3 - +
40

+ + &c.

}:
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+
6{ i

} ;

nvºrhſ 3/2 - 1 368 – 1 )2
+

2g
40

f + 5 ) . (/" - 1)
+ &c. which is also the resist

112

ance to the cylinder when this moves in the fluid at rest,

so far as relates to the surface mDurbs only.

Now the resistance arising from the fluid against the

nvipua
top AsBm is . co -sin . LPTW ( Art. 25.). Hence

4g

the whole resistance to the cylinder is

nvørhf3 38” -1 31/2 - 1)
1 +

4g 6 40

(P + 5 ) . ( - 1) nv ?pa ?
+ &c. (1-84

112
48

COR..When the angle TPQ is 90 °, or the solid moves

in a direction perpendicular to its axis ; then becoming

1 , all the terms of the above series except the first two

will vanish (each and all of them containing the factor

nyarh 3

fm – 1), and the resistance will be
2g

nyérh

as determined in Prop. Art. 31 .
3g

{

+

}
+

(1-35 +)

EXAMPLES FOR PRACTICE.

EXAMPLE I.

A cylinder, the radius of the base of which is 8

inches, is terminated by a cone whose base is the same

as that of the cylinder, and altitude 17 inches ; what will

be the resistance to this cylinder , moving in the atmo

sphere in the direction of its axis, with a velocity of 1200

feet per second ?
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EXAMPLE II.

What will be the resistance to a cylinder, whose

diameter is 3 ft. and length 17 ft. moving in water in a

direction perpendicular to its axis with a velocity of 2

ft. per second ?

EXAMPLE III .

The velocity of the wind is 88 feet per second : re

quired its force to upset the monument of London , the

radius of the base of which is 7-5 feet, and its height 202

feet, being that of an upright cylinder.

EXAMPLE IV.

The radius of the base of a cylinder is 11 inches ;

and its height 7 feet ; what will be the resistance to this

cylinder moving in air in a direction inclined to that of

its axis in an angle of 54' with a velocity of 1500 feet

per second !

EXAMPLE V.

The resistance to a sphere is 54lbs. when moving

with a certain velocity in a certain medium : required

the resistance to its circumscribing cylinder moving with

the same velocity in the same medium perpendicular to

its axis.

EXAMPLE VI .

The velocity of the wind is 50 miles per hour : re

quired its force against a cylinder of 3 inches in radius

and 50 inches in height, standing inclined to the horizon

in an angle of 30°.

EXAMPLÉ VII.

Given the base of a cylinder, to determine its

height ; so that the resistance to the cylinder when it

moves in the direction of its axis, may be equal to the

resistance when the direction of its motion is perpendi

cular to the axis : the velocity being given.
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SECTION III.

ON THE MOTION OF ROCKETS IN RESISTING MEDIUMS .

PROP . IX .

33. The time of burning, & c. of a rocket being given ; to

find the height to which it will rise in the atmosphere in a

vertical ascent ; and also the velocity acquired at the endof

that time; the resistance being as the square of the velocity

directly.

Put w = weight of the case of the rocket and

head,

weight of the whole quantity of mat
DO

ter with which it is filled ,

a = time in which the same is consuming

itself uniformly,

n = 230 ozs .

$ = 1000,

d = diameter of the rocket's base,

* = PD, the space the rocket describes in the

time t ,

v = the acquired velocity in that time,

R = the resistance of the air to the rocket when

moving with a velocity of 6 feet per second.

RU ?

Then 62 : 02 :: R : the resistance at D ; and con

62

ct Rv2

sequently sneda -- (see Prop. 1. ) will be

the motive force of the rocket at D in this case ; and

( snedab? - Rv ) a
1 the accelerative force. Therefore

(am - ct)b

= 2gfi -
( sned ?b? - Ro?) 2gai

22gi ; or putting
( am - ct )6
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-

2PB

t? 73

+ KA ?

2ag x snedºb2 = h, 2ago = k, amba = l, and cb ? = P, we

bi - kui
shall have v = 2gi; and li- ptr = hi -

l-pt

kvi - 2gli + 2gpti; and further, putting b 2gl = q to .

render the expression as simple as possible, it will be

lü - pti – qi + kovi -qi + kvi – 2gpti = 0 ; whence v may be

determined in terms of t as follows :

Assume u = At + B + ct', + Dt* +Et + &c. : then

making
ť = 1 ; we havev = A + 2Bt + : 3c + 4D+ +

5et+ + &c . : and substituting these in the given equation

it becomes as follows :

la + 2/ B + 310 t 41D + 5/8

pA 3pc 4pD

+4 = 0.

+ 2kAB. + 2kac

2gp + kB

Whence equating the co - efficients of the homologous

terms to find the quantities A, B, C , &c. they become

9

q ;
Pq + 2gpl p'q + 2gpºl – kq?

; C

2 313

pa + 2gpl – 2kpqe - 2gkpal

4/4

12p+9 + 24gpºl —- 35kp?q -- 52gkpʻql— 12gʻplºk + 8kⓇq3

6015

&c . &c. &c .

Therefore the fluent required is v =
9 P9 + 2gpl
tt. • ť

212

p *q + 2gp / -ko pq + 2gp3l - 2kpq? - 2gkpql
+ t4

313 4/4

+ &c. = (in the ultimate case where t = a)

aplq + 2g !)
a ?

+

448 21 3/2

A B =
3

D =
' ;

E =

1

There are happy
3 +
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+80 }

a3

p3 (q + 2g!) – 2kpg (9+ + &c. ; the velo
4/3

city as required by the proposition.

Now to determine what this velocity is, we must first

find the value of R for the given case of velocity b .

Now under the conditions, that the particles of the

medium are perfectly nonelastic , and that the medium is

infinitely compressed and affords nó resistance to the

motion of the rocket but what arises from the inertia of

its particles, (which is the ground of our hypotheses con

cerning the law of resistance ), we shall, putting r for the

radius of the rocket's base, or of the head of the rocket ;

f= the sine of the angle, which the slant side of the

head (supposing it conical), makes with the axis ; p =

3 : 1416 ; s = the specific gravity of the medium , which

is here considered as the atmosphere , and g = 16 feet,

psr’b J
(omitting the “) have R = ( Art. 28.)

4g

Let b = 1 , in order to render the expression as simple

as possible ; and the angle, the sine of which is ſ, 30 de

grees ; then/= '5 or { (to rad. 1. ) : and taking the spe

cific gravity of air at a medium, or s = 15, R will be

found = '0002343 ounces ; which is the absolute resist

ance the rocket suffers when moving with a velocity of i

foot per second. Hence in numbers we shall have v =

43 ( 1040832 + 193542 + 5616 - 9792 — 3896 )=2733 ft.

when the first five terms only of the series are taken ; a

number quite sufficient for our further enquiries.

As to the space described by the rocket it is x = fluent

vi
pq + 2gpºl – ką?

* * +
Pq + 2gpl

21 612 1213

a? ma

&c. = (when t = a ) 9 +
3121

(9 to 2g /) +
682

t + 74 +

{ s
ар
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{869 + 23) kep } + io {r ( +23)—21p968 +8 }

+ &c.

896

= 3910 feet ; the height of the rocket at the end of its

burning.

From the numbers here brought out, the above series is

shewn to be of a remarkable nature ; and such, it is pre

sumed , as very seldom occurs in practice. We observe

the first three terms to be positive, and to decrease with

common regularity ; when a sudden violation of law takes

place, and the fourth term becomes negative, and much

greater than that which immediately precedes it. The

fifth term being also negative and not uncommon with

regard to the fourth , we may conclude perhaps (as the

finding and working out more terms to give certainty to

the thing is extremely laborious), that the series will now

observe a proper law ; in which case a very few feet

more would be added to the foregoing velocity by the

summation of a great number of its terms. Indeed it can

be shewn that it is very nearly equal to the truth by re

ference to the similar result obtained in the 7th proposi

tion, and the destruction of velocity by the retardive

force of gravity in the time of the rocket's burning.

34. To find how far the rocket will farther ascend

with its acquired velocity.

Let x = any variable distance from the point to which

the rocket has already ascended ,

v = the velocity at that point,

a = 2733 feet the acquired velocity.

RU?

Then will be the resistance of the medium to the

"

rocket when moving with velocity v ; or putting b= 1 ag
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OF ROCKETS
.

before, Rv2 will express that resistance . Hence

w+ Rua

w

will be the retardive force to the rocket ; and conse

vi-vä

quently i = . w + Ryt ; the fluent of

w

.

2gf 2g

which is hyp. log. ( w + Rv ).
4gR

Now x = 0 when v = a ; therefore the fluent cor

rected is

W

W

W

w

.

{ hyp. log. (w + Raʻ) — hyp. log . (w + Ruº)a>) };
4g R

which in the extreme case where v = 0, is

w + Ra?

hyp. log.
4gR

In numbers, this expression will be found equal to

7914-3 feet; which added to 3910 feet the space before

ascended, gives 11824.3 feet for the height to which the

rocket will rise before all its motion is destroyed , which

is rather more than 2 miles .

w + Ra ?

Since hyp . log. = x ; we shall have

4gR w + RUP

w + Ra? 4gRx

hyp. log. ;

w+Rva
and putting c = 2:718282

the number whose hyp. log. is unity ,
w + Ra ?

w + RVP

4gRx
Whence v is found equal to

4gRx

{ + 1) + Raz}

(RC)

the velocity of the rocket corresponding to the space

ascended %.

w

w

W

w ( c
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35. To determine the time of motion of the rocket

through the above space. We have found the retardive

force to the rocket moving with velocity v to be

w+ RU?

W {

-V VW

=Therefore i =

2gf

.
:
:

t:

2g ( w + Rva) 2gR
W

ťv²

Ř

the fluent of which is

w

cir. arc to rad, 1 , and tan .

29R ( )

( -)

R

1 W

cir. arc to rad . I , and tan.

2g
R w

R

which corrected is

= 0 ) {
arc to rad . l , and tan .

.

w

arc to rad . l , and tan .

() ;
whence, in the case where v vanishes, we shall have

1
a

( )*
cir. arc to rad . I , and tangent 3

2g
w

R

which in numbers (retaining the same values of a, R, & c .

as before) = 9•74834 x 1.457 = 14:2 seconds or 145

seconds.

Hence the whole time of the rocket's ascent is 17

seconds .

36. But to determine what time will elapse from the

rocket's first going off to its return to the earth ; we

must find how long it will be in descending from the
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whole height to whieh it has risen . To this end it will

be first necessary to enquire what velocity will make the

resistance of the medium to be an exact counterbalance

to gravity ; and thence cause the motion of the rocket to

become uniform .

Now w - Rui being in this case the moving force ;

RU ?

will be the accelerative force ; which when the

body moves uniformly, is nothing. Therefore putting

RUZ

= 0 , and reducing the equation we shall have

w

v = ( )* for thefor the velocity of the rocket when the

resistance will be equal to the force of gravity ; or when

the motion of the machine becomes equable.

By the theory of variable motions,

V wi w

;

2fg 28 (w— Rv ) 2gR w

va

R

whereof the fluent is

W

hyp. log.
2gR

G )* + o

Guy G ) -

*)* . byp.log.
( 無

(G

to u

Now when t = 0, v = 0, and the whole vanishes.

Therefore in that case of the fluent where os 6 ),R

we shall have,
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G ) + ( )
= * hyp.log

( (

w

acquire the exact velocity ( -)

equal to infinity ; which shews that the rocket can never

-), but in an infinite
time.

To find therefore, we must first determine what

velocity the rocket will acquire in descending the space a;

which being substituted in the expression for t, the value

of this will then be obtained .

vü
Now är

2gf 28 ( W - Rva ) W- RUZ

the fluent of which corrected , is

WUU W vü

28

w W

.

W

hyp, log.

4gR RU2

Let c = 2.718282, the number whose hyp, tog. is

unity,

(

{w
W

, }!

W

Then 4gR

W - RU?

4gRX

-를

w (c
and v

2g Rx

REC

In which , writing 11824.3 for *, and the several nu

meral values for w, R, &c.; v will be found equal to

6.1565

{ 288 (2.71828
22

1 )

3.07825

0153 X 2.71828

= 950'2 feet. Whence,
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-G( )* . hyp. log.
G )*+o

G

= 48" .2984

And consequently the time that elapses from the going

off of the rocket to its return to the earth, is 65" .498 , or

1 min . 5 " į nearly.

37. In the solution to this problem , the density of the

medium (that of our atmosphere) is supposed to be the

same throughout the rocket's ascent ; and the force of

gravity also uniform . Now neither of these suppositions

strictly obtains ; the former varying in such manner

that when the heights increase in arithmetical progres

sion, the densities decrease in geometrical progression ;

and the latter varies as the inverse square of the distance

from the earth's centre. Unless, therefore, the decrease

of the force of gravity balances in a great measure the

decrease of density of the medium , the rocket's height

will be affected from such circumstance ; and will be

somewhat greater than what we have above determined

it.

In the same solution also, the resistance of the air to

the motion of the rocket is supposed to vary directly as

the square of the velocity ; an hypothesis which experi

ments disprove when applied to military projectiles

with cannon balls. But it is to be apprehended, that in

the motion of rockets, the deviation from this law is

scarcely to be regarded ; since what takes place in the

flight of shot and shells to violate it, is in a great measure

obviated in the rockets, by the extreme heat of the flame

that rushes from them ; which rarifying the ambient air

promotes the motion of the particles striking the head of
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the rocket, towards its hinder parts ; and since it is only

the immediate motions of such particles backwards that

can cause the law to obtain ( for it would obtain precisely,

if, after the impact of the particles they had no power to

impel others lying before them , but either glided off

from the surface struck, or had their force annihilated

by it at the moment of striking ), it is to be expected that

the conclusions here brought out, which are grounded on

this law of resistance, will be found to agree pretty cor

rectly with the results determined from experiment .

But if they should not, let then the law of resistance

be as the nth power of the velocity, and the method of

solution will remain precisely the same as before . For

it is only the fourth equation in the preceding process,

namely, kon i = & c . that will vary or becomeaffected by

any deviation from the law we have assumed ; and there

fore when this shall have been settled by experiment (the

only way in which it ever can be settled), and the absolute

resistance determined in any one case of velocity, and the

real strength of the rocket composition ascertained ; then,

and not till then , shall we be able to offer any unerring

rules to the military practitioner,

PROP. XI.

38. To determine whether the motion of a rocket ascendo

ing vertically in the atmosphere can ever become uniform ;

the law of resistance being directly as the square ofthe velocity,

as before.

When the motion of a body becomes uniform , or the

velocity a maximum, the accelerative force is then

( sned b2 - RV2)a

nothing : therefore putting
(am - ct ). b?

celerative force (see the last Prop .) = 0 , and reducing

1 the ac

T
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tayRa

sneda - am + ct

the equation, we have v = b . (

Whence it appears, that the velocity, and consequently

the motion of the rocket can never become equable ; be

ing in terms of t, the time of its burning; but will be greater

and greater unto the end of the time t, when the velocity

will continually decrease till the whole is destroyed by the

retardive force of gravity. And it is moreover evident,

that the motion of a rocket can never become uniform

under any law of resistance whatever.

PROP. XII.

39. All things remaining as in the 10th Proposition, to

find the velocity and space described by the rocket, when it is

influenced only by the impellingforce of the composition and the

resistance ofthe medium .

Here, gravity not acting, the accelerative force of the

(sned252 Rvala
rocket at the end of the time t will be

(am- ct) 62

as determined in Prop. 9 . Therefore u
28fi =

(sredºb? – Rv ).2agi
= (putting h = 2agsned'b , k = 2ago,

(am - ct ).62

hi - kot ข i

I = amb , and Ø = cb ?)
and

I - pt h - kr² i - pt
3

whereof the fluent is

1

2.(hk){
hyp. log.

1

C ) + o

6 )* -.

- 1. hyp. log.To - 1) ; which,when v=0,andt = 0,

= -
as 0= hyp. log.

: therefore the correct fluent is
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2(B!!! .hyp. log.
6 )

= {hyp.log:

( )

( )+

( )

1

- hyp. hyp. log.
P - pt

hence by the nature of logarithms

hiz .P

tu
k

2 ( hk ) 1

-
putting k

: and

= T- pt

j ; and (bk) i tv
pus

W, we shall have
3

P j - V ( l - pt)"

and by reducing this equa. v =
jl - ; ( 1-pt)"

- ; which,

1 + (1 - pt)"

when t = a , is v =
jl“ - ; ( 1 - pt)"

w + (l-pt)"
the velocity of the

rocket when it just ceases burning. Or, restoring the

values of j, w , 1, h, &c., the velocity of the rocket in this

case will be expressed by

4agd (sner) 4agd( sner)

db.
cb cb

(amb ) - (amb? - acb )

4agd (Sher ) 4agd (sner )

cb cb

(amb) + (ambe - acb )

or taking R = .0002343, and b = 1, as in Prop. 9, it is

4agd-C-0009343tre) 4adg

-( 0002343sne)
(参

-)?
0002343 { (am)

- ( am - ac)

;i

4agd
(-0002343sne )

4agd
( 0002843sne) ;

(am ) + (am - ac)

sne

с с

C



68 THEORY OF THE MOTION OF ROCKETS.

and substituting the values for à, c , d , &c., which are as

follow : namely,

$ = 1000 .

n = 230 ozs.

w = 18 lbs. = 288 ozs.

c = 10 lbs, = 160 ozs.

m = wto = 448 ozs.

a = 3 sec.

d = ft.

8 = 16 ft.

į = .7854,

1-95171)
1.95171 1 .

6941 ·575 ( 1344 864

it is v =
1.95171 1.95171

1344 + 864

6941.575 x 737094

= 2820•325 feet ; which is there.
1814186

fore the greatest velocity the rocket can acquire, and

which it does acquire at the end of its burning.

It is somewhat remarkable, that the whole resistance

of the air to the rocket, on the supposition that gravity

does not act, should so nearly approximate to the effect

of this force (reckoned as constant ) , when there is no

consideration of any resistance from the former ; the de

viation causing no more than (2896.9895 – 2820 325 = )

76.6645 feet per second difference in the greatest velocity

of the rocket on the side of gravity.

To find the space described . By theorem the 10th ofva

jitvi – ji(l - pr)"
riable motions * = vt = = ji -

20+ (1 - pt)"

gji ( 1 – pt)
Pat l - pt = t ; then i = - pi,and i

7 " + (2 - pt)"
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1
1

--j1 2j pur

Whence x = + ( by
P P P >" + 1"

qui 2j
expanding in a series) +

7w + T " P P
ju

T2001

+ &c. ) ; the fluent of which13w 147

C

тзы 7401

12
+

&c . )

+

(( wt1p /

2(1– pr)" +"
7w

20

-jT 2 ; TW+ 1

is x =

T2W +1

+

P P (w+ 1 ) 1W (2w + 1) 726

T3W+ 1 T4W + 1

(3w+ 1 ) /30 (4w
+1).140 + & c.

P

2jr" +1 1 T 720

+

wa'+ 1 (2w +1) /" (3w+ 1 ) 720

T3W 1
+ & c .

(3w + .. ) ,230 P

1
( 1 - pt) " (l-pt)

Х +

w+ 1 (2w + 1 ). / ( 3w+1) 72

( 1 - pt)
+ &c. ; and the fluent corrected is x =

(4w + 1 ). 230

j
1 1

- 21

1

P w+ 1 2w + 1 3w + 1

1
j

+ & c.

2 (1 - pt)" + 1

4w+ 1

+ (1 - pt) +
P

1 (1— pt)" (2 - pt) 24
Х

wti (20 + 1 ). 7" ( 3w + 1) 720

(1 - pt)3
+ = (when t = a) ;

3w

+

(

+

36

(4w + 1). 13w + & c.

2w

12 (1 - ap )

pw

(1- ap )"

(Pw+ 1 ). /

+
( l - ap) 2

(3w + 1). 12w+ 1

(3w + 1 ).13w

+ &c.

c.) - 5 ( w +

1

2w+ 1w+ 1
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+

1

&c . ; for the space described by the
3w+ 1

rocket at the end of the time t.

40. Now to determine how far the rocket will farther

move before its motion is wholly destroyed. Put a =

the velocity at the end of its burning = 2820 325 feet

per second, and v any variable velocity corresponding to

the space x ; w = weight of the rocket = 448 ozs ., and

R = '0002343 ounces, the resistance of the medium to

the rocket when moving with a velocity of 1 foot per

second. Then Ru will be the resistance to velocity v ,

RU ?

and
the force by which the rocket is retarded by

w

vz WV

the fluid . Hence x = and * =

2fg agro

_W

hyp. log . v ; and the Auent corrected * =
2gR

w

hyp. log. a. Which by substitution of numbers
2gR

is = 21672 feet.

Hence, it appears, that after the burning of the rocket

ceases, it will move to a distance of 21672 feet, or some

what more than 470 miles, before all its motion is de

stroyed , when it will remain at rest in the medium , there

being no force to influence it in any manner or direction

whatever, and having no power to create motion in it

self.

41. As to the time that the rocket would be in moving

through this space, it will be had as follows. The same

substitution as above being retained, the general fluxional

V

expression for the time ( i) namely will be found

28f
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V RUP-1

2gr
(substituting forf as before)

2gRv w

1

the fluent of which is t = Now when t = 0 ,

2gRV

1

v=a, therefore the correct fluent of the time is t =

2gRV

1

which, on v becoming nothing, will be infinite.

2gRa

So that it appears , that the rocket will not describe the

above space but in an infinite time .

4-1

Suppose v = 1 foot ; then t = = 133.344 se.

2gRa

conds or 2 min. 13 seconds . That is, the rocket will

only have been in motion 2 min . 13 sec . after it has ac

quired the greatest velocity from its burning, before the

celerity of its motion will be reduced to 1 foot per se

cond ; and yet , notwithstanding this great annihilation

of velocity in so short a time, the remaining small part

will not in any finite time be destroyed, though we know

the limit at which the rocket would attain a state of

quiescence.

And from the result here determined , we conclude,

that into whatever medium a body is projected with any

given velocity, great or small, it will in no finite time lose

all its motion. So that, if the planetary bodies were

moving in a resisting medium, and gravity should sud

denly be destroyed, the bodies would all pursue recti

linear paths (that would be tangents to their orbits) to cer

tain finite distances , which would not be wholly described

by them but in infinite times.

PROP , XIII .
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PROP . SIII .

42. Given the time that elapsesfrom the first going off of

a rocket to its return to the earth, considering it to have ascend

ed vertically ; and the velocity or force of the wind ; to find

at what distancefrom the point of projection the rocket will

fall.

Before entering upon the solution of this problem, it

will be proper to make a few preliminary observations.

In the first place , then, we are to consider, that when a

body from rest is put into motion by a fluid , it can never

acquire a velocity greater than that with which the fluid

moves ; that when it has acquired that velocity, it will be

relatively at ręst, or move uniformly and in common

with the fluid with its velocity. And in all other

cases the velocity with which the fluid strikes the body

to accelerate its motion, will be equal to the difference

of the given velocity of the fluid and the velocityacquired

by the body. Thus a vessel abandoned to , or influenced

only by a current, can never acquire a velocity greater

than that with which the current moves ; nor indeed ex

actly equal to it in any finite time, as shall be hereafter

shewn ; and in any intermediate state the current will

act upon the body only with the difference of its velocity

and the acquired velocity of the body. If another force

as that of the wind conspire with that of the stream, the

body may acquire a greater velocity than the stream ;

that is to say if the velocity of the former be greater than

that of the latter ; but it can never arrive at a velocity

equal to that of the wind , on account of the resistance

that will be opposed to its motion after it has attained

a greater velocity than that of the stream . Therefore, in
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>

.

the case before us, the rocket in its sideral motion will

never arrive at a velocity greater than that of the wind,

nor precisely equal to it in any finite time , and conse

quently will suffer no resistance from the medium in its

deflection from the original line of projection.

Again, the direction of motion of the wind being

horizontal, the action of the same upon the rocket will

be at right-angles to its axis, provided there be no rota

tion of the rocket throughout its motion, which we will

suppose there is not . Therefore the force of the wind

to move the rocket in its own direction in the first

nvirh

instance will be as determined in Prop. Art. 31 ;
3g

and at any other instant, calling the velocity acquired v,

nrh

it will be (v - v)', the force varying as the square

3g

of the velocity directly.

nrh

Let R =

3g

w = weight of the case of the rocket, considered

as nerely cylindrical,

weight of the matter contained in it ,

m = wtc the weight of both the case and the

composition ,

a = time of the rocket's burning,

v = velocity of the rocket in its sideral motion at

the end of the time t.

Then R (v -v)? being the impelling force of the wind,

>

am - ct

and
(See Prop. Art. 17. ) the weight of the

ar(y - )

mass at the end of the time t ; will be the

am - ct

accelerative force of the rocket at the end of that time.
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Now v = 2gft =
2agr (v -u)

; and

i

(y - )2
am - ot

2agri
; the fluent of which , is

am - ct

1

VV с

2agr

hyp. log. ( am - ct ),

which corrected , is

2agr

hyp. log. and hence

am

y ? - Vo с am

2agRV am

hyp. log.
C

2ugRV

am - ct

;
am

+1
am - ct

hyp. log.
C

2agkv

or , putting p = the equation will be
C

vp.hyp. log .
am- -ct

V

am

hyp . log . +
am -ct

,
Now writing k for hyp. log . am + we shall have for

P

the fluxion of the space ( 3) = vt, after reduction ,

vt

vi

P { k –hyp.log .(am – ct) }

vź

Let am-ct = % ; then ť and ; +
C

żv

pc (k – hyp. log . z )

và

k - hyp. log. %

܀

(by expanding the fraction

v *
+

k
hyp. log .

k²

+
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ż

% + hyp. log .” % +

log .* z + & c.

hyp. log. % + hyp:

} ;

s = " + { (z hyp. log.2– >) +

- 24) (z hyp.log. 2 – 35)

&c . } ;

the fluent of which is

vsz% 1

+

ср 1 k kez

1

z hyp . log . % - +
k4

+ &c.

VZ

C À (hyp. log. 2 – 1 ) + (hyp.

}

, c.

with their proper signs. Or from further reduction , s =

I

+ 1+

ckp k²

? Z — 2 + 38 ) + &c.k3
A,

B, &c . denoting in like manner the foregoing terms with

their proper signs ; and so forward .

Now when s = 0, t = 0, and z = am ; therefore the

correct equation or fluent will be

1

1 + T (hyp. log. am - 1 ) +pck

1

. amhyp.
+ ( hyp. log." am – 35ka k3

v (am - ct) v (am - ct)
+ &c. +

.
k

vam vam

s

1

c

{

2a) :)

1 + (hyp.

log. (am –ct)–1 ) + ( hyp. log. (am – ct) }:-21)

+ l{nyp.log.(amma)}--»») +&c.} =

here the {(hyp .log.am –1)+7( hyp.

logo am – 2x) + ( hyp. log. am - 5p) +&e.)

+

vt (k − 1 )

k
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+
v (am - ct)

ckp { (hyp. log.(am –ct) – 1 ) +1)+ 3({h( { bye

log.(am- cm 1–22 )+ ( { hip. log.Cames }

B ) }Зв + &c . ; from whence, writing a for t, the de

flection of the rocket at the end of its burning will be

determined .

vä

The fluent of might have been

pc (k – hyp. log. z)

otherwise derived by dividing 2 by k minus the series

expressing the hyp . log. of z , and then taking the fluent

of each term separately . Thus the hyp. log. z = (2-1)

- } (2-1) + } (2-1)} - (2-14 + &c.; therefore

by division we have ,

vì
S 3 1

k2

pc (le - hyp. log . z )
+ (2-1): –

pc
k 2k3

k ? +3

(2-1) 2 + (2-1 ) 3 ź - &c. ; the fluent of
3k4

-

}
V

po k

}

1 1 £ - 2

which is z +
22

(2-1) (2 – 1 ) 3
6k3

k? +3

+ ( x - 1 )4- &c.
12k4

So that s, or the fluent of

–và Vì Vz

+ is it

pc(k – hyp. log. z ) '
% +

pck

1 k - 2 12 +3

(2-1 )2 – (2-1)3 +
2k 6k?

(2-1 )* - &c.
12k3

V

C с

22 ( vy = &c . }
which corrected , is

vam V

{am
am +

k - 2

6k
( am - 1 )2 -

pokC
(am - 1 ) +

2k

k? + 3

12k3

v (am- ct) V

(am - 1 )4 - &c.
&c.} C pck
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5
7

V

}
= yt

(

} - {

1 k - 2

(am -ct) +
21 (am - ct - 1 )? (am – ct – 1 ) ;

6k?

k ’+3

+

12k3
( am - ct - 1 ) 4 - &c. am +

pck

1 le - 2 k* +3

(am -- 1 )
2k

(am - 1 )3 +
6k

(am – 1 )* -
12k3

1 hem 2

&c.
(am - ct ) + (um — ct – 1 ) ? 6k ?

k2 + 3

x (am -ct - 1 ) 3 + (am- ct - 1 )4 - &c.
12k3

Where t being made = a, will give the deviation of the

rocket from the line of projection at the end of its burn

ing as before.

43. To find how much the rocket will be farther de

flected during the remainder of the given time.

Let v now denote the velocity with which the wind

strikes the body at the end of its burning ; and v any ac

cession of velocity of the rocket in its sideral motion after

R (v

that period in the time t . Then will be the

} )

W

accelerative force of the rocket ; the weight of the whole

mass being now a constant quantity.
Hence,

v

jl = 2gfi) =
2gri ( v - v )2 2gRİ

; or ,

(v– v)?

2gR
whereof the correct fluent, putting a = will be

W w

>

W

V

= qt ;
y? VO

whence by reduction, we shall have

v’qt
U 3

Vqt + 1

where it is evident that u can never be equal to v , ex

cept in the case where t is infinite. Again ,
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-
-
-

2

vat +1

viqti vt

S = vt = vi

vqt + 1

and

1

S = vt hyp. log. (vqt + 1 ),

9

wanting no correction , since when s = 0, = 0, and the

whole vanishes . Therefore the additional deflection of

the body from its original line of projection during the

remainder of the given time is expressed by

1

vt hyp. log. (vqt + 1 ).

9

44. For an example. Let us suppose that the wind is

blowing the common gale of 15 miles an hour ; or with

the velocity of 32 feet per second ; and that the time of

motion of the rocket as given by the proposition is 63" ;

also let the values of the other letters included in the

problem be as follow : namely,

w = 18 lbs, = 288 ozs. b = 3 ft .

c = 10 lbs. = 160 ozs. v = 22 ft. (as just men.

m = 28 lbs . = 448 ozs . n = 15 tioned .)

a = 3 sec . r = = 16 feet.

2agRV

Thenp ( first part of the investigation)

ft.

2agRV 2agv
nrb Zanrhy 121

= Х

C c 3g

; and k
3c 240

= hyp. log. am + = 9.186876 ; which values, with
p

the rest, being substituted in the first 20 terms of the first

series expressive of the deflection of the rocket at the

end of the time a, will be found = 7.10096 feet. Now

am

vp . hyp. log.
am - ct

am

p . hyp. log. +1
am ct
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w

- -

Therefore making t = a, and reducing the expression, v

= 4 feet ; and hence the value of v in the second part

2gr 2g
of the

process
will be 18 ft. Also

9

nrh Anrh 11

X ; and t = 60 ". Whence,
3g 3w 2592

1

S = VE hyp . log. (vat + 1 ) =

9

2592 67

1080 hyp. log = 674.75589 feet.

11 12

And consequently the whole deflection of the rocket

is 681.45685 feet.

When the velocity of the wind is not so considerable,

the deflection will be accurately enough had from the

latter formula only ; for the deviation in such cases at the

end of the rocket's burning will be very trifling, whether

we consider the mass to vary (as it really does) during

that time, or the constant weight of the rocket when its

body is consumed. And the difference of the acquired

velocities in the two cases will be too small to cause any

sensible alteration in the final results.

45. For another example. Suppose the wind to blow

at the very gentle rate of two feet per second, and the

time of motion of the rocket as given by the proposition

50 " : also

w 14 lbs. = 224 ozs. h = { feet.

6 = 8 lbs. 128 ozs. * = to

ge = foot. g = 16 feet.

1

Then s = yt - - hyp. log . (vqt + 1 ) =
9

18144 5911

100 hyp, log. = 12.655 feet.

55 4536

If the velocity of the wind be that of 11 feet per se
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cond ; the deflection of the rocket will be 79 yards vert

nearly. But in neither of these examples is the weight

of any appendage to the rocket taken into the account,

which would alter the results very materially ; making

them much smaller than they are here found.

46. It may not be amiss now to enquire, how far a shell

would be driven by the wind from the vertical line of

motion during the whole time of its ascent and descent,

which we will suppose to be ' 63' , as in the first of the

foregoing examples. Let the shell be that, the external

diameter of which is 13 inches, the weight whereof

pny?r?
when loaded is 2 cwt . or 3584 ounces . Then

8g

(where p = 3.1416) being the expression for the force of

the fluid ( Art. 30. ) on the whole hemisphere of the

png?

body, we shall have R in this case = ; and q =
8g

2gR png? pnr 243.343
Whence

8g 40 3096576

1

hyp. log . (vqt + 1 ) =
9

3096576 27252.7741

1386 hyp. log = 1386

243.343 24576

1315.19 = 70:41 feet.

Therefore, notwithstanding the immense weight of

the projectile, the wind acting upon it with a velocity of

22 feet per second, for 1 min . and 3 sec . , will cause it

to fall 70:41 feet from the point whence it was projected,

an astonishing deviation for so ponderous a mass .

If the wind struck the body throughout its flight with

the same velocity as at first , the deflection of the shell

would be 75.480294 feet ; or 23 yards nearly.

Ex. 2.-Let the same shell be thrown obliquely in a

2g

Х

w w

S = vt

-
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given direction , and suppose the time of flight 10" ; also

the wind to blow directly across the line of fire with the

same velocity as before ; then will the extreme error

of the projectile be found = 31 feet.

If the direction of the wind niakes any given angle

with that of projection, the result as above determined

must be lessened in the ratio of radius to the sine of that

angle, to get the true distance of the body from the plane .

of projection at the end of its flight.

Another example of a cannon ball . Suppose a twelve

pounder, and the time of its motion at a certain eleva

tion , 32 " ; moreover let the wind be supposed to blow

perpendicularly to the vertical plane of projection with a

velocity of 29 feet per second, or at the rate of 20 miles

an hour, then we shall have for the maximum error in

this case 67.8 feet nearly.

These examples are sufficient to demonstrate the

effects of a disturbed atmosphere upon military pro

jectiles, in driving them from their original courses, as

well as to caution the practitioner, when in service, of

the necessity of attending to this circumstance in cases of

detached objects, where these are to be destroyed , and the

air happens to be violently agitated ; for without some

alteration being made in the direction of the engine, the

projectile may, in many instances, fall 30 or 40, or even

50 yards from the object, and consequently produce no

sort of injury to it whatever. But when the wind is

moderate, and does not blow so directly across the pro

jectile, the directing the piece in the plane of the object,

will be attended with more certainty perhaps, than

when it is pointed somewhat different, from the small

ness of alteration that will be required , which , if not
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strictly maintained, would incur greater error than if it

were totally neglected.

PROP. XIV .

47. Given the time of flightofa rocket, and the angle and

direction in which it is thrown, also the direction and velo

eity of the wind ; to determine at what distancefrom the plane

of projection , the rocket will fall ; it being supposed not to

revolve, but always to retain theposition in which it firstmoved

off ; or to be parallel in its sideral motion to the line of

projection .

The method of solution to this problem is precisely

similar to that of the foregoing. The angle of incidence

of the wind against the rocket (considered as a mere cy

linder) is given by the proposition : therefore, if this be

denoted by /, we shall get for the force of the wind,

moving with the velocity of 1 foot per second ,

nrhf 382-1 3 / -1)
1 + +

2g 40

(f ? +5) (P - 1 ) npr²
+ &c. (1-5 ) ,

112
4g

(where p' = 3.1416) ; which is the value of what repre

PagRV
sents in the last problem . Hence p = and

95

6

}
+

C

w

2gR

will be known ; and also k = hyp. log. am +
P

which being severally substituted in the general expres

sion for the whole deflection of the rocket in the direc

tion of the wind, (determined in the foregoing proposi

tion ), namely ,

vt (le - 1 )
+

k

vam

-

pok*
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am-2A + 1 o흩

v ( am- ct)

) ( hyp. log.i am – 38 ) + &c.+ &c . } +

{ ( hyp. logo(am –ct)–1)+7 ({hype

log.(am -->} -- 2x )+ ( { typ. log.com ory}

ck²p

}
-

1

· 3B &c. + vt hyp. log. (vat +1),

9

the deflection as required by the proposition may hence

be determined : the angle which the line of direction of

the wind makes with that of projection being given , and

the several letters denoting the same quantities in both

investigations.

SCHOLIUM .

48. The solution to this problem , under the various

considerations that it involves, even regarding the rocket

a mere cylinder, without any appendage whatever, will,

perhaps, long remain a desideratum in the true theory of

rockets. The force of the wind upon the body at any

given instant, as depending upon its position at that in

stant, is a circumstance which a correct solution must

necessarily embrace ; and this is of itself no easy thing to

determine, including in it the computation of two sepa

rate rotations ; namely, the one resulting from the action

of the wind ; and the other as produced by the resistance

of the air to the rocket in its descent to the earth by

gravity. That there will be these two rotatory motions

is evident. For with regard to the first ; though the

rocket in its sideral motion can never meet with any re

sistance from the medium , yet the inertia of the varying

mass will , in conjunction with the force of the wind

(the centre of which force never lying in the same right

62
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line with the centre of gravity of the varying mass ) , pro

duce rotation in the body ; making that end of it move

to leeward which is less heavy than the other. This ro

tation of thebody, like that of the other, will be effected

about an imaginary axis, always passirg through the

centre of gravity of the whole mass .; the place of which

axis will, therefore, be variable, as long as the rocket con

tinues to burn ; receding from the centre of the axis of

the rocket towards the head, till a certain quantity of the

composition is consumed , when it will return again to

wards that centre, and at last come into it*. And the

angular velocity at any given instant, will be the same

about the centre of gravity of the body at that instant,

{ the

* To find the greatest distance of the varying centre of gravity of

the mass from the centre of the axis of the rocket. Put a =

length of the cylinder or axis , and x = { the length of the uncon

sumed cylinder of composition : then a – x will be the distance of

the centres of gravity of the case and of the consumed column of

composition. Let w= weight of the whole of the composition ; and

d that of the case of the rocket ; and we shall have 2a : w :: 2x :

W.7

for the weight of theunfired cylinder of composition : whence
a

wr

+ will be the weight of the entire mass.5 And by the na
a

w.C w.r

ture of the common centre of gravity dt :

a a

w ( ax-x2)
for the distance of that centre from the centre of the

ad tow

axis of the rocket, which when a maximum, its fuxion , will be

w ( ax -x) ax -2 °

= 0 ; therefore the fluxion of
being

ad + wx
adtwai'

; , x = > dw

or of

ad

- ; whence the question itself becomes determined.
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-as about the corresponding centre of spontaneous rota

tion .

As to the second rotation , it is obvious, that if any

body, the ends of which are unequally heavy, move in a

resisting medium towards a centre of force, that the

heavier end, having greater power to overcome any re

sistance, will preponderate, and consequently will cause

the body to revolve ; and the revolution will continue

until the body comes into a vertical position, when if no

other force acted upon it, it would proceed forward in

that position.

The first of these rotations will evidently be the cause

of a sensible deflection of the rocket from the plane of

projection , when the force of the wind is considerable,

and the action of the same against the surface of the

rocket not very oblique : nor will this deviation seem

strange, when we consider the great velocity that the

·body acquires during the time it is on fire, and the con

·sequent extensive range afterwards ; that if the quantity

of rotation be but small at the end of its burning, the ulti

mate error must be important .

Let us suppose, that at the complete exhaustion of the

composition, the rocket should have revolved through an

angle of 8° ; or that its position at that instant, should

make with the position in which it was projected , an

angle of that magnitude : also , that it should have ac

quired a velocity that will carry it to the distance of 1000

yards on the horizontal plane, reckoning from the point

where a perpendicular from the rocket falls upon that

plane : then it will be found, that independent of the

action of any other force, the greatest deflection ofthe

rocket is 139 yards; which if diminished by the distance

that it is carried through by the wind, the remainder
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would still be a difference too considerable to be disre

garded in practice. It is on this account that the rocket is

thrown in a side wind, in any particular warfare with these

machines, somewhat to leeward of the object it is meant

to destroy, for if this were not done, it is obvious, from

what has been observed , that the weapon could have no

effect whatever upon the object, from the distance it

would fall from it, and even under the above circum

stances, if the wind blew very strongly across the body

of the machine, its effect, like all other projectiles, would

be sometimes uncertain .

The rotation of a rocket, from windward to leeward , as

produced by the action of the wind against it , being in

evitable, unless the rocket's motion be directly with, or

contrary to the motion of the wind, the rocket- engineer

will do well, when in actual service, to bear in remem

brance this particular, and to choose such a spot, if possible,

from whence he can throw the rockets either directly

with , or directly against the wind, at the object to be

destroyed ; when its effects cannot but be certain, if the

object be within its sphere of conflagration. But although

circumstances should not be favourable to the choice of

such a position when the exigencies of the moment re

quire the throwing of rockets, the certainty of their ef

fects, even upon a single object, will be greatly secured

by attending to the foregoing observations : but from no

other knowledge than that derived from practice, can any

system of warfare with rockets, be so much advanced and

brought to perfection.

Having thus far proceeded in the theory of rockets

moving in an abandoned state, in different mediums, and

pointed out some of the difficulties that must be encoun

tered to the farther extension of it , as well as to itsper
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fection ; I shall, after giving a few examples for practice

in this section, proceed to determine the circumstances

attendant on the motion of wheels, when influenced by

the impelling force of rockets attached to their circum

ferences ; the wheels being suspended on fixed horizontal

axes ,

EXAMPLES FOR PRACTICE .

EXAMPLE I.

The weight of thecase and head of a cylindrical rocket

is 14 lbs.; the radius of the base, and length of the case

5 and 33 inches ; and the radius of the base, and height

of the conical head 5 and 12 inches respectively : to find

to what height the rocket will rise in the atmosphere in

a yertical ascent.

EXAMPLE II.

Let a rocket of the above dimensions, &c. move off

in a direction inclined to the horizon in an angleof 30 ° ;

to find the height of the rocket from the earth at the

end of its burning ; granting it not to revolve, but to

retain throughout the position in which it was projected.

EXAMPLE III .

The weight of the case and head of a rocket is given

equal to 16 lbs.; the radius of its base and also that of

the head (which is conical) 54 inches ; the length of the

cylindric case 3 feet; and the altitude of the head 9 inches.

If when the rocket is thrown perpendicularly to the ho

rizon it attains the height of 14 mile from the earth ,

what will be the time of its motion ?

EXAMPLE IV .

How high would a 24 -pounder cast iron ball rise in
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the atmosphere, if projected perpendicularly to the hori

zon with a velocity of 1200 feet per second ?

EXAMPLE V.

Let a 10 -inch shell, the weight of which unloaded is

89lbs . , be projected vertically in the air with a velocity

of 1700 feet per second ; to determine where it will fall,

the velocity of the wind being 19 feet per second.

EXAMPLE VI .

Suppose a solid cylinder of brass of 3 inches radius,

and 2 feet in altitude, and having a hemispheric end of the

same diameter as the base of the cylinder, to be projected

vertically in the atmosphere with a velocity of 1500 feet

per second : to determine the period of its return to

the earth, it being supposed not to revolve, or to change

the position in which it was projected ; which it will not

if the atmosphere continues calm .

EXAMPLE VII .

Given the same as in the last, and the time of the

cylinder's return as thence determined ; to find where

it will fall ; supposing the wind to have blown the smart

gale of 40 miles an hour,

EXAMPLE VIII .

The time of flight of the rocket, Ex. 3. , is given equal

to 26", and the angle at which it is thrown 43° ; also

the direction of projection north - east by north . The

wind blows at the rate of 26 miles an hour directly from

the south. What then is the maximum deflection of

the rocket from the plane of projection ?
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SECTION IV.

ON THE APPLICATION OF THE FORCE OF ROCKETS TO

THE MOTION OF WHEELS SUSPENDED ON FIXED HO

RIZONTAL AXES .

LEMMA 1 .

nit

49. Let cd be a circular plane, vibrating about an hori.

zontally fixed axis nsm , parallel to the diameter AB ; and in

clined to SG, in any given angle soc : to find the force of the

plane co to effect rotation about nsm.

Draw GL perpendicular to the

plane cd at G, and si perpendi

cular to GL at L. Draw the dia

meter cd perpendicular to AB,

and in any chord parallel to the

same, and join Es, Gs ; also let L

EF and ct be parallel to GL , and

meeting sl in and T.

Put a = ST,

b = GL, or EF, or CT,

r = cg, the rad. of the given circle,

* = CE,

P = 3 : 1416,

Then pri is the area of cd. Now By the circle EH =

(2rx –- 2) , also se ’, or the square of the distance of IH

from the axis of motion = SF + EF = 12 + (a + * ) .

Therefore { b2 + ( a + x)• } (2rx - x )}, will be the force

of all the particles in the semi-chord eh, and * { b? +

Gr

A
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3 4

* (2rx — x '=
Х

( a + *)2 } ( 2rx – **) the fluxion of the force of ech,

which, puttingfinstead of b? to a*, is equal to

fi ( 2rx —x 2y + 2axi (2rx – x2){ + **:(2rx2rx - x )}

and the force of Ech itself

( 28 % - * 2) 57

of area ECH + 2ar area ECH
+

( 2rx -- 4235
( go area ECH

(when *=0) 0. Therefore making x = 2r , we shall have

572

ft 2ar ++2 4

for the force of the semicircle CED, and consequently

5r?

prz f + 2ar +
4

for the force of the whole circle as required : or restor

ing the value of f, and calling the distance so =

)

(f + 2ar + )

62 +

/ 를

(a , g, the force of the whole circle will be

truly expressed by

q?).

Whence it appears , that the problem is in no way af

fected by the inclination of the circle to sg ; the result

being independent of any quantity expressive of that in

clination . Hence, in all positions of the given circular

plane, if the axis nam, be constantly parallel to the dia

meter AB, its force to produce rotation about nsm , will be

the same. And hence the distance of the centre of oscil

lation of CD, equal to this force divided by g into pr ?, will

not be changed from the circumstance of inclination of

the plane.
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LEMMA 2.

50. Let the cylinder AB vibrate about an horizontally fixed

axis nsm , parallel to the diameter cd of the circular section

CHDI, and in any inclined position sif ; to find its centre of

oscillation .

HI

Let a = SP,

b = AP,

d = AB , the length of the cylinder,

g = the radius of its base,

* = Al, any variable distance from A,

the distance of the centre of gravity of the

solid from s,

= 3 : 1416.

By the preceding lemma, the force of the section EF ,

to cause rotation about nsm is

pri ( sl? + -).

{ (6— *)* + +Whence pri { 6 *)2 + a + go2

}
is the fluxion

of the force of that part of the cylinder, the length of
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which is x ; therefore the fluent

1

x x² +

d² +

8 +

pr²x (8² + p ) ,
12

wanting no correction, is the force itself of that part.

Wherefore, when x = .d , we shall have

1

dprz ( g? + r )
12

for the force of the whole cylinder. This divided by &

into the solid gives,

da g²

+

12g 4g

for the distance so of the centre of oscillation from s ;

which being also independent of any quantity expressing

the inclination of the cylinder, shews, that whether the

solid vibrates in a horizontal, vertical , or any oblique

position, if the axis nsm, continues parallel to CD, the

solution to the problem will be the same as above.

COR . - Because by mechanics, the distance of the centre

of gyration of a body, from the axis of motion, is a mean

proportional between the distances of the centres of gra

vity and of oscillation ; we shall have for the distance of

the centre of gyration of a cylinder vibrating horizontally

or vertically, or in any inclined position, about an hori

zontal axis , as nsm, parallel to CD,

1

( 8 ? +
12

where g and d denote the same quantities as in the pro

blem.

la di + 5 )* ;

PROP. XV.

51. Let ABCD be a solid cylindrical wheel, of any given

substance, suspended on an horizontal axis xy, passing through
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the centre of gravity 1 ; and supposing a rocket Ro, considered

as a mere cylinder, and whose case is so light that its weight

тау be neglected, to be strongly attached, at its middle point,

to the circumference at T ; to determine the velocity of the

wheel's motion at any given instant.

B

X

Let o = weight of the wheel,

r = it its radius,

c = weight of the rocket composition,

a = time in which the same is consuming itself uni

formly,

L = length of the rocket ,

d = diameter of its base,

h = ip = r + id,

s = sned (See Art. 17. Prop. Ist . ) = the force of a

laminurn of the composition when inflamed ,

v = velocity of the point p at the end of the time t,

1

( = -)
1 = IG the distance of the centre of

21

gyration of the wheel from its centre of

gravity .

072

is the massThen by the laws of revolving motion,

which being condensed into p, and the matter of the whole

wheel removed, will resist the motion of p, in the same

manner, as the wheel itself does in its natural state. Now
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to determine, at any time, what similar mass must be sub

stituted in p, for the matter in the rocket ; the centres of

gyration and of gravity of the latter must be first found ;

as the places of these points will not be fixed ( Art. 48.),

but will vary during the whole time of the rocket's com

bustion.

To find the places therefore of these two points at the

end of the time t. Let g (in the axis Ro) denote the

centre of gravity, and join ig . Now - will be the

weight of the unconsumed cylinder of composition at the

ct

a

Lt

end of the time t, and L its length ; also L

>

( - )

is the square

Lt

the distance of the place of the centre of gravity of
2a

the said cylinder from either end of it ; and 4L

Lt Lt

the distance of the same point
2a 2a

L’t

from p. Hence igé = 1p2 + pgʻ = k· +
44?

of the distance of g from the centre of motion 1 .

Now the
square of the distance of the centre of

gyra

tion ( si?) from the same point, by Cor . to last lemma, is

1 1

g ? +
12 4

where d is the length of the cylinder, and g = ig .

L’t + 4a²b2 L ’ (at)
Whence ir? = +

4a2 12a2 4

31 ° F + 12ab2 + Lº (a - t) + 3a % r

;
120 %

and therefore,

(3L’t + 120* h + Lº (a-t)? + 3a r ) c (a - t )

12adbe

+
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>

is the mass which being substituted in p, will afford the

same resistance to the motion of that point as the mass of

the rocket at the end of the time t. To this add the mass

012

and the sum
h2

120° + c (3Lºt + 12d* h ? + 1° (a - t)* + 3a’r?) ( a - t)

12a3b2

will be the whole inertia that resists the communication

of motion to the point p*. Hence ,

12a3b’s

120 °012 + c ( 3Lºtº + 12a h2 + L (a- t) + 3a% g *) ( a - 1)

is the actual force accelerating the point p at the end of

the time t .

2fgt; therefore

i
24a+ghºsi

12a’plº+c (3L%+ + 12a+b++ L’ (a t) + 3a?r?) (a – t)

Let z = a- t ; then t = a- %, and t = - ż. Therefore

ü =
- 24a'gkasz

12a3@1? + cz

Now ☺

=

{ 314 ( ) + 12a+b + L*z*+"ar'}
or,

=

4L?

6d gh's ż

CL? + 3a%$!", 3a"(Lº+452 + r ) 3

ti az ? +2
CL? 2

To find the fluent of this equation . Let

*

+ +
k + fluo.)

*should be

Xinto ) x -001K U W

2-4 Z -W

* I do not consider the weight or gravity of the rocket to have

any effect upon the wheel's motion . For, supposing ang number

of complete revolutions, the retardation and acceleration from this

circumstance, must so nearly counterbalance each other, that ng

sensible error can possibly arise from the neglect of it . And in any

given part of a revolution, it can make but a very small impression .
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1

az +

K =

1

3 3a (L ? +45 + r ) 3a -pl

z +
2 4L? CL?

k, u, and w being the roots of the denominator assumed

= 0 : then working according to the known rules for

these cases , we shall get

1

( k – u) (k - w )

1

( u - k) ( u - w )

1

(w- k) (w-u)

Hence K, U , and w being known, and the given fluxion

Kż

justly characterised by the sum of the fractions
k

Uż wż

+

6aºgh's
+ into the given quantity

6a gh's

its fluent, (calling P , ) will be
CL?

— р K hyp. log. ( % -k) + u hyp. log. ( z - u ) + w x

W =

Z

>

ZH Z -W CL ?

{ u .

(Z t =0,

v = 0. Therefore the correct fluent or general exprés .

sion for the actual velocity of the point p will be

a - k

р
+ u hyp. log. + w hyp.

- k ZU(x hyp. log.

) .

a -W

log.
Z W- พ

If two of the roots of the foresaid denominator be

equal, as k and u, then assuming

1

3 3a (L² + 4h + go?) Sap /?
3 . aza + +

2 4L? CL?
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N

Z-W

-

w

LZ + M

+

(x - k)

and reducing the fractions to a common denominator,

and equating the numerators, we shall find

-1 2k 1

L = M = and n =

( k- W )? (k − w) ? (k − w )2

Hence the fluent of

Ź

3 3a® (L? + 452 + xoa) 3apl2
z3 + aza + z +

4L? CL ?

> >

Z - W

-

LZŻ + MZ Nż

the fluent of + : where L, M,

( 2 - k )2

and N are known . And the fluent of this is

Lk + M

L hyp. log. ( % -k) + n hyp . log. ( Z - W ),
-k

( as will be readily perceived by substituting a single vari

able letter for the compound quantity % -k) , which mul

tiplied into – P, and corrected, gives

1

L hyp. log. (Lk + m )
{

a-k

2 ~E )
.

--

- W

+ N hyp . log.

};
for the general value of the

ZW

actual velocity of the point p in this case .

But in the above solutions we take for granted that the

roots of the denominator of the fraction are all of them

possible, which may not be the case under numerous par

ticular data of the problem . It will therefore be proper

to integrate the fuxion upon the supposition that the

cubic involves imaginary roots. Let these be k and u

( for being a cubic equation it must have two impossible

roots, if any, ) and the real root w : then the two

Kż uż

fuxional fractions and in which the
kZ z

H
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P

Z - W

imaginary roots enter, being incorporated together in

order that the impossible parts may vanish , we shall have

(K + U) zź (Ku t uk) wż

+
(b + u) % + ku

for the transformed given fluxion ; the fluent of which

is resolved as follows.

Suppose c = k + u , d = ku + uk, a = l + u, and

b = ku ; then will

( k + U) zż – ( ku full ż czż - dż

z - ( + u z + ku - az + bz ? -

a

-Let, now, x = x : then z = x + z = * +

2 2

a? a

az, az + b = x2 + b = (writing m?and z ?

>

a ?

for 6 which is a positive quantity by supposition )
4

** + m². Therefore since j = ż, the given fluxion

cxi + --)czz- di

will be transformed into

% – az +b x2 + ma

>

ac

2

mi?

-d

the fluent of which is c hyp. log. (** +mº) +

into a cir: arc of rad . m and tangent x = (restoring the

values of a, b, m, x , &c. )

k + (k + u )

( K + u ) hyp. log. { + ku – 18+59 }

( K + U) (k tu) - (Ku + uk) ,

(k + u )
ku

+

4

{ tu - ***}
into a cir. arc . of rad . and tan.
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k tu
X & ku

-

2

( 3 - ** " ). Consequently thewhole fluent is –

{ } (x + u)hyp. log. {( * -

- cir. arc ofrad.

{tku (d + m }" }(8 + x) }* and tan. (

12 (K - U) (k - u)

4ku - (le + u) 2

k tu

%

) + w X
2

Р

{ } (v + u) hyp.logo z* =(x + x)z + ku

log.

v = 0 , gives, for the general value of the actual velocity of p,

a ? (k + u) a + ku

+

( k + u) % + ku

2 (K + v) (k + a)
into the difference of two circular

4 ku – (k + u )"

is
물

arcs (A -b) whose common rad. is +
2

kt u k tu

and tangents a and % -
respectively

2 2

+ w hyp. log. w } =
= P

{ (x + o ) hyp. log.ZW

a? – (k + u ) a + ku

z - (k + u) z + ku

+
2 ( K + U) (k + u)

4 ku – (k + u

Х

and tangent

circular are of radius= { sku= ( + ujiwy}"

{tu -***)"}* {(o- ***)-(3 - ** ")}

+ lo- ***) (2-4 )

}

+

(k + u )?
kus

-

+
4

a - W

w hyp. log.
ZW

Let us now restore the values of X, U , and w , and

we shall have,



100 FORCE OF ROCKETS APPLIED

1

-

1 1

K + U +

( -u) (k − w ) ' ( u - k) (4 - w) (w - k) (u —w)

1 1

K - U

(ku) (k - w ( u k) (u - w)

v (u + k) 2 w

Tide – u ) ( – w ) (u - w )

2 (k + u) - 4 w

and, 2 (K – 0) (d — w ) =
Tk - w ) (u - w )

Therefore by substitution and reduction, the above ex

pression becomes

1 a - ((k+u) a+ku
hyp . log. to

2 (w - k) (u - w) z² - (ktu),z + ku

2 (k + u) 4w

into the circular

(ku – (k + u) w + w^) ( 4ku (k+ u)? )

arc

( + 2)2 }' and tangent2

( le +

ku
1

+
k tu hyp . log.

ku t az - (w-k) ( w - u )
( a + x)

P

{ a

of rad.{tku

-) (a –z)

x

" }
And in the extreme case where t=a, or z=0,

Z - W

}
4 w

+

1
q * - (k + wa + ku

it is, p hyp . log.
2 (w-k) (1 - w) ku

2 (k + u)

into the arc

(ku – (le + u) w + w*) (4ku – (k + u ) )

1
- 플

whose rad . is 4ku – ( k + x )?
2is { (4 + x) }

and tangent

a

Wa

( le + u )?
ku

1

(k + u) a
kis

2

where it is evident that the impossible quantities k and u

+

} 2(w — k) (w -x )hyp. log.
w
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(partaking of the forms Entm - 1 and In -mv -1)

are so involved as to make all the terms in which they

are contained real.

To illustrate this by an example.

Let T = { ft. the thickness of the wheel which we

will suppose of sound dry oak,

g = 2 ft. its radius ,

C = 160 ozs.

Q = 4 sec.

L = 3 ft.

d = ft.

b = rt id = 2 feet.

25

ft.

21 8

Then 6 = 9031-2875 ożs. and p = baʼgh’s –1457178.3 .
CL?

Now substituting the above values in the equation

3a -012 3a? ( L " +46 +72) 3

+ az? + z3 = 0, it
CL? 4L

182

will become z3 672 to % + 946 = 0 ; whereof

one of the roots, by Cardan's rule , is - 6.609 nearly ;

and the other two are 6.305 + 104 and 6.305

1

104. Hence P x hyp. log.

%

2

3

{ 2(0-1)(10-2 )

a' - (k + ulatku 2 (le + x) – 4w

+

ku (ku- (k + u ) w + w*) (4ku- (k + u ) ? )

11/ 플

+ tangent
2

( k + u )
ku

4 1 w

+ hyp. log.
( k + u) a (w -k)(w- u)

ku

2

wom }
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1457178.811788
1 109

hyp. log.
541.332 143.69

1.24

112597.056

-

}

1 10.61

X 3 •3812 + hyp. log. = 1457178.8

270 *666 6.61

( +.00051043 - 00003723 + .00174833 ) = 3237.1664

feet ; which is the actual velocity per second of the point

p of the circumference of the wheel at the end of the

rocket's burning ; and consequently the angular velocity

of the wheel itself, at that time, is 1294.8665 feet.

Hence, knowing the actual velocity of the point p, the

number of revolutions per second that the wheel will for

ever continue to make (no extraneous or other causes be

ing here supposed to operate) may be determined : since

it is only to divide the actual velocity of this point by the

circumference of the wheel. In the present example

therefore, where the circumference = 15.708 feet, the

number will be 206.

PROP. 15 .

52. Tofind the number of revolutions the wheel makes dur

ing the time ofthe rocket's combustion .

In the solution to this problem , I shall confine myself

to the most difficult and laborious case, where the ge

neral value for the velocity found in the preceding pro

position has been obtained on the supposition that the

denominator of its fluxion contains two impossible , and

one real root. Therefore r { 2(
x4)(4 -w )

hyp. log.

a * -- (k + u ) atku 2 (k + u ) - 4W

m2 – (k + uz + ku (ku- (k + u )w + w *)(4ku ” (k + u)?)

x cir . arc of rad .{ 4ku ( k + u )

1.)"}
and tangent

1

+
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( ix – (4+ )) (6-3)

+ ( - + )( - *** )
(k + u )

ku

4

1 aw

-

Z w

1

+ hyp . log. being the velo

(w – k) (w- u)

city, let us, in order to render the expression as simple

as possible, put A = B = (k + u )

2 (w- k) (u-w)

2 lk + u) - 4W

xatku, D=

(ku – (* + u) w + w °) (4ku – (& + )2)

= {4ku – (k + u)"}w }
n = k tu, and m =ku ; then

it becomes P { A hyp. log. m – nz + m + D arc of rad.

m
n ?

E =
>

B

4 az

E and tan .

х

+ w hyp.logs
n an

m

2 2

+ Z
n

2

a W

Therefore since the fluxion of the space (*)
% -

B

=vt=vi vž ; we get *= -P { aż hyp. log.: 2² — nztm

m

+ Dż "into arc of rad. E and tan. X

2
0
1
3

2

an

2 - W

(a - z) = + 2 + wix hyp. log. of
n

Z



104 FORCE OF ROCKETS APPLIED

B

22 .
The fluent of the first term z hyp. log.

- nz + m

( i) omitting for the present the constant multiplier – Pa,

is F = x hyp. log. Zanz tm fluent z x flux . of

B

B B

2

B

=z hyp. log.nztm

hyp. log. = Z hyp. log. + flu .

nz + m z ? - nztm

2z ż N2²

flu .

z? - nz+m z ?-nz+m

nzż mz

+ 2% + flu . (H ) – flu.
2² - nztm nzt in

1 1

Let x = % -n, then x=2, also x² = -nz + n ,
2 4

( G ) .2

1

and z ? - nx + m = x2 - m2 + m = (writing e for

** +ma + m , which is a positive quantity) x2 + é?. There, ** .

nzż

fоrе н =
n (xi tini)

and H =

z² - nz + m Aia te

hyp. log. (* ? + e ) +. ) cir. arc of rad. e and tan .

1/ 2²

* = hyp. log. ( z* – nx + m ) + * + m

mz

rad. (- \n"+m) and tan . (8-19 ). Also G=
z? - nz+m

mä

and arc . of rad . (-1na + m )i
**+e -4n+m

and tan (z- in).

So that F X - PA or the fluent of the first term of the

arc of

>

B

given fluxion , is PA . . +2z+
2² – nztm

2²

-hyp. log. (zº - nz + m) +
arc of rad ,

- 40 + m
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m

arc of rad .

m- $ n ?

PA

,{ n

+6

m

z

-

(-** + m); and tan. (2–1n) .

( - *n* + m ) and tan.(2-1n )} {z hyp.log. B

) hyp . Tog .( * –nz + m) + -4n tim

arc of rad. ( – 1n + m)# and tan . (x– įn)} ;which being

corrected, willbe pa{(a –z) hyp.log.B + -a)

hyp, log. (a+=na+ m) - ( -z) hyp.log:(z*=nz +m )

in - m
arc of rad . ( -4m2 + m )# and tangent

-n ° + m

(-1m2 + m) { (a- n ) - (2 - in ) }

- } = (when z =-n° + m + (a – in) (Z - in)

t=a) ra { a hyp. log. B + - a) hyp. log. ( a” – na

in - m

+ m) hyp. log. m + arc of rad . ( -in

- tm

+ m ); and tan .
(-10 + m) a

}kan

Next for the fluent of the second term of the given

78²

+

O or

(
-

n

2

m

4 a - Z

flux.žinto arc of rad.e and tan . х

12 an

m

2 2

.
n

2

( F), (omitting for the present the multiplier PD).

an

4 2

Writing a for ,andp for then F=% X
12

>
12

A

2 2
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Х

E + q*

arc of rad . E and tan .
q (a - Z )

- fluent of z into the flux .

ptz

of the arc of rad . E and tan. 9 (2-2) i ). Now the
(

Piz

fluxion of an arc, in terms of the tangent, is equal to the

square of the radius into the fluxion of the tangent,

divided by the sum of the squares of the radius and of

-qE? ( P + a) zż
the tangent : therefore i =

( P + z)

E * ( P + 2 ) + q* (a – z) - qE? ( p + a) zż

( p + z ) E ( P + 2 ) + q ( a - z )

--E ( P + a) zż

E *p + o’q? + (E’p - aq ?) 2% + (E? + 9° ) zi

- 9E ( p + a ) zż

E ? +99 Eʻp + a q? E'p- aq?

+ 2z +

E’ + q*

Now if the roots of the denominator of this fluxion be

impossible, then calling
- qE ( p + a ) Eạp? ta’qa

E' q

Eʻp – aq?
zż

R ; and V X

RI2sz + x ??

we shall have when 2s is affirmative,

V { hyp. log. ( 2* +252 + R)
-s + R

arc of rad.(-52 + r )* and tan . (2 + - s ) } ; and when 2s

is negative, L = { hyphyp. log . (z - 2sz + R) +

arc of rad. ( -5° + R)ź and tan . (z
-s + R s ) } .
Whence, PD X F, or the whole fluent of the second

term of the given fluxion uncorrected , will be

- PDZ arc of rad. E and tan .
q (a – z)

- PDV hyp.

P + z

V ;

E + q*

E' ta
; S ; so that i

S

X

V

S

-
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S

log. ( z? 2sz + R F - s + Rarc of rad . ( -52+ r )*

{ , hyp.
sit

and tan .

1

R

S

and tan . ( z 5 s) } . Now z = a, when the space and

time are each = 0 ; therefore this fluent corrected is

gla + z )
- PDZ arc of rad . É and tan . + PDV

þ + z

a + 2sa + R

log. arc of rad (-s + R )
z 2sz + R -s? + R

(-5° + r ) { (a s ) – (z – s)} _ ?
= (when

-s + R + (as) (z + s) S

a + 2sa + R

z = 0 or t = a) PDV hyp . log.

(-5? + R ) a

arc of rad . ( -5° + ' R ) and tan .
-s? + R Rť sa

This is the case when the roots of the quadratic deno

minator (assumed equal to 0) are impossible. But if the

roots are real, and be denoted by i and j ; then assum

1

ing + , by reduc

z - j z ? + 2sz + R

tion, &c. we get

1 1

and z = garant

i -j j

xzż zzz

Whence V and

% - ;

zti hyp. log. (2-1) } – vz {z + j hyp.

logo (z - j) }. Whence also, - PD XP will be = – PDxx

9 (a - z)
arc of rad. E and tan . – PDVx { zti hyp.log

中 十名

( z - i) } – povz {2 + j hyp.log. (2-1)};

X z

z- i

{
+

,Z

L = VX
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which corrected, is

pov { s ( -x + i hyp. log.***) + z6a -3 +jx

hyp.log. *) = (when z=0) PDV { x (ati hyp. log.

79 ) + z (a + jhyp.log..10)}
Lastly, to find the fluent of the remaining term - PWZ

hyp. log. (K) of the original fluxion , it is k =

a- W

Z -W

aw

PW

Z -W

a-W

log }
PW

z

- W a -W

-

Z W

-W

Z “ W

{ z hyp. log. fluent z into the flux. of hyp.

OW

{ z hyp. log. + 2 + w X
zw

hyp . log. (z w) } ; which corrected is – PWv { a- x +

w hyp. log. z hyp. log . } pw {a-

- (2 - w) hyp. log. } = (when z = 0) PW X

{ a + w hyp. log .. * }

Whence, the whole space passed over by the point p

in the wheel, during the burning of the rocket, being

now determined , the number of revolutions made dur

ing that time may be computed.

In the solutions of the foregoing propositions, we have

supposed no other resistance to the wheel's motion than

that which arises from the inertia of the mass about its

axis. But if the wheel revolve in a medium (as in air

for example ), its motion will be further resisted from the

action of the same against the rocket, and that very

sensibly, when the velocity of revolution becomes great.
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And there will be but this force of the air upon the

rocket, opposed to the whole compound mass ; unless it

be said that some slight resistance is occasioned by the

friction of the wheel against the fluid , which in air must

be too inconsiderable to affect in any degree the result

determined from the contrary supposition. That there

will be considerable friction of the wheel upon its axis is

evident, if the former be supposed possessing much

weight, and ought to enter as an additional datum into

the computation . Calling, therefore, the resistance to

the rocket to any given angular velocity ( 1 ) of the wheel

R , and v the corresponding velocity to time t, Ru ’ will

be the resistance to that velocity, and f being taken for

the quantity of friction on the axis, the fluxional expres

sion for the velocity, namely, v = 2fgi will become ( Vide

Prop. 14. Art. 51.)

-- 2gź ( 12a'k's - RV - F )

12pa}/2 + cz (3L (9 - x ) + L’x + 12a+b + 30*r )

or,

- MŻ + ou

i
Pt az NZ ? +23

the fluent of which may be found by the method of in

finite series, similarly to that at Art. 33. Prop. 9. and

hence the space described be obtained .

Note.When the rocket is fixed to the wheel in the

manner prescribed by the proposition, the value of R will

be had by a comparatively easy process, referring to what

has been laid down in section 2. And when it is screwed

upon the wheel, at the very extremity, so that no part of

the surface of the cylinder meets the fluid , the resistance

will be barely that upon the circular end, and conse

quently a problem of still easier solution.
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SECTION V.

OF THE APPLICATION OF THE FORCE OF ROCKETS TO

THE MOTION OF PENDULUMS.

s

53. The pendulum , of which I here propose to consider

the motion , is that denominated the ballistic ; and as it will

be required, in what follows on the subject, to know the

centres of gravity and of oscillation of the machine ; it

will not be improper to give the methods by which the

places of these points may be determined mechanically ;

and previously to which, a short description of the pen

dulum itself.

The ballistic pendulum is a massy
A : -B

block of wood w, hanging freely upon

a strong horizontal fixed axis AB, at s,

which axis is a part of the pendulum,

to which the block w is connected by

a strong inflexible wire or stem st. It

was invented by our late ingenious

countryman Mr. Benjamin Robins, for the purpose of

ascertaining the initial velocities of cannon balls, or the

velocities with which they issue from the engines, and

is, as Euler observes, one of the most useful discoveries

ever made in artillery.

1. To find its centre of oscillation . It is well known that

bodies vibrating in the arc of a cycloid, perform all their

vibrations in the same time, from whatever point in the

arc the vibration commences. But this is not the case

when bodies vibrate in circular arcs, except those arcs be

W
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n

very small. Therefore, to find the centre of oscillation ,

or which is the same thing , the length of a simple pen

dulum which shall vibrate isochronously with that of

the ballistic , suspend it freely by a given point, and

make it vibrate in a small arc not exceeding 4 or 5 de

grees on each side of the vertical line of suspension, and

by a good time-keeper, observe how many oscillations

the pendulum makes in a given time (t), for instance

3 minutes , and call that number n ; then by the theory

of pendulums na : ! :: 39 inches (the length of a simple

t" x 39

pendulum that vibrates seconds) : - , the length

of the pendulum required ; or the distance of the centre

of oscillation from the point of suspension ; where it is

to be observed , that t must denote the number of seconds

in the experiment .

2. Tofind its centre of M

gravity. Let a string or

ribbon be fixed to the

block at L, by means of

which, raise the pendu K W

lup to a horizontal po

sition ; then let the string be put over a pulley m , so

placed, that LM may be perpendicular to the horizon, or

to the extremity IL, of the surface ik . The pendulum

being horizontal, hang a weight w, at the end of the

string Low, just sufficient to keep it in that position.

Then is sol a lever of the second kind, the weight

acting at G, the centre of gravity, is equal to that of the

whole pendulum ; and the weight or power w, acting in

direction LM , preserves an equilibrium ; therefore, call

ing the weight of the pendulum P , and the whole length
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P

wg

of it SL, 8 ; we shall have P : w :: g :
the distance

of the centre of gravity from the point of suspension s.

Note. It is plain, that P, the entire weight of the pen

dulum, is equal to the weight of the block and all its ap

pendages, since in vibrating, the whole is in motion upon

the pivots A and x.

PROP. 16 .

54. Let a rocket of given dimensions be strongly attached to

the face of a given ballistic pendulum , so that the axis of the

Tormer, when produced, may intersect the axis of the latter per

pendicularly: to determine the greatest arc through which the

pendulum will be impelled.

A little reflection on the nature of this problem ,

renders it obvious, that the pendulum will not have

acquired its greatest ascent till the complete exhaustion

of the composition of the rocket ; for though the force

of the mass, to prevent rotation about the axis of suspen

sion at any intermediate time, may be an exact counter

poise to the force of the rocket, yet on account of the

after combustion of the rocket, and consequent diminu

tion of the weight of the remaining mass, the pendulum

will ascend, and so continue, as long as the rocket re

mains on fire. To determine the problem , therefore, we

have simply to find an expression for the gravitating

force of the body under the circumstances here men

tioned ; which being made equal to the constant impel

ling force of the rocket, the equation thus resulting will

afford us the means of determining the height required

by the proposition .
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Let the weight of the case of the rocket be inconsider

able with respect to the weight of the pendulum ; and

put

w = weight of the latter,

g = distance of its centre of gravity from the axis

of suspension,

o = distance of the centre of oscillation ,

( gº ) } = distance of the centre of gyration,

i - distance of the axis of the rocket,

go = radius of the rocket's base,

n = 230 ozs . the medium pressure of the atmo

sphere upon one square inch,

s = 1000 ,

= 3 : 1416,

x = natural sine of the angle which the axis of the

pendulum makes with the vertical line, when

at its greatest altitude.

Then snpr? is the force of a surface of composition equal

to the rocket's base, or the constant impelling force of

the rocket. Now by the theory of rotatory motion ,

gow

is the mass which being condensed into that point
22

of the axis of the pendulum the distance of which from

the axis of suspension is represented by i, the motion ,

and every circumstance attending that motion of the pen .

dulum , will be the same, as when it revolved in its na

gowx

tural form . Whence, will be the gravitating force

of the pendulum when in the required position : there

snpr ?i

= supr , we shall have x =

gow

for the natural sine of the angle sought.

2

fore putting gown

I
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For an example in numbers .

Let w = 570 lbs. or 9120 ozs.

& = 784 in.

o = 847 in .

i = 60 in .

r = 1 inch.

n = 230 ozs.

n = 1000 .

p = 3.1416

snprei 1000 X 230 x 3.1416 X1 X 60

Then x =

gow 784 x 847 x 9120

= 7143045, the natural sine answering to 45° 35'.

If the arc through which the pendulum is impelled be

given , the value of s, expressive of the force of the com

position , in reference to the force of the atmosphere, de

gowx

noted by 1 , will be
npr’i

Hence, a very easy and simple method of determining

the strength of the composition of any species of rocket,

or pyrotechnic arrow , by means of the pendulum : for

in the experiment, it will be merely required to mark

the precise height of the pendulum at the final instant

of the burning of the rocket, and substitute the natural

sine of the angle which it subtends, with the other

known quantities contained in the foregoing expression

for that strength. Thus, suppose the dimensions of the

pendulum and of the rocket to be as in this proposition,

and that the pendulum is urged through an arc of 30 °,

gown

nprm;

be found in this case equal to 700 very nearly, for the

the natural sine ofwhich is } ; then will s (
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strength of the composition, which is therefore 700 times

the elastic force of the atmosphere at a medium .

But in order to have the force of the composition as

precise as possible, let us take into the account the weight

of the case of the rocket , that is, instead of finding the

centre of oscillation of the pendulum only , by the method

laid down at Art. 53 , find this point when the case of

the rocket is fixed to the pendulum at the point where it

is intended that the force of the latter should be ap

plied . Also, for the centre of gravity of the compound

pendulum, it will be had by a very easy process ; for the

centre of gravity of the pendulum without the case of

the rocket annexed , is found by Art. 53 ; and the centre

of gravity of the latter is known, being the middle point

of its axis, the length of which is given ; therefore, hav

ing also the distance between these two centres given,

and the weights of the two bodies , their common centre

of gravity will be had by saying, as thesum of the

weights of the two bodies , is to the weight of either of Singula o
them ; so is the whole distance of their centres of gravity

from each other, to the distance of their common centre

of gravity from that of the centre of gravity of the other

body ; and this being known, the distance ( 8 ) of the

same point from the axis of suspension may be deter

mined .

As to those circumstances which may seem to cause

some error in the result by diminishing the arc that the

pendulum describes, such as the friction upon its axis,

and the resistance of the air to the back of the pen

dulum , they are sufficiently balanced (so little as they

exist ) by the effect of the former upon the number of

vibrations made by the pendulum in the experiment

which determines its centre of oscillation . ( See Dr.

I 2
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nprii

Hutton's Tracts, 4to. ed. p. 120, & c.) Therefore, the

force of the composition as above deduced , is perhaps as

gowx

accurately defined by the fraction as the nature

of the thing will possibly admit of.

Several other curious problems might now be proposed

concerning the application of rockets to the motion of

pendulums ; but as they would be more speculative than

practical, I shall pass them over, and conclude the section

by a brief and popular account of the experiment for

ascertaining the force of the composition.

The most striking object in the experiment being

that of ascertaining the arc described by the pendulum ;

the means by which it is effected , cannot be too simple,

and free from causes, that may tend to prevent its pre

cise determination ; considering how much the truth of

the thing sought depends upon the accurate measurement

of that arc. Now the best method with which I am ac

quainted is that given by Dr. Hutton ( and invented by

him ), at p . 112 , of thevolume of Tractsbefore mentioned.

It is as follows :-- Let a sharp spear or stylette be con

ceived fixed in the centre of the bottom of the pendulum,

and a block of wood to be placed immediately under

the same having its upper surface formed into a cir

cular arc , the centre of which is in the middle of the

axis, and its radius equal to the length from the axis to

the upper surface of the block ;then, in the middle of
this arc, make a shallow of 3 or 4 inches broad,

running along the middle through the whole length of

the arc, and fill it with a composition of soft-soap and

wax of about the consistence of honey, or a little firmer ,

and having its upper surface smoothed off quite even

with the general surface of the broad arc ; then the

grove

groove,
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whole being put into motion , the stylette proceeding

from the bottom of the block , will move along the

surface of the composition, and trace the precise vibra

tion of the pendulum ; the measure of which may be

accurately determined by means of a scale of chords

(previously constructed ), answering to the radius, whose

length is the distance between the axis of suspension and

the upper surface of the block, by measuring first the

chord of the arc marked out in the groove of composi

tion, and then applying it to the said scale of chords.

And thus having found the number of degrees in the

arc of vibration , its natural sine (x ), will be known.

Whence, the values of the several letters contained in the

expression for the force of the composition being now

found , by substituting them in that expression, the force

itself will be had in reference to the similar elastic force

of the atmosphere denoted by unity.

ON

NAVAL GUNNERY.

55. Whatever is advanced towards the perfection of

any system of warfare, whether for the use of the navy

or for the army, must in the present day be considered

as entitled to every attention. The following enquiries in

naval gunnery are intended to obviate the evil arising from

any undue allotment of charges for the artillery when in

close action, for it has already been conjectured (See Pre

face) that the charges made use ofare not always the most
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eligible for producing the greatest destruction to the

enemy's shipping ; owing to their being too great; a cir

cumstance that ought ever to be attended to in all cases

of practice, as well military as naval.

The charges here given (which are computed for all

the natures of ordnance generally used at sea) rest upon

experiments, which , for accuracy , have never been ex

celled ; and every circumstance that was likely to affect

materially the quantity of them has been duly consider

ed in the theory whence they are deduced. Many re

marks might here be made in favour of their hoped for

utility ; but as they will appear in the body of the work ,

it is unnecessary to repeat them in the introduction,

LEMMA 1 .

56. If two spheres of different diameters, and different spe

cific gravities, impinge perpendicularly on two uniformly re

sisting fixed obstacles, and penetrate into them ; the forces

which retard the progress of the spheres, will be as the absolute

resisting forces or strengths of the fibres of the substances

directly, and the diameters and specific gravities of the spheres

inversely.

Let R and r denote the absolute resisting forces of the

two substances ; F and f the retardive forces ; D, d , the

diameters of the spheres ; Q, q, their quantities of mat

těr ; and N and n their respective specific gravities,

Then the whole resistance to the spheres being propor

tional to the quantities of motion destroyed in a given

time, will be as the absolute resisting forces of the two

substances and quantities of resisting surfaces jointly ; or ,

as the resisting forces of the substances and squares of

the diameters of the impinging spheres ; because the
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surfaces of spheres are as the squares of their diameters ;

D2

that is

d2

M R

m

M F

Х .

m

F Q R

X Х X

d2 r

R R n1

Х X Х

n

-

N

Х Х

1 D3 r D N

But in general,
Therefore eqnat

f 9

ing these two values of the whole resisting forces, we

Da

have

f and9 9 f

D?

& ; and since the quantities of matter in spheresd ?

are in the conjoint ratio of their magnitudes and densities,

or of the cubes of their diameters and densities ; it is

D? d3 d

f d

That is, the forces retarding spheres penetrating uniform

ly resisting substances, are as the absolute strengths of the

fibres of the substances directly, and the diameters and

specific gravities of the spheres inversely,

COR .-- Because the whole resisting forces dependon the

quantities of resisting surfaces, equal to the superficies of

the spheres ; it is evident that these forces will not be

constant until after the spheres have penetrated to the

depth of their radii . This circumstance however will not

materially affect the conclusions we have derived from

considering these forces as constant from the moment of

impact, when the depths of penetration are considerable

with respect to the radii of the spheres. And the times

of penetration, the velocities, &c . when the depths are

small, compared with the radii are considered in a sub

sequent part of the essay.
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LEMMA 2.

The whole space or depths to which spheres impinging on

differently resisting substances penetrate, are as the squares of

thefirst velocities and the diameters and specific gravities of the

spheres directly, and the absolute strengths of the resisting sub

S D2 N r

stances inversely : or , Х

D

Х

d

X

U? n R

S v2

For by mechanics,

s

f
: and by the pre

S wa F

D S

Х

F R

D N

N

ceding lemma 3therefore

d n

v2

xV2 d

These being premised, I now proceed to the following

important subject

Х X

N R

ON

THE DESTRUCTION OF AN ENEMY'S FLEET AT SEA BY

ARTILLERY.

PROP. I.

57. To find a general formula which shall express the

charge of gunpowder for any givenpiece of artillery, to produce

the greatest destruction possible to an enemy's ship at sea ; it

being supposed of oak substance of given thickness, and at a

distance not affecting in any sensible degree the initial velocity

ofthe shot.

By the last of the foregoing lemmata we have gene

sdnru

rally, v = Also the charges of powder

vary as the squares of the velocity and weight of the ball

-) .SDNO
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jointly. Hence, since it has been determined from ex

periment that a charge of half a pound, impelled a shot

weighing one pound, with a velocity of 1600 feet per

second, we shall , considering v the velocity of any ball

impinging on the side of the vessel, have for the expres

sion of the charge impelling it through the space s

SRdnu ? w

2DNES X 16002

Now to apply this in the present instance, it is first

necessary that a case be known concerning the penetra

tion of a given shot into oak substance . Such a case we

are furnished with at page 273 of Dr. Hutton's Robins's

New Principles of Gunnery. It is there asserted, that

an 18-pounder cast-iron ball penetrated a block of well

seasoned oak (such as ships of war are generally built

with) to the depth of 34 inches, when fired with a velo

city of 400 feet per second . Making therefore this the

standard of comparison for all cases where the object is

of oak substance, we shall have for the charge generally,

4002 x 42

2 x 1600 X Za

or, because the balls are of the same specific gravity, and

the substance the same, or R = r, and n = n ; it will be

4002 x 42 SW

Х = '045 x ;

2 X 16002 x 74

that is, the charge varies as the space to be penetrated

and weight of ball directly , and diameter of the ball in

versely.

But the charge, by the problem , being to produce the

greatest effect possible in the destruction of the vessel ;

s, in the above formula must always be put equal to the

given thickness of the side ; since it is well ascertained ,

SRNW

Х ;
DNE

SW

D D
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that, for a shot to produce the most damage to any

splintering object, such as oak , it must lose all its motion

just as it ceases to be resisted by the object, which hap

pens when the ball has forced its first hemisphere out of

the farther surface of it . And the quantity of motion

destroyed during the penetration of the first hemisphere

of the ball into, and the exit of the same out of the ob

ject, is precisely equal to what would be destroyed during

the penetration of the ball through one of its radii if the

quantity of resisting surface was equal to half its entire

superficies. Hence the charge in question will be

Sw

045 x

D

s being the thickness of the side of the ship, w the

weight of the ball , and D its diameter.

If it be desirable that the shot should pierce both sides

of the vessel , and the greatest damage to the ship take

place on the hithermost side ; it will only be necessary

to double the thickness of the side of the vessel, and

take that charge in the following table corresponding

with the result . It appears to me that this would be the

most advantageous practice; for not only will there, in

this case, be a chance of killing a greater number of men

of the enemy, but of the ball's striking the masts of the

ship ; and every sailor who has experienced such an im

pact on a mast in the hull of the vessel, need not be in

formed of the resulting consequences.

REMARKS.

In this solution , no allowance is made for the splitting

of the timber that may take place when the ball has

nearly penetrated to the farther surface of the object, by

which the shot would be there less resisted , and its force
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not wholly expended when it quitted the side of the

vessel.— This circumstance would be a matter of some

importance did not others of a contrary nature interpose

to counterbalance its effects. Thus, the loss of motion

which the ball suffers in passing through the intercepted

space of air between the two vessels, has this tendency ;

for it must not be iniagined that the firing commences ,

or can commence, when the ships are absolutely in con

tact with each other, this being impossible ; nor can it

be supposed that the shot will impinge in any instance

precisely perpendicularly on the face of the ship, but will

strike it somewhat a little obliquely, and thence cause a

further compensation (from the greater space through

which it will in such case have to penetrate) to the effects

of splintering. These, and other considerations of less

moment, but of an opposing nature to the one in ques

tion, will , it is hoped , be sufficient to justify the prin

ciples upon which the general expression for the charge

has been computed , (and from which the following table

of charges is derived), and render it of that signal prac

tical advantage which it is desirable it should possess,

but which no other criterion than that which long practice

and experience afford, is able fully to confirm .

But it may now be urged that the foregoing solution

does not apply to the case in hand, insomuch that the

objects of penetration are at liberty to move, being afloat

upon a very yielding fluid ; whereas in the experiments

upon which the theory hinges, the penetrated bodies

were blocks of wood solidly fixed . The objection ap

pertains to those cases where the weight of the shot

bears a sensible proportion to that ofthe object; but in the

instance of a ship of war, with all its immense weight of

rigging, ordnance, and other appointments, it exists not
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to that degree as to make the difference in the depth of

penetration an object of the smallest consideration in the

allotment of the charge.

EXAMPLE .

An enemy's ship is in sight : required the charge for

the 42 -pounder guns to destroy her as quickly and com

pletely as possible, when the ships have approached near

to each other. The side of the enemy's vessel, a 74,

being 11 foot thick of oak timber.

The diameter of a 42-pounder of cast iron being =

• 557 ft. we get

1 x 42
•045 x = .045 x = 5.93806 lbs. or, 5lb . 150zs.

•557

for the weight of the charge sought.

SW

D

ANOTHER EXAMPLE.

per

A piece of fortification is to be destroyed, consisting of

a bank of firm dry earth 2 yards thick supported on each

side by planks of oak foot thick ; required the most

efficacious charge for the battering 42 -pounders.

A 24-pounder, fired with a velocity of 1300 feet

second, into a bank of the above soil, penetrates it to the

exact depth of 15 feet. Wherefore, the quantity of

charge that would just cause a 42 -pounder to penetrate

sdv'w

through the bankin question will be denoted bya
25D X 16002

6 X 46 X.13002 x 42

( Art. 55.), which in numbers =
2 X : 15 x 557 X 16002

= 4:5796 lbs .

And that which will just force it through the thickness

of the planks ( feet ), by 5.084156 lbs . (See Table .)

Whence, the charge required is 9 •663786 lbs.
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TABLE :

58. Containing the variouscharges for the 12,18,24,32,

36; and 42-pounder guns for producing the greatest effect

in the damage of the vessel in all cases of close action ;

the substance or object being of oák materials from the

thickness of 1 foot to that of 6 feet, regularly ascending

by 1 in the inches .

Nature

of

Ordnance .

Pounder.

12

Thickness of the side of the Vessel .

1 ft . 1 ft . 1 in . 1 ft . 2 in . I ft . 3 in .

lbs. Ibs. Ibs. lbs.

1.471870 1·594526 10717182 1.839838

1.928571 2 :089285 2:249999 ] 2:410713

2 :3364451 2:5311491 2:725853 2.920557

2:830208 3.066059 3.301910 3.537761

3.061608 3:316742 3:571876 3.827010

3 :391191 3.673790 3.956389 4.238988

18

24

32

36

42

12

18

24

32

36

42

1 ft. 4 in . i ft . 5 in . I ft . 6 in . I ft . 7 in .

1.962494 2:085150 2:207806 2 :330462

2:571427 ! 2.732141 2:892855 3.053569

3.115261 3•309965 3.504669| 3.699373

3.773612 4 :009463 4.245314 4 :481165

4 :082144 4.337278 4 :592412 4.847546

4 :521587 ! 4 804186 5.084186 50369384

12

18

24

32

36

42

I ft. 8 in . I ft . 9 in . i ft . 10 in . 1 ft . 11 in .

2:453118 2:575774 2:698430 2.821086

36214283 3.374997! 3.5357111 3.696425

3.8940771 4 :088781 4 :283485 4 :478189

4717016 4: 952867 5 · 188718 5 :424569

5 :102680 5.357814 8 :612948 50868082)

5 651983 5.934582 6:2171811 6.499780
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Thickness of the side of the Vessel.

lbs.

Nature

of

Ordnance ,

Pounder.

12

18

24

32

36

42

2 ft. O in . 2 ft. 1 in. 2 ft . 2 io . 2 ft . 3 in .

lbs . lbs. lbs .

2.943742 3.066398 3:189054 3.311710

3.857139! 4 :017853 4:178567 4 :339281

4 :672893 4.867597) 5.062301 5.257005

5 660420 5.896271 6132122 6 367973

6 °123216 6 :378350 6633484 6.888618

6-7823791 7.06497817-3475771 7.630176

2 ft. 6 in .

12

18

24

32

36

42

2 ft. 4 10 . 2 ft. 5 . 2 tt . 7 in.

3.434366 3.557022 3.679678 3.802334

4:499995 4 :660709] 4.821423 4 :982137

5 °4517091 5.646413 5 841117 | 6 •035821

6 *603824 6.839675/ 7.075526| 7.311377

7 * 143752 70398886 7.654 20 7.909154

7.912775 8.195374 8.477973 89760572

2 it . 8 in . 2 10.9 m Ti 0 .

12

18

24

32

36

42

21. 10 10 . 21

3.924990 4:047646 4:170302 4.292958

5.142851 5 :303565 5.464279 5.624993

6.2305251 6425229 6619933 6 814637

7.547228 70783079 8018930 8.254781

8.164288 8.419422 8.674556 8.929690

9'043171 93257701 9 6083691 9890968

12

18

24

32

36

42

3 f.t 0 in . 3 ft. 1 in . 3 ft. 2 in . 3 ft . 3 in .

4 :415614 4 :538270 4 :660926 4 :783582

8.785707! 5.946421 6 : 107135 6-267849

7.009341 7.204045 ! 7.398749 7.593453

8.490632 80726483 8.9623341 9: 198185

9: 184824 9 439958 9•695092 9*950226

10173567 10456166 10-738765 11.021364
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Nature

of

Orduance .

Pounder.

12

18

ibs,

Thickness of the side of the Vessel .

3 ft . 4 in . 3 ft . 5 in . 3 ft. 6 in . 3 ft. 7 in .

lbs. Ibs . lbs .

4 •906238 5:028894 5:151550 5:274206

64285636589277 6749991 6910705

7.7881571 7.982861 8.1775651 8372269

9-434036 9 669887 9905738 10 * 141589

10*205360 10 :460494 10715628 10 *970762

11'303963 11.586562 12.869161 12: 151760

24

32

36

42

12

18

24

32

36

42

3 ft 8 in . 3 ft . 9 in . 3 ft . 10 in . 3 ft. Il 10 .

5 •396862 5.519518 5.6421741 54764830

7.071419! 7.232133 7.392847 7.553561

8.566973 8.761677 ) 8.956381 9: 151085

10-377440 10°613291 10 *849142 11.084993

11'225896 11:481030 11•736164 1.991298

12:434359 12-716958 12.999557) 13.282156

12

18

24

32

36

42

4 ft . O in 4 ft. 1 in . 4 ft. 2 in . 4 ft . 3 in .

5.887486 6.0101421 6° 1327981 6 •255454

70714275 7.874989 8.035703 8.196417

9 :345789 9.540493 9 •735197 9.929901

11•320844 11.556695 11.792546 12 028397

12:246432) 12.501566 | 120756700 13:01:1834

19 :564755) 13.847354 14: 129953 14 :412552)

12

18

24

32

36

42

4 ft . 4 in . 4 ft. 5 in . 4 ft. 6 in . 4 ft . 7 in .

6 °378110 60500766 6 *623422 60746078

8 :357131 8.517845 8.678559 8.839273

10 ^ 124605 10 319309 10 :514013/ 10 7087171

12-264248| 12 500099 12.735950 12.971801

13.266968 13.522102 136777236 14:032370

14.695151 14 977750 15.260349) 15-542948
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Nature

of

Ordnance.

Pounder.

12

18

24

32

36

42

Thickness of the side of the Vessel.

4 ft . 8 in . 4 ft. 9 in . 4 ft . 10 in . 4 ft, 11 in .

lbs. Ibs. Ibs . Ibs .

6868734 6-991390 7•114046 7.236702

8.999987! 9 : 160701 9*321415 9-482129

10*903421 11°098125 11'292829 11:487533

136207652 13:443503) 13.679354 13.915205

15•287504 14 :542638 14•797772 15052906

15.8255471 16 °108146 16 °390745/ 16:673344

12

18

24

32

36

42

5 it. O 10 . 5 ft . lin . 5 ft . 2 in . 5 it . 3 in .

7359358 70482014 7.604670 7.727366

9 •6428431 9*803557! 9.964271 10*124985

11.682237) 11.876941 12.071645 12.266349

14:151056 14:386907 14:622758 14.858609

15 •308040 15:563174 15.818308 16.073442

16.955943 17.238542 17.521141 17 803740

n . 5

12

18

24

5 4.4 in

7.849982

10 *285099

12:461053

15 :194460

16:328576

18.086339

7.972638

10 * 446413

12.655757

15:33 311

6°583710

18:368938

6 :0

8 095294

10.607127

12.850461

15.566162

16 :838844

18.651537

32

36

2

ft in 67. D. 5 ft . 9 1 .

12

18

24

32

36

8 217950

10-767741

13 :045165

15.802013

17.093978

18 *934136

8 :340606

10 * 928555

13.239869

16037864

17.349112

19-210735

8.463202

11'089269

13 :434573

16•273715

17.604246

19 :499334
42
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Nature

of

Ordnance .

Pounder,

12

18

24

32

36

42

Thickness of the side of the Vessel .

5 ft . 10 in . 5 ft. 11 in . 6 ft. O in .

lbs . lbs . Ibs,

8°585918 8.708574 8.831230

11: 249983 11.410697 11.571411

13:629277 13.823981 14 :018685

16 509566 16745417 16 981268

17.859380 18: 114514 18 369648

19 781933 20 · 064532 20 °347131

59. In this table, the first column contains the nature

of the ordnance, and the numbers in the other columns

are their respective charges of gunpowder in pounds,

when the thickness of the object to be destroyed is as

specified at the top of the columns. If the thickness be

given in inches and parts of inches , take such parts of

the difference between the charge for the given number.

of inches and that number increased by one, or the next

greater, and add them to the charge first found for the

given number of inches for the charge required .

The value of the decimal part of each will be had by

multiplying it by 16 , the number of ounces in a pound,

and pointing off in the product from the right hand to

wards the left, as many places for decimals as are con

tained in the given decimal, and retaining the number on

the left of the point for ounces, increasing it by 5, ý , $,

or 1 , when the first figure of the decimal is 2 , 3 or 4 ;

5 or 6 ; 7 or 8 ; and 9 respectively. This hint is merely

given for those practitioners, into whose hands the table

may fall, who are not very conversant with decimal arith

metic .

و

K
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Ex . - Suppose we wanted to find the charge for the

24 -pounder guns, for a thickness of 234 inches. By the

table , the charge answering to 23 inches or 1 ft. 11 in . is

4 478580lbs ; and for 24 inches 4 :673300 lbs. the differ

ence of which is 194720 lb. this difference multiplied by

3 and divided by 4 gives • 14604 lb. for the quantity of

charge for of an inch. Now let this be multiplied by

16, and the product is 2.33664 ozs . Whence, the first

figure of the decimal being 3, a quarter of an ounce more

must be ad led to the 2 ozs. cut off on the left ; so that

the charge required is 4lbs. 27 ozs . And thus for other

like cases of thickness .

60. The foregoing table of charges is not only useful

for the navy ( for which it is more expressly intended ),

but in many instances of operation for the artillerist on

shore ; as the bursting open gates of besieged towns with

promptitude and effect ; and breaking up all fortifica

tions composed of wooden materials ; especially those of

a splintering nature, to which the charges apply most

correctly. In the case of a naval action, where the object

to be penetrated is of oak substance ; the ball, by having

a small motion when it quits the side of the ship, tears

and splinters it excessively, breaking away large pieces

before it , which are not so easily supplied in the repara

tion ; whereas, on the other hand, if the shot had any

considerable velocity when it quitted the side, the effect

it produced would be merely a hole, which would be

stopped instantly by the mechanic employed for that

purpose, and indeed in a great degree by the wood itself

from its own efforts of springiness. And therefore the

sole mischief that the balls can do under such circum

stances of extreme velocity is, the killing or wounding
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of a very

those men who may chance to stand in the way of their

motion .

If any object to be destroyed be so thick that it cannot

be completely pierced by any common engine, or if it be

brittle nature , such as stone or brick ; then that

charge is to be used, which will give the greatest velocity

to the shot to produce the greatest effect. But in many

cases of bombardment this charge is by no means to be pre

ferred ; for although the effect produced each individual

time be greater, yet in any considerable time the whole

effect would be less than that from a smaller charge

oftener fired , on account of the extreme heat it would

give to the engine after a few discharges ; and in conse

quence of which greater time would be required for

cooling the gun and preparing it for farther service.

EXAMPLE.

61. Required the charge for a 24 -pounder shot to

force the gates of a city with the greatest ease possible,

the substance of them being elm , 1 foot thick .

Here the object to be penetrated being elm, the small

letters in the general formula for the charge, namely

sdv’w

2DS X 16002

must be made to express the several numbers. of some

experiment made in the penetration of this substance.

Now by a mean of many very accurate experiments

made by Dr. Hutton at Woolwich , in the years 1783,

1784, and 1785, he found, that a cast iron ball of two

inches diameter impinging perpendicularly on the face

of a block of elm -wood , with a velocity of 1500 feet per

second, penetrated 13 inches deep into its substance ;

K 2
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hence we shall have d = ft. v = 1500 , and s = Hift .;

also by the question, s = 1 ft. D = .46, and w = 24 lbs.'

Therefore

sduiw 1 x š x 1500? x 24 45 x 9

2DS X 16002 2x 46 x 1* X 16002 104XL:11

3.50831 lbs. or 3 lbs. 8 ozs . for the weight of charge re

quired in this case.

Retaining the experiment of Dr. Hutton as a standard

for all cases where the object to be penetrated is of elm,

we shall get by reduction

Swsdu? W

2DS X 16002

= '0676 x

D

the charge for any piece of artillery, the diameter of the

shot ofwhich is D, and weight w ; s being the thickness

of the object as before.

It is not unworthy of remark , that the gates of a

besieged town , or any like things, might be effectually

broken open by the gun itself , charged only with

powder, by placing it close to the gates, with its muzzle

from them ; the momentum of recoil being generally

sufficient to force such objects completely. But this me

thod for several reasons is not to be insisted upon.

From the circumstance, that no English admiral, or

commander, seldom or ever commences firing till his

ships are about to be grappled with those of the enemy,

or until they have approached them so nearly as to effect

in no sensible degree the first force of the shot ; the

above paper has, it is presumed, as much claim to utility

any that has ever yet been offered to the navy
in the

science of gunnery :: and even if the vessels be not so

closely engaged, but are fighting at the distance of about

30 or 40 feet from each other, no uncertainty of effect

as
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would result from the above charges, provided that the

shot impinged perpendicularly on the side of the vessel ;

on account of the splitting of the timber in some degree,

which would make ample compensation for the defect

of velocity occasioned by the resistance of the medium .

It is impossible to deduce charges, that shall produce

invariably the effect above stated , when fired at any con

siderable distance from the ship. The uncertainty of the

impact being perpendicular, from the unsteadiness of the

vessels , renders the thing at once nugatory , without any

consideration of the real resistance of the medium to the

ball, and the deflection of the latter from a right-lined

direction . If the obliquity of the impact be given , or can

be determined, then the problem being otherwise rightly

solved, a charge can be found which shall produce the

same effects as those above given ; but if this be im

possible (which it most decidedly is) , then will the pro

blem be at best but speculative upon certain hypotheses.

I shall, however, give an investigation of the problem

on the principles of resistance generally allowed, and then

conclude the subject by a few observations. But it will

be proper first to peruse the following

LEMMA.

62. To determine the velocity of a cannon -ball after passing

through any space in air, into which it is projected with a

given velocity.

Put à = the projectile velocity ,

described in the time t,

v = the velocity. Then,

Proposition 7 , the retardive force of the ball at the

variable space

3nva

end of the time t will be where N and n de

16gdN

S = any

>
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note the respective specific gravities of the ball and air,

and d the ball's diameter . Therefore - vö = 2gfs =

Inves 3n's

and hence put

and 8nd

V

U

3n

Sema)
bs: whereof the correct fluent is

á

hyp. log.
== b .
U

Whence, if c be put = 2.71828, the number, the hyp.

log. of which is 1 , we shall get

a
bs

and v = the velocity required.
bs

с

Hence the velocity lost in describing the space s, is

bs
a a (c " - 1 )

bs bs

с

To find the time of describing the said space ; we have

bs

i=
bs

Put % = 0 ; then is bs = hyp.

ż

log. 2 , and bs = or Š Consequently i
z bz

bs bs

ż

; and t =
ab

Now

a a ab ab

1

ab

Therefore the

b

when t = 0, $ = 0 , and
ab

correct Auential equation is

.

bs
с

ab
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or restoring the value of b , it is

3ns

8Nd
8nd (c

Зап

1 )

63. Having determined an expression for the time in

which a ball moves through any space in a resisting me

dium, it will not be unworthy now to enquire, whether

there be a ball, which of all others, when projected with

a given velocity, will describe a given space in the least

time possible. To this end we have only to consider the

diameter d as variable, and make the fluxion of the

formula for the time = 0, and then solve the equation.

8nd

3ns

8nd
-1 beLet therefore 1) be put into fluxions,Зап

3ns

8Nd

or because N , a, n , &c. are given quantities, d (

3ns

= (putting 9 =
옵

.) de

9

dc
d

-d ; and we get
8N

9 .

d
9 . 9

옥
gdc d d

à = 0 ; or de -d = 0 .ac
Whence

d

it evidently appears, that there is a ball which will answer

the conditions of the enquiry ; and it is further obvious

that the said ball will be different for different values of

s , this quantity being included in the expression for q.

The value of d will be readily found for any given space

by the method of approximation.

Note.-- In this proposition , it must be observed that
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the ball is supposed to move in a right-line, or very

nearly so ; or to be fired horizontally from the engine.

PROBLEM 2.

64. To determine the same as in the last problem , when the

engine is at any considerable distancefrom the object, and the

resistance of the air taken into the account.

Here, as in the former proposition, the velocity v =

sdu ?

is to be esteemed the velocity of impact . NowSalari- )*
on the principles of resistance before adverted to, which

considers the fluid as infinitely compressed, and the par

ticles thereof perfectly nonelastic, and affording no re

sistance to the body but what arises from their inertia ;

if a denote the first or initial velocity ; x the distance of

the gun from the object, ç = 2:71828 the number, the

3n

hyp . log. of which is 1 , and b = where N and n

SND

represent the respective specific gravities of the ball and

medium , we shall, by the foregoing lemma, have

bx

a VC

Hence by the law of variation of the charges, and proper

substitution , the true expression for the charge in ques

tion will be

3nx

sdw - wc

AND

2Ds 16002

for a perpendicular impact, and

3nx

sdv’WC

4ND

205 / 16002

for an oblique one ; / being the sine of the angle of inci
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dence ; the space (s) to be described in this case being the

hypothenuse of a right-angled triangle, when the effect

is the same.

EXAMPLE

Resuming the first of the foregoing examples, what

must be the charge of powder to cause the shot to pro

duce the same effect in the vessel when fired at the

distance of 300 feet from it ?

Substituting for the several letters in the general ex

pression for the charge

3nx

sdu’WC

4ND

2Ds 16002

their proper numerical values, namely,

we get

S = 1 ft.

s = 1 ft.

d = 1 ft.

D = .557 ft.

v = 1500 ft.

* = 300 ft.

w = 42 lbs.

N = 74

n = .0012 .

3nx

sdv -wc

AND

=9:530625lbs.

20s 1600

or 9 lbs . 8L oz . nearly for the weight

of the charge sought ; being 3 lbs.

91 ozs . more in this case than when

the vessels are in close action .

Hence, not only is the destruction of the vessel more

certain when the firing commences just as the ships

touch each other, but a great saving of powder takes

place besides, insomuch that not more than two-thirds

of the quantity is expended, that would be required at

the distance of 300 feet.

From this circumstance then, and the impossibility of
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solving the problem rightly, from the various causes al..

ready enumerated, the effects of which are not reducible

to any regular laws ; we conclude, that the foregoing

table of charges for close fighting, is the only one that

can be of the smallest service in practice ; and that all

attempts at others must be rendered completely futile

from the nature and constitution of things.

PROBLEM 4.

65. To determine the charge for any given piece of artil

lery, to cause its shot to penetrate a block of well seasoned

eak, to any given depth not exceeding its radius.

Before entering upon the solution of this problem , it is

necessary that the strength of any given surface of fibres

of oak, to resist a force acting perpendicularly against it

be given. Let us, therefore, first determine this point,

by referring to some known experiment concerning the

penetration of a shot into a block of oak substance

some considerable depth. For it must be observed , that

the greater proportion the depth of penetration bears

to the radius of the ball, the nearer we shall be to the

truth of the thing in question , by supposing the resistance

throughout uniform . Now the greatest penetration with

which I am acquainted , is that of 34 inches, from an

experiment made by Robins with an 18 -pounder cast

iron ball, fired with a velocity of 1200 feet per second .

The radius of the ball being 24 inches, we shall be ex

tremely near the truth therefore , to consider the pene

tration under the supposition of the resistance being uni

form from the moment of impact, 33 inches deep ; since

it is obvious, that the resistance cannot be uniform until

the ball has penetrated to the full depth of its radius.
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A body being vertically projected in vacuo with the

velocity of the above impinging sphere ( 1200 feet per

second ), would , by the laws of ascending bodies near the

v?

earth's surface, rise to a height denoted by (where

4g

v = 1200, and g = 16 feet) or 22500 feet ; and the re

sisting forces being as the spaces described when the mo

menta are the same, we shall have the uniform resist

ing force to an 18 -pounder penetrating oak to that of

33

gravity, as 22500 to or as 8182 to 1 nearly.
12

Therefore the force that uniformly resists the ball is

equal to 8182 X 18 = 147276 lbs.; and this is the

strength of a laminum of oak fibres equal to half the

surface of the shot (39:27 sq. in . ) , and consequently the

force of 1 square inch of such fibres will be 37503438 lbs.

Call this R.

Put r = the radius of the ball given in the proposition ,

a = the hemispheric surface of the same,

w = the weight of the ball,

d = the depth to be penetrated,

* = any variable depth less than d .

Then the surfaces of spherical segments being as their

ax

heights, we have r : a :: * : the surface of the seg
1

ROX

ment penetrated ; and is the resisting force to the
r

Rax

ball at the depth * , and
the retardive force. Now

rw

by the theory of variable forces - vv = 2fg * (the nega

tive sign being taken because v iş a decreasing quantity )

Zagrxi
2agRx ?

the fluent of which is
;

w
rw
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which corrected , for the case where * = d, is

2agrda
v2 =

rw

Again , the charges vary as the square of the first velo

city and weight of ball conjunctly. And it has been

found, that a charge of half a pound, impelled a ball

weighing 1 lb. with a velocity of 1600 feet per second.

Therefore the general expression for the charge is

agRd

r16002

For an example, suppose the ball a 32-pounder, the

radius of which is 254 feet, and that it is to penetrate

the block to the exact depth of its radius ; then the

hemispheric surface of the shot being 58.45 square inches ,

and r = d ; we shall have

agr Ꭱ

= .347992 lbs. or 5.56787 ozs .
16002

for the charge required.

EXAMPLES FOR PRACTICE .

EXAMPLE I.

What charge will be required for a 24 -pounder cast

iron ball to cause it to penetrate to the depth of 14 inch

in a block of well seasoned oak ?

EXAMPLE II.

For a 42- pounder shot, what charge is necessary to

force it into a ship's side to the depth of its diameter ?

EXAMPLE III .

The gate of a castle is closed against us by the enemy ;

it is of elm wood , and 14 foot thick ; required the charge

for the 18 -pounder carronade to force it at once com

pletely ?
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EXAMPLE IV .

The firing upon an enemy's frigate commences at the

distance of 108 yards ; the guns are 24-pounders ; to

find the charge that will cause the shot to do the most

execution with regard to the destruction of the vessel ?

EXAMPLE V.

What must be the radius of that cast-iron ball that

shall penetrate to the depth of its radius in a block of

oak when fired with a velocity of 800 feet per second ?

EXAMPLE VI .

Required the diameter of that ball which just pierces

a ship's side of oak 1 foot thick ; its initial velocity

being of 2000 feet per second ?

EXAMPLE VII .

Required the most efficacious charge for the battering

68 -pounders, to demolish the fortifications of a citadel,

consisting of a bank of firm dry earth 8 feet thick, and

supported on each side by elmi planks (solidly fixed) of

the thickness of 9 inches .

EXAMPLE VIII .

A piece of brick fortification is to be destroyed , the

thickness of which is 44 feet: required the fittest charge

for the 42-pounder guns ; or that which will cause its

shot to effect the most mischief possible in a given time.

1
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A TABLE

OF HYPERBOLIC LOGARITHMS FOR ALL NUMBERS

FROM ONE TO TWO THOUSAND.

o Inf. Neg. 40 3•68887945 80 / 4.38202663

1 0.00000000 || 41 3071357207 81 4 :39444915

2 0-69314718 42 3.73766962 82 4:40671925

3 1.09861229| 43 3 •76120012 83 4.41884061

4 1.38629436 | 44 3078418963 84 4 :43081680

5 1.60943791|| 45 3.80666249 85 4 :44265126

61.79175947|| 46 3.82864140 86 4.45434730

7 1.94591015 | 47 3.85014760 8714.46590812

8 2:07944154 48 3.87120101 88 ) 4:47 33681

9 2 :19722458 || 49 3.89182030 89 4:48963637

10 2.302585091 50 3.91202301 90 4.49980967

il 2:39789527 || 51 3.93182563 91 4 :51085951

12 2.48490665| 52 3.95124372 92 4 :52178858

13 2 :5649493653 3.97029191 93 4:53259949

14 2.63905733 || 54 3.98898405 94 4.54329478

15 2.70805020 55 | 4 :00733319 95 4 :55387689

16 2277258872 56 4 :02535169 96 4 :56434819

17 2 :83321334 || 57 4 :043051271 97 4 :57471098

18 2.89037176 58 4:06044301 98 4:58496748

19 2.94443898 | 59 4:07753744 99 4.59511985

20 2.99573227|| 60 4:09434456 100 460517019

21 3.04452244 61 4 : 11087386 : 101 4:61512052

22 3.09104245 | 62 4 : 12713439 | 102 4:62497281

23 3 : 13549422 63 4 : 14313473103 4:63472999

24 3.17805383 || 64 4:15888308 104 4 :64439090

25 3.21887582|| 65 4: 17438727 105 4 :65396035

26 3.25809654 66 4:18965474 106 4 :66343909

27 3.29583687 | 67 4 :20469262 107 4 :67282883

28 3.33220451 || 68 4.21950771 108 4:68213123

29 3.36729583 || 69 4.23410650 109 4:69134788

30 3.40119738 || 70 4:24849524 110 4:70048037

31 3 •43398720|| 71 | 4.26267988 111 4:70953020

32 3 •46573590 72 4.27666612 112 4071849887

33 3:49650756 73 4.29045944 113 4.72738782

34 3.52636052|| 74 4.30406509 114 4:73619845

35 3 :55534806 || 75 4 :31748811 115 4:74493213

36 3.58351894 76 4 :33073334 116 475359019

37 3.61091791 || 77 4 :34380542 117 4• 76217393

38 3.63758616 || 78 4:35670883 118 477068462

39 3 •66356165 ) 79 4:36944785 1198 477912349



144 TABLE OF HYPERBOLIC LOGARITHMS.

120 4 78749174 | 165 / 5 *10594547) 210 5•34710753

121 479579055 166 5 :11198779 211 5.35185813

122 4.804 2104 167 5 ·11799381 212 5.35658627

123 4 :81218436 168 5.12396398 213 5:36129217

124 4 :82028157| 169 5 :12989871 214 5.36597602

125 4.82831374 170 5.13579844 215 5•37063803

126 , 4:83628191|| 171 5 * 14166356 216 5•37527841

127 4 :84418709 172 5.14749448 217 5.37989735

128 485203026 1735 15329159| 218 5.38449506

129 , 4 :85981240 174 5.15905530 219 5.38907173

130 4 :86753445 175 5.16478597 | 2205.39362755

131 4:87519732 176 5.17048400 221 5.39816270

132 4:88280192 177 5 :17614973 222 5.40267738

133 4.89034913 178 5.18178355 || 223 5.40717177

134 4 :89783980 179 5.18738581 224 5 :41164605

135 4 :90527478 180 5 :19295685 | 225 5.41610040

136 4 :91265489 181 5 :19849703 226 5 :42053500

137 4 :91998093 182 5 20400669 | 227 5.42495002

138 4:92725369|| 183 5.20948615 | 228 5 *42934563

139 4:93447393 | 184 5'21493576 229 5:43372200

140 4:94164242 185 5 •22035583 | 230 5:43807931

141 4.94875989|| 186 5 •22574667 || 231 5.44241771

142 4:95582706 187 5.23110862 232 5.44673737

143 4:96284463|| 188 5.23644196 233 5:45103845

144 4.96981330 189 5•24174702 234 5.45532112

145 4 :97673374| 190 5 •24702407 | 235 5.45958551

146 4.98360662 191 5.25227343 236 5.46383181

147 4.99043259 192 5.25749537 || 237 5 ·46806014

148 4:99721227|| 193 5.26269019 238 5.47227067

149 5.00394631 | 194 5: 26785816239 5.47646355

150 5.01063529) 195 5.27299956|| 240 5048063892

151 5:01727984 196 5.27811466 241 5.48479693

152 5.02388052 197 5 • 2 : 320373 242 5.48893773

153 5.03043792 198 5•28826703|| 243 5.49306144

154 5.03695260 199 5.29330482 244 5:49716823

155 5 :04342512 200 5.29831737 || 245 5 :50125821

156 5.04985601 201 5.30330491|| 246 5.50533154

157 5.05624581|| 202 5•30826770|| 247 5*50938834

158 5.06259503| 203 5•31320598 || 248 5051342875

159 5.06890420 204 5031811999|| 249 5*51745290

160 5.07517-82 205 5 •32300998 || 250 5.52146092

161/ 5.08140436 206 5.32787617 || 251 5.52545294

162 5:08759634 207 5 •33271879|| 252 3:5294 091

163 5.09375020 || 208 5.33753808|| 253 5.53338949

164 5.09986643|| 209 5.34233425|| 254 5.537334271
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255 5.54126355 ) 300 5.70378247 | 345 ) 5.84354442

256 5.54517744 301 5 •70711026 346 5.84643878

257 5 °54907608| 302 5071042702|| 347 5.84932478

258 5 :55295958 303 5 71373281 348 5 *85220248

259 5 :55682806304 5071702770 349) 5.85507192

260 5 :56068163 || 305 50720311781350 5.85793315

2611 5.56452041|| 306 5072358510 351 5 86078622

262 5.56834450 307 5.72684775, 352 5986363118

263 5.57215403 308 5•73009978 353 5.86646806

264 5.57594910 309 5.73334128 354 5*86929691

265 5.57972983 310 5•73657230 355 5.87211779

266 5 58349631 311 573979291 356 5*87493073

267 5058724866 312 5674300319 357 5087773578

263 5.59098698 313 5074620319 358 5 *88053299

269 5.59471138 314 5.74939299 359 5.88332239

270 5.59842196|| 315 5.75257264 360 5.88610403

271 5.60211882 316 5075574221 361 5.88887796

272 5.60580207 | 317 5075890177) 362 5.89164421

273 5.60947180 318 5 •76205138 | 363 5.89440283

274 5.61312811 319 )5.76519110 364 5.89715387

275 5.61677110 320 5.76832100 365 5.89989735

276 5.62040087 321 5077144112 366 5.90263333

277 5.62401751 322 5077455155 367 5.90536185

278 5.62762111 323 5077765232 368 5*90808294

279 5.63121178 || 324 5•78074352 369 5.91079664

280 5.63478960|| 325 578382518 | 370 5.91350301

281 5.63835467 || 326 5078689733 3711 5.91620206

282 5.64190707 327 5.78996017 || 372 5.91889385

283 5.64544690 || 328 5079301361| 373 5.92157842

284 5:64897424 329 5•79605775 | 374 5.92425580

285 5.65248918 330 5079909265 375 5.92692603

286 5.65599181 331 5.80211838 376 5.92958914

287 5.65948222 || 332 5.80513497 377 5.93224519

2885.66296048 3335.80814249 378 5.93489420

289 5.66642669|| 334 5.811140991 379 5.93753621

290 5.66988092 335 5.81413053 380 5.94017125

291 5 :67332327 || 336 5.81711116 | 381 5.94279938

292 5.67675380 337 5*82008293 382 5 :94542061

2935•68017261 338 5.82304590 || 383 5.94803499

294 5.68357977 || 339 ) 5.82600011 384 5.95064255

295 5.68697536 ) 340 5.82894562 385 5.95324333

296 5 •69035945|| 341 5.83188248 386 5.95583737

297 5.69373214 342 5.83481074 387 5.95842469

298 5.69709349 343| 5 *83773045 388 5.96100534

299 5-70044357 || 344 5.84064166' 389 5.96357934

L
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390 5.96614674 435 6-07534603 480) 6 17378610

391 5.96870756 436 6 07764224 481 6 17586727

392 5-97126184 437 607993320 482 617794411

393 5.97380961 438 6*08221891 483 6 ·18001665

394 5.97635091 439 608449941 | 484 618208491

395) 5 :97888576 440 6:08677473 485 6 :18414889

396 5.98141421 441 6 :08904488 486 6-18620862

397 5.98393628 442 6.09130988 487 6.18826412

398 5.98645201 443 6 09356977|| 488 619031541

399 5.98896142| 444 609582456 489 6.19236249

400 5.99146455 | 445 6:09807428 490 6:19440539

401 5.99396143 446 610031895| 491 619644413

402 5.99645209 447 610255859| 492 6'19847872

403 5.99893656 | 448 610479323| 493 620050917

404 6 :00141488 449 6.10702289| 494 6:20253552

405 600388707 450 6°10924758 495 6 20455776

406 600635316 4516 :11146734|| 496 6:20657593

407 600881319| 452 6° 11368218|| 497 6 *20859003

408 601126717 453 611589213| 498 6:21060008

409601371516454 611809720 499 6-21260610

410 601615716 || 455 6 *12029742 500 6.21460810

411 601859321 || 456 612249281 501 621660610

412 6 :02102335|| 457 612468339 502 6.21860012

413602344759 458 612686918| 503 6.22059017

414 6*02586597 || 459 6 ° 12905021 504 6 *22257627

415 602827852|| 460 6°13122649 505 622455843

4166•03068526| 461 6-13339804| 506 6 •22653667

417 603308622 4626°13556489 507 622851100

418 603548143| 463 613772705 508 6 23048145

419 603787092|| 464 613988455 509 6 *23244802

420 604025471| 465 614203741 510 6*23441073

421 6 °04263283|| 466 6 ·14418563 511 623636959

422 604500531 467 6 ° 14632926 512 6 :23832463

423 604737218 468 6 * 14846830 513 6 *24027585

424 604973346469 6 :15060277 514 6 :24222327

425 605208917|| 470 6 15273269 515 6 *24416690

426 605443935| 471 6 °15485809 516 6 *24610677

427 6.05678401 472 615697899 517 6 24804287

428 605912320 473) 615909539 518 6'24997524

429 6 *06145692 474 6.16120732 519 6 25190388

430 606378521| 475 6°16331480 520 6.25382881

431 6.06610809 476 616541785 521 625575004

432 606842559 || 477 6.16751649 522 6.25766759

433 6.07073773 478 6.16961073 523 6-25958146

434 607304453 479 617170060 | 524 6-26149168
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525626339826 ) 5701 6 34563636 || 615| 6-42162227

526 6 26530121 57116 *34738921|| 616 6 :42324696

527 626720055 572 6-34913899|| 617 6-42486902

528 6'26909628 || 573 6 :35088572 618 6 :42648846

529 6 *27098843 574 6.35262940 619642810527

530 627287701 575 6-35437004 620 6-42971948

531 627476202 576 635610766 621 6 43133108

5326-27664349 577 6.35784227 622 6 43294009

533 6 •27852142 578 6-35957387 || 623 6.43454652

534628039584 579 6:36130248 624 6 :436150371

535 6•29226675|| 580 6-36302810 625 6.43775165

536 628413416 || 581 6.36475076 || 626 6.43935037)

537 6 •28599809 582 6 °36647045 | 627 644094654

538 6*28785856 583 6°36818719 628 6 °44254017

539 6.28971557|| 584 6-36990098 629 6.44413126

540 629156914| 585 6-37161185 630 6-44571982

541 6.29341928|| 586 6.37331979 631 6.44730586

542 6-29526600 587 6 37502482 632 6:44888939

543 6 :29710932 588 6 :37672695 | 633 6.45047042

544 6.29894925|| 589 6.37842618 634 6.45204895

545 6 :30078579 590 6 °38012254 || 635 645362500

546 6 30261898 591 6 °38181602 || 636 6.45519856

547 6 *30444880 || 592 6 :38350663|| 637 6 :45676966

548 630627529 593) 6 38519440638645833828

549 6 :30809844| 594 6º38687932 639 645990445

550 6:30991828|| 595 638856141 || 640 6.46146818

551 6 °31173481 596 639024067 || 641 646302946

552 6-31354805 597 6 :39191711 642 6 :46588930

553 631535800 598 6 :39359075 | 643 6 :46614472

554 631716469 599 639526160 644 6-46769873

555 6.31896811 600 6 *39692966 645 6.46925032

556 6-32076829 601 6-39859493 646 6-47079950

557 6°32256524 602 6 :40025745 || 647 6-47234629

558 6 :32A35896 603 6 :40191720 648 647389070

559 6 32614947| 604 6 :40357420 649 6047543272

560 6 °32793678 605 6 :40522846 650 6-47697236

561 632972091 606 6.40687999 651 647850964

562 6.33150185 607 6:40852879 652 6 48004456

563 633327963 608 6-41017488 ) 653 6-48157713

564) 6.33505425|| 609 6:41181827 654) 6-48310735

565 6.33682573 610 6.41345896 655 6.48463524

566 633859408 611 641509696 656 6.48616079

567 6.34035930 612 6-41673228 657 6-48768402

568 6 :34212142 613 6-41836494 658 6:48920493

5696-34388043|| 614 641999493 || 659 6:49072353
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660 6-4922398-11 705 6 555 19780 750 662007321

661 6-493753 4 706 6 :55961524 751 6:62140565

662 6-49526556 707 6-56103067 | 752 6 *62273632

663 6:49677-199 708 6 :56244409|| 753 6.62406523

664 6-49828215 709 6:56385553 754 0.62539237

665 6 :49978704 710 656526497 | 755 662671775

606 650128967| 711 6 :56667243|| 756 6 :62804138

667 6 50279005 712 656507791 757 662936325

668 6.50428817 || 713 6 50948142 758 6 63068339

669 6:50578406| 714 6:570882961.759 6 :63200178

670 6.50727771 | 715 6:57228254 760 6:63331843

671 6 50876914 || 716 6 57368017 | 761 663463336

672 651025834| 717 6 :57507584 762 6 63594656

673 6.51174533 718 6 :57646957| 763 6 :63725803|

674 6: 51323011 | 719 6 :57780136 764 663856779

675 651471209 720 657925121765 663987583

676 651619308 721658003914 766 6 64118217

677 6 °51767127 || 722 658202514 ) 767 6 :64248680

678 6.51914729 723 6 58340922 768 6-64378973

679 6:52062113 724 6:58479139|| 769 6 :64509097

680 6 :52209280 725 6.58617165| 770 6*64639051

681 6.52356231 726 6-58755001 -771 6 :64768837

682 6:52502966 727 658892648 7726-64898455

683 6 52649486|| 728 6 :59030105 773 6:65027905

684 6.52795792|| 729 6 :59167373 774 6.65157187

685 6 :52941884 730 6.59304453 775 6 *65286303

686 6:53087763 || 731 6 :59441346 | 776 6 :65415252

687 6°53233429|| 732 659578051|| 777 6*65544035

688 6.53378884 733 6 ·59714570 778 6 *65672652

689 6.53524127| 734 659850903 || 779 6 *65801105

690 6.53669160735 0 59987050 780 6 *65929392

691 6 :53813982|| 736 6.60123012781 6 :66057515

692 6.53958596 | 737 6 60258789 782 6:06185474

693 6 °54103000 || 738 6 :60394382 783 6.663 13270

694 6954247196 | 739 6.60529792 784 6 66440902

695 6:54391185 || 740 6.60605019|| 785 666568372

696 6.54534966 | 741 6 :60800063 780 6.66695679

697 6 °54678541 742 6.60934924 787 666822825

698 6.54821910 743 661069604 788 666949809

699 6'54965074 744 661204103 789667076632

700 6 °55108034 745 661338422|| 790 6:67203295

701 655250789 746 661472560 791 6.67329797

702 6 :55393340 747 C31606519 792 667456139

703 6.55535089 748 661740298 793 6 :67582322
704 6 55677836 749 661873898 794/ 6-67708346
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795) 6.67834211 || 840 6073340189|| 885 6078558765

796 667959919| 841 673459166 || 886 078671695

797 6.68085468 842 6073578001 887 6078784498

798 6.68210860 843 673696696|| 888 6078897174

799 6 :68336095 8446°73815249|| 889 679009724

800 668461173 845 6-73933663 890 6.79122146

801 6-68586095 846 6-74051936 | 891 679234443

802 6 *68710861 847 674170069|| 892 6-79346613

803 6 :68835471 848 6674288064 893 6.79458658

804 6:68959927 849 6-74405919 894 6079570578

805 669084228 850 674523635 895 679682372

806 6.69208374 851 6074641213 || 890 ) 6-79794041

807 6-69332367 | 852 6074758653|| 897 ) 6.79905586

808 6 :69456206 853 6974875955 | 898 6.80017007

809 6 :69579892 854674993119|| 899 6.80128303

810 6-69703425 | 855 6075110147| 900 6*80239476

811 6 :69826805 856 6075227038 || 901 6.80350526

812 6 :69950034 857 6075343792 | 902 6.80461452

813 6070073111|| 858 6075460410 903 6* $0572255

814 670196037 859 6-75576892 904 6'80682936

815 670318811 860 675693239 905 6'80793494

816 6070441435 | 861 6.75809450 906 6 *80903931

817 6 70563909 862675925527 907 681014245

818 6070586234 863 676041469|| 908 6.81124438

819 6.70808408 864 676157277 909 6 *81234509

820 6070930434 865 6076272951 ) 910 6:81344460

821 671052311 866 676388491|| 911 6.81454290

822 6071174040 || 867 676503898 || 912 6.81563999

8236071295620 || 868 6 :76619171|| 913 6.81673588
824 6071417053 869 6-767343131

914 6 *81783057

825 6-71538339 870 676849321 915 6-81892407

826 671659477 871 ) 676964198 916 682001636

827 6071780470 872 677078942 || 917 6 *82110747

828 671901315 873 677193556918 682219739

829 672022016 || 874677308038 919 6.82328612

830 672142570 875 677422389 920 6 *82437367

831 672262979| 8701677536609 921 6.82546004

832 6072383244|| 877 6077650699 922 6.82654522

833 672503364 878 677764659 923 682762923

834 6-72623340 || 879 6º77878490 924 6-82871207

835 672743172 880 6 :77992191 925 6.82979374

836 |672862861 881 6078105763 926) 6 :83087423

837 672932407|| 882 678219206 927 6.83195357

838 6.73101810 883 6.78332520 928 © •83303173

839673221071|| 884 678445700|| 929|6-83410874



150 TABLE OF HYPERBOLIC LOGARITHMS .

930 |6 83518459|| 975 688243747||1020) 6 92755790

931 0· 83625928 || 976 6 *88346259 1021 6 92853782

932 0.83733281 977 6 *884486651022) 692951677.

933 0 ·83840520 978 6'88550967 1023 6 93049477

934 0983947044 979 6-88653164 1024 693 147181

935 (**8405-4653 980 6.8875' 257| 1025 6 93244789

9301 6 °84161548| 981 6.88857246 1026 6.93342303

937 1.84208328 982 6.889591311027 6 93439721

938 6 *84374995 983 6-890609121028 6.93537045

939 6°84481548 984 689162590 1029 6.93634274

940 6*84587988 985 6.89264164 1030 6.93731498

941 8469-1314| 986 689365635 1031 6.93828448

942 6* 84800527 || 987 6 *894670041032 6.93925395

943 6 *84906628| 988 6 :895682701033 6.94022247

944 6 *85012617 || 989 6 *89669433 1034 6.94119006

945 6.85118493 | 990 6-897704941035 6.94215671

946 6'85224257 | 991 6.89871453||1036 6 *94312242

947 6 *85329909 992 6.899723111037 6 94408721

948 6.85435450|| 993 6.900730661038 6-94505106

949 6.85540880 994 0.90173721| 1039 6.94601399

950 6*85646198 995 6.90274274 1040 6.94697599

951 685751406 996 6.90374726 1041 6.94793707

952 6-85856503 997 6.90475077| 1042 6.94889722

953 6.85961490 || 998 6.90575328 10-13 6.94985646

954 6 86066367 999 6 *906754781044 695081477

955 6.86171134 |1000 6.90775528| 1045 695177216

956 6.86275791 1001 6-90875478 1046 6.95272864

957 6.863803391002 6*909753281047 6-95368421

958 6 *864847781003 6.910750791048 6.95463886

959 6.86589107 1004 6911747301049 6.95559261

960 6 *866933281005 6 912742821050 6 :95654544

961 6 *867974411006 6.913737351051 6995749737

962 6 *869014451007 6:914730891052 695844839

963 6 *87005341 1008 6.91572345 1053 6.95939851

964 6 *871091291009 6916715021054 6.96034773

965 6.87212810 1010 691770561 1055 6-96129605

966 6-87316383 1011 6918695221056 6-96224346

967 6-874198501012 691968385 1057 6.96318999

968 6875232091013 6.920671501058 6.96413561

969 6 :87626461 1014 6.92165818 || 1059 6.96508035

970 6'877296071015 6.92264389 |1060 6-96602419

971 6-878326471016 6 *92362863 |1061 6.96696714

972 6-879355801017 6.924612401062 6-96790920

973 6 *880384081018 6 *92359520 1063 6.96885038

974 6 881411301019 6.92657703|| 1064/ 6.96979067



TABLE OF HYPERBOLIC LOGARITHMS. 151

1106516 :97073003||1 1 10 7 01211529||1155 7 05185562

106660971668601111 701301579 |11567*05272105

1067 6 972606251112 7.01391547||1157 7*05358573

1068 6973543021113 7.01481435||1158 7.05444966

1069 6º974478911114 7.015712421159 7*05531284

1070 6.97541393| 1115 7.01660968|| 1160 7.05617528

1071697634307|1116 7.01750614 ||1161 7605703699

1072 6.97728134111717.013401801162 7.05789794

1073 697821374 1118 7019296651163 7.05875815

1074 6.979145281119 7.020190711164 7.05961763

1075 693007594 | 1120 7602108396 |1165 7.06047637

1076 6:9810057411217.021976421166 7.06133437

1077 6'98193468 |1122 7 *022868091167) 7.0ô219163

14078 698286275||11237*02375895 ||1168 706304816

( 1079 6 *98378997 |1124 7*02464903 1169 7.00390396

1080 6.984716321125 7 :02553831| 117017.06475903

1081 6985641821126 7.02642681|11711706561336

1082 6.98656646| 1127 7.02731451| 1172 7.05646697

1083 6.987490251128| 7°02820143|1173 7.06731985

1084 6.988413181129 7.02908756 11747.06817200

1085 698933527||1130 7 02997291|1175 7006902343

1086 6.99025650 1131 7.03085748 1176 7.06987413

1087 699117689 |1132 7.031741261177 7.07072411

1088) 6-99209643 |1133 76032624261178 7 °07157336

1089 6.993015121134 7°03350648 1179 7 *07242190

1090 6.993932981135 7 °03438793 1180 7.07320972

1091 699484999 |1136 7603526860 1181 7.07411682

1092699576616113717.0361484911827.07-496320

1093 6.996681491138|7.03702761 1183 7.07580886

1094 6.99759598 ||1139 7.037905961184 7.07665382

1095 699850964|1140 7.038783541185 7.07749805

1096 6.99942247||1141 76039660351186 7.07834158

1097 7.00033446 ||1142 7.040536391187 7.07918439

1098 7.00124562||1143 7.041411661188 7.08002650

1099 7°00211595 |1144 7.04228617 || 1189 7.08086790

11100 7.00306546| 1145 7.043159921190 7 08170859

1101 7.003974141146 7 *044032901191 7.08254857

11027.00488199 1147170044905121192 7.08338785

1103 7.00578902||1148 7.04577658 |1193 7.08422642

1104 7.10669523 ||1149 7.04664728 1194 7 *08506-129

1105 7.0076006111507.047517221195 7.08590146

11106 7.00850518 |1151 7.043386411196 7.03673793

1107 7.00940893| 11527.04925484 1197 7.08775371

1108 7*01031187||1153 7.05012252 1198 7.08840878

1109 7.01121399 |1154 7.05098945 |1199 708924316



152 TABLE OF HYPERBOLIC LOGARITHMS.

|1200 7.09007684||124517 °12689081| 12907• 16239750

1201 7:090909821246 7 :127693701291 7• 16317239

120217.09174212124717•12849595 1292 7•16394668

12037*09257372||1248 7.12929755 1293 7• 16472038

1204 7609340463 1249 70130098511294 7.16549348

1205 7.09423485 12507•13089883| 1295 7.16026597

1206 709506438 |1251 7 •13169851||1296 7.16703788

1207 7.095893221252 7•13249755||1297 7• 16780918

1208 | 7 *09672138 |1253 7.13329595 1298 7:16857990

1209 |7.097548851254 7º134093721299 7.16935002

1210 7 09837564 ||1255 7.13489085 |1300 7.17011954

121117.09920174 |1256 7.13568735 1301 7017088848

1212 7 •10002717 |1257 7.13648321||13021 7.17165682

1213 7.10085191 |1258 7.137278441303 7.17242458

1214 7•10167597 | 1259 7 •138073031304 7.17319174

1215 7.10249936 1260 7 •138867001305 7.17395832

1216 7.10332206| 1261 7•13966034 |1306 7.17472431

1217) 7 •10414409||1262 7.140453041307 7.17548971

1218 7.104965451263 7 • 141245121308 7017625453

1219 7.105786131264 7*14203657/ 1309 7•17701877

1220 7.10660614 |1265 7.142827401310 7.17778242

1221 7.107425471266 7 •143617601311 7 *17854548

1222 7.108244141267 7 •144407181312 7.17930797

12237• 109062141268 7.145196131313 7.18006987

1224) 7.10987946| 1269 7*14598447 |1314 7*18083120

1225 7 •11069612 1270 7•14677218 1315 7 •18159194

1226 7 •11151212 | 12711 7.147559271316 7.18235211

1227 7.11232744 1272 7.148345741317 7.18311170

1228 7.113142111273 7.14913160 /1318 7•18387072

1229) 7 :1139561112741 7.14991684 1319 7.18614455

1230 7 •11476945 |1275 7 :15070146, 1320 7 ·18538702

1231 7.1155821312767•15148546 |1321 7.18614430

1232 7 •11639414 1277 7.152268861322 7 •18690102

1233 7.11720550 1278 7 : 15305163 1323 7.18765716

1234 7'118016201279 7.15383380 |1324 7018841274

1235 7•11882625 1280 7.15461536 1325 7.18916774

1236 7 •11963564 1281 7 • 15539630 1326 7 •18992217

1237 7.12044437| 1282 7 * 15617664 1327 7.19067603

1238 7 •12125245 1283 7.156956361328 7.19142933

1239 7 •12205988 1284 7.15773548 1329 7.19218206

1240 7 •122866661285 7.15851400 1330 7.19293422

1241|7º12367279 1286 7 * 15929190 1331 7 *19368582

1242 7.12447826-1287 7 • 16006921 1332 7* 19443685

1243 7• 125283091288 7.16084591 13337 19518732

12441 7.12608727||1289 7 • 16162200 | 133417.19593723



TABLE OF HYPERBOLIC LOGARITHMS. 153

(1335 7.19668657||1380 7.22983878,1425 7:26192709

1336 7:19743535|| 1381 7.2305631514267.26262860

13371 7 •198183581382 7623128700 1427 7.26332962

1338 7.198931241383 7623201033 142817.26403014

1339| 7.199678351384 )7.23273314 1429 7.26473018

1340 7.20042489|1385 7.233455421430 7.26542972

1341170201170881386 7.234177181431 7.26612878

1342 7.20191632||1387 7.23489842 1432 7.26682735

1343 7.20266120 1388 7.23562914 |1433 7.26752543

1344 7020340552||1389 7.236339341434 7.26822302

1345 7 •20414929 |1390 7.23705903 |1435 7.26892013

1346 7 :20489251 1391 7.23777819 1436 726961675

1347 7.205635181392 7.238496841437 727031289

1.348 7.20637729 /1393 7.23921497 ||1438 7.27100854

1349 7.20711886 |1394 7.23993259 1439 7627170371 .

1350 7.20785987||1395 7.24064969 1440 7 27239839

1351 7.20860034 ||1396 7.2413662814417.27309260

1352 76209340261397 7.242082361442 7.27378632

11353 7.21007963 1398 7.242797921443 7.27447956

1354 7•21081845 1399 7.24351297||1444 7.27517232

1355 7*211556731400 7.24422752 | 1445 7.27586460

1356 7 *21229447| 1401 7.2449415514467.27655640

1357 7.213031661402 7.24565507||1447 7.27724773

1358 7.2137683114031 7.246368081448 7.27793857

1359 7.21450441| 1404 7•247080581449 7.27862894

1360 7.215239981405 7.247792581450 7.27931894

1361 7.21597500 |14067.24850407||1451 7.28000825

1362 7.21670949 |1407 7.249215061452 7•28069720

1363 7.21744143|| 1408 7.249925541453 7.28138566|

1364 7.218176841409 7625063551||1454 7.28207366

1365 7.218909711410 7.251344981455 7.28276118

1366 7621964204 1411 7-25205395 1456 7•28344823

1367 7.22037384 |1412 7.25276242 |1457 7*28413481

11368 7.221105101413 7.25347038|1458 7.28482091

1369 7.22183583||1414 76254177851459 7.28550655

1370 7.22256602 1415 7.254884811460 7.28619171

1371 7 •223295681416 7.25559127|| 1461 7.28687641

1372 7.224024811417 7.255297241462 7.28756064

1373 7.224753411418 7.25700271| 1463 7.28824440

1374 7*22548147| 1419 7.25770768 |1464 7•28892769

1375 7 •226209011420 7.258412151465 7.28961052

1376 7*226936021421 7.2591 16131466 7.29029288

|1377 7.227662501422 7.25981961||1467) 7•29197578

1378 76228388451423 7.260522601468 7 •29165621

1379 7.22911388| 1424 7.26122509 / 14691 7.292337181

M



154 TABLE OF HYPERBOLIC LOGARITHMS.

1470 7.293017081515 7.32317072|15601 7035244110

1471 7.29369772||1516 7.32383057 1561 7.35308192

1472 729437730 1517 7:32448998 1562 7035372233

1473 7-29505642 1518 7.32514896 1563 7.35436292

1474 7.29573507 1519 7 :3258075015647.35500190

|1475 7.29641327 1520 7-32646561 1565 7.35564110

|1476 7.29709101 1521 7032712329 1566 7035627988

11477 7.29776828 1522 7.327780541567 7035691824

1478 7 *298445101523 7.32843735 |1568 7035755620

11479 7:29912146 1524 7032909374 1569 7 •35819375

1480 7.29979737 1525 7032974969 1570 7.35883090

1481 7.30047281| 1526 7033040521 1571 7 •35946764

1482 7.30114781 1527 7033106031 1572 7036010397

1483 7.30182234| 1528 7.33171497 1573| 7º36073990

1484 7:302496421529 7.33236921 1574 7036137543

1485 7.30317005 1530 7.33302301 1575 7.36201055

1486 7.303843331531 7•33367640 1576 7 :36264527

1487 7 * 30451595 1532 733432935 15771 7-36327959

|1488 7.305188221533 7.33498188 1578 7036391350

1489 7 •305860031534 7.33563398 1579 7.36454701

1490 7.30653140 1535 7.3362856615801 7 *36518013

1491 7030720231 1536 7.33693691 1581 7.36581284

1492 7.30787278 1537 7.33752774 1582 7036644515

11493 7.308542801538 7.33823815 1583 7.36707706

1494 7º309212371539 7 °33888813 1584 7036770857

11495 7030988149 1540 7•33953770 1585 7.36833969

1496 7.31055016 1541 7 •3401868415867.36897040

1497 7•31121838 1542 7:34083555 1587 7.36960072

1498 731188616 1543 7:341483851588 7037023064

1499 7.312553501544 7034213173 1589 7•37086017

11500 7.31322039 1545 7034277919 1590 7.37148930

1501 7031388683| 1546 7•343426231591 7.37211803

11502 70314552831547 7034407285 1592 7.37274637.

1503 7.315218391548 7:34471905 1593 7.37337431

1504 7031588350 |1549 7'34536484 1594 7037400186

1505 70316548181550 7034601021 1595 7037462902

15067°317212411551 7034665516 1596 7037525578

1507 7:317876201552 7:34729970 1597 7•37588215

1508 7:31853955 1553 7 •347943821598 7037650813

1509 7.31920246 1554 7034858753 1599 7037713371

1510 7.31986493| 1555 7.34923082 1600 7.37775891

1511 7.32052696 ||1556 7*34987370 | 1601 7037838371

1512 7.32118855 ||1557| 7 •35051617 ||1602 7.37900813

1513 7.321849711558 7035115823 ||1603| 7º37963215

1514) 7.32251043||1559) 7.35179987||16041 7'38025579



TABLE OF HYPERBOLIC LOGARITHMS. 155

1605 7.38087904165017040853057 || 1695 7043543802

16067.38150189||16517040913644 |1696 7043602782

1607 7.38212437|1652 704097419-1697 7.43661727

1608 7.38274645 ||1653 7.41034710 |1698 7643720637

1609 7.38336815 ||165+ 7.41095188 1699 7043779512

1610 7.383989461655 7.411556291700 7043838353

1611 7 •384610381656 7.41216033|1701 7043897159

1612 7.38523092||1657 7 41276402||1702 7043955931

1613 7.38585108 |1658 7.41336734 |1703 7044014668

1614 7.38647085 ||1659 70413970291704 7 °44173371

1615 70387090241660 7°41457288 1705 7044132039

1616 7.38770924 ||1661 7041517511||1706 7044190673

1617 70388327861662 7.41577698 1707 7.44249272

1618 70388946101663 7•416378481708 7044307837

1619 7" 38956395 1664 7.41697962 1709 7.44366368

1620 7.39018143| 1665 7.41758040 |1710 7044424865

1621 7.390798521666 7041818082| 1711 7.44483327)

1622 7.39141523| 1667 7.41878088| 17127 44541756

1623 7.39203157|| 1668 7.419380581713 7.44600150

1624 7-392647521669 7.41997992|1714 7•44658510

1625 7.39326309| 1670 70420578911715 7.44716836

1626 7.393878291671 7421177531716 7.44775128

1627 7 •39449311||1672 742177579||1717 7.44833386

1628 7395107551673 7.422373701718 744891610

1629 739572161 1674 7.422971251719 7.44949801

1630 7.39633529 | 1675 7042356844 ||1720 7.45007957

1631 7.39494860||1676 7•42416528 ||1721 7045066080

1632 7*39756154 1677 7*42476176 1722 7045124168

1633 7.39817409| 1678 7·42535789||1723 7045182224)

1634 7.39878628|| 1679 7*425953661724 7.45240245

1635 7 399398081680 7042654907||1725 7 45298223

1636 7.40000952| 16817-42714413 ||1726 7045356187

1637 7•40062058| 1682 70427738841727 7.45414108

1638 7.40123126 || 1683 7.42833319 1728 7045471995

(1639 7.40184158 ||1684 7042892719 1729 7045529849

1640 7.40245152||1685 7.429520841730 7.45587669

1641 7•40306109 1686 7.4301 1414 ||1731 7045645456

1642 7.40367029 1687 7.430707081732 7045703209

1643 7.40427912 1688 7.43129968 1733 7.45760929

1644 740488758 1689 7043189192| 1734 7045818616

1645 7.405495661690 7043248381 ||1735 7045876269

1646 7.40610338 1691 7.433075351736 7.45933890

1647 7.40671773 1692 7433666541737 7.45991477

1648 7.40731771 1693 7.43425738 1738 7.46049031

1649 7.40792432||1694 7.434847881739 7.46106551



356 TABLE OF HYPERBOLIC LOGARITHMS.

1

1740 7· 46164039||1785/7048717369||1830 7051207125

1741|704622149417867.48773376 | 1831 7051261554

1742 7.46278916 1787 7.48829352 1832 7051316355

1743 7.46336305 1788 7.48885296 1833 7051370925

1744 7•463937601789 7.48941208 18347-51425465

1745 7:46450983 1790 7.48997090 1835 7051479976

1746 7•465082731791 7 49052940 1836 7-51534457

1747 7.465655311792 7049108759 1837 7051588909

1748 7.46622756 1793 78491645471838751643330

1749 740679947 1794 7*49220304 1839 751697722

1750 7 •46737107 1795 7.4927603018407051752085

1751 7 :467942331796 7.49331725 1841 751806418

1752 7.46851327 1797 7.49387389 1842 7.51860722

1753 7.46908388 1798 7.494430221843 7051914996

1754 7.46965417 1799 7 49498623 1844 7.51969240

1755 7.47022414 | 1800 7.49554194 1845 7.52023456

1756 7•47079377 1801 7*496097351846 7.52077642

1757 7'47136309 1802 7049665244|| 1847 7.52131798

1758 7047193208 1803 7649720722| 1848 7.52185925

1759 7047250074 1804 7 49776170 | 1849 7.52240023

1760 7.47306909 1805 7.49831587||1850 7.52294092

176117 •47363711 1806 7*498869731851 7.52348131

1762 7647420481 1807 7.499423291852 7052402142

1763 7.47477218 1808 7°499976541853 7.52456123

1764 7047533924 1809 70500529491854 7.52510075

1765 7047590597 1810 7:501082121855 7.52563998

17667°47647238| 1811 7.501634461850 7.52627891

1767 7*47703847| 1812 7050218649 1857 7.52671756

1768 7*47760424| 1813 7:502738211858 7.52725592

17697*47816969 18147.50328963 1859 7 °52779399

1770 7.47873483 ||1815 --503840751860 7.52833177

1771 7*47929964| 1816 7050439156 |1861 7.52886926

1772 7*479864131817 7.50494207 1862 7052940646

1773 7948042331 |1818 7*50549227 |1863 7052994337

1774 7*480992161819 7050604218|| 1864 7053048000

1775 7.481555701820 7050659178 1865 7.53101633

1776 7.48211892 |1821 7.507 14108 || 1866 7.53155238

1777 7.482681831822 70507790081867 7053203814

1778 7.483244421823 7 *508238781868 7.53262362

1779 7 *48380669 1824 7º50878717 1869 7053315881

1780 7.48436864 1825 7.50933527 1870 7.53369371

1781 7048493028' 1826 74509883061871 7053422833

1782 7.48549161 1827 7.51043056| 1872 7.53476266

1783 7.486052621828 7.510977751873 7.53529670

1784 7.48661331|1829 751152465 |187417053583046



TABLE OF HYPERBOLIC LOGARITHMS. 157

1875) 7.53636394 |1920 7.56008047 ||1965 7058324752

18767.53689713||1921 7.560601161966 7:58375630

1877 7053743004 |1922 7.56112159||1967 7.58426482

1878 7053796266| 1923 7.561641751968 7.58477308

1879 7°53849500||1924 7.56216163||1969 7058528108

1880 7.53902706 | 1925 7.562681251970 7.58578882

1881 7453955883| 1926 756320059 1971 7-58629631

1882 7.54019032||1927 7056371967||1972 7.58680354

1883 7.54062153 ||1928 7.564238481973 7058731051

1884 7.54115246 ||1929 7.56475701| 1974 7.58781722

1885 7.54168310 1930 7056527528 1975 7.58832368

1886 7054221346| 1931 70565793281976 7.58882988

1887 70542743551932 7056631101 |1977 7058933582

| 1888 7.54327335 |1933 7.56682848|| 1978 7058984151

1889 7.54380287| 1934 7056733568 |1979 7°59034695

1890 7.54432211| 1935 7.56786261||1980 7.59085212

1891 7.54486107||1936 7.56837927 ||1981 7059135705

1892 7.54538975 |1937 7.56789566 1982 7059186171

1893 7 545918151938 7056941179 1983 7 59236613

1894 7 °54644627 1939 7.56992766 1984 7.59287029

1895 70546974121940170570443251985 7:59337419

1896 7°54750168 |1941 7.57095858| 1986 7.59387784

1897 7-54912897 1942 757147365 |1987 7.59438124

1898 7054855598 ||1943 79571888451988 7.59488439

1899 7054908271| 1944 7.572502991989 759538728

1900 7 °54960917||1945|7-573017261990 7.59588992

1901 7.55013534 ||1946 7.57353126 ||1991 7.59639230

1902 7.55066124 | 1947 7057404501||1992 7959689544

1903 765511868719487.57455848 |1993 7.59739632

1904 70551712221949 7 57507170 1994 7059789795

1905 7.5522372919507-57558465 |1995 7-59839933

1906 7.55276208 ||1951 7 57609734 1996 7.59890046

1907 7.55328661 1952 7.57660977||1997 7059940133

1908 70553810851953 7.577121931998 7 59990196

1909 70554334821954 7.577633831999 760040233

1910 7.55485852||1955 7.578145472000 7.60090246

1911 7.55538194 1956 7857865685200117060140233

1912 7.555905091957 7.57916797 ||2002 7.60190196

1913 7055642797|| 1958 7057967882 |2003 7.60240134

19147.55695057| 1959 7.58018942| 2004 7.60290046

1915 7.55747290 |1960 7.58069975||2005 7.60339934

1916 7-557994961961 7-58120983|2000 7.60389797

1917 7.55851674 |1962 7.58171964||2007 760439635

1918 70559038261963 7.58222919| 2008 7.60489448

1919 7-55960950 |1964 7.58273849 200g 7.60539236

THE END.



ERRATA .

G

Page 9, 1. 2, for are, read is.

19, 1. 6, for v, read t.

21 , 1. 4, after therefore, add, X

95 , 1. 16 , for t, read X.

115 , l . 19, for weights of either, read weight of either ,

116, 1. 27, for grové, read groove.
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