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Laser-Doppler velocity measurements in water are reported for the flow in the plane 
of symmetry of a turbulent spot. The unsteady mean flow, defined as an ensemble 
average, is fitted to a conical growth law by using data at  three streamwise stations to 
determine the virtual origin in x and t .  The two-dimensional unsteady stream function 
is expressed as @ = tg(6,q) in conical similarity co-ordinates 6 = x/U,t and 
7 = y/Uwt.  In  these co-ordinates, the equations for the unsteady particle displacements 
reduce to an autonomous system. This system is integrated graphically to obtain 
particle trajectories in invariant form. Strong entrainment is found to occur along the 
outer part of the rear interface and also in front of the spot near the wall. The outer 
part of the forward interface is passive. In terms of particle trajectories in conical 
co-ordinates, the main vortex in the spot appears as a stable focus with celerity @77UW. 
A second stable focus with celerity 0.64Uw also appears near the wall at  the rear of 
the spot. 

Some results obtained by flow visualization with a dense, nearly opaque suspension 
of aluminium flakes are also reported. Photographs of the sublayer flow viewed 
through a glass wall show the expected longitudinal streaks. These are tentatively 
interpreted as longitudinal vortices caused by an instability of Taylor-Gortler type 
in the sublayer. 

1. Introduction 
During the past few years, evidence has been accumulating which euggests that 

transport in turbulent shear flows i s  controlled by large coherent flow structures which, 
although they differ from one type offlow to another, all represent typical and recognizable 
concentrations of transverse mean vorticity at the largest scale of the flow. In this context 
a turbulent spot in a laminar boundary layer (Emmons 1951 ; Schubauer & Klebanoff 
1955) provides an example of an isolated coherent structure which may have important 
properties in common with structures in a fully developed turbulent boundary layer. 

Coles & Barker (1975, hereafter referred to as CB) took this point of view when 
making some exploratory measurements of flow in a turbulent spot. They concluded, 
on the basis of slender and partly circumstantial evidence, that a turbulent spot in a 
laminar boundary layer at constant pressure is  essentially a single large horseshoe vortex 
structure, that the vortex centre in the plane of symmetry moves at  about 0.83Um, and 
that the spot grows not only by entraining irrotational fluid from the ambient free 
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stream but also by entraining rotational fluid from the ambient laminar boundary 
layer. 

An independent and more extensive study by Wygnanski, Sokolov & Friedman 
(1976, hereafter referred to as WSF) has established the shape ofthe turbulent spot in 
three dimensions and has provided datja on all three components ofthe mean velocity 
in the interior ofthe spot. In the plane of symmetry, where the two experiments have 
some common ground, there is substantial agreement concerning the shape and mean- 
velocity field. WSF agree with CB that the spot is a large horseshoe vortex, but 
disagree about certain important properties of the vortex, especially its characteristic 
speed of propagation. CB deduced a vortex velocity of 0*83U, by following a con- 
spicuous minimum in the (ensemble) mean velocity as observed by a fixed probe in the 
outer part of the flow. WSF proposed as the characteristic spot velocity the celerity 
deduced in the conventional way from space-time correlations of the streamwise 
velocity. When they applied this correlation technique very near the wall in the plane 
of symmetry, they obtained the value @65U,. 

Both CB and WSF carried out stream-function calculations in moving co-ordinates 
for the mean flow in the plane of symmetry ofthe spot. A major issue in these calcula- 
tions was entrainment, and an obvious objection is that the mean flow was treated as 
two-dimensional. WSF quieted this objection by showing experimentally that 
3wla.z = 0 near the plane of symmetry and also by showing close agreement between 
measured and computed values of the normal velocity v. 

A second and more serious objection is that spot growth was not taken into account. 
In reality, a typical spot roughly doubles in size during the time interval between the 
passage of its leading and trailing interfaces past a fixed probe. At best, the stream 
function @(y, t )  as calculated from data at one station by CB and by WSF can only 
suggest the probable form of the instantaneous streamlines. Moreover, the calculated 
flow pattern is extremely sensitive to the speed chosen for the moving co-ordinate 
system, and it is precisely this speed which is an important unresolved element in 
the experiments. 

Our primary objective in the present research is to remove this second objection by viewing 
the process of spot growth in appropriate conical co-ordinates. We describe the experi- 
mental means of achieving this end, including an unusual flow-visualization technique, 
in $5 2-4. In  the main analysis, in $ 5  5-8, we establish the conical property for the 
present data, define a similarity form for @It as a function of x l t  and y l t ,  calculate 
proper instantaneous mean streamlines, and obtain mean particle paths in Galilean- 
invariant form by integrating the Lagrangian displacement equations graphically. 
Several singularities revealed by this process are interpreted in terms of structure. In  
$ 9  the results for particle paths and for the spot shape are combined to determine 
quantitatively the local rate of entrainment around the spot boundary in the plane of 
symmetry. Finally, an attempt is made in $ 10 to  assemble visual information from 
$ 3  and structural information from $4 7-9 into a coherent kinematic description ofthe 
turbulent spot. 
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FIGURE 1. Sketch of flat-plate model, showing important dimensions 
and co-ordinate systems. 

2. Model and test conditions 
The experiment was carried out in the GALCITt low-speed water channel, which has 

a working section 5.8 m long, 46 cm wide and 61 cm deep. The flat-plate model, 
sketched in figure 1, was the Plexiglas plate used by CB. Several changes were made 
in the model and in the test conditions to suit the purposes of the present research. The 
stream speed was approximately doubled, to  about 59 cm/s, in order to  obtain greater 
separation between the sublayer scale and overall scale of the flow. The orifice for the 
jet disturbance was moved upstream to a point 14 cm from the plate leading edge. The 
disturbance generator was a small three-roller peristaltic pump connected to  a constant- 
speed motor through a magnetic-particle clutch. By energizing this clutch for a short 
time, the pump could be rotated rapidly through a third of a revolution on command. 
One other structural change made in the model was the installation of several transverse 
cables on the underside of the plate about 2 cm from the plate surface. Tension was 
applied to these cables to bow the top or working surface into a slightly convex shape. 
After this change, laser-Doppler measurements could be made as close to  the wall as 
0-013cm. 

The leading edge of the model was set appreciably lower than the trailing edge in an 
effort to prevent premature natural transition by placing the forward stagnation 
line above the centre of the elliptical nose. The depth of the model below the free 
surface therefore decreased in the direction of flow while the measured velocity in the 
free stream increased, as shown in figure 2. The product of depth and velocity increased 
slightly, presumably because of displacement effects from boundary layers on the 
various walls. 

t Graduate Aeronautical Laboratories, California Institute of Technology. 
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FIGURE 2. Measured variation of water depth h and free-stream velocity U, along plate. 
Reference values at third measuring station: h,, = 12.1 cm; U,,,, = 59.5 cm/s. 

0 1 2 3 4 

FIGURE 3. Measured laminar velocity profiles a t  three measuring stations. A, z = 59cm; 
0, 1: = 89 cm; 0 ,  1: = 119 cm. Computed profiles are from Smith (1954) ; p is the Falkner- 
Skan parameter. 

Although the undisturbed boundary layer in the plane of symmetry remained 
laminar almost to the trailing edge, transverse contamination from the side walls 
began to interfere with spot growth about half way along the plate. The three main 
series of measurements were therefore made a t  stations located 59,89 and 119 ern from 
the leading edge, as indicated in figure 1 .  The Reynolds number at the third station, 
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based on the local free-stream velocity of 59.5 cm/s and the distance from the leading 
edge, was about 0.82 x lo6. 

Velocity profiles obtained in the undisturbed laminar boundary layer are shown in 
figure 3 in Blasius co-ordinates. The effect of free-stream acceleration in thinning the 
laminar layer is apparent. If the early part of the distribution Um(x) in figure 2 is fitted 
by a power law Urn - xm, the exponent m is found to be about 0.14. The corresponding 
Falkner-Skan parameter p = 2m/(m + 1 )  is about 0.25. The profile for this value of ,8 
(Smith 1954) is included in figure 3 and is reasonably close to the measurements at  the 
first two stations. The measurementa at the third station are well represented by the 
Blasius profile if the boundary-layer thickness is taken to be about 20 % less than the 
thickness calculated for dpldx = 0. 

3. Flow visualization 
Two different flow-visualization techniques were used to support the measurements 

reported here. The first technique was dye visualization like that applied to the spot 
problem by Elder (1960) and by Meyer & Kline (1961). In the present instance, a thin 
layer of dyed fluid was laid down very near the plate surface through a slot about 10 cm 
from the leading edge. CB used potassium permanganate dye in this way, but did not 
take photographs. Coles later obtained a motion-picture record of both the spot and 
the synthetic boundary layer. A similar record was made during the present experi- 
ments, except that the dye was vegetable food colouring. Two frames from these 
motion pictures showing the spot shape in plan view are reproduced in figures 4(a) 
and ( b )  (plate 1 ) .  Motion pictures of a turbulent spot in air have also been made by 
M. R. Head at Cambridge, using smoke in the laminar boundary layer for visualization. 
By kind permission of Dr Head, two frames from his motion pictures are reproduced in 
figures 5(a )  and ( b )  (plate 2).  As far as we are aware, none of these observers of the 
turbulent spot has reported seeing anything like the splitting which is known to occur 
under certain conditions for the puff in pipe flow. Each spot seems to remain intact 
and recognizable for as long as it can be seen.t 

Dye (or smoke) visualization is particularly effective in showing linear growth 
because the spot entrains dyed fluid from the wall region, picking it up like a vacuum 
cleaner. This dyed fluid is rapidly broken up and dispersed throughout the body of the 
spot before there is appreciable dilution. If the plate surface is initially completely 
covered with dye, entrainment is seen to occur along the full span of the spot, To the 
rear, the spot leaves behind a wedge-shaped wake of nearly clear fluid. This wake is 
slowly erased by downstream motion of the adjacent dye. When a second spot follows 
closely behind the first one, entrainment is visible only at the lateral extremities of the 
spot (cf. figure 4 b ,  plate 1 ). Dye which is present near the plane of symmetry of the 
second spot must therefore have been picked up at  a much earlier time. This dye tends 
to be more concentrated near the leading edge of the spot as the spot moves down- 
stream. Another observation, also illustrated by figure 4 ( b ) ,  is that a region of trans- 

t Wygnanski, Haritonidis & Kaplan (1978) have recently reported some remarkable observa- 
tions of regular wave packets a t  the outer edges of the laminar wake of a spot. These wave 
packets eventually degenerate into new turbulence. We have found no evidence of this pheno- 
menon in our motion prctares, perhaps because our Reynolds numbers were not sufficiently 
large. 
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verse contamination may be constructed of isolated structures which resemble 
half-spots. 

The second flow-visualization technique was less conventional. It employed an 
extremely dense suspension of aluminium flakes in the channel (about one part in three 
hundred by weight). Even under strong illumination, it was not possible to see more 
than 2 or 3 mm into the fluid. The suspension was prepared by wetting a quantity of 
dry powder (Alcan, grade M. D. 7300) with a liquid detergent to obtain a paste which 
was then diluted with water until it  flowed freely. Any unwetted flakes were skimmed 
off and the remaining mixture was poured into the channel while stirring continuously. 
In  this way about 15 kg of aluminium was added to the 45001 of water in the channel. 
No attempt was made to establish whether or not the final suspension behaved like 
a Newtonian fluid. The aluminium flakes were about 0.2,um in thickness and their 
largest dimension ranged from perhaps 5pm to as much as 30pm. They tended to settle 
slowly on the channel bottom, which therefore had to be swept or hosed at  intervals. 

Although there is no quantitative theory for the action of the flakes in changing the 
reflective properties of the suspension, it is certain that the flakes are oriented in a 
systematic way by the three-dimensional rate-of-strain field in the fluid. Moreover, 
they respond very rapidly to changes in this field. Information contained in a single 
photograph is essentially inTormation about the current state of the motion. This is an 
entirely different basis for flow visualization from that provided by smoke, dye, 
bubbles or other passive tracers. A single photograph using such tracers shows the 
cumulative result of all the various processes which have transported and concentrated 
or dispersed the tracer material, whether or not these processes are still active. 

In  order to use this aluminium visualization technique effectively, the A at-plate 
model was removed and a stable laminar boundary layer was established on the glass 
side walk of the channel. Spots were generated by touching the wall momentarily with 
a small rod. Two photographs obtained using this technique are reproduced in figures 
6(a)  and ( b )  (plate 3). The depth of view into the fluid is always less than or at most 
comparable to the scale of the smallest visible disturbances. In  regions where the 
flow is turbulent, in particular, the photographs show only the motion in the lower part 
of the sublayer. Figure 7(a )  (plate 4) is unique in showing a half-spot, generated by 
touching the wall a t  the free surface. The photograph is a view of the channel side wall, 
as usual, but a mirror has been mounted above the channel at 45 to show also a cross- 
section through the spot as seen at the free surface. Figure 7 ( b )  (plate 4) is a similar 
view of a fully turbulent boundary layer, with transition induced by a trip wire near the 
entrance to the channel. A stationary motion-picture camera was used to photograph 
a variety of spot patterns, mostly of the kind shown in figure 6. A motion-picture record 
was also made of the flow at the free surface for the case of the half-spot. For the latter 
purpose the camera was mounted above the channel on a carriage and was traversed 
manually to follow the spot. 

There is no doubt that the photographs in figures 6 and 7 show a new aspect of the 
sublayer streaks first observed at Stanford. Meyer & Kline (1961) found these streaks 
to be present under a turbulent spot, a turbulent wedge and a turbulent boundary 
layer. Our photographs confirm their conclusion and add some new information. The 
visualization of sublayer flow by the aluminium technique in figures 6 and 7 shows at  
first sight a confused, knotted structure which on closer examination is seen to be 
highly elongated in the stream direction. Individual streaks can often be followed for 
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FIGURE 8. Arrangement of transmitting and receiving optics 
for laser-Doppler velocimetry (not drawn to scale). 

long distances. Quantitative evidence was obtained by using an optical correlation 
technique (Kovasznay 1949) to  measure the scale h in the cross-flow direction for the 
boundary-layer flow in figure 7(b). In  dimensionless form, the value obtained? is 
A+ = u,h/v = 86, close enough to  the generally accepted value A+ N 100. 

4. Velocity measurements 
The streamwise velocity was measured using single-particle laser-Doppler veloci- 

metry in the dual-scatter mode. The optical arrangement is sketched in figure 8. The 
helium-neon laser (Spectra Physics, model 120) had a power output of 5mW. A 50-50 
cube beam splitter was used to generate the two scattering beams and was carefully 
adjusted to match the focusing and crossing points of the two beams within the water 
channel. The angle between the two beams in air was measured as 4.1 8", giving a fringe 
spacing of *h/sin Q8 = 8.68pm and a conversion factor of 1.15 kHz (cm/s)-l. Approxi- 
mately 16 detectable fringes were present in the focal volume. 

With the focal volume a t  the mid-span, traverses were made normal to the plate 
surface a t  three stations downstream of the disturbance generator (cf. figure 1). Each 
signal burst arising from passage of a single scattering particle through the focal 
volume was processed to extract the time of flight for four fringe-plane intervals 
(34.7 pm). This choice for the number of intervals avoided any undue restriction on the 
direction of the measurable velocity vectors (Dimotakis 1976). The time of flight was 
determined with a resolution of 1 ps using a 1 MHz time base derived from a 100 MHz 
crystal-controlled master oscillator. 

The real time of each signal burst was also measured by reading a free-running 
counter at the time of the first fringe crossing acceptable to the electronics. The real 
time was determined with a reaolution of 1 ms using a 1 kHz time base derived from 

t The measured value of h was 1.06 cm. The value obtained for the stream velocity U, by 
timing a small float was 15.0 cm/s. The viscosity v was 0.0087 cm2/s. The boundary-layer 
thickness 6 as viewed in the free surface in figure 7 ( b )  was estimated to be about 6-1 cm. The 
correlation by Coles (1962) waa used to relate Um6/v to uT/Um = (!&',)*. 
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FIQURE 9. Typical velocity traces for single realization and for ensemble-mean flow at third 
measuring station. Centre of focal volume is at y = 0-038 cm (lower traces) or y = 0.953 cm 
(upper traces). 

the same 100 MHz master oscillator. A spot was generated once every 7-22 a by a 
trigger pulse which also reset the real-time counter to zero. 

Figure 9 shows two typical data traces for a single spot passing the third measuring 
station, with the focal volume centred at y = 0.038 em (lower trace) and at y = 0.953cm 
(upper trace). The individual data points are connected by straight-line segments to 
simulate continuous high-frequency traces. The spot is generated at t = 0 and arrives 
at  the measuring station about 2 s later. In  the upper trace, the fluctuations before and 
after passage of the spot are not caused by free-stream turbulence, but by low resolution 
in the time-of-flight measurement. The fluctuations in the lower trace have a different 
cause; this is the presence of a substantial velocity gradient in the steady laminar 
boundary layer together with the finite extent (0.012 cm) of the focal volume in the 
direction normal to the wall (Kreid 1974; Mayo 1974). Note the very rapid increase in 
velocity close to the wall when the spot arrives. In  the example shown in the lower trace 
in figure 9, the velocity increases by a factor of five in the time interval between the 
passage of two consecutive scattering particles through the focal volume. There is also 
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FIQURE 10. Sampling frequency during spot passage as a function of harmonic-mean Doppler 
frequency. Both variables are ensemble averages for about 40 spots. Centre of focal volume is a t  
I: = 119 cm, y = 0.064 cm. 

a very high fluctuation level inside the spot, with instantaneous velocities ranging 
from @lU, to O-SU,. 

During the experiment, each data run at a given x, y location continued until a 
specified number of particles had been counted. This number was normally chosen to 
correspond to a population of 30-60 spots. During data processing, individual velocity 
measurements were first sorted according to their real time into 0.1 s time intervals, 
starting from t = 0. A typical population for each time interval was several hundred 
measurements. To represent this population systematically as a velocity histogram, the 
minimum and maximum measured values of the Doppler frequency for the given time 
interval were truncated and rounded up, respectively, until their integer difference 
(in units of 1OHz) was divisible by 24. The frequency data within each time interval 
were then sorted into a histogram of 24 bins spanning the observed range of frequencies. 

Two editing operations were carried out on the raw data. The LDV processor was 
able to record data and reset itself for the next reading in less than 1 ,us. Because of the 
small number of fringe crossings required for a measurement, multiple measurements 
were sometimes made for the same particle as it traversed the focal volume. These were 
identified by their coincidence in real time and were averaged to obtain one velocity 
measurement per particle. Although the LDV processor performed time and amplitude 
tests on every cycle of each signal burst (Dimotakis & Lang 1974), it was possible to 
obtain an occasional erroneous measurement because of the finite signal-to-noise ratio 
or failure to  reject signal bursts arising from multiple-particle scattering. One such 
measurement is indicated by the arrow near the top trace in figure 9. The method used 
to remove such obviously erroneous measurements was to compute the mean and the 
r.m.s. deviation a for the frequency data of each histogram. Points falling outside a 
tolerance of 4 a  on either side of the mean were rejected. This process was carried out 
twice for each histogram to obtain the final data used to define the mean velocity. No 
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FIU~RE 11. Basic data for experiment. Ensemble-mean velocity as a function of 1 for 
various values of y. (a) z = 59 cm. ( b )  x = 89 om. (c) x = 119 cm. 

more than a few dozen measurements had to be discarded out of a total of several 
million. 

Evaluation of the mean velocity from single-particle LDV data is subject to a 
sampling bias caused by the fact that higher velocities are observed more often 
(McLaughlin & Tiederman 1973). The sampling bias can be computed as a function of 
the velocity vector u, the angle 6 between the two beams and the ratio E of the minimum 
number of fringe crossings specified in the electronics to the total number of fringes in 
the focal volume (Dimotakis 1976). If e2, sin2 46 and v = / d  are all much less than unity 
(e - 0.25 for the present experiment), the sampling bias can be shown to be directly 
proportional to u, as originally proposed by McLaughlin & Tiederman. A.n unbiased 
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estimate of the mean velocity can then be obtained in terms of the harmonic mean of 
the individual meamrements, i.e. 

where the second form refers specifically to a velocity histogram, N being the total 
population and nk the population of the kth velocity bin centred at  u k .  The relatively 
smooth traces in figure 9 are made up of straight-line segments connecting such 
harmonic means, with the data centred in successive 0.1 s intervals in time. 

To illustrate the validity of the bias-correction algorithm, data obtained at 
x = 119cm and y = 0.064cm are shown in figure 10. The abscissa is the corrected 
(harmonic mean) Doppler frequency corresponding to a particular time interval. The 
ordinate is the associated population. The approximation of a linear relation appears to 
be quite adequate. In  the present measurements, the difference between the biased 
mean velocity (ensemble average) and harmonic mean velocity ranged from a fraction 
of 1 % to as much as 20 yo. The largest differences occurred close to the wall near the 
leading edge of the spot, where dispersion in the spot arrival time resulted in a mixture 
of laminar and turbulent samples. 

It is worth noting that use of the harmonic mean also corrects, at  least for laminar 
flow, the velocity-gradient bias which is caused by the finite vertical exte6t of the 
focal volume (Kried 1974; Mayo 1974). The filled symbol nearest the origin in figure 10 
corresponds, in fact, to the laminar data. 

Mean velocities observed a t  the three measuring stations at  x = 59, 89 and 119 cm 
are plotted as a function oft for various values of y in figure 11. These data are the basis 
of the analysis which follows. They have been filed in tabulated form in the aeronautics 
library at  GALCIT and can be obtained on application to the librarian. 

5. The conical property 
Figure 12 is a detail of four typical records of mean velocity against time at the third 

measuring station. For convenience, we have chosen to represent each record by several 
straight-line segments which intersect at  the points labelled A ,  ..., G in the figure. 
Point A marks the first occurrence of a detectable change in velocity. Point C marks 
the main velocity minimum. Point F marks either the final velocity maximum (close 
to the wall) or the last substantial disturbance (far from the wall). A t  G the relaxation 
from the velocity maximum at F to the final laminar velocity is 90 yo complete (the 
relaxation is of course detectable up to later times). The three points B, D and E are 
well defined, but their meaning is not, so they are simply carried along without 
prejudice in what follows. 

When all the data are treated in this way, the intersections A ,  . . . , G define several 
characteristic loci in the cross-section of the spot, as indicated in figure 13. The first 
use of these loci is to test the conical growth property for the spot in terms of x and t 
only. Each locus is represented by its earliest or latest time of arrival at a given station, 
as appropriate, and a set of rays is drawn through the corresponding arrival times. To 
good accuracy, the virtual origin of the spot in x can be placed 29 cm upstream of the 
disturbance orifice, or 15 cm upstream of the leading edge of the plate, while the virtual 
origin in t can be placed 0.34 s earlier in time than the actual disturbance pulse. Note 
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FIQURE 12. Four typical traces of ensemble-mean velocity at third measuring station, showing 
method used to define loci A,  ..., G. Distance from wall: a, 0.064 cm; p, 0.166 cm; y, 0-394 cm; 
6, 0.963 om. 
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FIGURE 13. Construction to locate virtual origin a t  xo = - 15 cm, to = -0.34 s for best approxi- 
mation to conical growth. See figure 12 for mean-velocity traces along horizontal lines labelled 
a, /?, y, 8 at third measuring station. 
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FIGURE 14. (u) Superposition of loci A ,  ..., G in conical co-ordinates (6, 7). 0, X = 104 cm; 
0 ,  X = 134 om. ( b )  Estimated mean pressure signature at wall. (c )  Same rn (a) but with identical 
scales for 5 and 7. 

that the variables x and t in figure 13 are directly measured quantities, so that the 
slight acceleration of the free stream is taken into account to first order in the speed 
estimates which are included in the figure. The most forward part of the leading locus 
B has a speed of about 0-87U,. The most rearward part of the trailing locus F has a 
speed of about O.57Um. The velocity minimum on locus C has a speed of about 0*80Um 
near the wall and a speed of about 0.77U, near the mid-height in the spot, rather than 
0.83U, as reported by CB. 

The conical property may now be further tested in terms of x, y and t by superposing 
the various loci in co-ordinates 

5 = X / U m T ,  7 = Y/U,T, (2) 

where X = x - xo and T = t - to are measured from their respective virtual origins as 
just defined (i.e. xo = - 15cm, to = -0-34s). The result is shown in figure 14. For 
heuristic purposes, and for the limited range of the present experiments, it is clearly 
permissible to treat the growth as conical in both x and y.t 

Figure 14 is a proper profile of a spot, unlike the profiles in figure 13, which were 
obtained from observations at  a fixed station. Such observations measure the flow field 
at the front of the spot when the spot is small, but measure the flow field at  the rear 
when the spot is considerably larger. To call attention to the real scales of the motion, 
the same proper profile is shown undistorted (i.e. with the same scale for 5 and 7)  at the 
top of figure 14. 

7 The virtual origin for z, a8 judged from the observed rate of growth in the motion-picture 
record represented by figure 4 (b ) ,  may be closer to the disturbance source. 
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As an operational dejinition, we now take the active region in a turbulent spot to be the 
region inside the closed contour B F  in figures 13 and 14. This active region is preceded 
and followed by regions AB and FG, respectively, in which there is an accommodation 
to an environment which consists in part of a uniform flow and in part of a laminar 
boundary layer. In this respect our picture of the spot is conceptually quite different 
from previously published pictures (Schubauer & Klebanoff 1955; CB; WSF). These 
authors have defined the spot boundary in terms of a threshold perturbation in the 
mean velocity or in terms of a threshold turbulence intensity, and thus may have 
included all or part of the accommodation regions AB and FG within the body of the 
spot. 

One immediate application of the conical property is estimation of the pressure 
signature at  the surface. Figures 11 (a)-(c) all show weak velocity perturbations in the 
potential flow in the free stream during the passage of the spot. Let u,(t) andp(t) be the 
perturbed velocity and pressure and let U, and P be the steady values at  much earlier 
or much later times. To a useful approximaltion, the flow in the free stream satisfies the 
linearized unsteady Bernoulli equation 

(P - P,/P = U,(U, - urn) - a$/at, (3) 

where is the velocity potential and in general u = a$/&. Conical similarity requires 
um/U, to have the form 1 + f I ( [ ) ,  where f '  = df/d<. Integration with respect to x at 
constant t gives 

Differentiation with respect to t and substitution in (3) yield finally 

$ / R T  = E+f (0 (4) 

( 5 )  c, = ( P  - W ~ P W  = - 2rf + (1  -Of 'I. 
The function f may be evaluated from the data by integrating the experimental values 
for f '. Despite the delicacy of this calculation, the results for the second and third 
stations are in excellent agreement after a suitable adjustment to  satisfy the necessary 
conditions f(0) = f (00) = 0 which are implicit in (4). The associated curve for C, from 
( 5 )  is plotted in figure 14. The unsteady terms f and u' turn out to be appreciable. 
Under the assumption that ap/ay can be neglected, this curve i s  the mean pressure signature 
that should be observed at the wall in the plane of symmetry of the spot. Incidentally, 
a reasonable estimate for ap/ax, using (5) and figure 14, supports the conclusion that 
streamwise pressure gradients within the spot are probably not important for the 
dynamics. 

Some small but definite effects of the Reynolds number appear in the present data. 
At issue is the accuracy of the assumption of conical similarity (i.e. the assumption of 
a single length scale U, T). In figures 13 and 14, the location of the knee near the wall in 
loci A and B apparently varies with the finite thickness of the ambient laminar layer. 
If so, this knee cannot share the conical property, because its distance from the wall in 
units of 7 varies like [h-f and hence vanishes as t becomes large for fixed 5. At the rear, 
by accident or otherwise, the region of accommodation FG scales with the rest of the 
spot in conical co-ordinates. A plausible explanation is that relaxation to the normal 
laminar state occurs in a time proportional to S 2 / v ;  but S varies like xt, and hence the 
relaxation time varies like x. 

Another effect of Reynolds number appears in figure 15, where the present data are 
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FIGURE 15. Mean-velocity profiles along locus C of minimum velocity, plotted in wall variables. 
Present experiment: A, z = 59 em; 0, z = 89 em; a, x = 119 cm. Other experiments: 
x , Coles & Barker (1975); +, Wygnanski et al. (1976). Law of the wall is from Coles (1962); in 
log region, u+ = (1/0.41) In y++5.0.  

examined (following WSF) through a fit to the law of the wall. The variables are 
u+ = u/u, and y+ = u, y l v ,  where u, is a parameter which need not necessarily be 
identified with (rw/p)3. For convenience, the figure shows the velocity variation along 
the locus C of minimum velocity in figure 14 rather than along a line normal to  the wall. 
Except for possible effects of the pressure gradient, the message of figure 15 is that the 
present data are not compatible with a momentum-defect law. Both an overall scale 6 
and a viscous scale v /u ,  are required in order to describe the mean velocity field inside 
the spot. The data of CB (their figure 2) and the data of WSF (their figure 16) are also 
included in figure 15. The conclusion by WSF that there is no wake component in the 
spot seems to  be inconsistent with their own data as well as with the present 
measurement% 

6. The unsteady stream function : similarity 
We now assume the mean flow in the plane of symmetry to be two-dimensional? (cf. 

figures 23 and 24 b of WSF) and introduce a stream function in the customary way by 
defining 

Because the flow is not steady, the stream function $ has the total differential 

(6) 

d$ = -vdx+udy+a$/atdt .  (7) 

= a$p/ay, v = -a$/ax. 

t There is persuasive evidence in some of our motion pictures that a version of the turbulent 
spot which is literally two-dimensional in the mean might be produced by starting with a line 
disturbance rather than with a point disturbance. The line disturbance might also be swept in 
z and t to produce a line-vortex structure which is not normal to the direction of the external 
flow, e.g. a structure with the characteristic angle shown in figure 4 ( b )  (plate 1). 
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FIQWRE 16. Contours of constant $/Urn in co-ordinates (y, t )  as computed for reference frame 
moving to right at  0.78Urn. (a) z = 59 cm. (b) z = 89 cm. ( c )  z = 119 cm. 



0.010 

0~010 

p. 

0,005 

0 -  

P 
0.005 

0 

- 

- 

657 

-0.2 0 0.2 

~ ~~ 

- 0.2 0 0.2 

~ 

- 0.2 0 0.2 

5’ 
FIUURE 17. Contours of constant ~5./pmT in conical co-ordinates ( X I U ,  T ,  Y /U ,T) ,  showing 
instantaneous streamlines in reference frame moving to  right at 0.78U,. (a) X = 74 cm. 
(b )  X = 104cm. ( c )  X = 134cm. 
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FIGURE 18. Instantaneous streamlines as in figure 17 (c) but computed for reference frame moving 
to right at 0,78U, and also moving upwards at O.O037U,. I 

Each of the three traverses in figure 11 was made at  a fixed value of x .  If the time t is 
also held fixed, the stream function $ can be evaluated from (7) by integration with 
respect to y of the appropriate instantaneous profile of the mean streamwise velocity u. 
Repetition of this operation for each time step for the data in figure 11 provides a table 
of values for $ on a rectangular grid in y and t .  There are three such tables, one for each 
measuring station (z = 59, 89, 119cm). 

Given such an experimentally defined stream function $(x, y ,  t )  in laboratory 
co-ordinates, consider first a Galilean transformation of this stream function to a 
co-ordinate system which is moving uniformly with positive horizontal and vertical 
components c1 U, and c2 U, respectively (see figure 1). Quantities in the moving system 
(denoted by primes) are related to quantities in the laboratory system by 

x1 = x-c,U,t, yl = y-c,U,t ,  t' = t ,  @I = @-c1Umy+c2Uwx.  (8) 

We now assume that the particular values c1 = 0.78 and c2 = 0 select a co-ordinate 
system which is moving to the right with a velocity characteristic of the large transverse 
vortex ofthe spot (cf. the celerity 0.77-0.80 associatedwith locusC in figure 14). When 
the Galilean transformation is carried out with these values for c1 and c2, the resulting 
contours of constant @' for the three measuring stations are as shown in figure 16. The 
procedure used to obtainJigure 16 makes no use of the conical property and i s  essentially 
identical to the procedure used by CB and by WSF. The appearance of closed contours 
suggests the presence of a vortex. However, these contours are not streamlines. 
Moreover, as pointed out by WSF, the nature of the stream-function contours 
is critically dependent on the value chosen for c1 (and also for c2). In laboratory 
co-ordinates, for example, where c1 = c2 = 0,  no closed contours would appear at 
all. 

Constant values of the stream function 9 define a family of stream surfaces in x ,  y ,  t 
space. Figure 16 amounts to a series of cuts through this family at  three successive 
fixed values of x .  What is wanted instead is the equivalent of a photographic record of 
instantaneous streamlines, i.e. a cut through the family of stream surfaces at  fixed 
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time. The most direct means to this end is use of a similarity transformation based on 
the property of conical growth which was established in $ 5 .  We know of only one 
precedent in the literature of turbulent shear flow for the kind of analysis which 
occupies the remainder of the present paper. This is Turner’s (1964) paper on the 
turbulent thermal, in which an equivalent transformation is applied, not to real data, 
but to a hypothetical rising and expanding Hill’s spherical vortex. 

In  the present problem the independent variables are the conical variables 
5 = X/U,T and y = Y/U,T, where X = x-xo and T = t-to. The appropriate 
similarity form for the unsteady stream function is 

ll.lU2,T =9(6,7). (9) 

It is necessary only to convert the tabulated experimental data a t  any one station to 
the form g(6, y) and to find contours of constant g by interpolation. Measurements for 
fixed x and variable t may now be interpreted as measurements for fixed t and variable x, 
thus allowing the v component of the mean velocity to be calculated from (6).The 
converted data may be referred to moving (primed) co-ordinates by rewriting (8) in 
similarity form: 

5‘ = 5-c1, y’ = 7-c.2, g’ = g-c,y+c,g (10) 

Figure 17 ahows contours of constant g‘ obtained by this method for the three 
measuring stations. The same constant values of g’ were used to produce each figure, 
and the values c1 = 0.78 and c2 = 0 are the same as those used for figure 16. For aJixed 
time, the contours of constant g’ are instantaneous streamlines as they would appear to an  
observer in the moving co-ordinate system. If the conical similarity were exact, figures 
17 (a)-(c) would be identical. In  reality, the results a t  the first measuring station are 
probably characteristic of the initial period of spot development, a period marked by 
a low speed and a high rate of growth. The results at the last two stations show better 
agreement. The important point is that the streamline pattern depends on the frame of 
reference, but the similarity between patterns does not. Nevertheless, figure 17 cannot be 
used to argue the question of entrainment. Although a contour of constant g‘ does not 
change position with time, this contour corresponds to different constant values of II.’ 
at different times. The unsteady term in (7) is not accounted for. 

In  figures 17 (b)  and (c) ,  the closed streamlines are centred at  some distance above the 
plate surface, at roughly 7‘ = 7 = 0.0037. If this vertical apeed is also taken into 
account in choosing a moving reference frame (i.e. if c1 = 0.78 and c2 = 0*0037), the 
streamlines for the third measuring station are as shown in figure 18. Relative to this 
reference frame, the plate appears to be moving to the left and downwards, so that 
streamlines intersect the plate at  a finite angle. The difference between figures 17 (c) 
and 18 illustrates the fact that small changes in the speed of the moving frame, 
particularly in the vertical direction, can cause large changes in the observed streamline 
pattern. In  terms of similarity variables, an equivalent statement is that g is  not 
invariant under translations in 6 and 7 .  

7. Particle paths 
The unsteady stream function just defined also contains valuable information about 

mean particle trajectories. It is clear from figure 9 that fluctuation levels within the 
spot are high. Turbulent dispersion may therefore cause the mean of an ensemble of 
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FIGURE 19. Particle paths in x, y and 6 ,  7 co-ordinates for 
(a) fluid at, rest, and (b )  uniform flow. 

particle paths through a given initial point to be quite different from a particle path 
which is inferred from the mean-velocity field (Hunt & Mulhearn 1973). For the 
limited purpose of identifying the main structural properties of the spot, however, we 
propose to treat the unsteady mean motion as if dispersion were unimportant. 

Particle paths in an unsteady two-dimensional flow are defined by the simultaneous 
equations 

(11 )  

Equations (1 1) constitute a nonlinear initial-value problem which might be difficult to 
solve even if u and v were known analytically. In  the present situation, u is a measured 
quantity (v is inferred from continuity) and is known only a t  discrete points in the flow. 
I n  any event, since the direction of particle paths through a fixed point depends on 
time, integrated particle paths obtained from ( 1  1 )  would probably contain very little 
useful information (Hama 1962). Indeed, if the number of particles chosen for the 
integration were large, the result in x, y co-ordinates would be a tangle of intersecting 
lines and orbits. Furthermore, the pattern of particle paths, like the pattern of stream- 
lines, would depend on the speed of a moving observer. 

Most of these difficulties disappear when the conical-similarity form (9) is used for 
the stream function. Similarity is a powerful organizing influence in any experimental 
situation, and the stream function itself guarantees continuity. Let (1 1) be rewritten 

1 dz(t ) ldt  = u [ W ,  Y ( t ) ,  tl, 
dY(t)/dt = V [ W , Y ( t ) ,  tl. 

in terms of 5, 7 and g ( 5 , ~ ) :  
d( /dr  = g7 - 6 = ./urn - 5, 
d7ld.r = - gc - 7 = v/um - 7, 

where r = InT. Equations (12) have the property that the right-hand sides do not 
depend explicitly on the independent variable r. Consequently, while the position of a 
particle in 5 , ~  space varies with time, the trajectory of the particle does not. I n  fact, 
not only are particle trajectories in 5, 7 space independent of time, but they are also inde- 
pendent of the speed of a uniformly moving observer. This property follows directly from 
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FIGURE 20. Displacement-vector field in conical eo-ordinates for the data at  X = 134cm. 
(a )  Every third data point plotted. (b )  Ordinate expanded by a factor of three; every data 
point plotted. 

( lo),  whichimplyg;.-E' = g,-c,-[+c, = g7-[and g;.+y' = gE+c2+y-c2 = gE+q.  
All observers, moving or not, would assign the same numerical values to the quantities 
-g;.-y' and g;.-[' and to  their ratio d y ' l d r  = dq/d(. A moving observer would 
assign these values a t  points which are uniformly displaced by fixed amounts c1 in [ 
and c2 in y, but this displacement would not affect the pattern of particle trajectories. 

In  effect, the conical transformation can be viewed as a zoom transformation in which 
the observer i s  receding in the z direction, out of the plane of the motion, at a rate which 
freezes the apparent size of any linearly growing features of thejlow. 

It may be helpful to illustrate the nature of conical similarity as a zoom transforma- 
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tion by considering two simple cases. These are the case of fluid at  rest (9 = g = 0) and 
thecaseoffluidmovinguniformlyatspeedU,(@ = U,y = U2,tq; g = 7). Equations(12) 
then become 

for the first case and 

for the second. 
Particle paths in x, y and 5,q co-ordinates for the two flows are shown in figure 19. 

It is clear that a receding observer need not make a distinction between a uniform flow 
and no flow at all; the pattern of particle paths is the same in both cases. Consequently, 
there is no loss of generality in supposing that the observer is at  rest in x, y co-ordinates. 
We emphasize that the flow in figure 19 is not a sink flow and that the velocity can not 
be inferred from the separation between adjacent particle paths as if the flow were 
steady. 

Finally, note that an isolated turbulent spot can be thought of, in either the analytical 
or the experimental context, as a moving perturbation to a uniform flow. Far from the 
point ( 1 , O )  in 6, 7 space, therefore, particle paths can be expected to behave asymptoti- 
cally like the rays in figure 19(b) ,  whatever the details of the flow in the spot (cf. 
figures 20 and 21). 

d ( /dr  = -5, d7ldT = -q (13) 

d[/dr = 1 -[, d7ld-r = -7 (14) 

8. Structure 
In the present instance, it is convenient to solve the particle-path equations (12)  

graphically by the method of isoclines. The method is illustrated in figure 20 ( a )  for the 
data at the third measuring station. Figure 20 (b)  is similar except that the ordinate 
has been expanded by a factor of three to show more detail near the wall. Each grid 
point in 5, 11 co-ordinates has affixed to it the tail of an arrow whose head points in the 
direction of increasing time. The slope of a given arrow is d y / d c  = ( - gs - q) / (g ,  - [) 
and its length is proportional to the local rate of displacement. Because the relative 
displacements cover a wide range of magnitudes, a cut-off length is used to avoid over- 
lapping arrows. However, relative displacements are correctly shown near critical 
points, i.e. points where dTld[ has the form O / O .  Far from the critical points, the actual 
rates of displacement may be several times larger than those shown. 

The critical points were located as intersections of boundaries separating positive 
and negative values of the two functions g,  - 5 and - gs - 7. Slopes in the neighbour- 
hood of the intersections were then used to classify these points (see appendix). The 
spot turns out to contain four critical points. There are two saddles, or stagnation points, 
and two stable foci,? or points of accumulation. These are labelled I ,  11, I11 and IV 
in figure 20(b).  

Representative particle paths are sketched in jigure 21 with the critical points placed 
according to the data at the third measuring sta.tion. This  jigure i s  the main result of the 
present paper. The particle paths are shown as dashed lines inside the body of the spot 
to indicate that turbulent dispersion has been neglected. 

t The term stable focus may seem to be unnecessarily formal. However, in the mathematics 
of autonomous systems, the term vortex point is sometimes used to  describe a critical point 
which is a t  the centre of a family of closed orbits. To avoid confusion, we take the more formal 
approach here. 
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FIGURE 21. Sketch of particle trajectories, with critical 

points located and classified from the data. 

Several useful conclusions with respect to  structure follow from the analysis so far: 
(i) Comparison of figure 2 1 with figure 17 (or figure 18) confirms that lines of constant 

g are not particle paths, nor are they tangential to particle paths. The reason is explicit 
in (12); the rate of displacement of a particle in 5 , ~  space is the vector sum of the 
velocity field defined by g (with components g,, - gt) and the apparent velocity field 
induced by the recession velocity of the observer (with components - 6) - 7). 

(ii) There are actually two vortex structures associated with the average spot. One is 
the large transverse vortex (focus I in figure 20b) which was previously identified by 
CB. The other, close to the wall near the rear of the spot, is a secondary vortex (focus I11 
in figure 20b)  which probably influenced the measurements of celerity by WSF. 

(iii) The foci in figure 21 do not violate continuity, nor do they imply three-dimen- 
sional mean flow. They are points of accumulation as they would appear to an observer 
who is receding out of the plane of the flow in a way which preserves the linear dimen- 
sions of the spot. Figure 19(b), which shows particle paths for uniform flow, where the 
fluid appears to vanish into a sink a t  (1,0), underlines this point. 

(iv) Figure 21 is also a generalized celerity plot for the turbulent spot. Each 
point (5,q) defines its own celerity. In particular, the primary focus I moves with 
celerity c1 = 0.77, c2 = 0.0038 (cf. the original estimate c1 = 0.78, c2 = 0.0037 in $6) )  
while the secondary focus I11 moves with celerity c1 = 0.64, c2 = 0.0006. These 
celerities do not depend on the speed of a uniformly moving observer. 

These conclusions are possible only because the structure of the spot is remarkably 
stable and permanent. This structure is not noticeably strained or distorted by either 
internal or external mean motion. The ambient flow accommodates t o  the presence of 
the spot by submitting to entrainment or by passing over or under the spot vortices. 

9. Entrainment 
Entrainment and growth are characteristic of all unconfinedBurbulent shear flows. 

Entrainment rates have traditionally been defined in terms of a volume or mass 
balance based solely on properties of the mean flow. While this definition is quite 
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fluid relative to  spot boundary. 0, uJU, ; 0 ,  u,,/U,. 

useful for engineering purposes, it says nothing about the actual physical processes 
which govern entrainment. Since the work of Corrsin & Kistler (1954), entrainment 
has also come to mean propagation of a thin laminar-turbulent interface into non- 
turbulent fluid by viscous diffusion of vorticity, a process sometimes called nibbling. 
According to this view, entrainment rates are controlled by the properties of small- 
scale turbulence in the neighbourhood of the interface. In the mean and on a large 
scale the interface can be thought of as essentially flat. It entrains over a relatively 
large area by propagating normal to itself relatively slowly compared with the absolute 
mean velocities in the same flow. Hence fluid often tends to cross the mean interface 
at a quite shallow angle. 

A somewhat different view has been proposed by some proponents of large-eddy 
models of turbulence (e.g. Bevilaqua & Lykoudis 1971; Brown & Roshko 1974). The 
assertion here is that entrainment usually also involves a large-scale process sometimes 
called engulfment, or gulping, in which non-turbulent fluid is incorporated into the 
turbulence by a folding process analogous to the rolling-up of a rug. According to this 
view, entrainment is directly controlled by the motion induced by large vortex 
structures in the flow. Non-turbulent fluid is considered to be committed to eventual 
entrainment well before it is actually entrained in the sense of acquiring three- 
dimensional vorticity at  small scales. This view, like the previous one, is an over- 
simplification of a complicated phenomenon, and the two views may in fact differ 
mainly in the scale of the process being described. 

Having figure 21 in hand, we are in a position to make quantitative statements about 
entrainment for the turbulent spot, at  least in the plane of symmetry. It should be 
kept in mind that the spot boundary is defined here in terms of features of the mean- 
velocity field (see Q 5 )  and may not coincide with the mean position of the laminar- 
turbulent interface, however the latter might be defined. With this reservation, the 
2, y components of the dimensionless velocity of the spot boundary itself are simply the 
6, r] co-ordinates a t  any point. Within the fluid, the x, y components of velocity relative 
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Region Arc 

cd 
Outer de 

ef 
Intermediate bc 

fs 
Wall ab 

gh 
Total ah 

Destination 
1 dA 

V$, Te V$,T dT 
-- A 

0.0002 0.0028 FOCUS I 
0.0025 

0~0001 
0.0010 0.0013 FOCUS I11 
0.0003 

I 0.00146 0.0029 

0.00054 0.001 1 

0.00007 0.0001 

0.00207 0-0041 

} 
Through flow 

0.0043 

TABLE 1 

to the boundary are given by (12) as g, - f; and - gE - 7. It remains only to calculate the 
components of relative velocity for axes normal and parallel to the boundary a t  each 
point. The results are plotted in figure 22 as a function of arc length, beginning a t  the 
rear of the spot. 

Integration in figure 22 leads to the estimated entrainment rates listed in table I ,  
where the symbol A refers to the area of the particular region in question and S is the 
arc length along the spot boundary. In  figure 21 the spot is divided into outer, inter- 
mediate and wall regions by the two horizontally running separatrices which pass 
through the saddles I1 and IV originally defined in figure 20 (b ) .  The rates for the three 
regions are listed separately in the table. There is good overall agreement between the 
growth rate computed by integrating local entrainment rates and the growth rate 
required by the property of conical similarity. Since these two rates are determined 
almost independently, the agreement supports the assumptions of the analysis. It is 
possible that the wall region, and perhaps the intermediate region as well, will make up 
a smaller and smaller fraction of the spot as time and the Reynolds number increase. 
In any event, the results presented in figures 21 and 22 and in table 1 are submitted as 
a valid description of structure and entrainment for the limited time of observation 
represented by the present data. 

Figure 22 and table 1 show that entrainment is far from uniform around the peri- 
phery ofthe spot. In particular, our data do not confirm a conclusion reached by WSF, 
that there is appreciable entrainment along the outer front boundary (the segment de) .  
More than 80 % of the entrainment occurs by the process called nibbling along the 
upper rear boundary (the segment bcd). The remainder occurs near the wall at  the front 
of the spot (the segment efg),  but not necessarily by the process called gulping. It 
seems to be primarily viscous friction at  the wall which brings this fluid within range 
of the spot, rather than motion induced by the large-eddy structure. 

10. Discussion 
The original objective of the present research was to study entrainment by exploiting 

the conical property of spot growth, in order to advance to the concept of instantaneous 
mean streamlines and to the more powerful concept of mean particle trajectories. As 
a result of the research, other prospects and other problems have appeared. For 
example, a knowledge of particle trajectories carries with it the prospect of eventual 
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access to dynamics, in terms of the description by the unsteady Reynolds equations of 
dynamical processes which act on a fluid element as it moves along a mean particle 
trajectory. The turbulent spot is a coherent structure which is filled with fluctuations. 
These fluctuations ought to be describable in the usual way, in terms of turbulent 
energy, turbulent shearing stress and turbulent dissipation. However, the concept of 
Reynolds stress now appears at a structural Eecel one step below the conventional level. 
Fluctuations are no longer to be measured with respect to a conventional long-time 
average. Instead, they are to be measured with respect to an average over an ensemble 
of realizations, with phase information retained at the largest scale. 

Unfortunately, the information available from the present measurements is 
essentially kinematic information. Neither our experiment nor any other experiment 
a t  present provides the information required for a competent discussion of dynamics. 
What is missing is information about velocity-velocity covariances and perhaps 
velocity-vorticity covariances of fluctuations at the lower structural level just defined. 
It would also be useful to know the distribution of wall shearing stress and to have 
more information about the pressure field. 

A few qualitative inferences can be drawn about dynamics by combining the 
kinematic evidence from $9 8 and 9 with the visual evidence from 0 3. The discussion is 
imprecise for at least three reasons. First, the mean flow in the plane of symmetry is 
unlikely to be accurately two-dimensional. Second, the assumption of conical similarity 
is demonstrably not exact. Third, ensemble-mean particle paths may differ sub- 
stantially from particle paths calculated from the ensemble-mean velocity field. One 
positive element in the discussion is the real scale of the cross-section of the spot in 
undistorted co-ordinates, as illustrated by the photograph in figure 7 ( a )  (plate 4) and 
by the sketch at the top of figure 14. This cross-section is sufficiently flat that it may be 
both useful and permissible to think in terms of a boundary-layer approximation 
involving nearly rectilinear flow in laboratory co-ordinates. 

Consider the processes which act on free-stream fluid entering the spot along the rear 
interface bcd in figure 21. Whether this fluid on the average winds up in focus I ,  with 
a final velocity 0.77, or in focus 111, with a final velocity 0-64, may not be important. 
What is important is that this fluid undergoes a violent introduction to turbulence 
as it is entrained at  the boundary F.  The fluid loses momentum rapidly between F and 
E (see the appropriate parts of traces y and S in figure 12). Given the boundary-layer 
approximation, it follows that much of the lost momentum must be transferred to 
fluid closer to  the wall. It is this transfer which accounts for the high shearing stress 
near the tail of the spot, in the vicinity of focus 111. A high stress level implies high 
turbulence production and active turbulence (at intermediate and small scales) which 
is able to propagate into the non-turbulent fluid at  a speed sufficient to hold the rear 
boundary F fixed in similarity co-ordinates. According to figure 22, the propagation 
velocity of the interface F normal to itself is about 0*02U,, i.e. about half of u, (cf. 
UJu ,  - 25 in figure 15). This description also suggests a mechanism to account for the 
finite speed of the spot at  the rear. If the tail were to lag relative to its normal position, 
the slower gradients in the stream direction inside the spot would signify a reduced 
rate of momentum loss and thus a reduced stress level. With or without a decrease in 
au/ay, the turbulence production and turbulence intensity would decrease, and the 
rear interface would propagate more slowly, restoring the status quo. It is also worth 
noting that fluid entrained at the rear of the spot overtakes the main vortex relatively 
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slowly. Estimates of the associated transit time might be useful in atudies of relaxation 
rates for large-eddy structures in more general flows. 

At the front of the spot, there is room for argument as to whether or not the outer 
part of the front accommodation region AB should be considered to be outside the body 
of the spot. Our view is that turbulence in this region must be aapable of transport, 
because there is a weak momentum loss for part AB of traces y and Q in figure 12. 
However, the nature of the particle trajectories in figure 21 suggests that this turbu- 
lence must be decaying, a t  least in the outer part of the flow, with energy only at  low 
frequencies (cf. figure 7a, plate 4). 

Entrainment also occurs as the spot overruns slower vorticity-bearing fluid in the 
ambient laminar boundary layer. In  the mean, according to figure 21, this entrained 
fluid can be divided into three layers. The two upper layers are swept up and incor- 
porated into the spot, while the lowest layer emerges intact (in the mean sense) at  the 
rear. In  reality, however, the aluminium flow visualization shows the motion in this 
lowest layer to be quite complicated, and Pome further discussion is appropriate. 

One of us (DC) has proposed on several public occasions, beginning with a Rand 
workshop on low-speed boundary-layer transition in 1974, that sublayer streaks may 
be longitudinal vortices caused by an instability of Taylor-Gortler type. This con- 
jecture has also recently been advanced independently by Brown & Thomas (1977). 
To see the force of the conjecture, consider the kinematics of the mean flow very near 
the wall during the passage of a turbulent spot. Suppose that a fluid element in the 
laminar layer just ahead of the spot is initially moving at  a velocity small compared 
with U,. When it is overtaken by the spot, the element must accelerate rapidly. This 
acceleration occurs between loci A and B in figure 14 and is evident in trace a in 
figure 12. Because of continuity, the element must also move much closer to the wall. 
Now it is a necessary condition for Taylor-Gortler instability that particle trajectories 
have finite curvature (necessarily concave to the free stream in the present case). In 
the two-dimensional mean flow in and near the sublayer, the trajectories during the 
latter part of the motion just described have curvature of the proper sign to allow the 
instability. Evidence that an instability actually occurs is given by the presence of 
streamwise precursor vortices under the overhanging nose of the spot in figures 6 and 7 
(plates 3 and 4). On the other hand, the conjecture so far does not include a mechanism 
to maintain the curvature of the mean trajectories, at  least locally, and thus keep the 
sublayer vortices active under the spot. Without such a mechanism, only visual 
evidence is relevant. 

A remarkable property of the sublayer structure in figures 6 and 7 is the high degree 
of homogeneity in space,t without any conspicuous indication that the unseen main 
flow contains motions on a much larger scale. This property is especially surprising in 
the case of the contamination wedge (figure 6, plate 3), which other evidence suggests 
may be made up of isolated spot-like structures (cf. figure 4b, plate 1). Part of the 
explanation may be that the streaks or vortices are sometimes being energized and 
sometimes not. A careful study of the aluminium photographs is required to conclude 
that active and passive regions can in fact be distinguished, but not well enough to 
infer the presence in certain regions of larger structures further from the wall. 

t This property of homogeneity is implicit in the work by the Stanford group. For example, 
Kline et al. (1967) were apparently able to count sublayer dye streaks in motion-picture framea 
selected at  random. 
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At the rear boundary of the spot, fluid being left behind close to the wall must 

eventually reconstitute part of the original laminar layer. To the extent that it has 
participated in the turbulent motion, this fluid is full of fluctuations. If these are 
primarily due to longitudinal vortices in the sublayer, it is reasonable to find that 
weak and fairly regular streamwise secondary vorticity is present in the rear accom- 
modation region FG. The flow visualization in figures 6 and 7 does show such vortices. 
As this secondary vorticity decays, it also supports a Reynolds stress by transporting 
fluid towards and away from the wall. This transport explains how the flow in the 
wake or calming region might possess an abnormally full profile without the benefit 
of a pressure gradient. The characteristic time for decay of these vortices is self- 
evident in figure 11. A t  each station, the decay time is close to the original diffusion 
time of the laminar boundary layer, which is by definition x/Um and thus is also the 
waiting time before arrival of the spot at the station in question. 

One remaining area of uncertainty is the meaning of the second focus I11 in figure 21. 
It is not an obvious feature. In fact, it was overlooked at  first, and appeared only when 
the scale was made finer in going from figure 20 (a )  to figure 20 (6) in an attempt to account 
for loci D and E in figure 14. This second focus seems to evolve with increasing Reynolds 
number and to be best defined at  the third station. It is possible that focus 111 appears 
as a precursor to splitting (more accurately, mitosis) and that more than one large 
eddy might appear in a single spot at  much higher Reynolds numbers if these were 
experimentally accessible. It is also possible that focus 111 is simply the terminal 
feature of the sublayer flow and is part of whatever mechanism shuts off the input of 
energy to the sublayer vortices at  the position of maximum wall shearing stress. 

Is the turbulent spot a prototype large eddy for the turbulent boundary layer! 
In  some respects we believe that it is. There is the feature of a large internal vortex, 
occupying much of the cross-section. There is also the localization of entrainment over 
the rear interface. On the other hand, an isolated mature spot is much too large, 
especially in the spanwise direction, to fit comfortably in a boundary layer. Extra- 
polation of the mean-velocity profiles in figure 15 to larger Reynolds numbers also 
suggests that the vortex motion (as represented by the wake component of the profile) 
can become more vigorous than might be expected for a corresponding large-eddy 
structure in a boundary layer. Perhaps it might be more useful, especially a t  large 
Reynolds numbers, to think of the turbulent spot as simply an alternative flow to the 
boundary layer. 

Finally, we emphasize once more that the essence of this paper is the application of 
a similarity transformation to experimental data. The basis for the transformation 
technique is the fact that the nonlinear particle-path equations are reduced by the 
similarity assumption to an autonomous system. This fact allows the motion to be 
analysed in the phase plane defined by the two similarity variables and permits the 
large-eddy structure to be described in terms of the unifying concept of critical points. 
The whole machinery of the mathematics of autonomous systems, a machinery which 
has been quite productive in other fields of nonlinear mechanics, might be made 
available to the field of turbulence a t  the slight cost of neglecting effects of finite 
Reynolds number on the large-eddy structure. It is even possible that the transforma- 
tion technique may eventually be capable of associating growth laws based on global 
similarity arguments with growth laws based on the idea of local entrainment by 
coherent structures. We therefore believe that this technique can play an important 
role in future research on turbulent shear flow. 
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FIGURE 23. Diagram showing how critical points were located. Solid arrows indicate direction of 
horizontal component of particle displacement. Dashed arrows indicate direction of vertical 
components of particle displacement. 
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Appendix 
By BRIAN CANTWELL 

The basis for the application of phase-plane techniques to the entrainment problem is 
the fact that  particle paths in fluid flows satisfy ordinary differential equations, 
namely 

If  the flow is steady, then the above equations reduce to an autonomous set with 
particle trajectories which are identical to  streamlines. If the flow is unsteady, then 
the reduction can be accomplished with the aid of a similarity transformation. It 
should be noted that the similarity form (9) used to fit the data in this experiment is 
not simply an ad hoc representation for the stream function, but a valid similarity 
transformation which can be used to reduce the number of independent variables in 
the two-dimensional Euler equation by one (Cantwell 1978). 

A great deal can be learned about the solutions to the particle-path equations by 
locating critical points and examining the slopes of the integral curves near these 
points (Perry & Fairlie 1974). Figure 23 shows schematically how the critical points 
were located. The solid line in figure 23 is the line of demarcation between positive and 
negative data for the quantity g, - 6 while the dashed line is the line of demarcation 
between positive and negative data for the quantity -gc-7. The critical points lie 
a t  the intersections of the two lines. In order to  classify the points, we assume that 
g7 - 6 and - gs - 7 are regular in the neighbourhood of a critical point, i.e. 

dx /d t  = u(x,Y,z,~), dY/d t  = v ( x , ~ ,  ~ , t ) ,  dz/dt = W ( X , Y , Z ,  t ) .  

where E0 and vo are the co-ordinates of the point. 
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5 0  7 0  a b * - A h 
89 119 89 119 89 119 89 119 

I 0.77 0.77 0.0037 0.0038 -2.2 -2.0 56 61 

I1 0.71 0.74 0.0013 0.0024 - 1.7 -2 .3  91 58 
111 0.65 0.64 0.00061 0'00061 -2.3 -1.8 264 254 

IV 0.62 0.61 0.00047 0.00041 -2.3 -2.7 457 467 

TABLE 2 

C d 
r - - h - - - A  

89 119 89 119 Type 

-0 .2  -0.3 0.5 -0.1 Stable 
focus 

0.04 0.04 0.4 0.3 Saddle 
-0.02 -0.02 0.2 -0.3 Stable 

focus 
0.01 0.01 0.2 0.7 Saddle 

The nature of the critical points can be established from the trace p = a+d and 
determinant q = ad - bc of the matrix A. The elements of A for each of the four 
singularitiea in the spot have been computed for the data at the last two measuring 
stations, See table 2. 

The velocity, vorticity and rate-of-strain fields in the neighbourhood of the critical 
point are computed as follows: 

u / u m  = 97 = t-+a(f-&J + b ( q - ~ o ) ,  

v/um = -gc; = r + c ( t - E o ) + d ( r - r o ) .  
A t  the critical point u/u, -+ to and v/um -+ ro. The vorticity is 

and the rate-of-strain tensor is 

S =  

In the neighbourhood of a saddle, the eigenvectors of A are directed along the 
separatrices and have slopes 

%,2 = ( A ,  2 - a) /b  = C/(Al, 2 - 4 7  

A 1 = - l - ( 1 - q ) 4 ,  A 2 = - 1 + ( 1 - q ) + .  

where A, and A2 are the eigenvalues of A. For a + d  = - 2, i.e. for au/ax + av/ay = 0, the 
eigenvalues become 

The included angle 8 between the separatrices passing through the critical point is 
given by 

cos 8 = ( I  + mlnz2) / [ (~  +m;)( + 1m$)]*. 

Thie equation can be rearranged to read 

*(b - c )  - -5  cos8 = 
{ - (1 +a)  (1 +d)  + [$(b +c)lZ}4 - 2( - det S)*' 
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which states that the angle between the separatrices through a saddle represents a 
balance between rotational motion (vorticity ) and longitudinal straining motion (the 
root mean of the product of the principal strains). If - (1/2( - det S ) t  < 1, the fluid 
exhibits saddle behaviour. As this ratio increases through one, the angle 0 passes 
through zero, the vorticity dominates and the fluid begins to exhibit focal behaviour. 
If the vorticity is zero, the angle is 90”. 

The phase-plane method used in this paper could be extended to three dimensions. 
We let the velocity and preasure field depend only on x / t ,  y / t  and z/t as follows: 

u = u(z / t ,  y p ,  Z / t )  = u(5,7, 4, v = v(z/t, y / t ,  4) = V ( 5 ’ 7 ,  4, 
w = w(x/t ,  y / t ,  = W(5,Y’ 4, p = p(./t, y / t ,  . /t) = P ( 5 , 7 , 4 .  

Then Euler’s equation becomes 

au au au l a p  
(u-E)-+(v-7) -+(w-u)-  = --- at a7 ag p a t ’  

av av av I ap 
( u - E ) - + ( v - ~ ) - + ( W - u ) -  = --- at ar ac p a s ’  

aw aw aw l a p  
(u-5)- +(v-q ) -+(w-u) -  = --- a5 a7 ag p a r  

and the particle-path equations become (r = In t )  

d[/& = u - fl ,  dq /dr  = v - 7, = w - U. 

Measurements of all three velocity components in the epot could be used to  map the 
complete three-dimensional entrainment pattern of the spot, in which case we should 
expect that the foci and saddles would extend to become horseshoe-shaped line 
singularities. 
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F~GCJRE 4. Dye visrializatioii of turbulent, spots in water. (a) Spot at low Reynolds number, from 
flow studips by Coles & Harlrer (Colrs, private eommuriieation); U, = 32 cm/s. ( 6 )  Spot at 
relatively 1iigh Reynolds riumber, from present cxpcrirnerits ; U, = 59 cm/s. Transverse lines in 
( b )  arf, cablcs 30.5 cm apart. Note rlmr wake rompared w i t h  (a) .  

(:AN'C\VEI.L, COLES m r )  DIMOTAKIR (Facing p. 672) 
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FIGURE 5. Smoke visualization of turbulent spots in air (conrtesy of M. R. Hecd). (a)  Oblique 
view of spot approaching observer, with illiirniriatiori by light sheet above laminar bouiidary 
layer. ( h )  Oblique view of spot receding from observer, with more difhse illominatiori tliat in ( a ) .  

CANTWELL, COLES AND I)IRIOTAT<IS 
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FIGURE 6. Aluminium visiialization of sublayer streaks for turbulent spots in water. ( a )  Low 
Keynolds number; U, = 12 cm/s. ( b )  Higher Reynolds nurnbcr; Urn = 23 cm/s. Note region of 
tmnsvorsc coritsminat ion from cliarmrl bottom. 
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FIGURE 7 .  Alnminkum visualization of sublsyer streaks for half-spot arid for boundary laycr. 
(a )  Half-spot at low Reynolds number; U ,  = 12 cm/s. Mirror I S  iisetl to show sirmiltaricoiis 
V I C W  of frec siirfacc. ( b )  As i n  (a ) ,  but) with fully tnrhulcrit  bonndizry layer; Urn = 15 cm/s. 


