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Summary William Moore's known biography and his contribution to mechanics are summarized, 
and his acquaintanceship with Charles Hutton's work examined. G. K. Mikhailov's summary of 
workers on this subject before Moore, e.g. Daniel Bernoulli, is referred to. The contents of Moore's 
treatise on rocketry and naval gunnery, published in 1813, reputedly the first publication on the 
motion of rockets, are described in some detail and then related to his four slightly earlier papers 
on the same subject in Nicholson's journal. As well, his mathematical competence and particularly 
his successful use of the fluxional calculus, conflict somewhat with Charles Babbage's cry for d'ism 
rather than dottage. Comment on Moore's Naval Gunnery with reference to remarks of Howard 
Douglas in his classic work of 1855 on the same topic, is made. A tactic advocated by both was 
that of firing a cannon ball at speed just sufficient to penetrate a wooden-sided ship in order to 
secure maximum damage; this is a phenomenon still analytically unaccounted for. 

INTRODUCTION 

Finding the little known book of 1813 by William Moore, principally on rocket motion 
and reputedly the first on that subject, brought the author to attempt a short, useful and 
comprehensive description of it; this, as completed, is presented below. The task proved 
more difficult than the author had anticipated because few personal details about Moore 
are available, and sight of his papers and book is not easily obtained, see Note 1. Besides 
reducing my descripton to a useful length, yet giving, or referencing, available biographical 
details, I have tried to compare and identify to what extent he built on the work of Robins 
and Hutton. 

My hope is that an appreciation of Moore's writings, his mode of approach to his subject 
and his contemporary style as well as the contents of his volume and its relation to his 
papers, has been conveyed. 

I need incidentally also to draw attention to the paper by G. K. Mikhailov on Earl), 
Stages in the Development of Rocket Propulsion ... .  [1]; this gives a fairly thorough survey 
of early attempts to understand "problems of the reaction of an outflowing stream as 
worked on by Daniel Bernoulli, John Bernoulli, Euler and others". Especially Mikhailov 
has given and discussed the elements of Moore's Propositions so that there is some overlap 
between our works at this point. My presentation here refers more-or-less to all that Moore 
then treated. 

I believe too that a challenge implicit in this article (and in others) is that it demonstrates 
that the nearly contemporary cri de coeur of Charles Babbage and his colleagues about 
the urgent need to substitute Leibnizian d'ism for Newtonian dottage, when using it as an 
instrument of analytical research, was excessive. I remind myself that in reading Brown's 
translation of Euler's work of 1777, [2], on Robins' Gunnery and Colson's rendering into 
English of Agnesi's Analytical Institutions of 1749, [3], I saw no new impediment created 
when the translators substituted English dottage for continental d'ism. 

499 



500 w. Johnson 

MOORE'S  BIOGRAPHY 

We shall assume that most of the biography of Moore as given in [1] is easily available 
to the reader and therefore need not be repeated here. 

William Moore's vital dates are not presently known to us--only that he was appointed 
as sixth mathematical master at the R.M.A., Woolwich in 1806. (A critical year in England's 
essay into rocketry, being that of the attack on Boulogne.) He survived there until he was 
"retired" in 1822. The former date is given in Records of  the R.M.A.,  1741-1892, in the 
preliminary Appointments, apparently simply as "Mr William Moore, 6th Mathematical 
Assistant". Under a date of 1 October 1806 there is a transcript by an Examining Board 
(Charles Hutton and two others), to the effect that "... Peter Barlow and William Moore 
had talents capable of making them very useful Masters".¶ 

Of rockets, Moore himself has said that it was only through the Academy of Copenhagen's 
proposed prize question, to calculate the curve a rocket describes when projected in any 
oblique direction, in vacuo, that he was led to consider rockets in different mediums (sic). 
Peter Barlow later became well known in British scientific circles for his writings in 
engineering science and he was somewhat a strong competitor of Hutton. (He published 
his Mathematical Dictionary a year or two before the 1815 edition of Hutton's work 
appeared.) For some of his works in Strength of Materials, Barlow has come under strong 
criticism from J. F. Bellt. Barlow long remained very influential with engineers and clearly 
his work was highly thought of by these practical men. 

Papers by Moore, other than those on rockets, are cited in Refs [1,8)$. The references 
dealing with the penetration of balls into uniform resisting substances, of 1812, and of an 
enemy's fleet at sea by artillery, 1811, obviously reflect his first work that later gave rise 
to the original article on Naval Gunnery in our title. 

F. H. Winter has written a helpful article on Moore in the Dictionary of  Scientific 
Biography, see pp. 504/5, which embraces many of the facts adumbrated here. There is of 
course no entry about Moore in the British D.N.B. Winter wrote of Moore, that his book 
was the "world's first mathematical treatise on rocket design ... but it had many 
shortcomings ... and lack of data hindered his calculations. Never-the-less he correctly 
recognized and demonstrated that Newton's third law explained the rocket principle". 

Judging by Moore's mathematical proficiency in his rocket papers and book, I supposed 
he might be a graduate from Oxford or Cambridge. (In the early years of the 19th century 
there was a distinct tendency to recruit Cambridge mathematicians, the self-taught line of 
professors/teachers coming to an end.) Accordingly, I consulted the lists of Alumni 
Oxonienses and the Alumni Cantabrigienses but found no entry with which I could associate 
William Moore. There seems no accounting for Moore at this stage other than to observe 
that the development of his ability was mostly a matter of his being largely self-taught, as 
with his distinguished predecessors, Robins and Hutton. 

(I found in Hermon's Scloppetaria, (1808), p. 118, a remarkable footnote which records that, Mr 
W. Moore, "a very ingenious workman, has found by several experiments", ways of ensuring 
uniformity of shooting from a rifle. (Results at the target are shown in the latter book.) This Mr 
William Moore worked at No. 8, White Chapel, London, a district close to Woolwich. I cannot 
but wonder if this refers to our original William Moore or to a member of his family. I cannot 
avoid commenting, however, that the Moore never seemed to demonstrate experimental inclination 
and he is wholly a theoretician, contrasting sharply with this mechanician Moore.) 

t In Mechanics of Solids, Vol. 1, pp. 813, Springer-Verlag (1984). 
$ Mrs Ruth Wallis wrote (26 Aug., 1994) that from the R.M.A., "Moore contributed propositions and answers 

to the Ladies Diary in the year 1807/10; mostly they were of a geometrical nature". 
¶ Added in proof: See F. G. Guggisberg's, "The Shop," Cassell and Co., 280 pp, 1902, where on p. 263 in Appendix 

IX, The Mathematics" Staff, R. M. A. We find,"1806-12(?). W Moore, Esq." In 1806 there was an increase in the 
number of cadets from 100 to 186. 
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A TREATISE ON THE M O T I O N  OF ROCKETS AND NAVAL G U N N E R Y  

The title page of this book by William Moore appears as in Fig. 1. It is a book of some 
150 pages, about 47 000 words, 6 pages of Tables and includes several pages of logarithms 
at the end. The essay on Naval Gunnery is about 20% of the length of the book and the 
material quite different from the matter on rocketry. Following the title is a short Preface 
of about 2000 words which is summarized immediately below and was written whilst the 
author was at the Royal Military Academy, Woolwich. 

Preface 

Moore opens by stating that it was the Academy of Copenhagen in 1810 proposing a 
prize question that induced him to consider rocket motion in different media. He writes 
however that he published in The Philosophical Journal [4], some short and incomplete 
papers on this latter topic which prompted him to publish as a treatise the results of 
investigations he had made which were of considerable length. As always, Moore has the 
teaching of military and other students in mind. He also resolved, in the same volume to 
publish his new theory on Naval Gunnery in a "volume collectively". 

A compilation of the Contents of the book is seen in Fig. 2, the chapter numbers being 
my insertion. The first three chapters of the volume, in effect, lay down the foundations 
on which the principles of rocketry are to be based and extend from pp. 2 to 23. However, 
we do not propose to examine these, since they have no special value for the modern 
reader. The fourth chapter briefly describes the physical machine, the rocket, and next the 
generation of motion from the burning of its composition or fuel. 

The fifth chapter is the essence of the book to which we pay most attention; it appears 
in five sections, the subject matter of each being seen in Fig. 2. 

Section I is concerned with general motion in a non-resisting medium and starts with 
a treatment of vertical ascent only. Section II embraces Moore's theory for determining 
the resistance to planes, cones, spheres and cylinders moving through fluids in any direction 
including the non-axial; this was considered necessary, by Moore, for realistic rocket theory 
and he believed that his work was "new". He thought that he was here formulating a 
method of separate solution to a general problem but unfortunately his understanding of 
the motion of fluids around moving solid objects was too simplistic. 

Section III explains rocket motion in a resisting medium but the difficulties he encountered 
gave rise to problems "of no small labour". As well, in this Section he tries to determine 
"the effects of the wind upon the rocket in deflecting it from the plane curve of projection". 
Similarly, the computation of lateral errors concerning "bomb-shells and cannon-balls" are 
partly addressed. 

Section IV pertains to the "motion of wheels on fixed horizontal axes impelled by a 
circumferential force", whilst Section V treats of the theory of the ballistic pendulum so 
that "an estimation of the arc through which the pendulum is urged by a rocket during 
its combustion provides an easy and correct method for finding the strength of the 
composition". 

The essay on Naval Gunnery turns on, "the charge of gunpowder for any given piece of 
ordnance to cause its shots to produce the greatest possible damage to any splintering 
object of a given thickness ... wood ...". Moore continues, ".. .  I have seen in his Majesty's 
dockyard at Woolwich, prize-ment of war having many shot holes in them, almost wholly 
closed by the wood's own efforts and that required nothing more than a small wooden 
peg, or a piece of cork to stop them up perfectly ... it is evident that the charges were 
much too great and gave to the shot an improper force ...". Illustrating this fascinating 
subject, Moore continues by asserting that it was not Admiral Nelson's double-shotting 
of his guns which produced so extensive a damage on the Santissima Trinidada (an opposing 
admiral's flag ship) at the battle of Trafalgar; rather it was "so dreadfully disabled chiefly 

t Prize-men: enemy ships captured in victory became the property of the victors and when sold, the sum 
received was divided up between officers and crew according to strict rules. 
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Fig. 1. The title paper of Moore's Treatise 
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TITLE PAGE 

Preface 
Chapters 

( i )  OF VARIABLE QUANTITIES: Definition and Notation 
Definitions and Iotation 
Propositions 1 to 9 

(2) 

(3) 

ON ~OTION, FORCES ETC.: 
Definitions Axioms (3 Laws of Notion) 

ON THE GF_.IERAL LAYS OF IK)TION 
Propositions I to II 
In Constant Forces 
In Variable Forces Proposition X. Examples 
Table (of Specific Gravities) 

(4) £}~ TEE NOTION, etc., OF ROCKETS 

(5) OF THE THEORY OF THE lOTION OF ROCKETSe 
in Jon-reslsting and resisting medlums 

ill-viii 

2-5  

O-lO 

10-23 
10-17 

17-18 
16-22 
22-23 

24-26 

26-27 

Section I 27-44 
On the ]lotion o f  Rockets in a ~on-resisting medium 

S e c t i o n  I I  44-55 
On t h e  r e s i s t a n c e  t o  b o d i e s  moving i n  f l u i d s  w i t h  
g i v e n  velocities 

S e c t i o n  I l I  56-88 
On t h e  mot ion  o f  r o c k e t s  i n  r e s i s t i n g  m e d i u m  

S e c t i o n  IV 89-109 
On the application of the force of rockets (attached 
at their circumstance) to the motion of  wheels 
suspended on fixed horizontal axes 

Section V 
Of t h e  a p p l i c a t i o n  o f  t h e  f o r c e  of  r o c k e t s  t o  t h e  
mot ion  o f  pendu lums  

110-117 

(6) ON ~AVAL GUINEI~¥ 117-141 
Tables:  125-129 

EP~ATA 142 

tA d i f f e r e n t  s e t  of  P r o p o s l t i o n s l  t o  16 , shown e i t h e r  i n  Ar a b i c  o r  Ro~an 
n u m e r a l s  o c c u r s  a l s o  i n  t h i s  c h a p t e r .  

Fig. 2. Contents of Moore's Treatise 

from ... the nicety of charge of gunpowder that was employed; .... double or triple shot 
... would have added but little to its destruction, had [the shot] not passed through with 
a proper motion". 

After acknowledging the careful works of those engaged in testing at Woolwich, Moore 
passes on to draw attention to his subjoined table of hyperbolic logarithms for use in 
expediting calculations. 

Lastly, the author points to the continuous exemplification of his results both in the text 
and by means of set examples, because the theory is then "never so well understood by a 
learner". 
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THE THEORY OF THE MOTION OF ROCKETS, IN NON-RESISTING AND RESISTING MEDIUMS (Sic) 

Article 16, p. 26 has the same title as that of an article published by Moore in 1810 [4]. It should also be 
added that Moore was familiar with the work of Robins, Hutton and Euler and thus to some degree based his 
work on theirs. 

This chapter starts on p. 26 by pointing out that it is imperative to know the strength of a rocket composition 
as a basis for useful theory. However, not having performed experiments, Moore asserts that he presumes that 
the force of the composition of the rockets used by the English in bombardment did not differ significantly from 
one hall that of  gunpowder, which was supposed to be nearly 2000 times as great (when converted into 

fluid) as the elastic force of the atmosphere. He takes for the initial force of gunpowder that which Dr Hutton 
proposed after much experiment and accurate computation. A further supposition about the composition was 
that the laminae of its fire was both uniform and parallel to the rocket's base. 

SECTION I: ON THE MOTION OF ROCKETS IN A NON-RESISTING MEDIUM 

Following on the introduction above, Moore remarks that Robins computed the propelling force as one half 
that which Hutton determined it to be but attributed this somewhat to the particularity of the enquiries which 
were involved. 

Article 17, p. 27, Prop. I aims to find the perpendicular height ascended and the rocket velocity developed 
after the propellant composition has burned uniformly and parallel to the rocket's base for a certain time. We 
shall adhere to Moore's notation in which w denotes the weight of the case of the rocket and head, c the weight 
of the composition [so that m may stand for (w+c), a the time of its consumption, d the rocket base diameter 
and x the vertical distance covered by the rocket in time t.] 

Atmospheric pressure is 230oz/in 2 (14.41b/in 2) and s is 1000 times as great, being that of the "inflamed 
composition"; this value is used too because it was assumed so by Robins in his Principles of  Gunnery, 1742. 

Many of Moore's analytical investigations are, today, elementary and his results easily reproduced. However, 
there are a number of features in Moore's derivation which are, just for once, worth noting, particularly his use 
of the fluxional calculus. We note that this work was performed about a decade before the clamour by Babbage 
and his colleagues for the substitution of d'ism for dottage or the Leibnizian notation for Newtoniain fluxions. 

The upward accelerating force on the rocket base, area 7td2/4 at time t after ignition is 

,, 
\ 4  / \ a / A ~ \  aJ  a m - c t  

the counter-acting gravitational mass being included. 
The equation for vertical motion Moore writes as, 

= t -2o i .  (2) 

C( cm 0 
(For n/4 Moore writes throughout e and he uses 2g where we use only g today. This equation is written 

in terms of the fluxional calculus. Recall, fluxion ~- differential and fluent =- integral.) 
The fluent of (2), with respect to t is, 

2agsned 2, , [am ~ _ 
v= c n y p " ° g ~ v - t ) - z g ~ "  (3) 

This fluent is now "corrected" (Moore's term) since for indefinite integration he does not include in (3) an 
undetermined constant. The latter is found by recognizing that v =0  when t=0 .  Hence (3) becomes, 

2agsned z, , [" am "~ 
v= c nyp"°g k a - m ~ -  ct } - zga" (4) 

At the instant combustion ceases, t = a, and the speed is given by, 

2agsned 2 [ w + c'~ 
v= c hyp . log[ , , -~ - ) -2ga ,  (5) 

where m = w + c .  
Moore exemplifies his results with regard to w, an 18 lb rocket, for which c =  lOlb, a = 3  see, d = 3  in=¼ft, 
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g = 16 ft/s, and e = n/4. The result he finds for v = 2896.9895t ft/s, at the instant of exhaustion of the "composition" 
(or "'wildfire", p. 280 [4(i)]). 

Using (5), Moore proceeds to find an expression for "the space" or distance travelled (using a previous 9th 
theorem, see p. 30, [4(i)]), at the end of time a, through ~=v i .  The fluent of x, duly "corrected", is found as, 

a b  m - c a c g  1, (6) 

where b = 2agsnedZ/c. For the example given, x = 4015.9827735 ft traversed after the expiry of 3 s burning of the 
rocket fuel.~] propos of Eqn (5) above we recall Mikhailov's remarks (p. 16, I-6]). He writes, " ... the theory of 
rocket mot ion under a constant  fuel burn-out  rate, and accordingly under a constant  thrust  developed by the 
rocket on its active path, was first developed by William Moore . . .  he did not however relate the constant  jet reaction 
to V(dm/dt) but believed it could be found by some other coefficient representing the experimentally determined 
characteristic of the reactive force of the exhaust jet of combustion products". Mikhailov, using the treatise by 
W. H. Besant (1828-1917), Chapter  X, mentions an Example 22 in it, which yields the greatest rocket velocity, 

v,og 
M' e \  M }  

(The rocket of mass  M throws off per unit time a mass eV with relative velocity V and M' is the weight of the 
case. It cannot  rise at once unless Ve>g,  not at all unless M V e / M ' > g . )  This would appear to be the same as 
Eqn (5) above; the corresponding terms to which he is referring, would seem to be the V in the equation above, 
and the b given immediately below Eqn(6). The experimentally determined material which Moore has used 
derives of course from Robins ' /Hut ton 's  work. 

Article 18, p. 31 provides, on the supposition that the gravitational force remains constant  and independent 
of distance above the earth's surface, that the rocket further ascends, 

vZ/4gf=(2896.9895)2/64 × 0.9993709 = 131261.131 ft. 

Thus  the total height to which the rocket ascends above the surface of the earth is 135 277.1137735 ft or, "it 
has just lost all its motion" at a height "which is nearly equal to 27 miles". 

If however, "the height .. .  be demanded on the true principle, that gravity varies inversely as the square of 
the distance from the earth 's  centre" then, Moore calculates that the total height of the rocket above the earth's 
centre, taking the earth's radius, r, to be 3979 miles, as 

x=4agr2/(4gr2--ac2)=21 145 143.65521 ft. (7) 

The total height of the rocket from the earth 's  centre is thus, 

21 145 143.6552-r=136023.65521 ft. 

Thus the height to which the rocket rises from the point where the impelling force of the composition ceases 
is 132007.67221 ft, and it ascends nearly 746.54121 ft higher from a point 4230.609 ft above the earth's surface 
with a velocity of 2896.9895 ft/s, than it would if the same force had remained constant. 

If the rocket has a velocity of 2896.9895 ft/s upwards when at a height from the earth's surface equal to 
(4gr2/c2)-r, Moore shows that it would never return. He states, "the velocity of projection to cause a body to 
move to an infinite distance is 39450.2377 ft/s or 7.471767 miles/s"~. 

Proposition I in Moore 's  book is almost a word-by-word repeat of pp. 278-285 of Moore 's  first article, [4(i)], in 
Nicholson's Journal  for 1810. 

Article 20, p. 34, Prop. II, reads, "To f ind the period o f  the rocket's motion; or the time from its first going of[" 
to the t ime o f  its return to the earth". With the same values as those in Prop. I, the rocket's time of ascent is 
shown to be 94.32307 s, and of descent 92.69881 s, so that the whole time of motion is 3 min, 7 s. 

All the analyses used for this proposition are performed using the fluxional calculus, b u t  are algebraically 
more complex than those in Prop. I. 

Article 21, p. 36, Prop. Ill, reads, "To determine the path o f  a rocket near the earth's surface, 
neglecting the resistance o f  the atmosphere". 

Specifically, we briefly outline Moore 's  approach thus. In Fig. 3, AC is the initial direction of the rocket and 
AD the curve it actually pursues, CDB being perpendicular to the horizontal line AB. After time t the rocket 
would arrive at C if gravity did not act; and if AC = x, then the value of x using (6) above, is, 

/ abm'~ b 
x = \[ bt - c / - - }  hyp.log(am) + c (am - ct)hyp.log(am - ct) + bt, (8) 

~" Many authors  in these years quote an excessive number  of significant figures as seen here! (Newton used 
even more than are evident here.) That  using so many was valueless seems never to have been contemplated. 

:~ T h e / s  is omitted by Moore. 
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and therefore, 

= bi hyp.log.am/(am - ct). 

Moore proceeds to find the fluent of the latter after first putt ing log (am/(am-ct)) into fluxions and then finding 
its fluent in a series and "wanting no correction" as, 

bc I/ 2 ct3 cZt4 
x = - - . I t  + - - + - - +  . . . .  ) 

2am \ 3am 6a2m 2 
(9) 

Thus the time of describing space x along AC from the commencement  of mot ion is obtainable. 
CD, or y, is the distance descended due to gravity in the same time. Evidently, with the latter two elements, 

x and y, the track of the rocket may now be drawn. 
Article 22, p. 39, Prop. IV reads "To f ind the velocity o f  the rocket in the curve at any given instant". 
In Fig. 4 we put  A C = x  and let A D = z ,  which is the distance described by the rocket in time t. If the speed 

at C is V then that at D is ~ V/Jc. However, C D = gt 2, AB = Ix, CB = kx and DB = k x - g t  2, where k and I are the 
sine and cosine of CAB. 

Thus, 

= [(k~ - 2gti) 2 + 12f:2] ½ 

and 

zV [12~2+(k~_2gti)2] ~ 

V 

Also, 

= V i ,  

and consequently, 

v = [12 v2i 2 + (kvi-- 2gti)z]*/(vi) 

= [ V2F + (k V -  2002] ~ 

[-2 2 2 [; am "~ [; [; am \ "~z]½ =Lib  .hyp.log ~ a - - ~ - - - - - ~ t _ c t ) + ~ k b . h y p . l o g ~ ) - 2 g t )  J . (~o) 

The latter v needs no correction, since v = 0  at t = 0 .  Moore finally verifies the correctness of (10) by inserting 
values of projection angle 90 °, 0 °, 30 ° and 60 °. 

Article 23, p. 41, Prop. V reads, "'To f ind the horizontal range o f  the rocket, having the angle o f  elevation o f  the 
engine, and the time the rocket is on fire, given". 

Figure 1 reproduces Moore 's  own sketch. Line DI represents the (tangential) direction of mot ion of a rocket 
at point D on trajectory ADI, when all the composit ion is just  exhausted. It is then shown that, 

A 
CAt'1 = vel. at C 1-.. V. cos. CAB c'~'~m s i n  • cos CAB COS 

vel. at D v 

The speed at C, V has the same meaning as in Prop. IV, whilst v is the speed at D. Also, 

Cfim = IDB; thus, sin IDB = V.cos CAB/v. 

After D, the trajectory is a parabola, so DH =(v2/g)sin ID'~H.cos ID"~H, and V E =  v2.sin 2 I~H/4g .  Next, 

Now, 

Hence FL and then, 

AL 

V F = V E + E F = V E + D B  

= (v2.sin 2 IDH/4g) + (x cos I D H ) -  gt 2. 

. . v2cos2 ID'H ( v2.sin2 ID'H ) 
VE:VF::EHZ:FL z - ~ - k x - g t  2 . 

g \ 4g 

v . e o s l D n ( v 2 s i n 2 I ~ H  2"~ / v2sin I~H.cos  ID'H 
(11) 

which is the entire range of the rocket. 
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The example Moore gives is for an initial angle of projection of 45 ° using the same values as 
those of the previous Proposition. The magnitude of v at the end of its burning time is, 

{12b2.hyp.log2(m~c)+(kb.hyp.log(m~c)-6g)2}~=2925.6ft/s.  

A 

Angle IDB turns out to be 134°6 ' or angle IDH=44°6  '. Thus the numerical values for the range are, 

A 

sin IDY=0.696, k =0.7071, g =  16 ft/s 2, 

u=0.718, v=2925.6 ft/s, x=4159 ft, t = 3  s. 

The range is found to be 272, 116.29 ft, or 51.73 miles. 
The Section ends with nine numerical Examples For  Practice. 

SECTION II: ON THE RESISTANCE OF BODIES MOVING IN FLUIDS WITH GIVEN VELOCITY 

This Section II, pp. 44-55, is wholly devoted to calculating the resistance to bodies moving in fluids with given 
velocities, especially when a centre of gravity does not follow an axis of symmetry. Moore attempts to establish 
the air resistance encountered by planes, cones, spheres and cylinders that may have some relevance to rockets. 
He asserts that, "no book extant ... contains the principal part of the information ... to which reference could 
... be made". In all his considerations of the fluid (air) he neglects to remark that it is an elastic fluid with gaseous 
properties which is being examined. 

This section comprises four Propositions and seven samples; treatment of the topics is unsophisticated. 
Article 25, p. 45, Prop. VI is where Moore gives Fig. 5 in which AB is a given plane and CA the direction of 

the fluid moving against it. BC is perpendicular to AB. Moore conceives of AC representing the full force of the 
fluid against AB. It is resolved into components parallel to AB and perpendicular to CB; the first can have no 
effect in tending to move AB and only the second could do so, which is the force CB. The velocity of impact is 
CA.sinC~D; or Vsin~, where ct is angle CBD. Thus with the area of the plane BD "rotated" 
to AB, the resistance on it becomes proportional to sinact. The actual resistance force on the plane is thus 
An V2sin3~/4g; here, g = 16~a 2 ft/s2; A is the area of the given plane, and n the density of the fluid. The force conceived 
to apply then, was thought of as "equal to the weight of a column of such fluid" falling through "a height" 
sufficient "to acquire its velocity of motion", V; this accounts for the 4g. 

Articles 26 to, and including Art. 32 (incorporating Props VII, VIII and IX) are effectively algebraic exercises 
including some use of fluxions for various bodies set at different angles to impinging uniform flow. 

Some of the cases described by Moore pertain to, 

(i) A cylinder of radius r moving in a fluid in the direction of its axis: the resistance is, rcr2n V2/4g. 
(ii) A cone, moving in the direction of its axis, apex foremost, the resistance is, nr2nV2sin2ct/4g, where ct is the 

cone's semi-angle. 
(iii) And for a circular plane moving such that its inclination is at angle ct to the direction of motion is, 

7zr2n V2sinaoz/4g. 
(iv) A sphere or cylinder with hemispheric end, moving in the direction of its axis; the resistance is, rcr2rl V2/8g. 
(v) A spherical segment, where y is the radius of its base and r the "spherical" radius; the resistance for motion 

forward, but perpendicular to its base, is ~n V2y4/8gr 2. 
(vi) For a cylinder of height h meeting a fluid by moving perpendicular to its axis; the resistance is, n V2rh/3g. 
(vii) For a sphere; resistance is, ~nV2r2/8g. 
(viii) The ratio of the resistances for a sphere to that of its circumscribing cylinder is thus n 1/'2r2/8§ to 2n V2r2/3g 

or as 1 to 16/3rt (1.698). 

No such simple rules truly apply to these kinds of situation; the consequences of vortex formation, form drag, 
edge effects and compressibility, etc., then being unknown and unsuspected. The introduction in the mid-19th 
century of ogival shells led to profounder considertions of the resistance offered by air to high-velocity, elongated 
projectiles and ultimately progress is well reflected in the long Ch. II of say, Cranz and Becker's Exterior Ballistics, 
Vol. I, H.M.S.O., 1921. The emergence of computational fluid mechanic techniques has yielded highly 
realistic results, something unimaginable in Moore's time; this is not of course to belittle Moore's early efforts. 

SECTION III: ON THE MOTION OF A ROCKET IN RESISTING MEDIUMS 

Article 33, p. 56, Prop. IX, aims to find the height in vertical ascent and the velocity acquired at the end of 
the time of burning of a rocket, when the resistance encountered is as the square of the speed. 

In addition to the notation earlier used we also have, 
c: the weight of the whole quantity of material which fills the rocket, 
a: the time in which c in consumed uniformly. 
x: the space the rocket describes in time t where 
b: is its speed, R: is the air resistance at b ft/s and g ~ 16 ft/s 2. 
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Moore, using fluxional methods, finds the rocket's equation of motion as, 

= [sAld2b 2 - R v 2 ) / ( a m -  c t )b2]a2g i -  2gi (12) 

or, 

l ~ - p t 6 - q i  + k v Z i -  2gpt i=O, 

where coefficients, l = a m b  2, p = c b  2, q = h - 2 g l ,  h=2aosned2b  2, k = 2 a g R  and h - 2 g l = q ,  so that v may follow in 
terms of t. Moore next assumes that 

v = At  + Bt 2 + Ct 3 + Dt 4 + Et 5 etc. 

Making i = 1, 

b = A + 2Bt + 3Ct 2 etc., 

and after substituting in the previous equation and equating the coefficients of equal powers of t, A, B, C, D and 
E can be found. The fluent is then taken and an expression for v derived; note that the first five terms only of 
the series were taken. 

The value of R for velocity b is psr2b2~Z/4g. (By the long ess ~, Moore here denotes the sine of the angle which the 
slant side of the conical rocket head makes with the rocket axis.) For b =  1 ft/s, s =  1/2(30 °) R=0.0002343 oz and 
velocity, v = 2733 ft/s. 

The space described by the rocket x is the fluent of vi, a two-line equation at the foot of p. 58; with Moore's 
previous constants it is here 3910 It, being the height at the end of burning. 

The author seems at this point to have some doubts about the series he uses and looks to "observe a proper law". 
Article 34, p. 59, shows the further rocket height achieved from the acquired speed is, numerically, 7914 ft which 

combined with the earlier figure of 3910 ft gives 11 824 It, (2~ miles) from earth. 
This seems to complete the work set up in Prop. IX. From Art. 35, p. 61 to the end of Art. 37, p. 65, the concern 

is to determine various times. As Moore shows no heading for Prop. X, I assume it covers these pages. 
Article 35, p. 61, is a short matter of integration to find the time for the latter distance to be totally covered 

and numerically it is 14.2 s. Thus the whole ascending flight time is 17 s. 
Article 36, p. 61, shows that the time required to descend to earth from the maximum rocket height achieved 

(with resistance operating) is 48.2984 s. Thus the total flight time is (17.2 s +48.3 s)= 1 min, 5½ s. The calculated 
speed of arrival at the earth's surface is 350 ft/s. (Moore gives 350 ft, so here, as occasionally elsewhere, sometimes 
he has incorrect units.) 

Article 37, p. 64 begins by commenting on the validity of the resistance law used, noting that gravity and 
density do change with height. Experiments are said to disprove the square law for cannon balls but Moore 
asserts hardly so for rockets, because the heat of the exhaust gases rarities ambient air. He points 
out, however, that an nth power of velocity resistance law brings no substantial change in the analysis. 

Article 38, p. 65, Prop. XI is short and shows that rocket speed cannot become uniform under any law of 
resistance. 

Article 39, p. 66, Prop. XII treats of finding the speed and distance described by a rocket due solely to the 
composition and the medium resistance--gravity not acting. For typical rocket dimensions the author determines 
a velocity little different than that calculated including gravity, and dubs it remarkable. 

Articles 40 and 41, p. 70, pursue the lines of Arts 38 and 39 without new conclusions. It is not at all clear why 
Moore devotes so much time and space to this topic. 

Article 42, p. 72, opens with Prop. XIII and seeks to ascertain the magnitude of the deflection of a vertically 
ascending and descending rocket when it returns to earth from the point of its initial projection, due to the effect 
of a horizontal wind. Introducing the article, its author observes that a body moving from rest, 
put into motion by a fluid, cannot acquire a speed greater than that of the fluid itself: the force on a body is 
proportional to the difference between that of the fluid and that of the body. Similarly, Moore asserts that in a 
perpendicular cross wind, the "sideral" (side-ways?) motion cannot exceed the velocity of the wind. Thus the 
rocket suffers no resistance from the medium in its deflection from the original line of projection. Moore assumes 
that the wind force, to begin with, moves the cylindrical rocket sideways, its quantity being n VZrh/3g and when 
it has accumulated a sideways speed of v, nrh( V -  v)2/30, (see Art. 31, p. 49). After three pages of calculation the rocket 
deflection at the end of its burning is found and given on p. 76. 

Article 43, p. 77, shows that the rocket is further deflected during the remainder of the time, see p. 78. Typical 
values are, for an 181b rocket, c=160oz ,  h=3 f t ,  V=22ft/s,  m=448oz ,  n = l ,  r = 6 i n ,  and at the end of the 
burning time the sideways movement is 7.1ft; at the end of the second part of the flight the 
distance moved is 674.76 ft, or the whole lateral movement is 681 ft. 

Article 46, p. 80, is where Moore enquires into the lateral deviation from the vertical plane of fire of a shell 
when driven by the wind at 22 ft/s, (or 15 m.p.h.) during an ascent and descent. For a spherical shell of 13-in 
diameter and weight 2281b, he gives an algebraic result on p. 80 which is, numerically for the above 
constants, 70.4 ft. 

A twelve-pounder cannon ball is calculated using Moore's theoretical approach, to deflect 67.8 It, for a 20 m.p.h. 
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transverse wind speed with a flight time of 32 s. These latter results underline the need to pay attention to cross 
winds and thus the need to adjust the vertical plane of flight of a ball, slightly, to take some account of lateral 
deflection. 

Article 47, p. 82, Prop. XIV, shows the case, for a given time of flight, speed and angle in which the rocket is 
sent, as well as the direction and speed of the wind, and Moore assesses the expression for the distance from the 
plane of projection at which the rocket falls. (The effects of ball revolution--possible Magnus Effects are 
neglected.) 

Article 48, pp. 83-87. Scholium. The subject is that of the two rotations to which a rocket in flight is subjected; 
one, resulting from the action of the wind and the other the resistance of the air in its descent to the earth under 
gravity. The inertia of a varying mass in flight makes for difficulties; due to wind, the one end of the rocket which 
is less heavy than the other, causes that to move to leeward. As regards the other rotation, the heavier end because it 
has greater "power" to overcome any resistance, will preponderate to cause the rocket body to rotate until it 
reaches the vertical position. 

Moore advocates firing directly into or against wind, if at all possible but realising how great an error can be 
made, provides knowledge which should enable rocket gunners somewhat to compensate in anticipation. 

Eight problems, p. 86/7, without answers or outline solutions, complete the section. 

SECTION IV: ON THE APPLICATION OF THE FORCE OF ROCKETS TO THE MOTION OF WHEELS 
SUSPENDED ON FIXED HORIZONTAL AXES 

We are not told where the information derived from this section would find employment. There is no obvious 
use for it in military circumstances, and the only one for which this writer can imagine a purpose is the Catherine 
wheel, either as a recreational firework or an implement of torture in ancient days; see Note 2 below. 

Article 49, p, 89, Lemmat  1, concerns a solid circular plane, see Fig. 6, which oscillates about a fixed horizontal 
axis nSm parallel to diameter AB, the plane being inclined to SG. The investigation's purpose is to explore the 
ability of a force (or impulse?) on the plane to turn it about nSm. Moore's calculations show that the force 
producing rotation about the axis is independent of the inclination of the lane of the circle. 

Article 50, p. 91, Lemma 2, is illustrated by Fig. 7 which represents the oscillation of a cylinder, AB, again 
about the horizontal axis nSm to which diameter CD is parallel. Moore simply shows, via the consideration of 
a normal pressure p, on typical sections ELF distance SO (=  SG + AB2/12.SG +AM2/4SG) from the centre of 
oscillation, S is independent of whether the solid oscillates in the horizontal, vertical or any other position as 
long as nsm and CD are parallel. 

Article 51, p. 92, Prop. XV, concerning the solid cylindrical wheel ABCD, suspended on an horizontal axis XY 
passing through its centre of gravity, has a cylindrical rocket of negligible weight, RO attached tangentially at its 
mid-point T, see Fig. 8. The velocities of the wheel at an instant, are to be ascertained. Moore notes that, due 
to the burning of the rocket composition, analyses are made complicated because the decreasing quantity of the 
fuel with time, alters the overall centres of gyration and gravity. The calculations proceed through nine pages, 
at one point its author needing to solve a cubic equation in order to effect an integration and thence determine 
the peripheral acceleration of the whee l - - ' I t  will therefore be proper to integrate the fluxion upon 
the supposition that the cubic equation involves imaginary roots" (p. 97). 

A numerical illustration, p. 101, completes this Article; it is for a wheel "of sound, dry oak of thickness 6 in, of 
radius 2½ It". The weight of the composition is 160 oz, and its time of burning 4 s; the base diameter of the cylinder 
is 6 in, and [G, the centre of gyration of the wheel from its centre of gravity. It is found that the circumferential 
speed is 3237 ft/s and the angular wheel speed 1295 rad/s or 206 r.p.s. 

Article 52, p, 102, Prop. 15~ here aims "to find the number of revolutions the wheel makes during the time of 
the rocket's combustion". Moore commences by writing that he will "confine (him)self to the most difficult and 
laborious case ..., . . .  of the preceding proposition . . . .  " obtained on the supposition that the denominator (a 
cubic equation) of its fluxion (sic) contains two impossible and one real, root. His analysis is in "solid" algebra 
and calculus, and proceeds for more than six pages. However, lack of space, time and general interest preclude 
reviewing it here in any detail. It almost suffices to note only Moore's ready and efficient approach in handling 
the fluxional or non-Leibnizian calculus; the date is 1813, only about five years before the vocal clamours of 
Babbage and colleagues for European d'ism. 

Friction between the wheel and axis, and the wheel and air, were neglected in the above analysis; but Moore 
indicates how calculations incorporating them can proceed, and also of rocket wind resistance, R(v 2) if so desired. 

SECTION V: OF  THE APPLICATION OF THE FORCE OF ROCKETS TO THE MOTION OF OF 
P E N D U L U M S  

Article 53, p. 110, refers to the acquaintanceship with ballistic pendulums, see Fig. 9, "as invented by our late 
ingenious countryman, Mr Benjamin Robins", being presumed, Moore describes simple methods for finding 
experimentally its centre of gravity and of oscillation, the former by vibrating the pendulum and the latter by 
suspending and raising it to a horizontal position and balancing it with a suspended vertical weight, see Fig. 10. 

t An argument or subject prefixed as a heading or title. (Shorter O.E.D.) 
:~ Why this should be Prop. 15 (Arabic) (Art. 52) after writing Prop. XV (Roman) (Art. 51), is not clear. 
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Article 54, p. 116, Prop. 16, treats of the measurement of the deflection of a pendulum from the vertical, when 
a rocket is attached to a pendulum face. This--" the  greatest ascent"--occurs at the moment there is complete 
exhaustion of the rocket composition: the pendulum continues to ascend until the end of firing because there is 
continuing rocket fuel diminution'['. It is argued by Moore that 

x, the sine of the angle made by the pendulum 
axis with the vertical at its greatest altitude, is 

w: wt. of pendulum (wt. of 
rocket case neglected) 

y: distance of centre of gravity 
from axis of suspension 

o: distance of centre of oscillation 

(go)~: distance of centre of gyration 

Typical values for exemplification are, 

w: 570 lb or 9120 oz i: 60 in 

g: 7.8½ in r: 1 in 

which yield, x =0.7143 or an angle of 45°35 '. 
If x is given, then s=gowx/npr2i. 

snpr2 i 

gow 

i: distance of rocket axis 

r: radius of rocket 

n: atmospheric pressure, 230 oz 

s: 1000 

p: re. 

o: 847 in 

Simple experiments to determine the precise height of a pendulum at the instant of the completion 
of burning of the rocket composition (or the sine of its angle with the vertical) is all that is needed 
to satisfactorily complete any investigation. 

On p. 115, Moore discusses errors which can be considered possible using the pendulum arrangement 
described, i.e. axis friction and air resistance behind the pendulum block, but as the effect of these is 
self-cancelling, they are neglected. 

That the fixing of a rocket with axis perpendicular to the line of suspension or rotation of the pendulum 
always involves some degree of error is not noted. 

Adjustments to his analysis are considered by Moore, to take into account the weight of a rocket casing 
attached to a pendulum face. By measuring sine x, values for p the rocket burning pressure can be calculated, 
at something of the order of 1000 atm. 

Moore does not, incidentally, report himself as having carried out any experiments to test his analyses, which 
is perhaps both surprising and disappointing, since Charles Hutton was then an older colleague in a centre 
where experimentation surely was possible. 

ON NAVAL GUNNERY 

(i) ... advance towards perfection.. ,  of warfare for the uses of the navy or army (is) entitled to every at tent ion. . .  
(ii) ...  charges made use of are not always the most eligible for producing the greatest destruction ... owing to their 

being too great (in) practice, as well military as naval 

Article 55, p. l17 begins with the above extracts. This topic is covered in a short 23-page "treatise" 
on the penetration of wood by cannon balls, one very different from that on rockets in the first 
116 pages. It would seem that Moore had completed this article and placed it in this basically 
rocket treatise--for ease of final dissemination. 

The essential aims and emphases are to calculate the charges for use in actions at sea and they 
are set to rest upon experiments. It is however disappointing to find that there is virtually no 
explicit mention of experimental results. Not merely are such results not recorded (the limits of 
calculation would then be apparent, to name only one advantage) but neither are there any sketches 
of damage inflicted (on wooden walls, masonry walls and the like. We also have in mind the processes of partial 
penetration or reflection of shot and the means of damage limitation). A further notable deficiency, though one 
common in those days, is the lack of systematic reference to the work of earlier authors. 

It should be remembered specifically that Moore is dealing with pre-1859 naval gunnery--i t  is 
still the age of wood, not iron or steel, of cannon ball, not ogival projectiles from rifled guns, of 
wind sailing ships and not steam power. 

Articles 56 and 57, pp. l18/9 and LemmaI  pertain to simple statements about the penetration 
of uniform materials, see below. 

Article 57, p. 120, Prop. I, discusses the destruction of an enemy fleet at sea by artillery. Of course 
the discussion of the subject is nowise as "wide" as that adopted by Douglas a generation later in 

t Since the mass attaching to the pendulum is reducing over a period (typically) or 3 s of firing, that we are 
examining an impact process rather than a quasi-static one would seem to be moot. 
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his Naval Gunnery I-7]. It is here supposed only a matter of the calculation of numerical quanti t ies--and there 
is nothing about naval tactics and seamanship. 

Reverting to Art. 56, p. l18, Lemmal ,  it is maintained by elementary argument p. 119, that the 
"forces retarding (two) spheres (this notion is common in Moore's technical arguments) penetrating 
(perpendicularly) uniformly resisting substances, (F & J), are as the absolute strength of the fibres of the two 
substances directly, (R & r), the diameters (D & d) and the specific gravity of the spheres (N & n) inversely"; i.e. 

F R d n  

It is held that though the forces are not constant, until after the spheres 
,depth of their radii, it is alleged that it does not materially affect conclusions. 

In Lemma 2, p. 120, it is proven that, 

have penetrated to the 

S V2 D N r 

s v2 d n R" 

S & s refer to the depth of penetration of spheres and V & v their velocities. 
Article 57, Prop. I, p. 120 aims to find a general formula for the charge of gunpowder for a given 

gun, to deliver the greatest degree of destruction in oak of given thickness; it is considered that 
shot velocity in close encounters is the same at the moment of projection and impact against the enemy. 

From the last two lemmata above it is deduced that, 

V2=( S'd 'n 'R~v2 
\ s . D . N . r /  

It is stated that the charges of powder vary as the squares of velocity and weight of the ball. 
Moore makes use of an experimental result in which ½1b of powder could generate in a shot of weight 1 lb, a 

speed of 1600 ft/s, so that for any vessel the required charge to penetrate a given thickness of wooden side S is, 

S.R.d.n.v2.w 

2D.N.r . sx  1600 2. 

To introduce more experimental data, Moore turns to p. 273 of Robins' Mathematical Tracts, Vol. 1, as edited 
by J. Wilson (p. 761)t. An 18 lb cast iron ball (0.42 ft dia.) penetrated a block of "well seasoned" oak to a depth 
of 3½in, (measured to the top, the bottom or where of the cannon ball?) when fired at 400 ft/s. The charge, 
generally, is said to be, 

400 2 x 0.42 w .S .R ,  n 
x - - ;  

2 x 16002 x 7/24 D.N.r  

and since R = r and N = n for the two cases considered, the expression for the charge is, 

0 .045xS.w 
-; (A) 

D 

S is the thickness of the side of the ship and w the weight of the impinging ball. 
No allowance is made for the splitting of timber when a ball has reached its far side. Air resistance is noted 

as reducing ball speed in passing from ship to ship and no note is taken of any non-normality when firing. These 
latter three considerations are held to counteract one another. 

On p. 124, two examples are provided. In the first, a "74" vessel, 1¼ft thick, is to be attacked with a 42 lb cast 
iron shot of diameter 0.557 ft. Then the charge required using (A), is 0.045 x 7/4 x 42/0.557 or 5.93 lb. Secondly, a 
24-pounder fired at 1300 ft/s, penetrates a bank of soil to 15 ft. The shot is to destroy a fortification of dry earth 
2 yards thick, bound on both sides by oak planks ~ ft thick, using a 44 pounder. For the bank, the charge to 
penetrate is, 

(see Art. 55), s.d.v2w/2(S.D x 16002) 
6×0.46×13002×42 

=4.581b. 
2×0 .15×557×1600 2 

To penetrate the two planks 2 ~ ft thick, requires 5.08 lb, so that the total charge is 4.58 + 5.08 = 9.66 lb. 
Two pages of Tables are included (pp. 125-127) giving the charge, in pounds, required to penetrate oak of 

specific thickness for ordnance firing balls of different weight/poundage; Fig. 11 is an extract. The author writes 

t Moore's cited reference here, p. 121 [5], is incorrect. 
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that his results are also useful for the navy and artillerists ashore, to break open the gates of 
besieged towns or to destroy wooden fortificiations. Moore underlines the fact that a ball which just penetrates 
a plank does more damage than does one which quits it with speed. In the latter case, the hole made in the wood may 
almost totally close up due to the "springiness" of the wood, whilst a shot almost totally exhausted, will cause 
splintering and carry away large pieces. (See Fig. 13.) Advantage from firing with smaller charges is beneficial in that 
the gun does not heat up so quickly and to an extreme degree, and therefore does not need to be out of service 
whilst it cools down. 

Interestingly, the penetration or forcing of gates by using the recoil of a relatively massive gun placed adjacent 
to them and then firing with the muzzle pointed away from the gate is recommended. (How an enemy would 
allow this situation to arise, is not addressed!) 

Article 61, p. 131 chooses elm as the material to be attacked and Moore deduces, instead of(A) above, the formula, 

0.0676 x sw/D; (B) 

this is derived by using data from the experimental work of Hutton, [9], of 1783/5. In the Lemma on p. 133, 
Moore proposes to find the speed of a cannon ball after passing through air and experiencing resistance 
proportional to the square of its speed. (Researchers from Robins onwards were aware that this 
one law was not obeyed at all velocities.) The force retarding a ball of speed v at time t, after firing, he writes 
as, 3nv2/16gNd. By using the fluxional calculus Moore easily finds, v=a exp (-bs), where a is the initial speed 
of projection and b = 3n/8Nd. Our author also finds the time of flight of the ball. 

In the earlier Problem it was supposed that the ships are close when shots are exchanged but in Problem 2, 
p. 136, he considers the situation to be one where they are at "any considerable distance": the author concludes 
it with, "there is an impossibility of solving the problem rightly", because the circumstances of encounter at wide 
distances apart cannot be accurately specified, e.g. the amount of rolling of the ships and the degree of obliquity 
at impact. 

Problem 4, p. 138, is devoted to the penetration of oak, "to any given depth not exceeding its radius". This 
however seems to be examined in a quite unsatisfactory manner by not attending properly to the shallow depth 
proposed. 

The book concludes with eight practical examples though without solutions. 

M O O R E ' S  O R I G I N A L  P A P E R S  [4]  A N D  T H E  C O N T E N T S  O F  H I S  B O O K  [5] 

T h e  t w o  p u r p o s e s  o f  this  sec t ion  are  first, to he lp  the  r e a d e r  ga in  an  i m p r e s s i o n  of  the  

degree  to wh ich  M o o r e ' s  p a p e r s  b e c a m e  his b o o k  and  second,  to seek ou t  f r o m  t h e m  o t h e r  

m a t e r i a l  r e l evan t  to  u n d e r s t a n d i n g  the  subjec t  d e v e l o p m e n t .  

T h e r e  are  fou r  p a p e r s  by  M o o r e  in Nicholson's  j o u r n a l  bu t  the fou r th  and  last  p a p e r  is 

on ly  two  pages  in l eng th  a n d  car r ies  n o t h i n g  of  r e p o r t a b l e  s ignif icance.  T h e  first th ree  

p a p e r s  ( the i n t r o d u c t o r y  m a t e r i a l  of  the  first excep ted)  a re  effect ively c o n t i n u o u s ,  P a p e r s  

1 a n d  2 be ing  a b s o r b e d  in to  Sec t ion  I. Sec t ion  I I  o f  the  b o o k  consis ts  of  two  l e m m a e  f r o m  

P a p e r  3 p r e c e d e d  by new P r o p s  VI  and  VII.  Sec t ion  I I I  inc ludes  two  P r o p o s i t i o n s  f r o m  

P a p e r  3, p r e c e d e d  by  t w o  n e w  Props ,  IX a n d  X and  succeeded  by a P r o p .  XI I I .  T h e r e  is 

no  a c c o u n t  of, o r  re fe rence  in the  pape r s  to  m a t e r i a l  wh ich  cons t i tu t e s  Sec t ions  IV and  V 

of  the  book .  

W o r t h y  of  r e p r o d u c t i o n  here  a re  ex t rac t s  f rom the first paper ,  (pp. 276/8) as Fig.  12; this 

i n t r o d u c t o r y  m a t e r i a l  is n o t  i n c l u d e d  in the  book .  F i g u r e  12 a lso  shows  M o o r e ' s  le t te r  
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introducing himself to the journal editor and generally remarking on what was then being 
discussed on rocketry. 

Paper 1 is identical with what appears in Section I of the book being a word-for-word 
adoption of Prop. I of that paper, apart from some arithmetical confusion and error (p. 280, 
[4(i)] and p. 31, [5]), and with two other small changes. 

Paper 2 is also substantially absorbed into Section I except that there is a new Prop. 2. 
The Prop. 2 of the paper has become Prop. 3 in the book but with some alteration made 
in the second paragraph of the former. 

(We have to insert that it is confusing throughout these works to find that Moore seems 
to use Arabic and Roman numerals inconsistently.) 

Prop. III becomes Prop. IV in the book and also squeezes in minor results for launch 
elevations of 30 ° and 60 ° . 

Prop. IV becomes book Prop. V but there is nothing to correspond to paper 
Prop. V. This paper ends with a Scholium and the book with nine examples but no solutions. 

Paper 3 contains Props 6 (p. 242) and 7 (p. 243/8) which become Props XI (p. 65/6) and 
XII (p. 66/7) in the book except for p. 242 where there is arithmetical error; a rocket range 
by "the end of burning", (p. 241), is given as 53 miles (!) but corrected to 4 miles in the 
book, (p. 70). Book Section 2 includes Props VI and VII whilst Props VIII and IX are 
Lemmas 1 and 2, (pp. 248/50 and pp. 251/4) of Paper 3. There are many discrepancies/ 
changes between book and paper regarding Prop. IX. 

Props XIII and XIV occur in Section III followed by a Scholium and eight examples. 
Moore's covering letters offering his papers to Mr Nicholson for his journal 

are dated respectively, for Paper I, Nov. 1810, for Paper 2, Jan. 1811 and Paper 3, June 
1811; these were all sent in during the short period of eight monthst. Moore's appointment 
to the Military Academy, Woolwich began in 1806 and was maintained during the period 
of the major rocket actions at Boulogne in October, 1807, Copenhagen, Sept. 1807, Flushing, 
Belgium, Aug. 1809 and Santanem, Spain, Nov. 1810. 

The London newspapers and magazines must have reported these actions at length and 
on the effects of the employment of these weapons. Together within the confines of Woolwich 
there must have been much stimulation for a young man such as Moore to investigate 
these new "engines". We recall that Charles Hutton was on hand in these years, as was 
William Congreve. 

The first two letters and the beginning of the third are on much the same topics but of 
Paper 3 Moore explained that it contained two Propositions preparatory to his next enquiry, 
namely into the effects of wind on rocket flight; he comments that he believes that this 
material is new and original. He writes too that he will send Mr Nicholson his findings 
on this topic in due course, but he does not do so and instead leaves it eventually to appear 
in Section iii  of his book. Clearly, Sections IV and V on Wheels and Pendulums respectively 
had not been envisaged at this time. 

One understands Moore's endeavour to calculate wind effects and the results concerning 
pendulums (Section V), but not that on rotational problems (Catherine wheel-like "engines") 
in Section IV, for there appeared to be no likely use of them. But see Note 4 on The Great 
Panjandrum. 

DAMAGE TO "WOODEN SIDES" 

Much attention is directed by Moore to the cannon ball damage inflicted on wooden-sided 
vessels being greatest when the speed of a ball is just sufficient to penetrate, i.e. the speed 
on emerging is virtually zero; the hole created is then one which is highly splintered, splitting 
of the wood taking place mostly parallel to the grain. It was well known in those times 
that the fast-moving splinters which were created were particularly responsible for inflicting 
injury on crew members; loss of limbs was a very common consequence of wood 
fragmentation. At high speeds, holes are "cleaner"--"blanked out"--clearly a matter wholly 
of high speed shearing; a low speed of exit is associated with a "mixture" of first shearing 

~ See Note 5 at the end of paper. 
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169. The effect produced by shot when fired agab~st 
iron steamers was remarkably .exemplified on the 
" Lizard" during tile operations which took place in the 
Paran~ in 184t~, when it was found that, on being 
struck, the plates of the ship bulg'ed, and the perfora- 
tions were so irregular and jagged that, for the purpose 
of stopping them, the common plugs were quite useless. 
This circumstance suggestect the expedient of employing 

PAa~ II. THEORY AND PRACTICE OF GUNNERY. 135 

what has been called a naraso.l ~l~, which consists of 
an iron bolt furnished with arms ot me same metal and 
covered with thick canvass well tarred. On being 
thrust through the shot-hole, and then forcibly drawn 
back, the head expanded, and thus, the aperture being 
covered, the leak was closed. In consequence also of 
the ship being struck, the splinters and rivets detached 
by the shot flew about like grape, and nearly all tile 
~en killed and wounded suffered frora tl{is cause. 
Grape-shot fired at a distance of 206 y a - - ~ - s s ~  ~-e 
side ; and persons present, who were highly capable of 
judging, concurred in opinion that a 32-pounder shot 
would have gone through the sides of three or four iron 
steamers, doing damage which would be successively 
Greater in those more remote from the ship first struck, 
hll the force were spent. A remarkable circumstance 
is said to have happened to the "Alecto" at the same 
time. An infantry soldier fired his ramrod at her, 
when, like a dart, it went point foremost quite through 
the nearest side of the funnel, but being prevented by 
the button from passing through the other side, it fell 
down in the interior. 

+ F r o m  H. Douglas, Ref. [73, 1855 ".. (or closing up)". 

Fig. 13 

followed by fracture due to bending in tension. Fast-formed holes with a tendency to the 
ejection of wooden frusta, have a tendency for the material to recover leaving a perforation 
which is smaller than that of a piercing ball; there is considerable stretching which results 
in thinning and recovery due to "springiness" of the material, (to use Moore's term). The 
same phenomenology with regard to the perforation of iron-plated steamers is described 
by Douglas in his book [7], see the interesting extract about amount of damage and speed 
in Fig. 13. (Of course, the possibility of the "popping olT' of rivet heads as spalls is relatively 
well known.) Also well known today is the particular kind of injury suffered by limbs 
penetrated by present-day high-speed small calibre projectiles; entry can result in a relatively 
small hole but the exit wound is very extensive. 
It is evident that the speed for maximum damage as recommended by Moore was not 
one of greatest speed and the use of the largest charges to rapidly propel a ball. (Aside 
from damage considerations, there are the advantages of conserving gunpowder and aiming 
to keep down the temperature of guns.) It was therefore of great value to make known 
the characteristics we describe, particularly to gunnery officers. 

These phenomena seem hardly known to modern literature but are, surely, of great 
importance. With wood, in the circumstances we describe, are the associated factors, not 
well researched and understood, such as the role of moisture which changes both the 
material properties of the wood and its density. 

}1 propos of Moore's remarks about the kind of damage suffered by the Santissima 
Trinidada, (Preface, p. viii, [5]), they must have been the result of eye witness accounts, 
though it is well documented that the Trafalgar engagement was fought at very close 
quarters--"pistol-shot distance". My enquiry to ascertain more detail of the damage she 
suffered, addressed to the Maritime Information Centre, London (20, July 1994), brought 
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a reply to the effect that the ship "was scuttled and that we do not think there would have 
been time to assess the damage by cannon balls". 

Defects in Hutton's article on rockets? 

Hutton's article Rockets on p. 337 in Vol. II of his Philosophical and Mathematical 
Dictionary published in 1815 is disappointing. He commences it by stating some details 
about the different compositions for rockets of various sizes. Towards explaining the theory 
of the rocket he first refers to the work of Mariotte about the "resistance of the air against 
flame" and secondly, he describes Desaguiliers' quasi-static theory for propulsion and the 
function of the choke. Thirdly, the function of the stick draws some attention from Hutton 
by referring to the effect of the air "friction" on it and to the continuous change in the 
centre of gravity in the "engine" due to burning of the composition. Both these latter 
matters receive some attention in Moore's book. Finally, Hutton mentions the experiments 
of Robins (and his co-workers), referring to the latter's Tracts from the Proceedings of the 
Royal Society for 1749 and 1750, [11]. At this point he ends his article. It is very surprising 
to find no mention of Moore, his papers or his book, because his volume appeared two 
years before Hutton's Dictionary. Hutton was on the committee which appointed Moore 
in 1806 and there is evidence that they knew one another and William Congreve as well; 
it surely cannot have been otherwise, seeing that they all worked on the same site? 

It is curious too that Moore nowhere acknowledged help and encouragement from 
Hutton and apparently was not stimulated officially from within the R.M.A. (though we 
note that his address for correspondence with Nicholson was the Woolwich Academy). 
One can only judge that Moore's initiative on this topic was entirely due to himself and 
the scientific interest he derived perhaps having been started by the advertised competition 
from Denmark [11]. 

One would have supposed that Hutton, as a minimum, could have simply referenced 
Moore's papers and book and mentioned Congreve's experiments. Of course Hutton was 
already aged 76 when Moore's book appeared and his own two volumes must have been 
about to go to press. Perhaps this inadequate article may simply be explained as a decline 
due to old age and fatigue. 

CONCLUDING REMARKS 

Nothing has anywhere been said about Hale's rockets in this paper. However the author 
points to an article in press which makes a valuable contribution to this topic, see 1-19]. 

In the Sources of  Invention, [12], a short case history of the development of rockets from 
about 1900 up to the late 1950s is given and summarizes how, over a period of 25 years, 
"the high altitude rocket became a weapon of war and a useful instrument for the study 
of conditions of the upper air", (p. 355). Some detailed remarks are made and references 
given about a weapon development as stated earlier but a full treatment of the subject lies 
outside our orbit of interest. 

It will perhaps suffice here to reflect the two sides of rocketry by referring to the work 
of two men who have had close involvement with it, R. V. Jones and D. G. King-Hele 
over a period of nearly half a century. 

King-Hele worked at R.A.E., Farnborough designing a cheap rocket (indeed he records 
17 attempts) in order to study upper atmosphere physics, (in the region of 100-200km 
depth), to produce masses of basic data at "modest cost" and giving "great value for 
money". The latter story is entertainingly but accurately recorded in his book, A Tapestry 
of Orbits, published only in 1992 [13]. 

R. V. Jones commented especially on (German) rocket development for military purposes 
in his Most Secret War, 1978, [14] and recently in his Reflections on Intelligence, 1989 
[15]. He has made his comments as a physicist and by speaking from experience in his 
sometime government post of Director of Scientific Intelligence in the U.K. Ministry of 
Defence, 1952-53. Postam's official volume adds detail to these latter works [16]. Interest 
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also attaches to Jones' short paper on Genius in Enoineerin9, [17], which is, in part, in the 
same vein as [ 12]. Interesting remarks on our topic will also be found in Hartcup's book [ 18]. 

Modern works about rocket evolution mostly commence after about 1880 and 
mention sometimes Congreve's contributions, but never, I believe, will readers encounter 
the name of Moore. It is therefore hoped that this essay will well demonstrate his wide 
theoretical contribution and thus lead to a better overall appreciation of the total history 
of rocketry and of one who has made a significant input to it. 

NOTE 1 

An initial reason for trying to PrOduce a useful review of the contents of this book of 
Moore's in detail, stemmed from the information that it was rare. Opinion was that copies 
of it were only to be found in the British Museum Library, London, the Bodleian Library, 
Oxford and the Royal Military Academy, Woolwich. However, recently I found that the 
British Museum Library was able to produce a film copy of this small volume and this is 
what I have used in writing this paper. 

N O T E  2 

The Catherine wheel has mythical origins but none-the-less some interesting meanings 
for engineers. Catherine is the name of several saints in the early Christian church but the 
Catherine of the Catherine wheel has many stories related about her, all ultimately 
apocryphal. Despite this the myth associating her with Alexandria has remained. Perhaps 
the most favoured story is that in which, at a sacrificial feast, a certain young woman 
named Catherine, publicly confessed to having accepted the Christian gospel and advocated 
it in front of the Emperor Maximinus (or Maxentius). The era was Hellenistic when Christian 
theology was spreading and supplanting the gods of the failing Western Roman Empire. 
She was imprisoned, then bound on a spiked wheel which inexplicably fractured and she 
was unharmed, but later beheaded. Philosophers sent to re-convert her had themselves 
been converted to Christianity. With divine intervention her head was later conveyed to 
Mt. Sinai and the well known monastery founded there by Emperor Justinian became 
named after her. 

There is a likelihood that aspects of this story were added to from that of Hypatia 
(370-415A.D.), who was a female mathematician-philosopher of distinction, but was 
actually a neo-Platonist rather than a Christian. In the 18th century it was proven that 
the legends of Catherine of Alexandria were mythical and therafter her name declined and 
proceeded to disappear from the Christian hagiography. 

It was in the mediaeval period that Catherine was the patron saint of Paris; she was 
sometimes regarded as the especial saint of learned men but also in these early days images 
were made of the wheel as an amulet in the cure of diseases. Particularly too, she has been 
the patron saint of wheelwrights and mechanics working with wheels, e.g. spinners and 
potters. Pythagoras'  name has also been associated with her through the wheel--"Life is 
no more than a circle of good and evil"; the wheel is also a well known emblem of fortune. 

In Siemienowicz's The Great Art of  Artillery, five sorts of fire wheel, all recreational, are 
recognized and described in Book V, Part  I, Ch. VI, p. 319. 

Pin wheels or Catherine wheels are long paper-cases filled with composition and packing 
wire, wound round a wooden disc which can be set to rotate on a vertical or horizontal 
axis. The primed end when lighted and burning, causes the disc to spin in the opposite 
direction following certain simple recoil principles. Pastiles have the paper case wound 
spirally on the disc but the fire wheel has straight cases at the end of wheel spokes, all 
arranged at the same angle to them and connected by leaders, so that as each one burns 
out, the next one is fired. This situation is addressed in Section IV, Ch. 5 [5]. Powder 
can be chosen to give different colours and such wheels can indeed be combined and made 
to revolve in different planes and directions. There are bisectin9 wheels, plural wheels, 
caprice wheel and spiral wheels: models of the solar system are possible; (powders of various 
elemental materials and filings provide "the stars"). 
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N O T E  3 

I made some enquiries of national naval museums and libraries seeking references to 
papers, books and artefacts for details and sketches of the use of plugs and fitting equipment, 
and of the "parasol plug", but without any success. See Fig. 13, for a description of the latter. 

N O T E  4 

After completing the writing of this paper  I recalled reading an account of a device which 
underwent some development during World War  II  by the British "Wheelers and Dodgers" 
group and was called The Great Panjandrum, see [10]. This "machine" consisted of two 
steel wheels of 10 ft dia., with a tread of 1 ft; see Fig. 14, and seen here at the end of a trial. 
They were connected with a drum-like axle which it was intended should carry 1 ton of 
high explosive. A large number  of slow-burning cordite rockets, at one time as many as 
70, were fitted around the circumference of the wheels; all were to be started to fire at once. 
Carried on a tank-landing craft, this device was to be released on reaching shore where it 
was intended to run up a sandy beach at about  60 m.p.h, to crash into a concrete barrier 
(erected as a first line protection by German forces) preparatory to the Allied invasion of 
Europe in 1944. After impinging on the barrier, the expectation was that the deposited 
and then detonated explosive would "blow" a hole in the "wall". After several trials the 
device was abandoned, accurate control of the weapon in the circumsances of its intended 
operation being found to be unattainable. 

The relationship of this 2-wheel rotating rocket-driven system to Ch. IV is obvious. We 
observe that on the one hand, the innovators knew nothing of Moore 's  available theoretical 
speculation and on the other that Moore  can properly claim to have made yet another 
potentially useful first theoretical investigation. 

The word Panjandrum--a  pompous  high-ranking person- -was  coined in 1755 by 18th c. 
English comic actor-writer  Samuel Foote (1720-77), "to test the memory"  of a fellow actor. 
It occurs in a ten-line farrago of nonsense, but none-the-less is well fitting for the occas ion--"  
... And there were present the Picninnies, Jobillies, the Garyulies and the Grand  Panjandrum 
himself ... all fell to playing the game of catch-as-catch-can till the gunpowder ran out o f  

the heels o f  their boots." 

N O T E  5 

A letter, signed ZENO,  p. 384, 1811 (in Nicholson's journal) pointed out that Moore in 
his journal  treatment of "the resistance opposed to the cylinder moving in a fluid" 
had overlooked the fact that three particular angles in his original figures were, in fact, in 
different planes and not co-planar as he had supposed. Moore  published a correction in 
the journal  for 1812, on pp. 93-94. These corrected formulae do appear  in his book however. 
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