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Refracted arrival waves in a zone of silence
from a finite thickness mixing layer

Takao Suzukia) and Sanjiva K. Lele
Department of Aeronautics and Astronautics, Stanford University, Stanford, California 94305-4035

~Received 5 July 2000; accepted for publication 3 October 2001!

Refracted arrival waves which propagate in the zone of silence of a finite thickness mixing layer are
analyzed using geometrical acoustics in two dimensions. Here, two simplifying assumptions are
made:~i! the mean flow field is transversely sheared, and~ii ! the mean velocity and temperature
profiles approach the free-stream conditions exponentially. Under these assumptions, ray trajectories
are analytically solved, and a formula for acoustic pressure amplitude in the far field is derived in
the high-frequency limit. This formula is compared with the existing theory based on a vortex sheet
corresponding to the low-frequency limit. The analysis covers the dependence on the Mach number
as well as on the temperature ratio. The results show that both limits have some qualitative
similarities, but the amplitude in the zone of silence at high frequencies is proportional tov21/2,
while that at low frequencies is proportional tov23/2, v being the angular frequency of the source.
© 2002 Acoustical Society of America.@DOI: 10.1121/1.1428265#

PACS numbers: 43.28.Py, 43.28.Ra@MSH#
m
ste
d
,
th
e
m
th
h
r

ed
tw
ns
st
te
u
nc
a

av
n

b-

in
c
o
up
ar
av
th
a

r-
in
the

nce
ace

ce
ar-
By
nd
rm
as-
m-
us-

de-

er
i-
to

a-
s

sic
si-
hat
the

cy
am-

han
e is
be-
-
-
f
e-

rni
I. INTRODUCTION

Suppose an acoustic source is located in a slower
dium, but adjacent to a faster medium. The slower or fa
medium refers to the medium whose propagation spee
slower or faster than for the other~see Fig. 1!. In such a case
there may exist a path arriving at the observer located in
slower medium which takes shorter time than direct wav
namely, once the ray arrives at the surface of the faster
dium, propagates along it, and departs from it toward
observer. As the Fermat’s principle indicates, under suc
condition, actual waves propagate along this ray path,
ferred to as ‘‘refracted arrival waves,1–3’’ or sometimes as
‘‘head waves,4’’ or ‘‘lateral waves,5’’ etc.

The formula of refracted arrival waves can be deriv
using a contour integral when the interface between the
media can be treated as discontinuous. This case is co
ered to be a low-frequency limit in a sense that the acou
wavelength is much longer than the thickness of the in
face. However, when the acoustic wavelength becomes m
shorter than the thickness of the interface, the low-freque
formula tends to underpredict the amplitude of refracted
rival waves. Instead, one should rather analyze these w
based on geometrical acoustics, namely, the high-freque
limit. Such distinction could be important in jet-noise pro
lems ~see Fig. 2! as described in this paper.

When a noise source is located right below or even
side a mixing layer, there exists a region in which dire
waves from the source cannot reach, referred to as the ‘‘z
of silence.’’ Instead of direct waves, secondary waves occ
this region. In two dimensions, these waves are particul
expressed in the form of general plane waves. These w
are generated by disturbances of direct waves on the o
side of the mixing layer. The formula of such waves w
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derived by Gottlieb1 using a contour integral assuming a vo
tex sheet; however, the thickness of the mixing layer,
many realistic cases, can be equivalent to or longer than
acoustic wavelength of the sound radiated from jets.6 In
other words, the high-frequency sound in the zone of sile
should not be estimated using a discontinuous interf
model.

The purpose of this paper is to clarify the differen
between the low- and high-frequency limits of refracted
rival waves from a transversely sheared mixing layer.
assuming that the thickness of the mixing layer is finite a
the velocity and temperature profiles approach the unifo
free-stream conditions exponentially, ray trajectories are
ymptotically solved. Furthermore, a formula for pressure a
plitude can be explicitly derived as a far-field asymptote
ing the Blokhintzev invariant7 in the high-frequency limit.
Unlike direct waves, refracted arrival waves cannot be
rived using a stationary-phase-type method.8 Note that at
high frequencies, instability waves inherent in a mixing lay
do not directly influence the noise radiation. In fact, dom
nant high-frequency noise sources exist relatively close
the jet exit in which the vortical disturbance level is rel
tively low.9 Hence, the solution of refracted arrival wave
from a finite thickness mixing layer should contain the ba
mechanism of the high-frequency sound in the zone of
lence for jet-noise problems. This study also indicates t
the amplitude is fairly sensitive to the spreading rate of
mixing layer in reality.

The comparison between the low- and high-frequen
limits demonstrates that as the frequency increases, the
plitude of refracted arrival waves tends to become larger t
the prediction based on a vortex sheet. The key differenc
that as the frequency varies, the low-frequency formula
haves as;(vx)23/2, while the high-frequency formula be
haves as;v21/2a21x23/2. ~Here,v denotes the angular fre
quency of the source,a denotes the exponential factor o
either the velocity or temperature profile, which only d

a
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 Redistri
pends on the flow geometry, andx denotes the distance from
the source in the flow direction.! In addition, the dependenc
on the Mach number and the temperature ratio as well as
source location is numerically investigated based on g
metrical acoustics, and it is compared with the analyti
expressions. It is observed that the analytical expression
proximates the amplitude fairly well even if the source
located inside the mixing layer. Through this study, t
sound radiation in the zone of silence at high frequencies
be understood in the context of jet-noise problems.

The outline of this paper is as follows: After the Intro
duction, the formulas of refracted arrival waves in the hig
frequency limit are derived, and those in the low-frequen
limit are also revisited. In Sec. III, numerical procedures
geometrical acoustics are described. Next, the analytical
mulas and the numerical results are compared in Sec. IV;
conclusions are presented in Sec. V.

II. DERIVATION

Consider a two-dimensional, transversely sheared m
ing layer. Takex to be the flow direction andy to be the
vertical direction, and setM 2 anda2 to be the free-stream
Mach number and the speed of sound on the lower side,
M 1 anda1 to be those on the upper side, respectively~see
Fig. 3 for a schematic!. In this paper, the subscript2 denotes
the lower side, and1 the upper side. Assume that the Ma
number and temperature profiles do not change in thex di-
rection, and the mean pressure is constant everywhere~note
that the effects of mixing layer spreading are discussed a

FIG. 1. Schematic of the paths of a refracted wave and a direct wav

FIG. 2. Schematic of the noise from a jet.
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end of Sec. IV!. Set a monopole~single-frequency! source at
(x,y)5(0,h) without loss of generality. To solve acoust
fields in transversely sheared flows of this type, the thi
order convective wave equation, called Lilley’s equation,10 is
adequate. The homogeneous equation can be express
follows:

D

Dt FD2P

Dt2
2

]

]xj
S a2

]P

]xj
D G12

]uk

]xj

]

]xk
S a2

]P

]xj
D50, ~1!

whereD/Dt5(]/]t)1u1(]/]x1) andP5g21 log(p/p`), p`

being the constant mean pressure, andg the specific heat
ratio. Furthermore, assume that~1! is nondimensionalized by
taking the vorticity thicknessd to the length scale and th
speed of sound aty52`, a2 , to be the velocity scale
therefore,ui denotes the local Mach number times the loc
speed of sound, anda2 denotes the local temperature. Bas
on ~1!, the amplitude of diffracted waves in the zone of s
lence, referred to as ‘‘refracted arrival waves,’’ is analytica
formulated in both low-and high-frequency limits in this se
tion.

A. High-frequency limit „finite thickness model …

When the acoustic wavelength is much shorter than
characteristic length scale of the medium, in the present c
the vorticity thickness, one can assume the high-freque
limit and apply geometrical acoustics.4,7Assume the acoustic
pressure fluctuation to be the following form:

P~ t,x!5e2 ivtP~x!exp@ ivf~x!#. ~2!

Substitute~2! into ~1!, and asymptotically expand it with
respect tov. By taking the leading terms ofv, one can
obtain the eikonal equation

~12ujf j !
22a2f j

250, ~3!

where f i[]f/]xi , which corresponds to the local wave
number vector. By using the method of characteristics,4 one
can reduce~3! to the following O.D.E. system:

dxi

dt
5

a2

12ukfk
f i1ui , ~4!

FIG. 3. Schematic of the coordinate system of a two-dimensional mix
layer.
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df i

dt
52

]uk

]xi
fk2

12ukfk

2a2

]a2

]xi
, ~5!

df

dt
51. ~6!

Notice that the phasef has the same units~actually same
scale! as time. Likewise, by taking the second-highest ter
of v, one can derive the first-order transport equation

2uj Pj~12ukfk!12a2Pjf j1
2a2Pf jfk

12ulf l

]uk

]xj

2PF3S ujukf jk1f juk

]uj

]xk
D2a2f j j G

1PFf j

]a2

]xj
2

f j
2uk

12ulf l

]a2

]xk
2

2a2f jukf jk

12ulf l
G50. ~7!

Here, againPi[]P/]xi . To simplify ~7!, use the following
relation obtained by differentiating~3! by D/Dt:

2S ujukf jk1f juk

]uj

]xk
D2

2a2f jfk

12ulf l

]uk

]xj

2Ff j

]a2

]xj
2

f j
2uk

12ulf l

]a2

]xk
1

2a4f jfkf jk

~12ukfk!
2 G50. ~8!

Substituting~8! into ~7!, using ~4!, and assuming the mea
pressure is constant everywhere~hence, (1/r)(Dr/Dt)
1(1/a2)(Da2/Dt)50), ~7! can be simplified as follows:

]

]xj
F P2

12ukfk

dxj

dt G50. ~9!

Hence, the quantity called the ‘‘Blokhintzev invariant’’7 is
conserved along ray tubes

P2S

12ukfk
Udx

dtU5Const., ~10!

whereS denotes the cross section of the ray tube norma
the ray direction. In the denominator, the mean press
which is assumed to be constant, disappears compared
the general expression of the Blokhintzev invariant. This
pression will be used later to calculate the amplitude of
fracted arrival waves.

Now, when the mean velocity and temperature profi
are purely transversely sheared, the O.D.E. system~4!–~6!
can be simplified:dfx /dt50 in ~5!. In other words,fx is
constant along the ray. Accordingly, they can be rewritten
follows:

dx

dt
5

a2~y!

12M ~y!fx
fx1M ~y!, ~11!

dy

dt
5

a2~y!

12M ~y!fx
fy , ~12!

dfx

dt
50, ~13!
718 J. Acoust. Soc. Am., Vol. 111, No. 2, February 2002
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dfy

dt
52

dM

dy
fx2

12M ~y!fx

2a2~y!

da2

dy
, ~14!

df

dt
51. ~15!

Again, M (y) denotes the velocity profile~not the Mach
number! whose reference speed isa25a(2`).

For convenience, consider the case in whichfx.0, and
dfy /dt>0 along the ray in~14!, such as rays propagatin
downstream above a hot jet. Among these rays, if the ini
grazing angleu is lower than a certain threshold value (u
,u!, whereu! will be defined later!, this ray propagates
into the lower side and never appears on the upper s
called a ‘‘transmitted wave’’ in this paper~see Fig. 4!. In
contrast, ifu.u!, this ray propagates on the upper side.
particular, when the rays whose grazing angles are o
slightly higher than this threshold, they appear as refrac
arrival waves departing from the mixing layer to the upp
side at nearly the same angles. The ray whose initial graz
angle is exactlyu5u! is called a ‘‘limiting ray.’’ As Fig. 4
shows, the turning points of the refracted arrival rays,
which the rays become parallel to the mixing layer, are fai
close to the lower free-stream region when the rays
propagating far downstream. Accordingly, these rays pro
gate horizontally just beneath the mixing layer for long d
tances. To solve these ray trajectories, assume that the v
ity and temperature profiles approach the lower free-stre
conditions exponentially. In other words, the velocity and t
temperature profiles near the turning points can be appr
mated by

M ~y!5M 22DMea1y, ~16!

a2~y!512Da2ea2y, ~17!

as y→2`, wherea1 ,a2.0, andDM and Da2 are some
constants determined from the flow field. In many real phy
cal flows, a1 and a2 can be common near the free-strea

FIG. 4. Ray trajectories from a point source above a mixing layer. T
source is located at (x,y)5(0,2), the temperature is constant everywhe
and the velocity profile is given byM (y)50.8@12tanh(2y)#/2 shown on the
left-hand side. The dashed lines are drawn every 3° in all directions, and
solid lines are drawn by the interval of 0.3° near the limiting ray.
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region ~e.g., the Crocco–Busemann relation:T'2u1
2/Cp

1C1u11C2 , whereC1 and C2 are constants!. Hence, set
a15a25a. If a1Þa2 , just retain the term whosea is
smaller. This model should cover realistic flows; however
the profiles do not follow the formulas~16! and~17!, exten-
sion of the present method is required, such as curve fitt
Nonetheless, the proportionality of the frequency and the
tance from the source should show similar features as
cussed at the end of this section. Substitute~16! and~17! into
the O.D.E. system~11!–~15!, and take the leading-orde
terms assumingDMeay and Da2eay to be small. Conse-
quently, one can simplify them as follows:

dx

dt
'

1

12M 2fx
fx1M 2 , ~18!

dy

dt
'

1

12M 2fx
fy , ~19!

dfx

dt
50, ~20!

dfy

dt
'FfxDM1

~12M 2fx!Da2

2 Gaeay, ~21!

df

dt
51. ~22!

Notice that at the leading order,dx/dt becomes constan
from ~18!. Differentiating~19! with respect tot, and substi-
tuting ~21! into it, yields

d2y

dt2
'

1

12M 2fx

dfy

dt
'F fxDM

12M 2fx
1

Da2

2 Gaeay

[aAeay, ~23!

whereA[ fxDM /(12M 2fx)1(Da2/2), which is constant
and assumed to be non-negative along the ray. Redefiniz
[eay and substituting it into~23!, one can obtain the follow-
ing O.D.E.:

z
d2z

dt2
2S dz

dt D
2

2a2Az350. ~24!

To reduce~24! to an integrable form, convert the variable
by setting c0[z and c1[ ż. After calculatingdc1 /dc0 ,
~24! yields

dż2

dz
5

2ż2

z
12a2Az2. ~25!

From ~25!, the general solution can be obtained as

ż252a2Az2~z6b2!. ~26!

Here,b is an arbitrary constant~defined to bebP@0,̀ ) here
for convenience! always satisfyingz6b2>0. When one
takes the plus sign in~26!, it corresponds to a ray of a trans
mitted wave. In contrast, with the minus sign,z5b2 at a
certain point, corresponding to a ray of a refracted arri
wave. This point is actually the turning point, which can
expressed as
J. Acoust. Soc. Am., Vol. 111, No. 2, February 2002
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-

l

y* 5
2

a
logb. ~27!

In this paper, the superscript * denotes the quantity at
turning point. Note that ifb50 in ~26!, it corresponds to the
limiting ray.

First, to solve the ray trajectories of refracted arriv
waves, take the minus sign in~26!, convert the variable by
setting A(z2b2)[b tanq (0<q,p/2), and integrate it.
After some calculation, it yields

q56Aa2b2A

2
~ t2t* !. ~28!

Here, t* denotes the time when the ray passes through
turning point. Equation~28! indicates that the trajectory i
symmetric about the turning point. Rewriting~18! and ~28!
in the physical domain, one can obtain the ray trajectory n
the turning point as follows:

x2x* 'B~ t2t* !, ~29!

y'
2

a
log

b

cos@Aa2b2A/2~ t2t* !#
. ~30!

where B5@M 21(12M 2
2 )fx#/(12M 2fx). Combining

~29! and ~30!, it can be rewritten by

y'
2

a
log

b

cos@bC~x2x* !#
, ~31!

where C5Aa2A/2B2. This equation will be used later to
derive the amplitude of refracted arrival waves.

Second, a special solution, the limiting ray, can be o
tained by settingb50 in ~26!. By directly integrating~26!,
one can obtain

y'
2

a
log

1

Aa2A/2~ t2t0!
'

2

a
log

1

C~x2x0!
. ~32!

Here,x0 denotes a certain reference point.
Finally, to solve the rays of transmitted waves, take

plus sign in~26!, and setz5b2 tan2 q (0<q,p/2). After
integrating the equation, one can obtain

y'
1

a
log

b2~12cos2 q!

cos2 q
'

2

a
log

b

sinh@bC~x2x0!#
.

~33!

Next, consider the trajectory of the turning points f
refracted arrival waves propagating far downstream~see Fig.
5!. The initial grazing angles of these rays are slightly high
than the angle of the limiting ray; hence, the locations wh
these rays enter the mixing layer are approximately the sa
Here, these locations are called the ‘‘incident points,’’ d
noted byxin in this paper. On the other hand, due to the slig
difference of the initial angles, the distances from the in
dent points to the turning points are quite different; acco
ingly, the locations at which the rays depart from the mixi
layer are also different. These locations are called the ‘‘
parting points,’’ denoted byxout. Recalling the ray trajecto-
ries are symmetric about the turning points from~28!, the
719Takao Suzuki and Sanjiva Lele: Refracted arrival waves
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distance from the incident point to the departing point
twice that to the turning point. Now, for the rays propagati
far downstream, typicallyuay* u becomes a relatively larg
value; hence,b5eay* /2 tends to be a fairly small value. Fo
example, whenay* 525, b50.0821. On the other hand
near the incident point,yin'0; accordingly,b/cos@bC(x*
2xin)#'1 from ~31!. Therefore, sinceubu!1, ucos@bC(x*
2xin)#u!1 must be satisfied; namely

bCux* 2xinu'
p

2
. ~34!

Hence, using~27! the trajectory of the turning point can b
approximated by

y* '
2

a
log

p

2C~x* 2xin!
. ~35!

Now, the pressure amplitude of refracted arrival wav
is derived using the Blokhintzev invariant~10!. By calculat-
ing the departing points of adjacent rays, the amplitude
be approximately solved. First, using~35!, calculate the turn-
ing points of adjacent rays. Knowing thatC is a function of
fx , differentiate~35! as follows:

Fa~x* 2xin!

2
dy* 1dx* Geay* /2'2

p

2C2

dC

dfx
dfx . ~36!

On the other hand, the relation betweeny* and fx can be
obtained from the eikonal equation~3!. Knowing that fy

50 gives the turning point, differentiate~3! and simplify it
as follows:

~12M 2fx!aAeay* dy* 2Bdfx50. ~37!

Furthermore, from~3!, fx for the limiting ray is given by

fx
!5

1

11M 2
. ~38!

Here, the superscript! denotes the quantity of the limiting
ray. Substituting~35! and ~37! into ~36! yields

FIG. 5. Example of ray trajectories of refracted arrival waves. The velo
profile is depicted on the left-hand side (M (y)50.8@12tanh(2y)#/2), and
the temperature is constant everywhere. The source is located atx,y)
5(0,2) ~same as Fig. 4!. The initial angles of the rays are256.25–
255.25° with the interval of 0.05°. Solid dots denote the turning points
720 J. Acoust. Soc. Am., Vol. 111, No. 2, February 2002
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n

F B

2~12M 2fx
!!A

1
p2

4C3

dC

dfx
~x* 2xin!22Gdfx

1
p2

4C2
~x* 2xin!23dx* '0. ~39!

Here, the second term in@ # becomes negligible far down
stream~asux* 2xinu→`). Thus, the intensity is proportiona
to

I;
dfx

dx*
'2

p2~12M 2fx
!!A

2BC2~x* 2xin!3
52

p2

a2
~x* 2xin!23.

~40!

On the other hand, near the source the cross-section
can be calculated from the difference of the initial grazi
angles. From~11! and ~12!, calculate the change of the ra
path with respect tofx near the source

]

]fx
S dx

dt D
s

5
1

n̄s
2

, ~41!

]

]fx
S dy

dt D
s

5
fx

n̄s
2An̄s

22fx
2

, ~42!

where the quantities with the subscripts are evaluated at the
source point, andn̄[(12Mfx)/a. As seen later,n̄ behaves
as a refraction index. Now, to apply the ray tube theory us
~10!, it is convenient to calculate the following quantity:

U dx/dt
12M ~y!fx

dS
dfx

U
s

5

US dx
dt ,

dy
dt D3 S ]

]fx
S dx
dt D ,

]
]fx

S dy
dt D DdtU

s

12Msfx

5
dt

asn̄s
3An̄s

22fx
2

. ~43!

The distance from the sourcedr and the timedt is related as

S dr

dt D
s

5AS dx

dt D
s

2

1S dy

dt D
s

2

5asF S 11
Ms

2

as
2 D 12

Msfx

asn̄s
G 1/2

.

~44!

Likewise, calculate the same quantity at the departing po

U dx/dt

12M ~y!fx

dS

dfx
U

out

5

US dx

dt
,
dy

dt D
1

3S dxout

dfx
,0DU

12M 1fx

5
An̄1

!2
2fx

!2

n̄1
!2

dxout

dfx
. ~45!

Here,~45! is evaluated in the uniform region right above th
mixing layer. Remember that in the upper free-stream reg
the rays are almost parallel, and refracted arrival wa
propagate in the form of general plane waves.

Now, the solution close to a monopole source can
written as

y
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Ps~r !5
1

2A2p

expF iS 2
Ms

as
cosu1A12

Ms
2

as
2

sin2 u

12 ~Ms
2/as

2!

vr

as
2

3

4
pD G

M2 1/4 , ~46!
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v1/2r 1/2as
3/2S 12

s

as
2

sin2 usD
of
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l

where x5r cosu and y5r sinu. In particular, the initial
grazing angle for refracted arrival wavesus

! is given by

tanus
![

S dy

dt D
s

S dx

dt D
s

52
An̄s

!2
2fx

!2

S 12
Ms

2

as
2 D fx

!1
Ms

as
2

, ~47!

wherefx
! is approximated by~38!. The expression~46! can

be obtained from~A11! ~shown later! by assuming that the
flow field near the source is uniform, and taking the limit
a far-field asymptote,vr→`. Combining ~40! and ~43!–
~46!, the amplitude of refracted arrival waves from a fin
thickness mixing layer is approximated by

uP1~v,x,y!u'uPs~dr !u

AU dx/dt

12Mfx
!

dS

dfx
U

s

AU dx/dt

12Mfx
!

dS

dfx
U

out

5

U1

2

dfx

dx*
U1/2S dt

dr
D

s

1/2

2A2pv1/2as
3/2S 12

Ms
2

as
2

sin2us
!D 1/4

3
n̄1

as
1/2n̄s

!3/2A4 n̄s
!2

2fx
!2 A4 n̄1

!2
2fx

!2

5
A2p

2v1/2a

n̄1
!

as
2n̄s

!3/2Ausinus
!u A4 n̄1

!2
2fx

!2

3
1

F S 11
Ms

2

as
2 D 12

Msfx
!

asn̄s
! G 1/4

X3/2

, ~48!

whereX[x2(An̄s
!2

2fx
!2

/fx
!)y. Here, since the ray trajec

tory is symmetric about the turning point, it is assumed t
2ux* 2xinu5uxout2xinu. Note when the source is at a larg
distance from the mixing layer (h*1), the correction for the
distance from the source to the incident point needs to
included@see Eq.~59! shown later#. On the other hand, whe
the source approaches the lower free-stream region,
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t

e

g.,

h&21, the corresponding incident points are no longer id
tical for the rays of refracted arrival waves, and the appro
mation fails. This expression~48! will be compared with the
expressions based on a vortex sheet as well as the nume
results.

B. Low-frequency limit „vortex sheet model …

When the acoustic wavelength is much longer than
vorticity thickness, a vortex sheet can be used, which co
sponds to the low frequency limit. Refracted arrival waves
this type have been reported in several studies.1–3 In this
section, the resultant formulas of refracted arrival waves
the low-frequency limit are shown in two cases~the source is
located above and below the vortex sheet!. For their deriva-
tion, please refer to the Appendix.

When the source is located above the mixing layerh
.0), the absolute value of pressure amplitude yields

uP1~v,x,y!u'
1

A2pv3/2

n̄1
!2

a1
2 n̄2

!2
~ n̄1

!2
2fx

!2
!X3/2

. ~49!

Here the notation is the same as~48!, and this expression is
valid only in the zone of silence on the upper side. Likewi
when the source is located below the mixing layer (h,0)

uP1~v,x,y!u'
1

A2pv3/2

n̄1
!4

n̄2
!4

~ n̄1
!2

2fx
!2

!X3/2
. ~50!

Note that the expression~50! gives larger amplitude than th
expression~49!, as shown later. Here, one can see that
decay rate of~49! or ~50! for a vortex sheet and that of~48!
for a finite thickness mixing layer are common (X23/25@x

2A(n̄1
!2

2fx
!2

)y/fx
!#23/2). However, their coefficients are

different. It is important to notice that as the frequency v
ies, ~49! and ~50! are proportional to;v23/2, while ~48! is
proportional to;v21/2 with a fixeda. In other words, as the
frequency increases with the flow geometry fixed, the am
tude is guaranteed to exceed the prediction based on the
tex sheet model. This proportionality is still valid for th
finite thickness mixing layer with the velocity and temper
ture profiles other than;eay. Remember that the ray trajec
tories are independent of the source frequency so long as
frequency is considered high enough; hence, the only pa
which the frequency dependence appears is the ampli
expression near the source~46!. These theoretical expres
sions~48!, ~49!, and ~50!, are compared with the numerica
results in Sec. IV later.
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III. NUMERICAL SIMULATION

To compare the analytical formulas with more accur
solutions, pressure amplitude of refracted arrival waves
numerically solved based on geometrical acoustics. The
cedures are to simply integrate the eikonal equation an
apply the ray-tube theory, which are described in this sect

To solve ray trajectories, the O.D.E. system of the ei
nal equation,~11!–~15!, was numerically integrated using th
standard fourth-order Runge–Kutta scheme. The initial c
ditions are as follows:

x~0!50, ~51!

y~0!5h, ~52!

fx~0!5
cosu i

as1Ms cosu i
, ~53!

fy~0!5
sinu i

as1Ms cosu i
, ~54!

f~0!50, ~55!

where the initial grazing angleus is given by tanus

[as sinui /(Ms1ascosui). For simplicity, the velocity profile
was set to be

M ~y!5
M 2

2
@12tanh~2y!# ~M 2.0!. ~56!

This formula providesM (y)→M 22M 2e4y as y→2`,
which is consistent with~16! (M 150., DM5M 2 , and a
54.). In addition, this velocity profile yields the vorticit
thickness ofd[DM /(dM/dy)max51. Similarly, the tem-
perature profile was set to be

a2~y!5
12a1

2

2
@12tanh~2y!#1a1

2 . ~57!

It also yields a2(y)→12(12a1
2 )e4y as y→2`. If a1

2

,1, the flow corresponds to a hot jet, while ifa1
2 .1, it

corresponds to a cold jet.@In this case,M 2 must be reason
ably large so thatA is always non-negative. See Eq.~23!.#

Once the ray trajectories were computed, t
Blokhintzev invariant~10! was used to obtain pressure am
plitude by calculating cross sections between adjacent r
Defining (xn ,yn) to be a certain grid point of thenth ray, the
infinitesimal cross section of thenth ray was computed by
the following midpoint rule:

dSn'
U~xn112xn21 ,yn112yn21!3 S dx

dt ,
dy
dt D

n
U

2AS dx
dt D

n

2

1 S dy
dt D

n

2
, ~58!

wheredx/dt anddy/dt were given by~11! and~12!, respec-
tively. A total of 100 rays was issued with the interval
Du i50.005° from the angle of the limiting ray. The tim
step was taken to bedt50.025 (3d/a2). The ratio of the
infinitesimal cross section at the grid closest from the sou
to that at the grid right abovey52 ~almost uniform flow!
was used to calculate amplitude. In addition, the amplitu
near the source point was calculated using~46!, which is
722 J. Acoust. Soc. Am., Vol. 111, No. 2, February 2002
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consistent with the analytic expression. Thus, pressure
plitude of refracted arrival waves was numerically calcula
based on the ray-tube theory.

IV. RESULTS AND DISCUSSION

A. Turning point trajectory

First, to observe the accuracy of the analytical expr
sion, turning-point trajectories were calculated using b
analytical expression~35! and numerical integration~11!–
~15!, and the results are compared. Here, the incident lo
tions in ~35! were approximated by the following form:

xin52
h

tanus
!

, ~59!

whereus
!P@2p/2,0) is defined by~47!.

Figure 6 represents the dependence of the turning-p
trajectories on the source location. It shows that as the so
location becomes lower~closer to the higher velocity side!,
the trajectories shift downward. Whenh>20.5, the theoret-
ical predictions agree with the numerical solutions fai
well. But, when the source location approaches the low
free-stream (h521. case!, the theoretical prediction devi
ates far lower than the numerical solution. Remember t
the formula~35! assumes the incident points of the rays to
identical; hence, when the source approaches the lower f
stream region, this expression tends to fail. Nonetheless
analytical expression approximates the ray trajectories fa
well when the source is above or close to the center line
the mixing layer.

Figure 7 represents the dependence of the ray traje
ries on the lower free-stream velocity.~Although M 2 actu-
ally yields the Mach number of the lower free-stream, t
term ‘‘free-stream velocity’’ is used instead of ‘‘free-strea
Mach number’’ to emphasize thatM (y) denotes the velocity
normalized bya2 as opposed to the local Mach numbe!
This figure indicates that the analytical expression cover

FIG. 6. Turning-point trajectories for different source locations. The low
free-stream velocity isM 250.8, and the temperature is constant eve
where. Symbols were computed by numerical integration:s, h52; h, h
51; n, h50; *, h520.5; and1, h521. Lines were calculated using
~35! corresponding toh52, 1, 0,20.5, and21 from the top.
Takao Suzuki and Sanjiva Lele: Refracted arrival waves

content/terms. Download to IP:  171.66.208.134 On: Tue, 03 May 2016 19:33:51



yt
je
n

e
p

d
on
e
n
ay
ic
n
.

ow
r-
s
o
e

cit

g
m

ls
s

fe

the
free

ency
ex-
fore.

es
re

mix-

om-

 Redistri
wide velocity range. Thus, one can expect that the anal
expression provides a good approximation to the ray tra
tories as long as the source is above or close to the ce
line of the mixing layer.

B. Pressure amplitude distribution

To validate the analytical expression for various low
free-stream velocities and source locations, pressure am
tude of refracted arrival waves was calculated using~48!, and
it is compared with the numerical integration using~10! and
~11!–~15!.

Figures 8~a!–~c! represent the amplitude profiles in thex
direction for different lower free-stream velocities an
source locations. As seen in Fig. 7, the theoretical predicti
and the numerical results agree very well when the sourc
h>20.5. Hence, one can expect that this expression ca
used to estimate the noise generated inside the mixing l
and propagating in the zone of silence. Since the analyt
formula ~48! assumes a far-field asymptote, the theory a
the numerical result agree better asX increases in all cases
Each figure shows that as the source approaches the l
free stream (h decreases!, the amplitude increases; in pa
ticular, when the source is belowy50, the amplitude seem
to be fairly sensitive to the source location. This series
figures also indicates that the noise from nearly the low
free stream tends to be strongly amplified as the velo
increases.

C. Comparison between the finite thickness mixing
layer model and the vortex sheet model

Next, two analytical models, the finite thickness mixin
layer and the vortex sheet models, are compared. Reme
that the finite thickness mixing layer model~48! corresponds
to the high-frequency limit, while the vortex sheet mode
~49! and~50!, correspond to the low-frequency limit. Figure
9~a!–~c! represent the comparison of these models at dif

FIG. 7. Turning-point trajectories for different lower free-stream velociti
The source location ish52, and the temperature is constant everywhe
Symbols were computed by numerical integration:,, M 250.3; s, M 2

50.8; andL, M 251.5. Lines were calculated using~35! corresponding to
M 250.3, 0.8, and 1.5 from the top. Two cases (M 250.8 and 1.5! almost
overlap.
J. Acoust. Soc. Am., Vol. 111, No. 2, February 2002
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ent lower free-stream velocities. Both models show that
amplitude increases as the source approaches the lower
stream. Moreover, all these cases show that as the frequ
increases, the amplitude of the finite thickness model
ceeds that of both vortex sheet models, as mentioned be

.
.

FIG. 8. Comparison of pressure amplitude between the finite thickness
ing layer model and the numerical integration. The amplitudes aty52 are
plotted. The lower free-stream velocity is~a! M 250.3; ~b! M 250.8; and
~c! M 251.5. The temperature is constant everywhere. Symbols were c
puted by numerical integration:s, h52; n, h50; and *, h520.5. Lines
were calculated using~48! corresponding toh52, 0, and 0.5 from the
bottom.
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This tendency is particularly striking in lower subson
flows. Figure 9~a! clearly demonstrates that the vortex she
model far underestimates the amplitude of refracted arr
waves in a wide range on the higher-frequency side. Rem
ber that as the frequency increases, the finite thickness m
decays as;v21/2, while the vortex sheet model as;v23/2.

Figures 10~a! and ~b! show the comparison of thes
models at different speeds of sound. Here,~a! represents a
hot jet and~b! a cold jet, and the constant temperature c
corresponds to Fig. 9~a!. They show that in the vortex shee
model, the temperature variation hardly affects the press
amplitude. In contrast, in the finite thickness model, the a
plitude strongly increases as the source approaches the l
free stream in cold jets; however, it barely changes in
jets. Notice that due to the definition of the source te
(P̂91@ns

22k2#P̂;d(y2h)/as
2 , refers to~A1! shown in the

Appendix!, the amplitude may even decrease as the sou
approaches the core of hot jets though the distance betw
the adjacent rays become narrower. These tendencies w
summarized in the next figures.

Finally, to observe the dependence on the lower fr
stream velocity and the speed of sound, the amplitude

FIG. 9. Comparison between the finite thickness mixing layer model and
vortex sheet models in different lower free-stream velocities. The pres
amplitudes above the mixing layer are plotted. The lower free-stream ve
ity is ~a! M 250.3; ~b! M 250.8, and~c! M 251.5. The temperature is
constant, andX520. Lines represent as follows: , finite thickness
model ~48! with h52; - - -, that with h50; 2••2, vortex sheet model
with the source above the mixing layer~49!; and 2•2, the source below
the mixing layer~50!.
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refracted arrival waves was mapped onto theM 2 and a1

plane. Figures 11~a!–~c! represent the pressure amplitud
contours calculated by the finite thickness model~48!. The
regions where contour lines are missing~the left top corner!
indicate that refracted arrival waves do not or barely ex

under such conditions:n̄s
!2

2fx
!2

approaches zero in~48!.
Hence, there are no rays which initially propagate downw
and get refracted upward. This series of figures demonstr
the features observed in Figs. 8~a!–~c!: As the source ap-
proaches the lower free stream, the amplitude tends to
crease over the whole range; particularly, this tendency
comes striking when the source is below the center line
the mixing layer (h<20.5). Figure 11 also reveals that th
amplitude becomes more sensitive to the lower free-stre
velocity ash decreases. They also show that as the jet
comes hotter (a1 decreases!, the amplitude increases in th
supersonic range (M 2>1) in all cases. On the other hand,
low subsonic flows the amplitude becomes fairly large wh
the jet becomes colder (a1 increases!. In this region, the
critical angleus

! defined by~47! becomes considerably sha
low so that wide angles of the rays are captured within
mixing layer, and the distinction between direct waves a
refracted arrival waves becomes ambiguous.

For reference, Fig. 12 represents the amplitude conto
calculated using the vortex sheet models for the source~a!
above and~b! below the mixing layer, respectively. Note th
the direct comparison of the magnitude between Figs. 11
12 may not be meaningful, since the amplitude ratio betw
them depends on the ratio ofa/v. Figures 11~b! and 12~a! as
well as Figs. 11~c! and 12~b! show some qualitative similari
ties. However, when the source is below the mixing lay
the vortex sheet model indicates that the amplitude subs
tially increases as the velocity increases.

It is important to notice that the solution for refracte

e
re
c-

FIG. 10. Comparison between the finite thickness mixing layer model
the vortex sheet models in different speeds of sound. The speed of sou
the upper side is~a! a150.7 and~b! a151.2. The lower free-stream ve
locity is M 250.3. The rest of the conditions and notations are the sam
Fig. 9.
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arrival waves belongs to the same family as Mach wave-t
sound.11 From a one-dimensional point of view, namely th
linear analysis based on~A1!, this family satisfies the bound
ary conditions of exponential decay toward the lower s
~high speed! and oscillation toward the upper side~low
speed!, and changes its nature at the turning point. In t
sense, refracted arrival waves from a finite thickness mix

FIG. 11. Pressure amplitude contours in the plane of the lower free-str
velocity and the speed of sound based on the finite thickness mixing l
model. The pressure amplitudes of the finite thickness model~48! are
shown.v/2p54 andX520. The source is set to be~a! h52; ~b! h50;
and ~c! h520.5. The thicker dashed line denotes the isoenthalpy line.
J. Acoust. Soc. Am., Vol. 111, No. 2, February 2002
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layer have a similar feature of Mach waves studied in so
previous works.11–13 However, it is worthwhile to observe
that supersonic phase velocity can be obtained not only
sources supersonically convected: Waves issued from an
stream source and refracted near the lower free stream
phase velocity ofu21a2 ~whereu2 denotes the jet veloc
ity!; hence, they can propagate in the zone of silence
though the intensity of refracted arrival waves tends to
fairly small, as Figs. 11 and 12 indicate.

It should also be emphasized that the present analys
based on a parallel mixing layer. Of course, when the je
spreading,14 the turning points shift closer to the core; as
result, refracted arrival waves become ‘‘more like dire
waves’’ and their amplitude is enhanced~refer to Ref. 15 for
calculation in a more realistic flow geometry!. Hence, the
high-frequency sound in the zone of silence measured in
periments might be caused mainly by direct waves from
end of the potential core.6 To estimate the mixing laye
spreading effect on the sound radiation field, the press
amplitude was numerically calculated at different spread
rates. The velocity profile was set to be

M ~x,y!5
M 2

2 F12tanhS 2y

11d8x
D G , ~60!

m
er

FIG. 12. Pressure amplitude contours in the plane of the lower free-str
velocity and the speed of sound based on the vortex sheet model.
conditions and notations are the same as Fig. 11. The source location~a!
above the mixing layer~49!, and~b! below the mixing layer~50!.
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where the free-stream velocity was set to beM 250.8 and
the temperature to be constant everywhere. Here, the so
was placed at the origin. The results are plotted in Fig.
and compared with the parallel mixing layer model at hi
frequencies. Figure 13 clearly shows that evend850.1 of the
spreading rate yields several times as large pressure am
tude as that in the parallel mixing layer case. Note that p
vious experimental and numerical studies~summarized in
Ref. 16! have indicated that the spreading rate can be u
d8;0.2 as the jet Mach number decreases. Therefore
compare these theoretical expressions with actual exp
ments, one needs the information about the mean flow
well as rigorous source models and their distribution.

Furthermore, in terms of the frequency range, the m
unstable mode of instability waves is likely to be somewh
in between the low- and high-frequency limits. The hig
frequency formula derived here focuses on noise due
rather finer scale turbulence. As observed by experimen9

the high-frequency component of the jet noise is mainly g
erated near the nozzle lip, in which large-scale vortical d
turbances have not yet significantly grown. In addition
numerical study by Suzuki17 shows that this high-frequenc
formula for refracted arrival waves is applicable when t
ratio of the acoustic wavelength to the vorticity thickne
becomes unity or less. Therefore, the analysis in this stud
expected to be useful for noise generated near the jet
However, once instability waves have developed into lar
scale vortical structures downstream, such as at the en
the potential core, the current analysis would no longer
valid. Other issues associated with jet noise, such as the
tipole and moving sources, are also discussed in Ref. 17

V. CONCLUSION

Through this study, refracted arrival waves propagat
in the zone of silence are formulated in the high-frequen
limit and compared with the formula in the low-frequen

FIG. 13. Comparison of pressure amplitude profile of different spread
rates. The lower free-stream velocity isM 250.8, the source location ish
50, and the temperature is constant everywhere. Symbols were com
by numerical integration:s, d850; h, d850.05; *, d850.10; and1,
d850.20. A solid line was calculated using the finite thickness mixing la
model ~48!.
726 J. Acoust. Soc. Am., Vol. 111, No. 2, February 2002
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limit. These formulas show that the amplitude at high fr
quencies is proportional tov21/2, while that at low frequen-
cies is proportional tov23/2, v being the source angula
frequency. This indicates that the existing low-frequen
formula,2,3 namely the vortex sheet model, tends to under
timate the sound-pressure level in the zone of silence as
frequency increases. It also implies that the previous hi
frequency theory8 ignoring refracted arrival waves does n
correctly represent the sound radiation pattern in the zon
silence.

This high-frequency formula of refracted arrival wav
has significant implications for the application to jet noise.
most previous studies, general plane-wave-type radiation
been considered only for supersonic jet flows~referred to as
Mach waves!. However, this study indicates that even in su
sonic mixing layers, general plane-wave-type sound
theoretically propagate in the zone of silence. In particu
this formula is expected to be applicable to the hig
frequency noise mainly generated near the nozzle lip of
jet exit. Therefore, it should be used to estimate the sou
pressure level in the zone of silence at high frequenc
However, at present the existence of such waves in real fl
is uncertain, and as noted below, some extensions of
present theory are required for quantitative prediction.

For example, one may need to more rigorously anal
some additional effects of real flows: As the mixing lay
spreads, more rays are trapped inside of it and the distinc
between refracted arrival waves and direct waves beco
ambiguous. In fact, this study shows that a slight increas
the spreading rate of the mixing layer drastically enhan
the amplitude of refracted arrival waves. Other examp
which are not studied here are effects of unsteady flow
turbances, source models for turbulent mixing noise, and
on. Nonetheless, it is important to note this study dem
strates that sound radiation pattern in the zone of silenc
fundamentally different from the region in which dire
waves propagate and the amplitude of refracted arrival wa
is different several times over between the low- and hig
frequency limits.
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APPENDIX: Derivation for the low-frequency limit

To rederive the formulas of refracted arrival waves
the low-frequency limit, derivative matching4 is used here.
First, take a Fourier transform of~1! in time and the flow
direction, and set a delta function aty5h,

]

]y
S a2

]P̂

]y
D 1

2k
]M

]y

v2kM
S a2

]P̂

]y
D 1@~v2kM!22a2k2#P̂

5d~y2h!, ~A1!

where

g

ted

r
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P̂~v,k,y!5
1

~2p!2E2`

` E
2`

`

P~ t,x,y!ei (vt2kx)dt dx.

~A2!

When the wavelength is much longer than the vorticity thic
ness, the third term of~A1! becomes much smaller than th
first two terms. Therefore, in the low-frequency limit~A1!
can be approximated by

]

]y F a2~y!

~v2kM~y!!2

]P̂

]y G'
d~y2h!

~v2kM~y!!2
. ~A3!

Hence, the quantity@a2(y)/(v2kM(y))2#]P̂/]y is con-
stant across the vortex sheet. Subsequently, assu
u]P̂/]y u is finite, it can be shown thatP̂ is continuous
across the vortex sheet. Although the pressure itself is c
tinuous across the vortex sheet, the first derivative has a
continuity. Thus, the jump conditions across the vortex sh
become

P̂1~y501!5P̂2~y502!, ~A4!

1

n1
2

]P̂1

]y U
y501

5
1

n2
2

]P̂2

]y
U

y502

, ~A5!

wheren6[(v2kM6)/a6 , which is equivalent tovn̄6 @ n̄
is defined after~41! and ~42!#. Likewise,k is equal tovfx

used in the high-frequency limit.
To derive the formulas for refracted arrival waves, fi

put the source above the vortex sheet (h.0). In the trans-
verse direction, incident and reflected waves propagate
the upper side, and transmitted waves on the lower s
Knowing that the second term of~A1! vanishes in the uni-
form flow region, the forms of the solution on the upper a
lower sides can be expressed as follows:
ith
h

p
ve
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P̂15
e2 iAn1

2
2k2(y2h)

i2a1
2 An1

2 2k2
1Cre

iAn1
2

2k2y, ~A6!

P̂25Cte
2 iAn2

2
2k2 y. ~A7!

Here, Cr and Ct (PC) are the reflection and transmissio
coefficients, respectively. Note that the ‘‘resonan
mode’’3,18 is not taken into account here for simplicity. Su
stituting ~A6! and ~A7! into ~A4! and ~A5!, transmitted
waves can be obtained as follows:

P̂25
eiAn1

2
2k2he2 iAn2

2
2k2y

ia1
2 n1

2 S An1
2 2k2

n1
2

1
An2

2 2k2

n2
2 D . ~A8!

By taking an inverse Fourier transform of~A8!, the two-
dimensional formula can be derived as

P2~v,r ,u!5
1

2p i E2`

1`eiAn1
2

2k2hei (k cosu2An2
2

2k2 sin u)r

a1
2 n1

2 S An1
2 2k2

n1
2

1
An2

2 2k2

n2
2 D dk.

~A9!

To evaluate~A9!, assumeh!r and r @1, and use the sta
tionary phase method. Defining the phase part to bew(k)
[k cosu2A(n2

2 2k2)sinu, w8(k)50 gives the stationary
point, which becomes

k5
v

12M 2
2 S 2M 21

cosu

A12M 2
2 sin2 u

D . ~A10!

As a result,~A9! can be approximated in the far field a
follows:
P2~v,r ,u!'
v1/2

A2pr 3/2

ur sinuu

~12M 2
2 sin2u!3/4

eiAn1
2

2k2hei @2M2 cosu1A12M2
2 sin2 u/12M2

2
# vr 2~3/4!p)

a1
2 n1

2 S An1
2 2k2

n1
2

1
An2

2 2k2

n2
2 D , ~A11!
wherek andn6 are evaluated at the stationary point~A10!.
The solution for refracted arrival waves must match w
~A11! across the mixing layer. To apply the derivative matc
ing ~A5!, differentiate~A11! with respect toy and sety50

]P2

]y U
y50

'
2v1/2eiAn1

2
2k2h

A2px3/2

ei (kx2~3/4!p)

a1
2 An1

2 2k2
. ~A12!

Here, the stationary point isk(u50)5v/(11M 2).
On the other hand, refracted arrival waves on the up

side should be expressed in the form of general plane wa
hence, they can be written by
-

er
s;

P1~v,x,y!'A1S x2
An1

2 2k2

k
yD ei (kx1An1

2
2k2y).

~A13!

Similarly, differentiate~A13! with respect toy and evaluate
at y50 retaining the lowest order ofx ~namely, theA18 term
is eliminated!

]P1

]y U
y50

' iAn1
2 2k2A1~x!eikx. ~A14!

Substituting~A12! and~A14! into ~A5!, it yields as follows:
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P1~v,x,y!'
v1/2

A2p

n1
2

a1
2 n2

2 ~n1
2 2k2!

3
eiAn1

2
2k2hei (kx1An1

2
2k2y2~p/4!)

S x2
An1

2 2k2

k
yD 3/2 .

~A15!

One can obtain the same result by taking a contour
tegral of~A9!. By using the same notation as~48!, the abso-
lute value of~A15! becomes~49!.

Likewise, put the source below the vortex sheeth
,0), and follow the same procedure as described abov
is noticed that there exist incident waves and reflected wa
on the lower side, but only the reflected waves contribute
derivative matching. Consequently, the absolute value
pressure amplitude for refracted arrival waves becomes~50!
in this case.
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