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ABSTRACT

A recently developed mixing length model of the turbulent shearing stress in wall bounded flows has been used to formulate a universal
velocity profile (UVP) that provides an effective replacement for the widely used Coles wall-wake formulation. Comparisons with both direct
numerical simulation and experimental data demonstrate the ability of the profile to approximate a wide variety of wall-bounded flows. The
UVP is uniformly valid from the wall to the boundary layer edge and for all Reynolds numbers from zero to infinity. There is no presump-
tion of logarithmic dependence of the velocity profile outside the viscous wall layer so the profile can accurately approximate low Reynolds
number turbulent boundary layers. The effect of a pressure gradient is included in the UVP through the introduction of a modified Clauser
parameter that correlates well with the parameters that determine the wake portion of the velocity profile. The inherent dependence of the
UVP on Reynolds number, extended to include the effect of pressure gradient, enables it to be used as the basis of a new method for integrat-
ing the von K�arm�an boundary layer integral equation for a wide variety of attached wall bounded flows. To illustrate its application, the UVP
is used to determine the zero-lift drag coefficient of the Joukowsky 0012 and NACA (National Advisory Committee for Aeronautics) 0012
airfoils over a wide range of chord Reynolds numbers.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0100367

I. INTRODUCTION

In volume III of the Durand series on Aerodynamic Theory,
Prandtl1 points out that the boundary layer approximation derived on
a flat wall can be extended to a curved surface. He writes: “In this case,
a coordinate system can be chosen in which the arc length along the
fixed surface can be introduced as the x-coordinate, and the perpen-
dicular distance from the surface as the y-coordinate.” The idea is illus-
trated in Fig. 1.

Using this construct, a number of simplified approaches were
developed to produce approximate solutions suitable for estimating
the drag of planar aerodynamic shapes. For laminar boundary layers,
the most well-known integral methods are due to Thwaites2 and
Pohlhausen.3 The latter was extended recently by Majdalani and
Xuan.4 There are also a limited number of methods that integrate the
K�arm�an equation for turbulent boundary layers. One of the most
widely used is the method due to Head.5 He assumes the existence of
two universal functions, F and G, for the turbulent boundary layer.
The first function relates a modified boundary layer shape factor to the
conventional shape factor, and the second relates the conventional

shape factor to the entrainment velocity at the outer edge of the
boundary layer. When these functions are combined with the friction
law of Ludwieg and Tillman,6 all of the basic characteristics of the
boundary layer can be determined. The main weakness is that the
functions F and G are determined from experimental correlations that
exhibit very limited universality and the Ludwieg–Tillman friction law
is valid only over a narrow range of Reynolds numbers.

Low Mach number turbulent flow over a flat plate at high
Reynolds number is described by the incompressible boundary layer
approximation (1)

@

@x
ðuuÞ þ @

@y
ðuvÞ þ @

@y
ðu0v0 Þ � ue xð Þ due

dx
� � @

2u
@y2
¼ 0;

@u
@x
þ @v
@y
¼ 0;

(1)

subject to the no-slip and free stream conditions

u 0ð Þ ¼ v 0ð Þ ¼ 0; u dhð Þ ¼ ue; (2)

where u, ue, and v are mean velocities.
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In the region near the stagnation point, the boundary layer
approximation breaks down (Fig. 2). Outside of this region, if the sur-
face radius of curvature is large compared to the boundary layer thick-
ness, no significant pressure variation will occur in the wall-normal
direction and wall curvature plays no role in the boundary layer
approximation.7 Theoretical underpinning of Prandtl’s idea can be
found in the invariance of the boundary layer approximation, (1),
under the Lie translation group with an arbitrary function of x added
to the y coordinate (Cantwell,8 Sec. 10.5, p. 301).

The free stream velocity ueðxÞ is determined by solving Laplace’s
equation for the potential flow about the body with the Kutta condi-
tion applied at the trailing edge. With ueðxÞ known, along with a suit-
able model of the turbulent shear stress u0v0 , the calculation of
boundary layer characteristics can proceed.

Boundary layer integral methods all use the von K�arm�an9 equa-
tion (3) derived by integrating the boundary layer equations (1) over
the height of the boundary layer

dd2
dx
þ ð2d2 þ d1Þ

1
ue

due
dx
� us

ue

� �2

¼ 0: (3)

The friction velocity is defined as

us xð Þ � sw
q

� �1=2

: (4)

The displacement thickness is defined as

d1 xð Þ ¼
ðdh

0
1� u

ue

� �
dy: (5)

and the momentum thickness is

d2 xð Þ ¼
ðdh

0

u
ue

1� u
ue

� �
dy; (6)

where dh indicated in Fig. 1 is a boundary layer thickness defined in
Cantwell10 as the equivalent channel half height thickness. The thick-
ness, dh, will be discussed further in Sec. II B.

Wing drag is calculated using the construction in Fig. 3. The differ-
ential force acting in the ~x direction on, say, the wing upper surface is

dF~x ¼ sw ~xð Þdx cos hð Þ ¼ sw ~xð Þd~x: (7)

The viscous drag coefficient based on the chord of a symmetric
wing of the type shown in Fig. 1 is

Cdv ¼
Dv

1
2
qu1

2c
¼ 2

ð1
0

ue
u1

� �2

Cf d
~x
c

� �
; (8)

where the local (based on ue) friction coefficient is

Cf ¼
sw

1
2
que

2
¼ 2

us

ue

� �2

: (9)

II. THE UNIVERSAL VELOCITY PROFILE (UVP)

The universal velocity profile comes from the solution of the fully
developed channel (or pipe) flow equation

@

@y
u0v0 þ 1

q
dpe xð Þ
dx
� � @

2u
@y2
¼ 0; (10)

where the pressure gradient is a constant, Cantwell.11

Express Eq. (10) in wall normalized coordinates

FIG. 1. Curved surface boundary layer coordinate notation. The wing shown is a
Joukowsky 0012.

FIG. 2. Coordinate notation near the wing leading edge. FIG. 3. Drag force on a differential section of the wing surface.
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yþ ¼ yus

�
; uþ ¼ u

us
; sþ ¼ � u0v0

us
2
: (11)

Integrating (10) with respect to yþ from the lower wall of the channel,
the result is the stress balance

sþ þ duþ

dyþ
� 1� yþ

Rs

� �
¼ 0; (12)

where Rs is the friction Reynolds number

Rs ¼
usdh
�

: (13)

The turbulent shear stress is modeled using classical mixing length
theory (von K�arm�an;12 see also Prandtl13 and van Driest14). Let

sþ ¼ k yþ
� � duþ

dyþ

 !2

: (14)

When (14) is substituted into (12), the result is a quadratic equation
for duþ=dyþ. We use the positive root

duþ

dyþ
¼ � 1

2kðyþÞ2
þ 1

2kðyþÞ2
1þ 4kðyþÞ2 1� yþ

Rs

� �� �1=2

: (15)

The singularity at the wall where the mixing length, k, goes to zero can
be easily removed as follows.15,16 Multiply (15) by one,

duþ

dyþ
¼ � 1

2kðyþÞ2
þ 1

2kðyþÞ2
1þ 4kðyþÞ2 1� yþ

Rs

� �� �1=2
 !

�

1

kðyþÞ2
þ 1

kðyþÞ2
1þ 4kðyþÞ2 1� yþ

Rs

� �� �1=2

1

kðyþÞ2
þ 1

kðyþÞ2
1þ 4kðyþÞ2 1� yþ

Rs

� �� �1=2
: (16)

Carry out the multiplication in (16) and canceling terms, the result,
equivalent to (15), but with the singularity removed is

duþ

dyþ
¼

2 1� yþ

Rs

� �

1þ 1þ 4kðyþÞ2 1� yþ

Rs

� �� �1=2
; (17)

where duþ
dyþ ð0Þ ¼ 1 and duþ

dyþ ðRsÞ ¼ 0. The limiting velocity gradients at

the wall and centerline are

lim
yþ ! 0

k! 0

duþ

dyþ
¼ 1� yþ

Rs
;

lim
yþ!Rs

duþ

dyþ
¼ 1� yþ

Rs
;

(18)

independent of the choice of kðyþÞ.
Equation (17) is integrated from the wall to yþ to obtain the

velocity profile in the form of an integral dependent on the non-
dimensional mixing length function kðyþÞ at a given Rs

uþðyþÞ ¼
ðyþ
0

2 1� s
Rs

� �

1þ 1þ 4kðsÞ2 1� s
Rs

� �� �1=2
ds ; (19)

where uþð0Þ ¼ 0 and uþðRsÞ ¼ ue=us. At low Reynolds number,
k! 0 and Eq. (19) approaches the laminar pipe/channel flow
solution

lim
Rs!0

uþ ¼ yþ 1� yþ

2Rs

� �
; (20)

where, in the laminar limit, Rs ¼ ð2uedh=�Þ1=2.
The mixing length model introduced by Cantwell11 to approxi-

mate pipe data is

kðyþÞ ¼ kyþ 1� e�
yþ
a

� �m� �

1þ yþ

bRs

� �n
 !1=n

: (21)

The model (21) contains five free parameters. The constant k is closely
related to the K�arm�an constant. The parameter a constitutes a wall
damping length scale. The wall model is similar to the exponential
decay proposed by van Driest14 except for the exponent m that helps
to determine the shape and thickness of the near wall velocity profile.
Near the wall

lim
yþ!0

k ¼ kyþ 1� e�
yþ
a

� �m� �
: (22)

The outer flow term in the denominator of (21) includes a length scale
b proportional to the fraction of the boundary layer thickness where
wake-like behavior begins as well as an exponent n that helps shape
the outer part of the profile.

The reason for making a distinction between k and the K�arm�an
constant is that the UVP accurately approximates low Reynolds num-
ber turbulent velocity profiles that have no distinct logarithmic layer
and a fairly complicated dependence on k. Whereas at high Reynolds
number (Rs > 2000=k),11 k becomes simply a scale factor on uþ, yþ

and the damping length scale, a. In that regime, a distinct logarithmic
dependence in the velocity profile begins to emerge and k can be
viewed as equivalent to the usual definition of the K�arm�an constant, j.

The UVP provides an effective replacement for the classical wall-
wake formulation.17 The velocity profile (19) with the mixing length
model (21) is uniformly valid over 0 � y � dh and 0 � Rs <1.
Therefore, there is no need for a buffer layer function and there is no
discontinuity in the velocity derivative at the outer edge of the bound-
ary layer. At very low Reynolds number, the velocity profile reverts to
the laminar solution. The profile is directly connected to a model of
the turbulent shear stress that can be used in computations based
on the full Reynolds Averaged Navier–Stokes equations. Finally, the
UVP and the shear stress model can be used to study turbulence char-
acteristics such as turbulent kinetic energy (TKE) production.

A. The high Reynolds number explicit form of the UVP

The classical wall-wake formulation is silent as to the Reynolds
number at which the formulation actually applies. Whereas for
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Rs � 2000=k, the integral form of the UVP, Eq. (19) approaches the
explicit form10,11

u
us
¼ 1

k
lnðkyþÞ þ 1

k
/ ka;m; b; n;

y
dh

� �
: (23)

Importantly, the shape function, /, is independent of Rs. As long as
Rs is above about 2000=k, the explicit form of the UVP can be used to
replace the integral form (19) outside the viscous sublayer and buffer
layer, yþ > 132 (see Table II in Subrahmanyam et al.17).

The shape function for the zero pressure gradient (ZPG) bound-
ary layer using the parameter values in Table I is shown in Fig. 4. A
best fit eighth-order polynomial is overlaid on /. In Sec. IV, the shape
function will be extended to include pressure gradient effects and the
eighth-order fit will be extended to a bivariate polynomial. In practice,
the shape function is determined by simply evaluating the UVP at any
Rs � 2000=k, say Rs ¼ 105 or 106, to produce /. Any velocity profile
with Rs � 2000=k can then be generated by integrating Eq. (19) only
out to about yþ ¼ 132.17 The rest of the profile out to yþ ¼ Rs is gen-
erated using Eq. (23). Complete details are given in Cantwell10,11 and
Subrahmanyam et al.17

In this way, the UVP can be evaluated up to arbitrary large
Reynolds numbers enabling the structure of wall bounded flows to be
explored in the limit of infinite Reynolds number.10,11,15,18

The high Reynolds number friction law is generated by evaluat-
ing (23) at the boundary layer edge

ue
us
¼ 1

k
lnðkRsÞ þ

1
k
/ ka;m; b; n; 1ð Þ; (24)

shown as the dashed line in Fig. 5. The blue curve in Fig. 5 is the exact
friction law: Eq. (19) evaluated at yþ ¼ Rs. Note that the two curves
merge around Rs ¼ 2000=k.

The integral method introduced here relies on the UVP to define
the velocity profile over the surface in question. In Subrahmanyam
et al.,17,19 the UVP is shown to provide an accurate approximation to
zero pressure gradient (ZPG) boundary layer computational data from
Simens et al.,20 Borrell et al.,21 Sillero et al.,22 and Eitel-Amor et al.23

The UVP accurately approximates the ZPG experimental data of
Klebanoff,24 DeGraaff and Eaton,25 and Baidya et al.26 as well as the
adverse pressure gradient data of Perry and Marusic.27 In the present
paper, the UVP will be shown to accurately approximate the favorable
pressure gradient (sink flow) experimental data of Jones.28

In fact, as noted earlier, the velocity profile that accurately
approximates all these flows is fundamentally the same channel flow
solution. One flow is distinguished from another only by the values of
the five empirical constants ðk; a;m; b; nÞ that characterize it. Since
@u=@y ¼ 0 at the edge of the boundary layer, the UVP defines an
unambiguous overall thickness for the boundary layer; the equivalent
channel half height, dh, referred to earlier. For a given flow geometry,
the Reynolds number dependence of the model parameters
ðk; a;m; b; nÞ tends to be quite weak and so average values of the
model parameters can provide a good approximation to the velocity
profile over a wide range of Reynolds numbers. In Cantwell,10 a
boundary layer integral method utilizing the universal velocity profile
was used to generate the integral properties of the zero pressure gradi-
ent boundary layer on a wall over the full Reynolds number range
0 � Rs <1. In the present paper, this method is generalized to

TABLE I. Average model parameters with standard deviation for basic wall flows. Ranges of Rs for each flow are as follows: Pipe (3327–530 023), Channel (550–8016), ZPG
boundary layer (1343–17 207).

Flow �k rk �a ra �m rm �b rb �n rn

Pipe (21 profiles) 0.4092 0.0057 20.0950 0.381 1.6210 0.0379 0.3195 0.0157 1.6190 0.1204
Channel (7 profiles) 0.4086 0.0179 22.8673 1.599 1.2569 0.0292 0.4649 0.0485 1.3972 0.1213
ZPG boundary layer (11 profiles) 0.4233 0.0068 24.9583 0.663 1.1473 0.0373 0.1752 0.0060 2.1707 0.2238

FIG. 4. The universal velocity profile shape function using the parameter values in
Table I evaluated at Rs ¼ 106 overlaid by an eighth-order polynomial fit (dashed
line).

FIG. 5. The universal velocity profile friction law for a zero pressure gradient bound-
ary layer. The dashed line is the high Reynolds number limit generated by evaluat-
ing Eq. (23) at yþ ¼ Rs; y=dh ¼ 1.
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boundary layer flows with pressure gradients and the parameters of
the mixing length model used to approximate the wake portion of the
velocity profile in the UVP are allowed to vary depending on the pres-
sure gradient. Importantly, Subrahmanyam et al.17 showed that the
wall parameters (k, a, m) exhibit very little change in the presence of
an adverse pressure gradient.

To facilitate the later discussion, four functions will be defined
here; F0, F1, F2, and F3. As noted above, the boundary layer friction
law is generated by evaluating the UVP at yþ ¼ Rs

ue
us
¼ uþðRsÞ ¼

ðRs

0

2 1� yþ

Rs

� �

1þ 1þ 4kðyþÞ2 1� yþ

Rs

� �� �1=2
dyþ:� F0 Rsð Þ:

(25)

This is the blue curve in Fig. 5 just discussed. The local displacement
thickness Reynolds number expressed in wall units is

Rd1 ¼
ued1
�
¼ ue

us

ðRs

0
1� us

ue
uþ

� �
dyþ � F1 Rsð Þ; (26)

and the local momentum thickness Reynolds number is written as

Rd2 ¼
ued2
�
¼
ðRs

0
uþ 1� us

ue
uþ

� �
dyþ � F2 Rsð Þ: (27)

For the UVP integral method, we will also need the derivative of the
momentum thickness Reynolds number

dF2
dRs
� F3 Rsð Þ: (28)

B. Optimal parameters

The model parameters ðk; a;m; b; nÞ for the mixing length func-
tion (21) are selected by minimizing the sum of total squared error

between a given data profile and the universal velocity profile (19)
using the cost function

G ¼
XN
i¼1
ðuþðk; a;m; b; n;Rs; y

þ
i Þ � uþi ðyþi ÞÞ

2: (29)

Parameter values ð�k; �a; �m; �b; �nÞ averaged over a wide range of
Reynolds numbers for smooth wall channel, pipe and zero-pressure-gra-
dient boundary layer flow are shown in Table I along with the variances
of each parameter over the related dataset. The corresponding ranges of
Rs are given in the caption. Throughout the present paper, the ZPG
boundary layer model constants are assumed to be the boundary layer
average values shown in Table I, ð�k; �a; �m; �b; �nÞ ¼ ð0:4233;
24:9583; 1:1473; 0:1752; 2:1707Þ from Table I in Subrahmanyam
et al.17 Generally speaking the parameters ðk; a;m; b; nÞ depend, at
most weakly on the Reynolds number for a given flow geometry and at
high Reynolds number the dependence appears to be especially weak.
The evidence for this is the analysis of ðk; a;m; b; nÞ for the Princeton
Superpipe data11 that spans three orders of magnitude in the Reynolds
number.29 Table I includes the variance in the optimal parameters over
the set of profiles for each flow giving a sense of the variation over the
ranges of Rs for each flow geometry. For the zero pressure gradient
boundary layer, the variation in k, a, m, and b is less than 4% while the
variation of n is about 10%.

The statistical variation in parameter values indicated in Table II
implies a similar variation in the wall friction derived from the UVP.
Figures 6 and 7 provide a relatively simple measure of the extent of the
variation in friction associated with variations in the parameter values
by simply showing the friction law with parameter values increased by
one standard deviation and decreased by one standard deviation with
no attempt to account for any correlation that might exist between
parameters. The variation in friction coefficient shown in Fig. 7 trans-
lates directly to a comparable variation in calculated drag. For later ref-
erence, at Rs ¼ 5000, the friction coefficient based on the mean
parameters in Table I is Cf ¼ 0:002 378. With the mean parameters
all increased by one standard deviation Cf þ ¼ 0:002 463 and with the

TABLE II. Run data, Reynolds number, optimal model parameters, and RMS error for adverse pressure gradient boundary layer datasets from Perry and Marusic.27 Initial free
stream values are u1 ¼ 10 and u1 ¼ 30 m/s. Channel half height thickness for these data are at u ¼ 0:998ue; dh ¼ d0:998. Reprinted with permission from Subrahmanyam
et al., J. Fluid Mech. 933, A16 (2022). Copyright 2022 Author(s), licensed under a Creative Commons Attribution (CC BY) License.17

x (m) ue m
s

� �
Rd1 Rd2 b bc d998ðmÞ Rd998 Rs

ue
us

� �
k a m b n uþrms

1.20 10.361 3 165 2 282 0.0 0.0 0.031 79 21 439 912 23.51 0.4287 25.18 1.1528 0.212 2 2.111 0.120
1.80 9.976 5 226 3 734 0.65 1.115 0.050 19 32 606 1285 25.37 0.4239 24.59 1.1583 0.183 9 1.705 0.253
2.24 9.256 6 410 4 342 1.45 2.432 0.055 43 33 456 1195 28.00 0.4223 24.70 1.1460 0.123 7 2.461 0.163
2.64 8.588 8 606 5 517 2.90 4.760 0.070 55 39 406 1252 31.47 0.4255 24.79 1.1121 0.093 31 2.399 0.152
2.88 8.155 11 235 6 879 4.48 7.223 0.086 34 46 043 1337 34.44 0.4296 25.54 1.1173 0.073 83 3.178 0.220
3.08 7.896 12 397 7 213 7.16 11.326 0.092 63 47 598 1248 38.13 0.4302 25.20 1.0938 0.061 51 4.578 0.231
1.20 30.704 8 772 6 564 0.0 0.0 0.033 53 64 807 2461 26.34 0.4095 23.21 1.1161 0.228 5 1.743 0.0705
1.80 29.054 12 401 9 073 0.71 1.230 0.044 15 80 849 2870 28.17 0.4088 23.25 1.1468 0.172 2 1.922 0.0895
2.24 27.035 16 307 11 587 1.39 2.378 0.055 26 94 275 3137 30.05 0.4112 23.42 1.1710 0.133 1 2.335 0.0942
2.64 25.150 21 634 14 736 2.74 4.606 0.069 68 110 700 3373 32.82 0.4035 22.87 1.1352 0.106 6 2.663 0.0984
2.88 23.885 25 854 17 020 3.96 6.567 0.080 54 121 760 3471 35.08 0.4018 22.80 1.1213 0.090 7 3.164 0.1183
3.08 22.908 31 767 20 052 6.07 9.901 0.093 73 136 290 3587 37.99 0.4083 23.53 1.1339 0.074 2 4.069 0.1673
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parameters decreased by one standard deviation Cf � ¼ 0:002 277 for
an overall variation of approximately 7:5%. In Sec. VIII where airfoil
drag comparisons are discussed, this uncertainty in Cf will be discussed
again.

It should be noted that Fig. 5 and Table II can be compared to
Fig. 6 and Table I in Cantwell.10 The average values of ðk; a;m; b; nÞ
in Cantwell10 differ slightly from the ZPG parameter values used in
the present paper but are the same as in the earlier conference paper
by Subrahmanyam et al.19 The reason is that boundary layer data
from Baidya et al.26 is included in the average values quoted in
Subrahmanyam et al.17 but was not used in determining average opti-
mal parameters in the 2021 papers where it was decided to use direct
numerical simulation (DNS) data only, since it reaches all the way to
the wall. In retrospect that condition is not necessary, although experi-
mental data do tend to have higher uncertainty. As new data become
available, the average optimal parameters will continue to be updated
although changes can be expected to be relatively small as time goes
on and the sample size grows.

In the presence of a pressure gradient, the parameters ðb; nÞ will
be allowed to vary while (k, a, m) will be held fixed at the average val-
ues in Table I. The key question of how ðb; nÞ are related to the pres-
sure gradient will be addressed in Sec. IV.

1. The equivalent channel half height thickness

In Fig. 1, the boundary layer thickness, dh, is identified as the
equivalent channel half height thickness. The idea behind dh originates
in the fact that the UVP accurately approximates not only pipe flow
and channel flow but also boundary layer flows with a zero, positive
and negative pressure gradient.10,11,17

The UVP has a well-defined outer edge, where u=ue ¼ 1 and
@u=@y ¼ 0. However, these properties of the boundary layer profile
are only approached asymptotically. The usual practice is to choose an
arbitrary point where u=ue is slightly less than one and @u=@y is
slightly greater than zero. Probably the most common choice is the
boundary layer thickness corresponding to ue=Ufreestream ¼ 0:99,
where Ufreestream is the free stream velocity reported with the data for a
given profile.

The UVP can be used to remove some of this arbitrariness.
When optimal parameters for the UVP are determined for boundary
layer data, the choice of cutoff point for the boundary layer edge has
an impact on the rms error. If dh is too large, data points approaching
the free stream where the velocity is virtually constant will be included
in the profile. The optimization procedure will try to fit these points
and this will tend to reduce the accuracy over the whole profile leading
to increased error. If dh is too small, the data will be cutoff too far short
of the boundary layer edge. The condition @u=@y ¼ 0 will be imposed
where the derivative is not quite zero. This also leads to increased
error. There is a choice of dh that minimizes the error between the
UVP and the data. See pp. 12 and 13 and Figs. 17–23 in Cantwell10

where dh is first defined.
At present, techniques for measuring and reporting data vary

widely among researchers and so the boundary layer edge velocity cor-
responding to dh also varies. Generally, the best fit occurs at
ue ¼ ð0:993� 0:998ÞUfreestream.

C. Evolution of the UVP from the laminar to the
turbulent profile as Rs increases from 0 to1

Figure 8 shows how the shape of the universal velocity profile
becomes fuller as Rs is increased by 7 orders of magnitude. At the low-
est Reynolds numbers, the profile is essentially the laminar channel/
pipe velocity profile. At the highest Reynolds number, large increases
produce very small changes in the velocity profile. At extreme
Reynolds numbers, the velocity profile approaches plug flow but astro-
nomically large values are needed to approach this state.11

Figure 5 shows the UVP friction law along with low Reynolds
number and high Reynolds number limits for a zero pressure gradient
boundary layer. Based on Fig. 5, the profile appears to begin becoming
fuller at about Rs ¼ 30 corresponding to Rd1 ¼ 122; Rd2 ¼ 51 and
Rx¼15700 with a shape factor H¼2.39. The profile approaches a
fully turbulent shape at about Rs¼ 500 corresponding to Rd1 ¼ 2030;
Rd2 ¼ 1373 and Rx¼ 645000 with a shape factor H¼1.48. These
changes in the profile inferred from Fig. 5 approximately correspond
to the first and third profiles in Fig. 8. The evolution of the profile
encompasses the nominal transition range from the critical Reynolds

FIG. 6. The blue line is the UVP friction law for a zero pressure gradient boundary
layer using mean parameters ð�k ;�a; �m;�b;�nÞ from Table II. The dashed line is the
UVP friction law with each parameter increased by one standard deviation,
ð�k þ rk ;�a þ ra; �m þ rm;�b þ rb;�n þ rnÞ. The dotted line is the UVP friction
law with each parameter decreased by one standard deviation,
ð�k � rk ;�a � ra; �m � rm;�b � rb;�n � rnÞ.

FIG. 7. Same as Fig. 6 but expressed in terms of the friction coefficient,
Cf ¼ 2=ðue=usÞ2.
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number of the Blasius profile, Rs¼ 121; Rd1 ¼ 520, and Rx¼ 104000,7

to a nominal transition Reynolds number, Rd1 ¼ 1600; Rs¼ 392 and
Rx¼ 474000. In other words, the UVP begins to evolve at a Reynolds
number well below the instability limit.

The critical Reynolds number for a smooth plate is highly depen-
dent on the free stream turbulence level usually denoted Tu. The ques-
tion of transition in the UVP boils down to determining what
transition assumption one is making when the UVP is used through-
out the flow from a laminar leading edge to a fully turbulent boundary
layer. To explore this question, the UVP friction law is plotted again in
Fig. 9 along with transition data from Schubauer and Klebanoff30 and
Coupland.31 Note that large ue=us implies low Cf. Extremely low val-
ues of Tu can lead to critical Reynolds numbers exceeding Rs ¼ 2000
corresponding to approximately Rex ¼ 2 700 000 while the UVP
implies turbulent values of the friction coefficient beginning at about
Rs � 200 corresponding to Rex � 200 000.

Methods for modeling the transition region on a smooth airfoil,
for example, Kaynak et al.,32 available in the aerodynamic simulation
suite SU2,33 correlate the transition distance with Tu. In order to accu-
rately determine the drag of a given smooth airfoil, the free stream tur-
bulence needs to be well characterized. In the present paper, in the
absence of such data, we will assume the UVP holds beginning at the
forward stagnation point while recognizing that that assumes that
the critical Reynolds number is close to the minimum required to sus-
tain turbulent flow, Rstransition � 200. In other words, the UVP corre-
sponds to a tripped boundary layer.

Figure 9 can be compared to Fig. 14 in Cantwell11 where the
UVP friction law for pipe flow is compared with data over 7 orders of
magnitude in the pipe Reynolds number. Based on the discussion
here, one can conclude that that comparison is for a UVP pipe profile
corresponding to a disturbed pipe entry flow.

D. Friction law comparisons

In view of the accurate approximation of the UVP to DNS and
experimental data, it should be expected that the UVP generates an
accurate friction law. This is crucial if the UVP integral method pre-
sented here is to be useful and it needs to be confirmed.

Figure 10 shows the UVP friction law from Figs. 5 and 9. Above
Rs ¼ 2000=k, the UVP friction law is

ue
us
¼ 1

0:423 3
lnðRsÞ þ 8:907 74: (30)

In Fig. 10, the UVP law is compared with five other laws. The
Ludwieg–Tillman relation6 used in Head’s integral method is

ue
us
¼ 2

0:246

� �
e1:561H Rd2ð Þ0:268 ; (31)

whereH is the shape factor,H ¼ d1=d2.

FIG. 8. The universal velocity profile at Rs ¼ 1; 10; 100; 1000; 104; 105; 106, and
107. Parameters ðk; a;m; b; nÞ are the ZPG boundary layer values from Table I.

FIG. 9. The universal velocity profile friction law for a zero pressure gradient bound-
ary layer along with transitional friction data from Schubauer and Klebanoff30 (natu-
ral transition Tu ¼ 0:03%—black) and Coupland31 (ERCOFTAC case T3A
Tu ¼ 0:9%—red, case T3A Tu ¼ 3:0%—magenta).

FIG. 10. Five friction laws compared to the UVP (blue line). The orange line is the
Ludwieg–Tillman law6 used in Head’s method. The magenta line is the friction law
developed by Nash.34 The red and black lines are two versions of the
Coles–Fernholz law with ðk;CÞ ¼ ð0:41; 5:0Þ (red line) and ðk;CÞ ¼ ð0:384; 4:1Þ
(black line). The brown line is the Spalart–Allmaras law, Eq. (34), deduced from
data in Polewski and Cizmas.36
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Also shown in Fig. 10 is the relation developed by Nash.34 Nash
based his friction law on a study of several classical approaches including
Ludwieg–Tillman. Nash’s approach involves the following three equations:

ue
us
¼ 1

0:400
lnðRd1Þ þ 3:7þ K 0ðGÞ;

K 0ðGÞ ¼ 3
2
Gþ 2110

G2 þ 200
� 18:5;

G ¼ ue
us

� �
H � 1
H

:

(32)

Nash’s law agrees quite closely with the UVP over a wide range of
Reynolds numbers.

Also included in Fig. 10 are two versions of what Nagib et al.35

call the Coles–Fernholz law.

ue
us
¼ 1

k
lnðRd2Þ þ C: (33)

Finally, Polewski and Cizmas36 carried out a detailed comparison of
several turbulence models. In their Fig. 9(a), the skin friction coeffi-
cient on a flat plate generated by three codes using the
Spalart–Allmaras37 model is plotted up to Rx ¼ 107. The curves agree
very closely. The Spalart–Allmaras friction law at this Reynolds num-
ber deduced from this plot is

ue
us
¼ 1

0:4292
lnðRsÞ þ 8:9414: (34)

Note that for the comparisons in Figs. 10 and 11, the Rd1 and Rd2
that appear in Eqs. (31)–(33) are related to Rs using the integrals (5)
and (6) expressed in terms of Rs, Eqs. (26) and (27). See also the
explicit high Reynolds number relations, Eqs. (40) and (43), in
Cantwell.10

The closest to the UVP law in Fig. 10 are the Coles–Fernholz law
with Coles’ recommended values ðk;CÞ ¼ ð0:41; 5:0Þ and the
Spalart–Allmaras relation. Outside of the range 1000 < Rs < 10 000,
the Ludwieg–Tillman law leads to unrealistically high ue=us (low Cf)
values and will not be considered further.

Figure 11 shows the UVP, Nash, Spalart–Allmaras, and the two
Coles–Fernholz laws in linear coordinates over the range 0 < Rs < 25 000
which covers the vast bulk of available boundary layer data
(0 < Rd1 < 1:009� 105 corresponding to 0 < Rd2 < 7:93� 104

corresponding to 0 < Rx < 7:38� 107). All five curves in Fig. 10
agree within about 5% over the range above Rs > 1000. The closest
agreement with the UVP law in this Reynolds number range are the
laws due to Nash34 and Spalart and Allmaras.37 Note that only the
UVP merges with the laminar limit, Rs ! 0 as shown in Fig. 5.

Nagib et al.35 carried out measurements of the skin friction on a
flat plate in the Reynolds number range 10 000 < Rd2 < 70 000. They
used that data, along with older data corrected to form a common
experimental dataset, in a comprehensive study of several widely used
classical friction laws. The result is shown in Fig. 12 where their Fig. 7
is overlaid by the friction law generated by the UVP (blue circles) and
the friction law of Nash34 (magenta dashed line). Note that the Rs and
Rd2 domains in Figs. 11 and 12 represent almost identical Reynolds
number ranges.

Figures 10–12 show that the UVP friction law is consistent with
the vast body of friction data in the literature.

III. THE VON K�ARM�AN INTEGRAL EQUATION
EXPRESSED IN TERMS OF Rs

Define the overall flow Reynolds number in terms of the free
stream velocity u1 and an appropriate body length scale which we
will take to be the airfoil leading edge radius of curvature r shown in
Fig. 2

Re ¼
u1r
�
: (35)

The main drag results are expressed in terms of the chord Reynolds
number, Rchord, obtained by multiplying Eq. (35) by c=r ¼ 91:3737 for
the J0012 airfoil or c=r ¼ 63:5870 for the NACA0012 airfoil.
Introduce the length scale r and let n ¼ x=r. The dimensionless poten-
tial flow velocity at the surface of the body is

ue
u1
¼ UðnÞ: (36)

FIG. 11. Four friction laws compared to the UVP (blue line) and plotted as Cf in lin-
ear coordinates. The magenta line is the friction law developed by Nash.34 The red
and black lines are the two versions of the Coles–Fernholz law. The brown line is
the Spalart–Allmaras model deduced from data in Polewski and Cizmas.36

FIG. 12. Friction coefficient from the UVP compared with Fig. 7 from Nagib et al.35

The friction law of Nash34 is also included (magenta dashed line).
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Now re-express the K�arm�an equation (3) in terms of Rs. First, express
the momentum thickness, in terms of the momentum thickness
Reynolds number (27),

d2 ¼
�

ue

ðRs

0
uþ 1� us

ue
uþ

� �
dyþ ¼ �

ue
F2 Rsð Þ: (37)

Differentiate (37) with respect to x

dd2
dx
¼ � �

ue2
due
dx

F2 Rsð Þ þ
�

ue

dF2 Rsð Þ
dRs

dRs

dx

¼ � d2
ue

due
dx
þ �

ue

dF2 Rsð Þ
dRs

dRs

dx
: (38)

Using (38) in (3), the K�arm�an equation is now written

�

ue

dF2
dRs

dRs

dx
þ ðd2 þ d1Þ

1
ue

due
dx
� us

ue

� �2

¼ 0: (39)

Normalize x by the nose radius, r, and use (26) and (27) to express d1
and d2 in (39) in terms of the displacement and momentum thickness
Reynolds numbers. Use the definition (25) for the friction law and the
definition (36) for the inviscid velocity.

dF2
dRs

dRs

dn
þ ðF2 þ F1Þ

1
U
dU
dn
� u1r

�

U
F02
¼ 0: (40)

The form of the K�arm�an equation that we need to solve numerically is

dRs

dn
¼ URe

F02F3
1� F02

Re
ðF2 þ F1Þ

1
U2

dU
dn

� �
; (41)

where (28) has been used. The zero pressure gradient form of (41) was
used by Cantwell10 to determine integral measures of the ZPG bound-
ary layer over 0 � Rs <1.

IV. THE EFFECT OF PRESSURE GRADIENT ON THE UVP

Subrahmanyam et al.17 used the UVP to approximate the adverse
pressure gradient data of Perry and Marusic27 for the two upstream
velocity cases, u1 ¼ 10 and u1 ¼ 30 m/s. The near wall parameters
ðk; a;mÞ did not vary significantly with the Reynolds number, whereas
the outer flow wake parameters (b, n) varied quite a lot. The results
from Subrahmanyam et al.17 are shown in Table II along with the fit
of the UVP to the Ref. 27 data in Figs. 13 and 14.

The sink flow data from Jones et al.28 will be used to determine
how the wake parameters of the UVP, (b, n) vary for favorable pres-
sure gradients. These results are provided in Table III and the compar-
ison between the UVP and the data is shown in Figs. 15–17. The
quantity K in Table III is essentially the inverse of the sink flow
Reynolds number,

K ¼ �

ue2
due
dx
¼ �

u1L
; (42)

where u1 is the converging channel entry velocity, x is the coordinate
along the lower wall and L is the effective length of the sink flow chan-
nel. The optimal value of the UVP parameter k for these data tends to
be relatively high compared to ZPG and adverse pressure gradient
data, particularly near the entrance to the converging channel and at
the lowest Reynolds number. This may be a consequence of the rela-
tively low values of Rs that characterize the data. Comparable values of

k were observed at low Rs in the pipe data (Cantwell11 Fig. 9, PSP cases
1–5). The mean parameter values in Table I for pipe flow were aver-
aged over PSP cases 6–26.

A. A modified Clauser parameter

The pressure gradient term in (41) can be arrived at from another
direction. The strength of the pressure gradient in a turbulent bound-
ary layer is often expressed in terms of the Clauser38 parameter
b ¼ ðd1=swÞðdp=dxÞ. See, for example, Perry and Marusic.27 Here, we
will introduce a modified Clauser parameter

bc ¼ ððd1 þ d2Þ=swÞðdpe=dxÞ: (43)

FIG. 13. Reprinted with permission from Subrahmanyam et al., J. Fluid Mech. 933,
A16 (2022). Copyright 2022 Author(s) licensed under a Creative Commons
Attribution (CC BY) License.17 Comparison between the universal velocity profile
and the u1 ¼ 10 m/s adverse pressure gradient data of Perry and Marusic27

(open red circles).

FIG. 14. Reprinted with permission from Subrahmanyam et al. J. Fluid Mech. 933,
A16 (2022). Copyright 2022 Author(s) licensed under a Creative Commons
Attribution (CC BY) License.17 Comparison between the universal velocity profile
and the u1 ¼ 30 m/s adverse pressure gradient data of Perry and Marusic27

(open red circles).
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The Bernoulli equation is used to express bc in terms of the local free
stream velocity, and the thicknesses are expressed in terms of the local
thickness Reynolds numbers. The result is identical to the pressure
gradient term in the K�arm�an equation (41)

bc ¼ �
F02

Re
ðF2 þ F1Þ

1
U2

dU
dn

: (44)

The UVP parameters n and b are plotted in Figs. 18 and 19 against bc.
The solid line

nðbcÞ ¼ 1:419 350þ 0:271 499bc (45)

approximates the data for nðbcÞ in Fig. 18 reasonably well with root
mean square (rms) error 0.197. Two approximations to the data for
bðbcÞ are shown in Fig. 19. The dashed line is the simpler of the two
and is given by

bðbcÞ ¼ 0:018 193 8þ 0:286 852
1þ 0:654 161bc

(46)

with rms error 0.0440. Equation (46) gives a good approximation to
most of the data but is not accurate near bc ¼ 0. This is a problem
because over most of the airfoil surface the pressure gradient is quite
small as can be seen in the lower plot in Fig. 22. This means that bc is

TABLE III. Run data, Reynolds number, optimal model parameters, and RMS error for favorable pressure gradient boundary layer datasets from Jones et al.28 Converging
channel entry velocities are u0 ¼ 5:0; 7:5 and 10.0 m/s. Channel half height thickness for these data are at u ¼ 0:996ue; dh ¼ d0:996. Kinematic viscosity is
� ¼ 1:51� 10�5m=s2. Note, according to Jones et al.,28 ue=u0 ¼ 1=ð1� x=LÞ and the calibrated sink length is L ¼ 5:60m.

K � 107 x (mm) u0 m
s

� �
Rd1 Rd2 �b �bc Rd996 Rs

ue
us

� �
k a m b n uþrms

5.39 800 5.0 1112 780 0.2436 0.4145 8656 429 20.16 0.4686 26.88 1.2136 0.3931 1.3295 0.098
5.39 1600 5.0 1629 1192 0.3780 0.6548 14 130 681 20.75 0.4630 25.58 1.2408 0.5284 1.1644 0.068
5.39 2200 5.0 1648 1209 0.3880 0.6726 14 806 709 20.90 0.4670 27.89 1.0869 0.5806 1.1343 0.105
5.39 2800 5.0 1946 1449 0.4713 0.8222 18 244 861 21.20 0.4555 26.89 1.1196 0.6934 1.0908 0.089
5.39 3280 5.0 2138 1606 0.5276 0.9241 20 549 960 21.40 0.4445 26.04 1.1563 0.6831 1.1818 0.067
5.39 3580 5.0 2226 1687 0.5500 0.9671 22 468 1049 21.41 0.4448 25.96 1.1920 0.8189 1.1514 0.068
3.59 800 7.5 1496 1069 0.3613 0.4125 11 752 555 21.17 0.4602 26.62 1.1906 0.3738 1.2986 0.092
3.59 1600 7.5 2000 1470 0.3382 0.5868 17 325 798 21.70 0.4644 28.91 1.0413 0.4647 1.1745 0.085
3.59 2200 7.5 2350 1755 0.4030 0.7040 21 366 977 21.86 0.4557 27.30 1.0822 0.5752 1.0988 0.060
3.59 2800 7.5 2827 2155 0.4850 0.8748 27 899 1262 22.12 0.4431 26.19 1.1527 0.7463 1.0917 0.065
3.59 3280 7.5 2928 2245 0.5202 0.9191 29 762 1338 22.25 0.4374 25.93 1.1726 0.7271 1.1931 0.055
3.59 3580 7.5 3027 2339 0.5344 0.9473 32 204 1452 22.17 0.4403 25.78 1.2037 0.8700 1.1579 0.062
2.70 800 10.0 1862 1343 0.3161 0.4092 15 001 690 21.74 0.4564 28.35 1.0045 0.4324 1.1316 0.097
2.70 1600 10.0 2555 1904 0.3421 0.5969 22 546 1013 22.27 0.4529 27.56 1.0538 0.5090 1.1120 0.074
2.70 2200 10.0 2873 2160 0.3908 0.6846 26 114 1164 22.44 0.4525 26.90 1.0669 0.5491 1.0864 0.047
2.70 2800 10.0 3372 2577 0.4689 0.8273 32 769 1444 22.70 0.4402 25.79 1.1307 0.6833 1.0766 0.047
2.70 3280 10.0 3725 2851 0.5297 0.9351 35 899 1564 22.95 0.4364 25.45 1.1227 0.6653 1.0704 0.073
2.70 3580 10.0 3936 3044 0.5575 0.9888 39 990 1746 22.91 0.4368 25.31 1.1607 0.7504 1.0923 0.095

FIG. 15. Comparison between the universal velocity profile and the K ¼ 5:39� 10�7

sink flow data of Jones et al.28 (open red circles).
FIG. 16. Comparison between the universal velocity profile and the K ¼ 3:59� 10�7

sink flow data of Jones et al.28 (open red circles).
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also quite small over a substantial part of the airfoil surface. The solid
line is given by

bðbcÞ ¼ 0:018 193 8þ 0:286 852
1þ 0:654 161bc

� 0:14
e�2b

2
c

ð2:2þ bcÞ2=3
(47)

with rms error 0.052 5. The exponential term provides the correction
needed to better approximate the data in the neighborhood of bc ¼ 0
without significantly increasing the error away from bc ¼ 0.

The effect of this change can be seen by evaluating Cf at bc ¼ 0
for Rs ¼ 104. If the parameters b and n from Table I,
ðb; nÞ ¼ ð0:1752; 2:1707Þ, are used Cf ¼ 0:002 13. If Eqs. (45) and
(46) are used, ðb; nÞ ¼ ð0:3050; 1:4194Þ and Cf ¼ 0:002 38, which is
12% higher than the Table I value and will give almost a 12% higher
airfoil drag. If Eqs. (45) and (47) are used, ðb; nÞ ¼ ð0:2223; 1:4194Þ
and the friction coefficient is Cf ¼ 0:002 15 which is less than 1%
higher than the Table I value and within the 7:5% error in Cf gener-
ated when the optimal parameter values are increased or decreased by
one standard deviation. Given the relatively limited data near bc ¼ 0,
the best approximation to the friction is generated by Eqs. (45) and
(47). More data for weak pressure gradient conditions is needed.

In the presence of a pressure gradient, the wall parameters
ðk; a;mÞ will be kept constant at the ZPG boundary layer values in
Table I while the wake parameters ðb; nÞ will be treated as functions of
bc using the correlations (45) and (47). This will be the approach used
for the drag calculations presented in Secs. VI–VIII.

The important conclusion of this is that the length scale function
(21) no longer depends on the parameters b and n independently, but
depends only on the pressure gradient parameter bc.

kðk; a;m; b; n; yþÞ ! kðk; a;m;bc; y
þÞ (48)

and

kðyþÞ ¼ kyþ 1� e�
yþ
a

� �m� �

1þ yþ

bðbcÞRs

 !nðbcÞ
0
@

1
A

1=nðbcÞ
: (49)

It should be noted that the number of significant figures provided
in this paper as well as in previous work on the UVP10,11,17 is intended
to allow an interested reader to reproduce our results with accurate
comparisons. It is not intended to reflect experimental or computed
accuracy of the data.

V. LEADING EDGE TREATMENT

In Sec. VI, the J0012 airfoil boundary layer calculation will be
considered in detail but first it is necessary to analyze the flow at the
airfoil leading edge. To model the leading edge flow depicted in Fig. 2,
we will use the inviscid solution about an elliptic wing presented in
Van Dyke.39 Let

a � 1þ 2
r
c

� �1=2

; (50)

where r is the leading edge radius of curvature, and c is the chord of
the elliptic wing. The coordinate of the upper surface of the ellipse
with the leading edge located at ~x=c ¼ 0 is

FIG. 17. Comparison between the universal velocity profile and the K ¼ 2:70� 10�7

sink flow data of Jones et al.28 (open red circles).

FIG. 18. Correlation between the model parameter n and bc for the data in Tables
II and III.

FIG. 19. Correlation between the model parameter b and bc for the data in Tables
II and III. The solid line provides a more accurate approximation near bc ¼ 0.
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~y
c
¼ 1

2
ða� 1Þ 1� 2

~x
c
� 1

� �2
 !1=2

(51)

and the surface velocity is

U
~x
c

� �
¼ a

1þ ða� 1Þ2
2

~x
c
� 1

� �2

1� 2
~x
c
� 1

� �2

0
BBBB@

1
CCCCA

1=2
: (52)

The coordinate xð~xÞ along the wing surface is

x
c
¼ 1

2
E

p
2
; 1� a

� �
� E Arcsin 1� 2

~x
c

� �
; 1� a

� � !
; (53)

where the function Eðh; 1� aÞ in Eq. (53) is the incomplete elliptic
integral of the second kind.

Using Eqs. (51)–(53), the following limits are found to hold near
the leading edge. Recall n ¼ x=r

lim
~x
c!0

~y
c
¼ x

c
;

lim
~x
c!0

x
c
¼ ða� 1Þ ~x

c

� �1=2

;

lim
~x
c!0

U ¼ 2a
a� 1

~x
c

� �1=2

;

lim
~x
c!0

U ¼ 2a

ða� 1Þ2
x
c

� �
;

lim
~x
c!0

U ¼ a n:

(54)

A. The Hiemenz solution near the leading edge

With the local inviscid solution (54) known, the viscous laminar
solution near the leading edge can be generated from the classical
Hiemenz solution at a stagnation point,

g ¼ a1=2
u1r
�

� �1=2 y
r

� �
vðx; yÞ
u1

¼ �a1=2
�

u1r

� �
f ðgÞ

uðx; yÞ
u1

¼ anf 0ðgÞ

Xðx; yÞr
u1

¼ � r
u1

@u
@y
¼ �a3=2

u1r
�

� �1=2

nf 00ðgÞ:

(55)

Substitute the variables in (55) into the vorticity equation

u
@X
@x
þ v

@X
@y
� � @

2X
@x2
� � @

2X
@y2
¼ 0: (56)

The result is

a1=2 �ru1ð Þ1=2 f 0000ðgÞ þ f ðgÞf 000ðgÞ � f 0ðgÞf 00ðgÞ
� �

¼ 0: (57)

The fourth-order ordinary differential equation (ODE) in (57) can be
integrated once leading to the third-order equation governing the
Hiemenz solution.

f 000ðgÞ þ f ðgÞf 00ðgÞ þ 1� f 0ðgÞ2 ¼ 0;

f ð0Þ ¼ 0; f 0ð0Þ ¼ 0; f 0ð1Þ ¼ 1:
(58)

The solution of (58) is shown in Fig. 20. Near the leading edge, the
Hiemenz solution leads to the following limits:

lim
n!0

us

ue

� �2

¼ f 00ð0Þ
a1=2Re

1=2 n
;

lim
n!0

d1u1
�
¼ c1

a1=2Re
1=2
;

lim
n!0

d2u1
�
¼ c2

a1=2Re
1=2
;

lim
n!0

Rs ¼ ghf
00ð0Þ1=2a1=4Re

1=4 n1=2;

(59)

where f 00ð0Þ ¼ 1:232 59; c1 ¼ 0:647 836, and c2 ¼ 0:292 282. The
shape factor of the Hiemenz flow at the forward stagnation point is
H ¼ d1=d2 ¼ 2:216, which can be compared to H ¼ 2:5 for channel
flow andH ¼ 2:604 for the ZPG Blasius boundary layer.

B. The UVP near the leading edge

In the UVP integral boundary layer method presented in this paper,
the simplest approach will be used where the UVP is assumed to apply all
the way from the forward stagnation point of the airfoil. Therefore, it is
important to consider the degree of error associated with this assumption
by comparing the UVP with the “exact” Hiemenz solution.

The UVP approaches the laminar profile, (20), at the wing lead-
ing edge. From this profile, the following limits can be determined:

lim
Rs!0

F0 ¼
Rs

2
;

lim
Rs!0

F1 ¼
Rs

2

6
;

lim
Rs!0

F2 ¼
Rs

2

15
;

lim
Rs!0

F3 ¼
2Rs

15
:

(60)

Substitute the limits in (60) into the K�arm�an equation (41). The result
is

FIG. 20. Hiemenz streamwise velocity and vorticity.
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d
dn

Rs
4

120

� �
¼ ReU �

Rs
4

120

� �
1
U
dU
dn

: (61)

Equation (61) is a first-order ODE with the following integral:

lim
Rs!0

Rs ¼
120Re

U7

ðn

0
U8dn

 !1
4

; (62)

where the initial condition Uð0Þ ¼ 0 has been used. Substitute the last
relation in (54), U ¼ an, into (62). The result is

lim
Rs!0

Rs ¼
40
3

� �1=4

a1=4Re
1=4 n1=2: (63)

Compare the UVP limit (63) to the Hiemenz limit in Eq. (59). In
the last relation in (59), let gh ¼ 2:381 corresponding to u=ue ¼ 0:99,

lim
Rs!0

RsUVP

RsHiemenz
¼

40
3

� �1=4

2:381f 00ð0Þ1=2
¼ 0:723: (64)

The laminar limiting profile of the UVP, Eq. (20), can be expressed in
terms of g by noting that y=dh ¼ g=gh

uðx; yÞ
u1

¼ a n
2g
gh

� �
1� 1

2
g
gh

� �
: (65)

The Hiemenz and UVP velocity profiles are compared in Fig. 21.
The conclusion from this discussion is that near the leading edge,

the UVP limit (63) has the same dependence on a, Re, and n as the
“exact” Hiemenz limit in (59) but the magnitude of Rs, and therefore,
the friction is about 28% below the Hiemenz limit. Keeping this in
mind, the UVP will be assumed to apply beginning at the leading edge
in the airfoil examples discussed later.

This is not the only approach that could be used. The laminar
boundary layer equations could be solved beginning at the leading
edge up to a transition region modeled with an appropriate transition
criterion. This could then be followed by a turbulent boundary layer
approximated by the UVP. For airfoil flows with a substantial laminar
region, this would be more accurate but would require more informa-
tion on free stream turbulence, and other factors that could influence

transition. The viscous drag coefficient of low Reynolds number airfoil
flows would be roughly 10% lower using this approach compared to
using the UVP over the whole airfoil surface. The reason is that, even
though the UVP friction might be lower very close to the leading edge
as just discussed, the friction associated with the UVP channel flow
limit is 10% or more higher than the Blasius-like friction of the rest of
the laminar part of the flow,10 depending on the pressure gradient.

In this paper our focus is on high Reynolds number and so we
will use the UVP all the way to the leading edge and comparisons will
be with tripped airfoil data.

VI. ITERATIVE PROCEDURE AND SOLUTION FOR THE
J0012 AIRFOIL AT Rchord ¼ 107 USING THE INTEGRAL
FORM OF THE UVP

The J0012 airfoil geometry and inviscid surface velocity is
shown in Fig. 22. Figure 23 shows the relation between the surface and
chordwise coordinates including an inset showing the leading edge.
The infinite slope of the wing near the leading edge and the singularity
in the inviscid velocity derivative are both alleviated when the flow is
expressed in terms of the surface coordinate n ¼ x=r rather than the
chordwise coordinate ~n ¼ ~x=r. The potential flow distributions of
Uð~nÞ for the J0012 and NACA0012 airfoils are shown in Fig. 24.

Figure 25 shows eight successive solutions of the K�arm�an equa-
tion (41) over the J0012 airfoil at an airfoil chord Reynolds number,
Rchord ¼ 107. The integral form of the UVP, Eq. (19), is used in this
example. In Sec. VII, an alternative approach using the high Reynolds
number explicit form of the UVP (23) will be described. The calcula-
tions were carried out inMathematicaTM on a 2017 MacBook Pro (OS
10.12.6, 2.9GHz Intel core i7 processor). The iterative procedure con-
verges relatively rapidly.

A. Step 1—Initial data, initial calculation of Rd1ðRsÞ
and Rd2ðRsÞ, first integration of the K�arm�an equation

Initial data required by the method begins with the kinematic vis-
cosity � and free stream velocity, u1. The wing profile is defined, par-
ticularly the chord c and the leading edge radius r, which are used to
determine a in Eqs. (50) and (63). The Reynolds number is
Re ¼ u1r=�. The wing profile is specified as

FIG. 21. Comparison between the Hiemenz velocity profile (black) and UVP (blue)
near the forward stagnation point.

FIG. 22. Joukowsky 0012 airfoil with free stream velocity and velocity derivative.
Maximum surface velocity (U ¼ 1:158 9) is at ~x=c ¼ 0:174 45. Zero airfoil slope is
at ~x=c ¼ 0:368 47.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 075130 (2022); doi: 10.1063/5.0100367 34, 075130-13

VC Author(s) 2022

https://scitation.org/journal/phf


~y=c ¼ f ð~x=cÞ: (66)

From the wing profile is calculated the wing surface coordinate x used
as the independent variable in the UVP integral method,

x
c
¼
ð~x

c

0
1þ f 0

~x
c

� �2
 !1=2

d
~x
c

� �
: (67)

See Figs. 23 and 24, where x and ~x are normalized by the wing leading
edge radius by multiplication by c/r. The velocity distribution UðnÞ,
along with dU=dn are determined from a potential solution about the
body in question. For the UVP integral method to work effectively, it
is important that the free stream velocity and its derivative are accu-
rately known and smooth.

Prior to integrating the K�arm�an equation or focusing on the air-
foil, the integral form of the UVP, Eq. (19), is used to determine the
functions F0ðRsÞ; F1ðRsÞ; F2ðRsÞ, and F3ðRsÞ over the Rs range of
interest. For the calculations presented here 0 � Rs < 1010. This is
done with the constants ðk; a; b;m; nÞ fixed at the values given in
Table I, i.e., for bc ¼ 0. Since nested integration is required to produce
the boundary layer thicknesses, this step can be quite slow when the
range of interest includes large values of Rs. However, these constant-
b-constant-n thicknesses only need to be determined once and stored
for use in the first iteration each time the drag for a new Rchord is to be
computed.

In a bootstrap procedure, the K�arm�an equation (68) is
solved numerically for the initial distribution Rs1ðnÞ using the
MathematicaTM function NDSolve,

dRs1ðnÞ
dn

¼ UðnÞRe

F0ðRs1ðnÞÞ
2F3ðRs1ðnÞÞ

� 1�F0ðRs1ðnÞÞ
2

Re
F2ðRs1ðnÞÞþF1ðRs1ðnÞÞ
� � 1

UðnÞ2
dU
dn

 !
:

(68)

The initial value of n is chosen to be close to the airfoil leading edge.
For the J0012 case, withUðnÞ known analytically, ninitial was chosen to
be 10�7. For the NACA 0012 case discussed later, with UðnÞ known
approximately, ninitial was chosen to be 0.1. The initial distribution,
Rs1ðnÞ, is the black curve in Fig. 25 with Rs1TE ¼ 9784.

The thickness functions F0ðRs1Þ; F1ðRs1Þ; F2ðRs1Þ, and F3ðRs1Þ
are computed over the range 0 < Rs1 < Rs1TE and are used to calculate
the first nonzero distribution of the modified Clauser parameter,
bcðRs1Þ. After the first iteration, the wall parameters ðk; a;mÞ are kept
constant at the ZPG boundary layer values in Table I while nðbcÞ and
bðbcÞ are allowed to vary over the airfoil surface according to the cor-
relations (45) and (47).

B. Step 2

The monotonically increasing friction Reynolds number distribu-
tion over the airfoil computed in the first iteration, Rs1ðnÞ together
with bcðRs1Þ are then used to prepare for iteration 2. New thickness
functions F01ðRs1Þ; F11ðRs1Þ; F21ðRs1Þ, and F31ðRs1Þ are computed
over the range 0 < Rs1 < Rs1TE . The K�arm�an equation (69)

FIG. 23. Joukowsky 0012 surface coordinate vs chordwise coordinate. Inset shows
shows the relation near the leading edge. Leading edge radius of curvature is
r=c ¼ 0:010 944. Airfoil trailing edge is at ~xc=r ¼ 91:3737 corresponding to
xc=r ¼ 92:9941.

FIG. 24. Potential flow velocity distributions about the J0012 (blue) and NACA0012
(magenta) airfoils.

FIG. 25. Successive iterations of Rsðx=rÞ for the J0012 airfoil. Inset shows the cov-
ergence of the trailing edge value of RsTE with iteration number. The final iteration
(blue) has a trailing edge value of RsTE ¼ 4673.
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dRs2ðnÞ
dn

¼ UðnÞRe

F01ðRs2ðnÞÞ
2F31ðRs2ðnÞÞ

� 1�F01ðRs2ðnÞÞ
2

Re
F21ðRs2ðnÞÞþF11ðRs2ðnÞÞ
� � 1

UðnÞ2
dU
dn

 !

(69)

is integrated to generate Rs2ðnÞ. This is the red curve in Fig. 25.

C. Step 3—Finish

The process is repeated until the nth iterate when further changes
in RsnTE are sufficiently small (<2%). This is the blue curve in Fig. 25.
The iterative procedure is shown schematically in Appendix B.

The time consuming steps in this procedure are the computa-
tions of the thickness functions, F1 and F2 which require nested
integrations at npoints over the airfoil surface where npoints may
vary from 500 for Rchord ¼ 105 up to 2500 for Rchord ¼ 1012. At
Rchord ¼ 1012 each iteration may take 3–4 h on the laptop described
above. In this example, eight iterations are needed to reach conver-
gence with Rs1TE changing by less than 2% over the last two itera-
tions. The corresponding change in Cdv over the last two iterations is
0:3%. The inset shows the convergence of RsiTE

c
r

� �
at the end of

which, Rs8TE ¼ 4673. At this point, all of the boundary layer charac-
teristics are known along with the velocity profile at any point.

The procedure could be repeated with the airfoil surface modified
by the displacement thickness however the close correspondence
between the NACA0012 potential flow and the boundary layer edge
velocity from the SU2 converged solution at Rchord ¼ 107 shown in
Fig. 35 indicates that further iterations would produce little change in
the UVP drag.

Notice that the trailing edge values of bc in Fig. 29 never exceed
bc ¼ 18. However, the user needs to be aware that during each itera-
tion, the bci calculated from the current RsiðnÞ distribution becomes
very large, far larger than 18, as the trailing edge is approached
where us becomes relatively small (but not 0 because of the cusped
trailing edge) and the displacement and momentum thickness
Reynolds numbers in Eq. (43) become large. However note the
decreasing values of RsTE with each iteration. It turns out that when
bci is used to calculate Rsiþ1 , the calculation reaches the trailing edge
at a value of Rsiþ1TE

that is considerably less than RsiTE
with a corre-

sponding bci that is less than 18.
Figures 26–32 show the convergence of the various functions

required to integrate the K�arm�an equation (41) and determine the air-
foil drag. Two other boundary layer properties of importance are the
channel half height thickness (overall boundary layer thickness), dh,
and the shape factor, H ¼ d1=d2, shown in Figs. 32 and 33. The over-
all thickness is determined from

dh
c
¼ RsðnÞ

u1c
�

Cf ðnÞ
2

� �1=2

UðnÞ
: (70)

With the friction coefficient known over the airfoil surface, the
viscous drag coefficient is determined using Eq. (8). The convergence
of the J0012 and NACA0012 viscous drag coefficients at Rchord ¼ 107

are shown in Fig. 34. Figure 35 shows the potential flow over the
NACA0012 wing.

FIG. 26. Iterative distributions of the wall friction coefficient Cf for the J0012 airfoil.
Inset shows the covergence of the trailing edge value of dh=c with iteration number.
Final trailing edge value is Cf ¼ 0:001 055.

FIG. 27. Iterative distributions of the displacement thickness d1=c for the J0012 air-
foil. Inset shows the covergence of the trailing edge value of d1=c with iteration
number. Final trailing edge value is d1=c ¼ 0:006 201.

FIG. 28. Iterative distributions of the momentum thickness d2=c for the J0012 air-
foil. Inset shows the convergence of the trailing edge value of d2=c with iteration
number. Final trailing edge value is d2=c ¼ 0:003 759. All eight iterations overlay
almost exactly.
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FIG. 29. Iterative distributions of the modified Clauser parameter, bc, for the J0012
airfoil. Inset shows the covergence of the trailing edge value of bc with iteration
number. Final trailing edge value is bc ¼ 17:238. Note that bc ¼ 0 over the first
iteration.

FIG. 30. Iterative distributions of the UVP parameter b for the J0012 airfoil. Inset
shows the covergence of the trailing edge value of b with iteration number. Final
trailing edge value is bTE ¼ 0:041 56.

FIG. 31. Iterative distributions of the UVP parameter n for the J0012 airfoil. Inset
shows the covergence of the trailing edge value of n with iteration number. Final
trailing edge value is nTE ¼ 6:0994.

FIG. 32. Iterative distributions of boundary layer thickness dh=c for the J0012 air-
foil. Inset shows the covergence of the trailing edge value of dh=c with iteration
number. Final trailing edge value is dh=c ¼ 0:024 98.

FIG. 33. Iterative distributions of the boundary layer shape factor H ¼ d1=d2 for
the J0012 airfoil. Inset shows the convergence of the trailing edge value of H with
iteration number. Final trailing edge value is H ¼ 1:6496.

FIG. 34. Convergence of the J0012 (blue open circles) and NACA0012 (magenta
open circles) viscous drag coefficients at Rchord ¼ 107. Converged values are
CdvJ0012 ¼ 0:006 30 and CdvNACA0012 ¼ 0:006 39.
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VII. HIGH REYNOLDS NUMBER

In the presence of a pressure gradient, the wall parameters
ðk; a;mÞ are kept constant at the ZPG boundary layer values in
Table I while the wake parameters ðb; nÞ are treated as functions of bc

using the correlations (45) and (47). Figure 36 shows the shape func-
tion, / Eq. (23), for a range of values of bc. Changes in / with bc are
smooth and monotonic. A polynomial of high order is a safe, reliable
fit in this situation since there is no question of y=dh falling outside of
the range 0 � y=dh � 1. The family of shape functions shown in
Fig. 36 is accurately approximated by the eighth-order polynomial

/ bc;
y
dh

� �
¼ c0ðbcÞ þ c1ðbcÞ

y
dh

� �
þ c2ðbcÞ

y
dh

� �2

þc3ðbcÞ
y
dh

� �3

þ c4ðbcÞ
y
dh

� �4

þ c5ðbcÞ
y
dh

� �5

þc6ðbcÞ
y
dh

� �6

þ c7ðbcÞ
y
dh

� �7

þ c8ðbcÞ
y
dh

� �8

: (71)

The coefficients c0ðbcÞ to c8ðbcÞ are approximated by tenth-order
polynomial functions of the pressure gradient parameter bc and are
strictly limited to the range �1:0 < bc < 18:0 indicated in Fig. 36.
The expressions for c0 to c8 are provided in Appendix A. It is impor-
tant to note that /ðbc; y=dhÞ in Eq. (71) is universal in the sense that it
applies to any pressure gradient wall flow that falls in the range
�1:0 < bc < 18:0. Higher order fits could be used to increase the
range of bc beyond 18.0.

The explicit high Reynolds number, variable pressure gradient
form of the UVP reduces to the simple form

lim
kRs>2000

kuþ ¼ lnðkyþÞ þ / ka;m;bc;
y
dh

� �
: (72)

At high Reynolds number the parameter k, essentially the K�arm�an
constant, is simply a scale factor on yþ, uþ and the damping length
scale a. Since b and n are correlated with the modified Clauser parame-
ter, bc, the remaining optimal parameters governing the k-scaled UVP
are only ka andm.

With /ðka;m;bc; y=dhÞ known explicitly as a bivariate polyno-
mial, the integrals (26) and (27) can be carried out. This leads to

polynomial expressions for the friction and thickness functions
F0ðbc;RsÞ; F1ðbc;RsÞ; F2ðbc;RsÞ, and F3ðbc;RsÞ. Once these func-
tions are known, the UVP integral method no longer requires the
computation of nested integrals. As a result, the calculation time is
independent of the Reynolds number. The viscous drag coefficient for
any chord Reynolds number can be determined in a few seconds.
Above about Rchord ¼ 106, this high Reynolds number explicit UVP
method matches the results using the integral form of the UVP almost
exactly. See Fig. 38 and Table IV.

Referring back to Sec. IIA, it should be pointed out that when Eq.
(72) is used to generate the thicknesses, Eqs. (26) and (27), at high
Reynolds number there is an error in neglecting the integration from
the wall to the beginning of the log region. The log region for a ZPG
boundary layer begins at approximately yþ ¼ 132.17 Figure 37 shows
the ratio of the integration using the integral form of the UVP from the
wall to yþ ¼ 132 divided by integration using the explicit form of the
UVP from 0 to Rs, as a function of Rs. Above Rs ¼ 105 the error is less
than 0:5%.

VIII. VISCOUS DRAG COEFFICIENT OF THE
JOUKOWSKY AND NACA 0012 AIRFOILS

The J0012 airfoil was chosen for this study because it has an
exact, and, therefore, highly accurate, potential flow solution and a
well-defined cusped trailing edge. The NACA 0012 (with closed trail-
ing edge) was chosen because this airfoil has been used as a standard
for testing computational results, for assessing wall interference effects,
and for developing correction procedures for wind tunnel testing.
There is a variety of formulas in the literature for the NACA 0012 air-
foil surface, consequently there is a variety of profiles used to study the
flow, some with unclosed trailing edges and some with closed trailing
edges. The profile used in this study is defined by

~y
c
¼ a1

~x
c

� �1
2

þ a2
~x
c

� �
þ a3

~x
c

� �2

þ a4
~x
c

� �3

þ a5
~x
c

� �4

(73)

with constants, a1 ¼ 0:177 349 856; a2 ¼ �0:075 600 000; a3
¼�0:2128439591; a4 ¼ 0:1736403030, and a5 ¼�0:0625462002,
which produce a closed trailing edge.

The NACA 0012 airfoil drag was determined using the UVP
integral method and compared with computations of the drag using
the aerodynamic design software suite, SU2.33 For the presentation,
the boundary layer thicknesses, drag coefficient, and Reynolds number
are normalized by the airfoil chord. Figure 35 shows the NACA0012
potential flow Uð~nÞ determined using conformal mapping, compared
with the free stream Uð~nÞ computed from the SU2 pressure distribu-
tion at Rchord ¼ 107. The pressure drag from SU2 at this Reynolds
number was CdpSU2

¼ 0:001 496.
The final Cdv vs Rchord results are shown in Fig. 38 and the data

used to produce this figure are provided in Table IV. The nearly over-
lapping blue (J0012) and magenta (NACA0012) curves in Fig. 38 are
generated using the UVP integral method with the mean wall parameter
values, ð�k; �a; �mÞ, given in Table I. Recalling the discussion of Figs. 6
and 7 in Sec. II B, increasing or decreasing the optimal parameter values
by one standard deviation would lead to a 7:5% change in Cf at
Rs ¼ 5000. The magenta error bar in Fig. 38 is approximately the varia-
tion of Cdv that would occur if optimal parameters in the UVP were
increased or decreased by the r’s given in Table I. The position of the
magenta error bar at Rchord ¼ 7� 106 is approximately at Rs ¼ 5000.

FIG. 35. Potential flow velocity distribution about the NACA0012 airfoil (magenta) com-
pared with the inviscid, boundary layer edge velocity (black) from SU2 at Rchord ¼ 107.
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It should be noted that, while the error associated with changing the
optimal parameters this way actually depends on Rs, the magenta error
bar provides a reasonable approximation to the error in the calculated
Cdv based on the set of boundary layer cases evaluated to date.

The green (NACA0012) curve was generated using the explicit
form of the UVP which allows high Reynolds number cases to be com-
puted in a few seconds. The three UVP curves are almost identical at
Reynolds numbers above Rchord > 106.

The open black circles in Fig. 38 are from Ladson40 who used car-
borundum strips placed at ~x=c ¼ 0:05 to generate a tripped boundary

layer over an NACA0012 wing. The data points shown are averages over
grit sizes 80, 120, and 180 and Mach numbers 0.15 and 0.30. The black
dashed curve in Fig. 38 is a fit to high quality tripped data from several
sources (including Ladson) collected and evaluated by McCroskey41

Cd ¼ 0:001 7þ 0:91

ðLog10ðRchordÞÞ2:58
: (74)

Note that an interpolation of the pressure drag coefficient, CdpSU2 is
subtracted from the Cd data in Ladson40 and McCroskey41 to generate
the black open circles and dashed line in Fig. 38.

TABLE IV. Chord Reynolds number, Cdv for the J0012 airfoil, Cdv for the NACA0012 airfoil using both the integral and explicit forms of the UVP, Cdv and Cdp computed using
SU2,33 tripped Cdv data from Ladson.40

Rchord CdvJ0012 CdvNACA0012UVPintegral
CdvNACA0012UVPexplicit

CdvNACA0012SU2
CdpNACA0012SU2

CdvLadson80�180 grit

105 0.014 797 0 0.014 817 4 0.013 499 8 0.012 746 0 0.004 738 7 	 	 	
5� 105 0.010 352 9 0.010 397 7 0.010 032 5 0.010 108 7 0.002 664 7 	 	 	
106 0.009 062 1 0.009 147 5 0.009 003 4 0.008 930 0 0.002 252 9 	 	 	
2� 106 0.008 040 3 0.008 147 7 0.008 057 8 	 	 	 	 	 	 0.008 53
4� 106 0.007 214 1 0.007 295 5 0.007 244 0 	 	 	 	 	 	 0.007 33
5� 106 0.006 977 5 0.007 050 9 0.007 005 5 0.007 039 7 0.001 608 7 	 	 	
6� 106 0.006 787 1 0.006 862 6 0.006 820 3 	 	 	 	 	 	 0.006 82
8:95� 106 0.006 397 9 0.006 488 3 0.006 435 3 	 	 	 	 	 	 0.006 51
107 0.006 296 5 0.006 394 3 0.006 294 3 0.006 431 9 0.001 495 7 	 	 	
1:2� 107 0.006 137 3 0.006 228 17 0.006 170 8 	 	 	 	 	 	 0.006 53
5� 107 0.005 112 8 0.005 102 1 0.005 082 9 0.005 128 0 0.001 092 0 	 	 	
108 0.004 716 9 0.004 716 8 0.004 6502 0.004 696 2 0.000 933 7 	 	 	
109 0.003 512 5 0.003 547 7 0.003 535 7 0.003 400 6 0.000 560 9 	 	 	
1010 0.002 755 5 0.002 814 7 0.002 767 3 	 	 	 	 	 	 	 	 	
1011 0.002 204 9 0.002 147 2 0.002 217 3 	 	 	 	 	 	 	 	 	
1012 0.001 802 8 0.001 764 5 0.001 812 6 	 	 	 	 	 	 	 	 	

FIG. 36. The shape function, /, for various bc in the range �1:0 < bc < 18:0 evaluated at Rs ¼ 106. Successive curves are in increments of 0.5.
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The McCroskey correlation (74) lies slightly below the UVP results
and has a slightly smaller slope and intersects the blue, magenta, and
green curves at about Rchord ¼ 107. The black error bar in Fig. 38 at
Rchord ¼ 107 indicates the variation in the data in Fig. 4 of McCroskey.41

The filled red circles in Fig. 38 are results from SU233 using the
Spalart–Allmaras model.37 No transition model was used in the com-
putations. Between Rchord ¼ 106 and 109, the difference between the
UVP drag and the SU2 data are generally less than 0.0002. The results
for Rchord ¼ 109 were obtained using a procedure consistent with the
lower Rchord cases. The finest grid available from the Langley

Turbulence Modeling Resource webpage42 gave a wall spacing of 10�7

m corresponding to a minimum yþ� 1 over significant portions of
the airfoil instead of the preferred yþ � 1. This inability to accurately
capture the viscous sublayer over much of the airfoil may explain the
slight under-prediction of SU2 relative to the UVP at this high Re.
While further validation in high Re flows is still needed, this case does
demonstrate close agreement of the UVP method with established tur-
bulence models at high Re.

The good agreement between the UVP and SU2 results is to be
expected given the fact that the flat plate wall friction coefficients gen-
erated by both Eqs. (30) and (34) are in good agreement.

FIG. 39. Viscous drag force on the NACA0012 airfoil at Rc ¼ 107 as a function of
position. Comparison between the UVP first iteration (magenta, dashed) and the
UVP final iteration (magenta, solid).

FIG. 38. Cdv for the J0012 airfoil (blue curve, see inset) and NACA 0012 airfoil (magenta curve) determined using the integral form of the UVP. The magenta vertical error bar
is the variation of Cdv that would occur if optimal parameters in the UVP were increased or decreased by the variances given in Table I. The green curve is Cdv calculated using
the high Reynolds number explicit form of the UVP. Red filled circles are Cdv computed using SU2

33 with the Spalart–Allmaras model.37 Open black circles are NACA 0012
tripped data from Ladson40 averaged over grit sizes 80–180. The black dashed curve is the correlation of tripped NACA 0012 data from McCroskey.41 The black vertical error
bar represents the variation (DCdv ¼ 0:001 2) in the tripped data evaluated by McCroskey.

FIG. 37. Estimate of the error when the explicit form of the UVP, Eq. (72), is used
to determine boundary layer thickness Reynolds numbers F1 (dotted line) and F2
(dashed line) neglecting the near wall region. Log region for a ZPG boundary layer
begins at yþ ¼ 132.17
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The results in Fig. 38 are all consistent with the point made in Sec.
IIC that the UVP represents a tripped boundary layer with a critical
Reynolds number close to the minimum needed to sustain turbulent flow.

A. Drag force comparison between the UVP and SU2
NACA0012 results at Rchord ¼ 107

To investigate the UVP and SU2 drag coefficient results in a little
more detail, the viscous drag force distribution along the NACA 0012
airfoil is shown in Figs. 39 and 40.

Figure 39 shows the drag force distribution generated by the first
and last iterations of the UVP integral method. The first iteration is
remarkably good considering that there is no adjustment of b or n.
Most of the variation in drag is accounted for by the relationship
between the free stream velocity and wall friction inherent to the UVP.
The largest difference between the first and last iterations occurs near
the airfoil trailing edge where the adverse pressure gradient adjust-
ments of b and n are needed to properly capture the drag force as well
as other boundary layer characteristics in that region.

In Fig. 40 the SU2 distribution, shown in black, is compared to
the final iteration of the UVP distribution, shown in magenta. The two
curves almost overlap over most of the wing. Over the last 2% of the
chord the UVP drag drops rapidly to almost zero near the finite angle
trailing edge, while the SU2 curve rises slightly in response to the
beginning of the airfoil wake.

IX. CONCLUDING REMARKS

The universal velocity profile, developed originally for pipe
flow,11 provides a very accurate approximation to channel flow and
boundary layer flow with zero, favorable, and adverse pressure gradi-
ent. A modified Clauser parameter, bc, is defined for the first time and
shown in Figs. 18 and 19 to correlate well with the parameters b and n
that characterize the wake portion of the UVP. This result provides a
complete characterization of the Reynolds number and pressure gradi-
ent dependence of the UVP enabling it to be used to create the new
integral method presented in this paper. Interestingly, the first itera-
tion on Cdv with b and n fixed at the zero pressure gradient values is
remarkably close to the final value, although the distributions of Rs

and Cf generated by the modified Clauser parameter are essential to
properly capture the trailing edge flow.

For all calculations, the parameters that characterize the wall
flow, ð�k; �a; �mÞ were held constant at the values in Table I independent
of the pressure gradient.17 As additional boundary layer data become
available, the average optimal parameter values will continue to change
slightly although the impact on calculated values of Cdv will be
decreasingly small as the sample size grows.

The Cdv generated by the UVP in Fig. 38 and Table IV is gen-
erally in very good agreement with the McCroskey/Ladson data
and the Cdv data generated by SU2. The conclusion that can be
drawn from the results in Table I and Fig. 38 is that the UVP inte-
gral method is an effective method for determining viscous drag
on smooth aerodynamic shapes. The conclusion from the discus-
sion of Figs. 5 and 9 and the comparison between the UVP and
Ladson/McCroskey data in Fig. 38 is that when the UVP is used
beginning at the airfoil leading edge, the drag should be regarded
as that of a tripped boundary layer with a critical Reynolds number
close to the minimum required to sustain turbulent flow.

To handle an untripped case, the laminar and transitional part of
the flow will need to be determined using a transition criterion for the
boundary layer along with additional information about the free
stream. One might use the well-known model of boundary layer tran-
sition where transition is considered complete after the amplification
of unstable initial disturbances by a factor eN.43,44 For a boundary layer
developing in a very low free stream turbulence environment, for
example, Schubauer and Klebanoff,30 N would be selected to be in the
range 9–12, whereas for a boundary layer developing in a highly turbu-
lent free stream one might choose N � 1. The problem of how best to
incorporate a transition criterion into the universal velocity profile is a
subject of current research.

Large eddy simulation of wall flows is faced with the conflict
between the need to reduce grid resolution near the wall in order to
reduce computational cost and the requirement to accurately deter-
mine the wall friction. Since the large eddy simulation (LES) grid
under-resolves the fine scale motions near the wall that are responsi-
ble for generating the wall stress, empirical wall functions need to be
used between the first grid point and the wall in order to determine
the friction. These functions inevitably encounter the log-layer mis-
match problem.45–48 The UVP provides an accurate value of the
mean stream-wise and wall-normal velocity components as well as
the turbulent shear stress throughout the viscous wall layer without
assuming a log or power law profile and may provide a useful alterna-
tive to the current approach. That the UVP can provide an accurate
connection to the wall is evidenced by the fact that virtually all the
experimental non-DNS datasets that we have approximated thus far
only contain data that is well outside the wall layer.

The inherent dependence of the UVP on Reynolds number,
extended to include the effect of pressure gradient enables it to be used
as the basis of a new method for integrating the K�arm�an equation for
a wide variety of attached, wall bounded flows. There is really no prac-
tical limit to the Reynolds number that can be computed suggesting
that, with modification for the effects of compressibility and/or rough-
ness, it can be applied to very large-scale aerodynamic, hydrodynamic,
and geophysical flows.

Ultimately, fundamental questions about the optimal parameters
will need to be answered as to their numerical values, dependence on
flow geometry (seen clearly in Table I), and possible weak dependence on
Reynolds number, free stream turbulence, surface roughness, Mach

FIG. 40. Viscous drag force on the NACA0012 airfoil at Rc ¼ 107 as a function of
position. Comparison between the UVP final iteration (magenta) and the viscous
drag computed using SU2 with the Spalart–Allmaras model (black).
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number, and so on. It is not clear when the high Reynolds number
boundary layer data required to address these questions will become
available.
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APPENDIX A: SHAPE FUNCTION COEFFICIENTS

The polynomial approximations to the coefficients in Eq. (71)
are listed below. These approximations are only valid in the range
�1:0 < bc < 18:0. Outside that range the higher order terms will
produce very large errors,

c0ðbcÞ ¼ 3:185 213 759 059 279 5� 0:000 097 351 124 875 088 01 bc

þ 0:000 857 641 541 537 847 5 bc
2

� 0:000 134 299 418 144 835 46 bc
3

� 0:000 020 654 101 916 920 754 bc
4

þ 0:000 015 020 911 822 593 57 bc
5

� 2:968 623 256 456 977� 10�6 bc
6

þ 2:963 701 061 289 852 4� 10�7 bc
7

� 1:631 850 736 220 117 2� 10�8 bc
8

þ 4:735 140 769 133 537� 10�10 bc
9

� 5:670 359 008 088 255 5� 10�12 bc
10; (A1)

c1ðbcÞ ¼ 0:177 875 635 158 609 52� 0:243 068 542 472 120 7 bc

� 0:182 315 590 796 708 98 bc
2

þ 0:114 167 281 428 819 74 bc
3

� 0:032 508 461 93 233 937 bc
4

þ 0:004 881 950 187 888 647 bc
5

� 0:000 419 972 498 600 616 4 bc
6

þ 0:000 020 756 027 245 732 183 bc
7

� 5:360 810 884 925 711� 10�7 bc
8

þ 4:864 234 131 520 179 6� 10�9 bc
9

þ 2:745 541 114 505 071� 10�11 bc
10; (A2)

c2ðbcÞ ¼ 8:752630174726951þ 5:383284010214323 bc

�1:8028966646015667 bc
2 � 0:07703404654016949 bc

3

þ0:3353816601584887 bc
4 � 0:10340900814891144 bc

5

þ0:015699101594675673 bc
6

�0:0013723926673048458 bc
7

þ0:000070043102706461 bc
8

�1:9400869074381027� 10�6 bc
9

þ2:2546034312064752� 10�8 bc
10; (A3)

c3ðbcÞ ¼ � 29:320 201 478 527 7� 13:009 083 141 290 633 bc

þ 9:891 072 103 799 035 bc
2 þ 0:286 430 751 940 286 4 bc

3

� 1:264 366 997 570 824 bc
4 þ 0:357 951 024 377 768 16 bc

5

� 0:051 953 118 683 825 3 bc
6

þ 0:004 449 565 462 995 644 bc
7

� 0:000 225 332 996 880 537 36 bc
8

þ 6:231 250 458 034 746� 10�6 bc
9

� 7:250 246 433 619 231� 10�8 bc
10; (A4)

c4ðbcÞ ¼ 63:370 268 858 329 155þ 21:206 924 878 802 89 bc

� 28:490 362 428 461 17 bc
2 � 1:383 788 687 404 143 2 bc

3

þ 2:999 048 905 796 227 5 bc
4 � 0:761 144 546 069 162 7 bc

5

þ 0:104 860 072 527 180 98 bc
6

� 0:008 803 651 704 295 447 bc
7

þ 0:000 444 105 810 851 922 5 bc
8

� 0:000 012 319 542 850 362 865 bc
9

þ 1:441 663 408 041 264 3� 10�7 bc
10; (A5)

c5ðbcÞ ¼ �87:693 764 826 178 6� 22:352 131 224 850 766 bc

þ 47:942 643 158 529 59 bc
2 þ 3:144 148 516 656 517 bc

3

� 4:414 688 172 210 721 bc
4 þ 1:011 217 929 468 684 7 bc

5

� 0:132 607 179 383 751 05 bc
6

þ 0:010 971 698 041 512 124 bc
7

� 0:000 554 916 304 796 180 4 bc
8

þ 0:000 015 534 289 801 032 056 bc
9

� 1:837 286 959 416 604 7� 10�7 bc
10; (A6)
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c6ðbcÞ ¼ 70:968 812 707 064 7þ 12:583 124 149 174 417 bc

� 46:888 434 832 647 61 bc
2 � 3:734 105 839 184 008 5 bc

3

þ 3:884 301 374 624 679 bc
4 � 0:802 627 524 234 329 7 bc

5

þ 0:099 762 336 519 354 65 bc
6

� 0:008 144 173 595 693 59 bc
7

þ 0:000 414 872 495 566123 67 bc
8

� 0:000 011 778 008 804 226 057 bc
9

þ 1:413 661 707 265 926 8� 10�7 bc
10; (A7)

c7ðbcÞ ¼ �29:738 042 179 000 644� 2:266 916 912 193 806 bc

þ24:689 251 860 732 828 bc
2 þ 2:271 539 156 916 986 bc

3

�1:867 706 886 189 081 3 bc
4 þ 0:344 688 708 245 448 8 bc

5

�0:040 023 433 517 290 326 bc
6

þ0:003 211 634 372 538 153 bc
7

�0:000 165 444 382 500 483 54 bc
8

þ4:791 043 532 302 556� 10�6 bc
9

�5:865 386 244 138 967 5� 10�8 bc
10; (A8)

c8ðbcÞ ¼ 4:625148665477973� 0:5052751642310225 bc

�5:39702974825034 bc
2� 0:5621422366316213 bc

3

þ0:37551115857217193 bc
4� 0:06025538777192411 bc

5

þ0:006292183567809945 bc
6

�0:0004888343881138325 bc
7

þ0:00002560878868557106 bc
8

�7:651119404966455� 10�7 bc
9

þ9:652853992263516� 10�9 bc
10: (A9)

APPENDIX B: UVP INTEGRAL METHOD FLOW CHART

A flow chart showing the procedure for the UVP integral
boundary layer method is shown in Fig. 41.
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