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Abstract-Using Lie group theory. a self-similar solution. representing a diffusion flame in which both cross
stream and streamwise diffusion is included is obtained. The solution arises in problems related to conjugate
heat transfer and pollutant dispersion applications that are governed by the same partial differential equation.
Results including flame shape, flame height dependence on Peelet number and overall stoichiometry. are
compared with other known solutions. A unique feature of the solution is the existence of a maximum in
the size of the back diffusion region as a function of Peclet number. This could be important in very low
speed burner applications.
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INTRODUCTION

Exact analytical solutions to combustion-fluid mechanics problems are rare. In addition
to providing useful insight, analytical solutions are valuable in evaluating direct numerical
simulation codes and in providing initial conditions suitable for simulations. A classic
example is the laminar diffusion flame solution developed by Burke and Schumann (1928)
to predict diffusion flame heights in low speed burners. The important physics built in
their model is the balance of axial convection with radial or cross stream diffusion,
leading to a linear dependence of flame height on Peclet number. With the neglect of
streamwise diffusion, their model is necessarily limited to large Peclet number flows.
However, large Peclet number flows tend to be turbulent with flame heights independent
of Peclet number. Another problem in which streamwise diffusion is important is in
the analysis of flame structure to understand why unity Lewis number flames are not
susceptible to opening of the flame tip (1m et al., 1990). Chung and Law (1984) modified
the Burke-Schumann problem to include streamwise diffusion. In addition, their analysis
includes preferential diffusion effects. A problem that they allude to in some detail is
the possibility of the occurrence of back diffusion (of both heat and mass) upstream of
the burner exit, and the difficulty in treating it mathematically. They circumvent this
experimentally by placing a porous plate at the exit to suppress back diffusion. In their
analysis, they are thus justified in prescribing constant concentration (and temperature)
at the jet exit. Mahalingam et al. (1990) developed a self-similar solution in which a
simple closed form expression for the flame shape was obtained. However, their analysis
excludes streamwise diffusion. Experimental measurements by Eckbreth and Hall (1979)
at very short distances downstream of the burner exit in a propane-air diffusion flame
are suggestive of strong diffusional effects. In this paper, streamwise and cross stream
diffusion effects are included and a self-similar diffusion flame solution is obtained using
a fundamental approach based on Lie group theory. The solution is compared with
other diffusion flame solutions, and related to well established solutions that arise in
conjugate heat transfer problems and problems related to pollutant dispersion. The
solution provides new insight into the nature and extent of back diffusion.
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FIGURE I Schematic of two-dimensional Burke-Schumann flow configuration. The limit considered is
when the outer slot width approaches infinity and the inner slot is replaced by a line source of fuel.

PROBLEM FORMULATION

The problem considered is a low Mach number laminar diffusion flame established in
a coflowing, two-dimensional slot burner. Fuel and oxidizer flow through the inner and
outer slots and meet at the mouth of the inner slot as in Fig. 1. The limiting case, when
the outer slot width approaches infinity and the inner slot is replaced by a line source
of fuel at the origin, is the focus of the present study. The notation used in this section
closely follows Williams (1985). Radiation, diffusion due to pressure gradients, Soret and
Dufour effects are all assumed negligible. The diffusivities of all species and temperature
are assumed equal. Bulk viscosity and buoyancy are neglected, and convection velocity in
the cross stream direction is assumed to be negligibly small. The thin flame approximation
is made so that no penetration of fuel or oxidizer across the infinitesimally thin flame
surface occurs. The reader is referred to Clarke (1965) for a thorough mathematical
description of this model. Chemistry is modeled by a single, irreversible step between
fuel (F) and oxidizer (0) reacting to yield a product (P):

vFF + voO ---t vpP,

where the Vi are the stoichiometric coefficients. Let YF,O nd Y0,0 represent the fuel and
oxidizer mass fractions in their unmixed state. The following quantities are defined:

YF Yo
aF == ---, ao == ----, f3 == ao - aF,

WFVF Wovo

where YF and Yo are the fuel and oxidizer mass fractions, respectively, and WF, W0

are their respective molecular weights. The quantity f3 is the coupling function in the
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SELF-SIMILAR DIFFUSION FLAME 365

Schvab-Zeldovich formulation. Under the stated assumptions, for two dimensional flow,
{3 is governed by the conserved scalar equation

(2)

(3)

where p is the density, v is the streamwise velocity in the y direction and D is the diffusion
coefficient. Note that {3 ranges from {30,0 :: - Yos] WOVo to {3F,O :: YF,O( WFVF. Since {3
decays asymptotically to - YO,o(Wovo, rather than to zero in the far field, it is convenient
to define the mixture fraction

'</J:: {3 - {30,0 ,
{3F.O - {30,0

so that </J goes to zero in the far field (pure oxidizer) and </J = 1 in the pure fuel stream.
In the thin flame approximation, the surface {3 = 0 or </J = O<c, where O<c defined by

O<c:: Yo,o ( YF,o + Yo.O), (4)
Wovo WFVF Wovo

identifies the flame surface. Clearly </J satisfies Eq. (2). By making a further assumption
that pv and pD are constants, and defining

one gets,

pv
c::

pD
(5)

(6)
8</J 82</J 82

r/>c-=-+-.
8y 8x 2 8y 2

The objective in this paper is to seek a self-similar solution to Eq. (6). The limit
considered is the situation wherein the outer slot width approaches infinity and fuel
issuing from the inner slot is modeled by placing a line source of fuel at the origin. It
is worth noting that King (1914) used the Boussinesq transformation, applicable to two
dimensional irrotational flow, to transform the full version of Eq. (2) including streamwise
convection, into Eq. (6) with stream and potential functions as the independent variables.
Several solution methods (see Morse and Feshbach, 1953) are possible for problems of
this type. In this paper, the problem is approached using Lie group theoretical methods.
The reader may refer to Bluman and Kumei (1989) for an excellent textbook treatment
of the theory and a comprehensive list of references. The solution obtained is related
to other known solutions to convection-diffusion problems.

APPLICATION OF LIE GROUP THEORY

Assume a solution to Eq. (6) of the form

</J(x,y) = exp(wy)/(x,y).

By choosing w = c (2, it follows that I(x ,y) satisfies the more symmetrical form

(7)

(8)

where Ixx implies differentiation of I twice with respect to x. The basic idea now is to
seek various Lie group transformations that leave Eq. (8) invariant. The infinitesimals
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366 SHANKAR MAHALINGAM

associated with the transformation lead to a set of determining equations that are always
linear. Solutions of this determining set yield similarity variables, reducing Eq. (8) to
two ordinary differential equations. This is achieved by the methods outlined in Bluman
and Cole (1974) and more recently by Bluman and Kumei (1989). The notation used in
this section follows Cantwell (1978). Let g(x ,y) be a solution to Eq. (8) which may be
written as:

(9)

representing a surface in (x, y, gxx, gyy) space. For notational convenience the correspon
dence (x ,y) .-. (x I, X2) is made. Consider the one-parameter infinitesimal transformations
of the independent and dependent variables of the form:

x: = Xi + €~i(XI,X2,g) + O(€2)

r = g(xi ,X2) + €1/(XI ,X2,g) + O(€\ (10)

where the infinitesimals ~I, 6, and 1/are yet unknown functions that need to be determined
as part of the solution process, and e is a small parameter. Equation (8) stays invariant
under the transformation given by Eq. (10) provided, (Cantwell, 1978)

us =0,

where U and S are given by,

a a
U = N xx-a + N YY -a -Ng = 0

gxx gyy

(11)

(12)

where N xx , Nyy are the second extensions of the group with respect to x and y
respectively. They refer to the way second partial derivatives transform under the assumed
transformation given by Eq. (10). Substituting Eq. (12) in Eq. (11) one obtains for
invariance,

(13)

Using expressions for N xx and Nyy from Bluman and Cole (1974) (too lengthy for
reproduction here) one can rearrange the equation so that each term contains products
of partial derivatives of g with respect to x), X2 multiplied by coefficient terms involving
partial derivatives of 1/, ~), and 6 with respect to their arguments. Bluman and Kumei
(1989) show that the resulting equation must hold for arbitrary values of the partial
derivatives of g suggesting that the coefficient terms must each vanish separately. This
results in a system of linear, homogeneous partial differential equations for 1/, 6, and
6 called the determining equations for the infinitesimals. For a convenient summary
of the stepwise strategy for obtaining these determining equations the interested reader
may refer to Cantwell (1978). For the present problem, the following set of determining
equations result:

a
2
1/ + a

2
1/ _ c

2
1/ = 0 2 a

2
1/ a

26 a2~1 _ 0
aXfax} 4 aXIa[ - aXf - ax} -

a
2
6 + a

2
6 _2~ = 0 a

2
6 + a

2
6 = 0

aXfax} aX2ar aXlar aX2ar
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(PI) _ 2 i:,z6 = 0 aZI) _ 2 aZ6 = 0
ap aXIaf ap axzaf

C
Zal) _ 2a6 = 0 a6 _ a6 = 0 a6 + a{1 = 0
4 afaXI axz aXI ax, axz

aZ{I 0 aZ6
0 a{1 = 0

ap = ; ap = ; af
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(14)

The general non-trivial solution to equation set (14) gives the required infinitesimals:

(15)

where kI, k z, k 3, and k4 are arbitrary constants. These solutions may also be found
using a symbolic package as done recently by Ma and Hui (1990) in their analysis of the
unsteady boundary layer equations. In order to obtain the similarity variables, one solves
for the constants associated with the characteristic equations given by (see Cantwell,
1978 or Bluman and Kumei, 1989):

dx dy df
661)

(16)

where {I, 6, and I) are given by Eq. (15). If k1 = k 4 = 0, one obtains the plane wave
solution to Eq. (8). By choosing k z = k3 = 0, one obtains the radial solution which is
relevant to the present problem. Solving the first equality in Eq. (16), one obtains the
similarity variable

(17)

(18)

that plays the role of the independent variable. Solving the second and third expression
in Eq. (16) one obtains the result

f(x ,y) = G(r)exp [- ~>in-I ~] .

The form of the solution given by Eq. (18) suggests that a separable solution to Eq, (8)
can be obtained by seeking a solution of the form:

f(x,y) = G(r)h(y/r). (19)

Making the above substitution yields the following two ordinary differential equations:

z
(1 - L )h" - ~h - 6h = 0,

r Z r
(20)

where primes indicate differentiation with respect to the appropriate argument and 6 is a
separation constant. It is easy to verify that 6 = _n z, n =0,1,2,3, ..., is the appropriate
choice that ensures that the solution is single valued and periodic in () == sin-I y / r . Thus
a solution to Eq. (20) is given by:
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368 SHANKAR MAHALINGAM

hn(~) = D3n exp(inO) + ~4n exp(-inO) or equivalently
r In

hn(~) = E3n cos nO+ E4n sin ne, (21)
r

where K; and In are the modified Bessel functions of the first and second kind, the
symbol i is defined by i == R, and the C's, D's, and E's are constant coefficients.
Requiring that the solution be bounded as r -+ 00, gives C2n = O. One can enforce
zero-gradient condition on f about the y-axis (or symmetry) by insisting that replacing
() by (11" - ()) should leave the solution unchanged. Using this result, and combining
elementary solutions given in Eq. (21) and noting the connection between f and ¢ as
given by Eq. (7), one obtains the complete solution:

¢(x,y) = exp(;)r~Kn( ; )[C3ncosn(} + C4nsinnOJ}

where C31 = C33 = C35 = ... = 0, and C4jJ = C42 = C44 = ... = O. (22)

It should be pointed out that Imai (1954) used a similar solution to solve the vorticity
equation describing Oseen's approximation to uniform flow around a cylinder. Appro
priate conditions prescribed at the origin will complete the problem solution. This is
discussed in the following section.

DIFFUSION FLAME SOLUTION

King (1914) used the first term in Eq, (22) to solve for the temperature distribution in
a uniform stream with a heat source at the origin. His solution was used by Hunt and
Mulhearn (1973) to study pollutant dispersion from a line source. The application of
group theory for the problem solution and relating the solution to the diffusion flame
problem is the unique aspect of the present work.

For convenience, the solution given by Eq. (22) is written as

where

¢ = ¢o + ¢I + ¢2 + ... , (23)

cy cr cy cr
¢o = exp(Z)C30KO(Z)' ¢1 = exp(Z)C4IK1(Z)sinO,... (24)

An integral of the flux of ¢ around any closed contour C that includes the origin will
yield the rate of influx of ¢ at the origin. If C excludes the origin, it is clear that the
integral would be zero. A convenient contour to evaluate this integral Q is a circle of
radius r, centered at the origin. Thus,

r [ 8¢ ]Q = Jo D 8r - V¢sinE rd e.

Recognizing symmetry of the integrand about the y axis, one can write,

(25)

(26)j3~/2 [ 8¢ ]
Q=2r D--V¢sinE d e.

~/2 8r

Let Qo, Q), ... represent the integrals corresponding to ¢o, ¢I, .... Using the result
(see Abramowitz and Stegun, 1972 for example),
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I V
Kv(z) = -Kv-t(z) - -Kv(z),

z
and making the change of variable e = 1r /2 - a, one gets for Qo,
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(27)

Using the relations (see Abramowitz and Stegun, 1972)

1 inIv(z) = - e(zcosa)cosvada,
1r 0

and

one obtains,

(29)

(30)

(31)

It is easy to verify that QI. Q2, etc., also yield similar relations. For the present problem,
only Qo is useful, since only <Po is integrable in r . In the neighborhood of the origin, <Po
behaves like - In (cr /2) which is the correct form of the solution in an unbounded domain,
based on Green's function arguments (see Morse and Feshbach, 1953 for example). Thus
the required solution for <P is given by

Q cy cr
<P = 27rD exp( 2 )Ko(2)' (32)

This solution corresponds to King's (1914) result for diffusion of heat from a line source
in uniform flow that has been subsequently used in the study of pollutant dispersion (for
example Hunt and Mulhearn, 1973).

DIFFUSION FLAME CHARACfERISTICS

In order to match the source solution given by Eq. (32) to the solution for the problem
represented by Fig. 1, one needs to match the flux of <p per unit length. If b is the
inner-slot width, then one requires

Q =vb.

A Peelet number may be defined as

vb
Pe == D = cb,

(33)

(34)

and lengths may be scaled using b. Thus the locus of the flame in terms of lengths scaled
with b is given by:

_ Pe (Persin9) (Per)
a c - 21r exp 2 K« 2 . (35)
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1.6.----------~---------__,

0.2

o

x

FIGURE 2 Flame contours for Peeler number, Fe = 5.0. _
- . -: "c = 0.80.

"c = 0.50; - - - - -: "c = 0.75;

(36)

Figure 2 shows several flame contours for different values of Qc, indicative of different
fuel-oxidizer combinations and effect of diluents in the two streams. In each case,
YF,O/WFVF was fixed at 0.1. Higher values of Q c were thus achieved by increasing
oxidizer mass fraction in the unmixed state. Several interesting features are observed in
Fig. 2. Due to back-diffusion, the flame exists for y < O. For fixed Peclet number the
volume enclosed by the flame sheet decreases with increasing oxidizer concentration.
The flame height is obtained by setting () = ±1r/2and r = h± where h ; and h : indicate
flame heights for () values +1r/2 and -1r /2 respectively. Thus

Pe Peh± Peh±
Q c = 21r exp(±-2-)Ko(-2-)'

For large P e values, using the asymptotic form of K«, it follows that

(37)

indicating the expected linear dependence of flame height on Peclet number. Figure
3 is a plot of flame height h + as a function of P e showing the linear behavior for
large P e. This, and the dependence on Q c are in reasonable agreement with Irn et ai.'s
(1990) results. Finally, Figure 4 shows variation of h _ with Peclet number for different
values of Qc. At large Peclet numbers, the size of the back-diffusion region decreases
as anticipated. In this limit, the two important mechanisms are streamwise convection
and cross stream diffusion as in the original Burke-Schumann flame. However, for low
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+s:

10

0.1

0.01
1 10

Pe

FIGURE 3 Flame height, h+ variation with Peclet number, Pe. : Qc = 0.50; - - - - -: Oc :::;:

0.75; - - -: fie = 0.80.

values of Pe .h: increases with Pe, contrary to what one expects intuitively. Note also
that h : increases at approximately the same rate at low Peclet numbers. The reason
for this behavior is that for low Peclet numbers, increasing P e gives rise to an increased
source strength tending to push the location of the a e contour away from the source.
Indeed for small values of P e, it may be easily shown that the locus of the flame is given
by

2 -27rac
r "" P e exp(-----p;-), (38)

representing a circle for which h ; and h : are identical. In this limit, the only mechanism
is diffusion, streamwise and cross-stream components being equally important. As Peclet
number increases beyond this regime, the associated increase in the strength of streamwise
convection tends to reduce h _. The resulting competition gives rise to a maximum in h _.
For fixed P e, the back diffusion flame height h - decreases with increasing freestream
oxidizer concentration. Based on these results it is suggested that back diffusion in real
burners could be of importance. In fact measurements by Eckbreth and Hall (1979) in
low speed propane diffusion flames indicate the presence of strong diffusional effects
at short distances from the burner exit. They report measurements of 15.5% nitrogen
and a temperature of 8000K at 1mm distance downstream of the propane tube exit
plane. Although they suggest that actual nitrogen concentrations could be lower than
that measured experimentally, they conclude that significant concentrations are present
indicating strong diffusional effects. However, as suggested by Chung and Law (1984),
their results may not be entirely conclusive due to excessive entrainment.
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,
.c: 0.1
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FIGURE 4 Flame height, h :., indicating size of back diffusion region as function of Peclet number, Pe.
___ : nc = 0.50; - - - - - : n, = 0.75; - - -: n, = 0.80.

CONCLUSIONS

In this paper it is shown how Lie group theoretical methods can be successfully applied
to the study of limiting forms of diffusion flames. The relatively simple solution in terms
of two parameters (P e, oc) provides valuable insight into diffusion flame behavior at
various Peelet numbers. It predicts the correct behavior of flame height h ; with respect
to variations in Oc and Peelet number. The unusual behavior of the size of the back
diffusion region h : for very low Peelet numbers is explained by examining the competing
effects of diffusion and convection. In the future, analytical methods will be used to study
back diffusion in real burners. The solution can also be used to study flame tip opening
phenomena using perturbation methods following the technique of 1m et al. (1990).
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