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Refracted arrival waves which propagate in the zone of silence of a finite thickness mixing layer are
analyzed using geometrical acoustics in two dimensions. Here, two simplifying assumptions are
made:(i) the mean flow field is transversely sheared, éndthe mean velocity and temperature
profiles approach the free-stream conditions exponentially. Under these assumptions, ray trajectories
are analytically solved, and a formula for acoustic pressure amplitude in the far field is derived in
the high-frequency limit. This formula is compared with the existing theory based on a vortex sheet
corresponding to the low-frequency limit. The analysis covers the dependence on the Mach number
as well as on the temperature ratio. The results show that both limits have some qualitative
similarities, but the amplitude in the zone of silence at high frequencies is proportional'tg

while that at low frequencies is proportionaldo *?, » being the angular frequency of the source.

© 2002 Acoustical Society of AmericaDOI: 10.1121/1.1428265

PACS numbers: 43.28.Py, 43.28.Rd4SH]

I. INTRODUCTION derived by Gottliebusing a contour integral assuming a vor-
tex sheet; however, the thickness of the mixing layer, in
Suppose an acoustic source is located in a slower mgnany realistic cases, can be equivalent to or longer than the
dium, but adjacent to a faster medium. The slower or fasteacoustic wavelength of the sound radiated from §ets.
medium refers to the medium whose propagation speed isther words, the high-frequency sound in the zone of silence
slower or faster than for the othésee Fig. 1 In such a case, should not be estimated using a discontinuous interface
there may exist a path arriving at the observer located in thenodel.
slower medium which takes shorter time than direct waves;,  The purpose of this paper is to clarify the difference
namely, once the ray arrives at the surface of the faster mesetween the low- and high-frequency limits of refracted ar-
dium, propagates along it, and departs from it toward theival waves from a transversely sheared mixing layer. By
observer. As the Fermat's principle indicates, under such assuming that the thickness of the mixing layer is finite and
condition, actual waves propagate along this ray path, rethe velocity and temperature profiles approach the uniform
ferred to as “refracted arrival wavés> or sometimes as free-stream conditions exponentially, ray trajectories are as-
“head waves?’ or “lateral waves;” etc. ymptotically solved. Furthermore, a formula for pressure am-
The formula of refracted arrival waves can be derivedplitude can be explicitly derived as a far-field asymptote us-
using a contour integral when the interface between the twing the Blokhintzev invariartin the high-frequency limit.
media can be treated as discontinuous. This case is consitmnlike direct waves, refracted arrival waves cannot be de-
ered to be a low-frequency limit in a sense that the acoustigived using a stationary-phase-type metfiodote that at
wavelength is much longer than the thickness of the interhigh frequencies, instability waves inherent in a mixing layer
face. However, when the acoustic wavelength becomes muaio not directly influence the noise radiation. In fact, domi-
shorter than the thickness of the interface, the low-frequencyant high-frequency noise sources exist relatively close to
formula tends to underpredict the amplitude of refracted arthe jet exit in which the vortical disturbance level is rela-
rival waves. Instead, one should rather analyze these waveisely low.® Hence, the solution of refracted arrival waves
based on geometrical acoustics, namely, the high-frequendyom a finite thickness mixing layer should contain the basic
limit. Such distinction could be important in jet-noise prob- mechanism of the high-frequency sound in the zone of si-
lems(see Fig. 2 as described in this paper. lence for jet-noise problems. This study also indicates that
When a noise source is located right below or even inthe amplitude is fairly sensitive to the spreading rate of the
side a mixing layer, there exists a region in which directmixing layer in reality.
waves from the source cannot reach, referred to as the “zone The comparison between the low- and high-frequency
of silence.” Instead of direct waves, secondary waves occupyimits demonstrates that as the frequency increases, the am-
this region. In two dimensions, these waves are particularlylitude of refracted arrival waves tends to become larger than
expressed in the form of general plane waves. These wavele prediction based on a vortex sheet. The key difference is
are generated by disturbances of direct waves on the othefiat as the frequency varies, the low-frequency formula be-
side of the mixing layer. The formula of such waves washaves as-(wx) %2 while the high-frequency formula be-
haves as-w~ Y2a~1x" %2 (Here,w denotes the angular fre-
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FIG. 1. Schematic of the paths of a refracted wave and a direct wave. FIG. 3. Schematic of the coordinate system of a two-dimensional mixing
layer.

pends on the flow geometry, andlenotes the distance from

the source in the flow directionln addition, the dependence .

on the Mach number and the temperature ratio as well as th nd of Sec. IV. _Set a monopoléslngIeTfrequencysource at_
X,y)=(0,7) without loss of generality. To solve acoustic

source location is numerically investigated based on geo} . : -
y 9 g fields in transversely sheared flows of this type, the third-

metrical acoustics, and it is compared with the analytical rder convective wave equation. called Lillev's equatdi
expressions. It is observed that the analytical expression aS— q ' yseq 5

proximates the amplitude fairly well even if the source isadequate. The homogeneous equation can be expressed as

located inside the mixing layer. Through this study, thefOHOWS:

sound radlatlon_ln the zone of S|I_ence at high frequencies can DDl 4 o . 9 o
be understood in the context of jet-noise problems. —|———|a?—||+2——a?—| =0, (1
The outline of this paper is as follows: After the Intro- ~ Dt| Dt? 9%\ dx OXj X\ X

duction, the formulas of refracted arrival waves in the high- 1
frequency limit are derived, and those in the low-frequencyVNereb/Dt=(d/dt) +u,(d/dx;) andIl=y ~log(p/p.), p..

limit are also revisited. In Sec. Ill, numerical procedures of2€ing the constant mean pressure, anthe specific heat
geometrical acoustics are described. Next, the analytical fof2ti0- Furthermore, assume tf{aj is nondimensionalized by

mulas and the numerical results are compared in Sec. Iv: thi@king the vorticity thickness to the length scale and the
conclusions are presented in Sec. V. speed of sound agy=—, a_, to be the velocity scale;
therefore,u; denotes the local Mach number times the local

speed of sound, araf denotes the local temperature. Based
on (1), the amplitude of diffracted waves in the zone of si-
Consider a two-dimensional, transversely sheared mixience, referred to as “refracted arrival waves,” is analytically
ing layer. Takex to be the flow direction ang to be the formulated in both low-and high-frequency limits in this sec-
vertical direction, and se¥l _ anda_ to be the free-stream tion.
Mach number and the speed of sound on the lower side, a
M, anda, to be those on the upper side, respectivsige
Fig. 3 for a schematic In this paper, the subscript denotes When the acoustic wavelength is much shorter than the
the lower side, and- the upper side. Assume that the Mach characteristic length scale of the medium, in the present case
number and temperature profiles do not change inxtde  the vorticity thickness, one can assume the high-frequency
rection, and the mean pressure is constant everywinete  limit and apply geometrical acousti¢$ Assume the acoustic
that the effects of mixing layer spreading are discussed at theressure fluctuation to be the following form:

II. DERIVATION

nE. High-frequency limit  (finite thickness model )

I(t,x)=e "“'P(x)exdiw¢p(X)]. 2

Substitute(2) into (1), and asymptotically expand it with
respect tow. By taking the leading terms ob, one can
obtain the eikonal equation

Velocity Profile

Zone of Silence

(1-uj¢))?~a’¢/=0, ®
Mixing Layer

"""""""""""""""""""" where ¢;=d¢p/dx;, which corresponds to the local wave-
number vector. By using the method of characteristiosg

can reducd3) to the following O.D.E. system:

2

Jet Exit dXi a
Gt g it @
FIG. 2. Schematic of the noise from a jet. dt 1—ukey I l
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Notice that the phase has the same unit@ctually same

scalg as time. Likewise, by taking the second-highest terms

of w, one can derive the first-order transport equation
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Here, againP;=0dP/dx; . To simplify (7), use the following
relation obtained by differentiatingd) by D/Dt:

284y duy
1-u¢y 9%
¢.‘9_a2_ Biuy 3;32+23-4¢j¢k¢jk1:
Poxg 1-Uid X (1—-uyey)?
Substituting(8) into (7), using(4), and assuming the mean

pressure is constant everywhefbence, (14)(Dp/Dt)
+(1/a?)(Da?/Dt)=0), (7) can be simplified as follows:

ﬂUj

2 Ug—
KX,

UjUdik+ ¢

8

J
(9Xj

PZ  dx
1- uk¢k E

9

Hence, the quantity called the “Blokhintzev invariaftis
conserved along ray tubes

P2S
1—-upoy

dx

at =Const.,

(10

Limiting Ray

} Transmitted Waves

FIG. 4. Ray trajectories from a point source above a mixing layer. The
source is located atx(y)=(0,2), the temperature is constant everywhere,
and the velocity profile is given byl (y) =0.9 1—tanh(23/)]/2 shown on the
left-hand side. The dashed lines are drawn every 3° in all directions, and the
solid lines are drawn by the interval of 0.3° near the limiting ray.

dgy,  dM 1-M(y) ¢, da?

Ay oy dy (14
d¢

T (15)

Again, M(y) denotes the velocity profilénot the Mach
numbejy whose reference speedas =a(—x).

For convenience, consider the case in whigh>0, and
d¢,/dt=0 along the ray in14), such as rays propagating
downstream above a hot jet. Among these rays, if the initial
grazing angled is lower than a certain threshold valué (
< 6", where 6 will be defined latey, this ray propagates
into the lower side and never appears on the upper side,
called a “transmitted wave” in this papdisee Fig. 4. In
contrast, if6> 0*, this ray propagates on the upper side. In
particular, when the rays whose grazing angles are only
slightly higher than this threshold, they appear as refracted

where S denotes the cross section of the ray tube normal tQrival waves departing from the mixing layer to the upper

the ray direction. In the denominator, the mean pressurgiqe at nearly the same angles. The ray whose initial grazing
which is assumed to be constant, disappears compared WIH’hg|e is exactlyg= 6* is called a “limiting ray.” As Fig. 4

the ge_:neral_ expression of the Blokhintzev invaria_nt. This ex5hows, the turning points of the refracted arrival rays, at
pression will be used later to calculate the amplitude of reyypich the rays become parallel to the mixing layer, are fairly

fracted arrival waves. _ ~ close to the lower free-stream region when the rays are
Now, when the mean velocity and temperature profiles,ropagating far downstream. Accordingly, these rays propa-

are purely transversely sheared, the O.D.E. syd#m(6)
can be simplifiedd¢,/dt=0 in (5). In other words,¢, is

gate horizontally just beneath the mixing layer for long dis-
tances. To solve these ray trajectories, assume that the veloc-

constant along the ray. Accordingly, they can be rewritten agy, and temperature profiles approach the lower free-stream

follows: conditions exponentially. In other words, the velocity and the
dx a2(y) temperature profiles near the turning points can be approxi-
L SN S mated b
, M(y)=M_—AMe*D, (16)
dy a“(y) 5 5
A S =1— agy
at 1_M(y)¢x¢y, (12 a‘(y)=1—Aa%e*?, (17
asy— —», wherea;,a,>0, andAM and Aa? are some
doy _ constants determined from the flow field. In many real physi-
=0, (13
dt cal flows, a; and a, can be common near the free-stream
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region (e.g., the Crocco—Busemann relatioﬁ@—uflcp 2

+Cyu;+C,, whereC; and C, are constanjs Hence, set y* = logs. (27)
a1=ar=a. If a1#as, just retain the term whose is

smaller. This model should cover realistic flows; however, ifIn this paper, the superscript * denotes the quantity at the
the profiles do not follow the formulad6) and(17), exten-  turning point. Note that if3=0 in (26), it corresponds to the
sion of the present method is required, such as curve fittindimiting ray.

Nonetheless, the proportionality of the frequency and the dis-  First, to solve the ray trajectories of refracted arrival
tance from the source should show similar features as diswaves, take the minus sign {26), convert the variable by
cussed at the end of this section. Substita® and(17)into  Setting J(z— B%)=pBtand (0<9¥<m/2), and integrate it.
the O.D.E. system(11)—(15), and take the leading-order After some calculation, it yields

terms assuming\Me®¥ and Aa%e® to be small. Conse- «2B°A
guently, one can simplify them as follows: 9=+ 1/ 5 (t—t*). (28
dx 1
E% W(ﬁﬁ M_, (18 Here,t* denotes the time when the ray passes through the
- Px turning point. Equation28) indicates that the trajectory is
dy 1 symmetric about the turning point. Rewritir{@8) and (28)

(190 in the physical domain, one can obtain the ray trajectory near

7~ —¢ ,
dt 1-M_ y : .
x the turning point as follows:

dd¢x 0 20 X—X*~B(t—t*), (29
i ,
2 B
dey (1-M_g¢ra?] y~—log : (30)
Tt | HAME T el @) @ cog \a?BPAI2(t—1¥)]
de where B=[M_+(1-M?)¢,]/(1-M_¢,). Combining
Ezl' (220 (29 and(30), it can be rewritten by
Notice that at the leading ordedx/dt becomes constant y~ Elog B (31)
from (18). Differentiating(19) with respect ta, and substi- @ " cog BC(x—x*)] '

tuting (21 into it, yields
921 y where C=\/a?A/2BZ. This equation will be used later to

d?%y 1 do, o AM  A@? oy derive the amplitude of refracted arrival waves.
W” 1-M_¢, ar 1= M_ ¢, + o |@e Second, a special solution, the limiting ray, can be ob-
tained by setting3=0 in (26). By directly integrating(26),
=aAe", (23 one can obtain
whereA= ¢, AM/(1—M _¢,)+ (Aa?/2), which is constant 2 1 2 | 1 (32
and assumed to be non-negative along the ray. Redefning ¥~ ,'09 NG ~ 29—
\ Va?Al2(t—ty) @ (X=Xo)
=e® and substituting it int@23), one can obtain the follow- “« (t=t) °
ing O.D.E.: Here, X, denotes a certain reference point.
) 5 Finally, to solve the rays of transmitted waves, take the
ZE_ d_Z) CW2AR=0 (24 plus sign in(26), and setz=B?tar? & (0<I</2). After
de2 \dt ' integrating the equation, one can obtain
To reduce(24) to an integrable form, convert the variables 1 pB%1l-cosd) 2 B
by setting o=z and y;=z. After calculatingd, /diq, y=~ ;o9 0?9 2'%9 sinf BC(x—Xq)] "
(24) yields (33
dz2 272 ) Next, consider the trajectory of the turning points for
Gz - 7 T2eAz. (25 refracted arrival waves propagating far downstreéaee Fig.
_ _ 5). The initial grazing angles of these rays are slightly higher
From (25), the general solution can be obtained as than the angle of the limiting ray; hence, the locations where

: these rays enter the mixing layer are approximately the same.
2'=2a°AZ(2% ). (26) Here, thi/ase locations areg ca)I/Ied the F‘?i?]cident pgints," de-
Here, B is an arbitrary constarftlefined to beB e[0,) here  noted byx;, in this paper. On the other hand, due to the slight
for convenience always satisfyingz+ 8°=0. When one difference of the initial angles, the distances from the inci-
takes the plus sign i26), it corresponds to a ray of a trans- dent points to the turning points are quite different; accord-
mitted wave. In contrast, with the minus sign=82 at a  ingly, the locations at which the rays depart from the mixing
certain point, corresponding to a ray of a refracted arrivalayer are also different. These locations are called the “de-
wave. This point is actually the turning point, which can beparting points,” denoted by,,. Recalling the ray trajecto-
expressed as ries are symmetric about the turning points fr¢28), the
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Depa.ning B ’772 dC « —2
Point T T3 d_(X — Xin) dey
10f 2(1-M_¢})A 4cddey
Incident
> 5} Point 71_2
‘\/ + — (X* —Xin) 3dx* ~0. (39)
o 4
g Here, the second term in] becomes negligible far down-
T 10 0 %0 e 50 60 stream(as|x* — x;,| — ). Thus, the intensity is proportional
to
FIG. 5. Example of ray trajectories of refracted arrival waves. The velocity
profile is depicted on the left-hand sid#1(y)=0.91—tanh(3)}/2), and dey m(1-M_¢))A . L
the temperature is constant everywhere. The source is locater,\gt ( I~ T o2 a3 T _Z(X _Xin) .
=(0,2) (same as Fig. ¥ The initial angles of the rays are 56.25— dx 2B C(X* —Xin) o
—55.25° with the interval of 0.05°. Solid dots denote the turning points. (40)

On the other hand, near the source the cross-section area
distance from the incident point to the departing point is¢@" be calculated from the difference of the initial grazing
twice that to the turning point. Now, for the rays propagating@"dles. From(11) and(12), calculate the change of the ray

far downstream, typicalljay*| becomes a relatively large P2ath with respect ta, near the source

value; hence=e®"2 tends to be a fairly small value. For 9 [dx\ 1

example, whemy* =—5, 3=0.0821. On the other hand, W(a ==, (41)

near the incident pointy;,~0; accordingly, 8/cog BC(x* X s Ns

—Xn)]=~1 from (31). Therefore, sincdB|<1, |cogBC(x* 5 (dy &

—xpn) 1| <1 must be satisfied; namely (—) S — (42)
dgy \ dt s Hg ns_¢§

T
BCIX* =X = 7.

> (34

Hence, using27) the trajectory of the turning point can be

approximated by

2 T
y*~—log (35

a T2C(x* — X))

where the quantities with the subscripare evaluated at the

source point, anti=(1—M ¢,)/a. As seen latem behaves
as a refraction index. Now, to apply the ray tube theory using
(10), it is convenient to calculate the following quantity:

‘ dx/dt ds

[ R e e R e )

1- Ms¢x

Now, the pressure amplitude of refracted arrival waves

is derived using the Blokhintzev invaria(t0). By calculat-

ing the departing points of adjacent rays, the amplitude can ~
be approximately solved. First, usifgb), calculate the turn-

ing points of adjacent rays. Knowing th@tis a function of
¢y, differentiate(35) as follows:

dv* + dx* ay*/2m_i Cd
y X* e by -

a(X* - Xin)
2C2 dgy

5 (36)

On the other hand, the relation betwegh and ¢, can be
obtained from the eikonal equatidi3). Knowing that ¢,
=0 gives the turning point, differentiat®) and simplify it
as follows:

(1-M_¢,)aAe”” dy* —Bde,=0. (37)
Furthermore, from3), ¢, for the limiting ray is given by

. 1
¢X_1+|v|_'

(39)

Here, the superscript denotes the quantity of the limiting

ray. Substituting[35) and (37) into (36) yields
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dt
asﬁg VNs— (bi

The distance from the source and the timedt is related as

dry  [[dx\Z [dy|?_ MZ) Mo,
(E)S—V(a) *(a B (”—)” o

(43

1/2

2

S S aS aSnS

(44)

Likewise, calculate the same quantity at the departing point
dx dy dXout
da/dt  dS| _(E’EL d¢x’o)
1-M(Y) ¢y dpy| 1-M, ¢y
4 d
= %T(ﬁx d)((;:t' (45)

Here,(45) is evaluated in the uniform region right above the
mixing layer. Remember that in the upper free-stream region,
the rays are almost parallel, and refracted arrival waves
propagate in the form of general plane waves.

Now, the solution close to a monopole source can be
written as
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M [ M?
— —cosf+ \/1— —Zssin2 ]
ag a wl 3

. S
expy | T

()= 1 1- (M¥a3) as 4
()=
2*277 1/2,3/2

1/2,
o7 T ag

M 2 1/4 ’ (46)
1- —Zssin2 03)

S

where x=r cosf and y=r sinf. In particular, the initial #7=<-1, the corresponding incident points are no longer iden-

grazing angle for refracted arrival waveé} is given by tical for the rays of refracted arrival waves, and the approxi-
mation fails. This expressio@8) will be compared with the
expressions based on a vortex sheet as well as the numerical

dy)
( dt/ \/n;2—¢;2 results.

dX) - Mg Ms, “7)
dt), |17 2Bt

as as

tanfd;=

B. Low-frequency limit  (vortex sheet model )
where ¢} is approximated by38). The expressioii46) can
be obtained fron{A11) (shown latey by assuming that the
flow field near the source is uniform, and taking the limit of
a far-field asymptotewr—co. Combining (40) and (43)—
(46), the amplitude of refracted arrival waves from a finite
thickness mixing layer is approximated by

When the acoustic wavelength is much longer than the
vorticity thickness, a vortex sheet can be used, which corre-
sponds to the low frequency limit. Refracted arrival waves of
this type have been reported in several studiiédn this
section, the resultant formulas of refracted arrival waves in
the low-frequency limit are shown in two cadéise source is

located above and below the vortex sheEor their deriva-
dx/dt dS ) .
- tion, please refer to the Appendix.
1-M g} dox When the source is located above the mixing layer (

° >0), the absolute value of pressure amplitude yields

|H+(w1X1y)|~|Hs(dr)|

\/ dx/dt ds . .
_ n’
- *d II X Y) |~ —— . (49
1-Me} déx| T, (@,%,y)] (im0 a2 (= )X (49)
1/2
1 dgy dt| 2 Here the notation is the same @), and this expression is
2 dx* dr . valid only in the zone of silence on the upper side. Likewise,

_ when the source is located below the mixing laygr(0)

- M2 1/4
—4
2\/2m1’2a§’2( 1- —:sinz 0;) n’

1
I, (w,x,y)|~ N .
ag [T (w,%,y)] \/ﬁwglz n*_4(n12_ ¢;2)X3/2 (50)
« n. Note that the expressidib0) gives larger amplitude than the
a1/2?3/24\/ﬁ*2_¢*2 4\/?2_(]5*2 expression49), as shown later. Here, one can see that the
s s s X * x decay rate of49) or (50) for a vortex sheet and that ¢48)
\/; ﬁ: for a_fiznite tpickness mixing layer are commoK (¥?=[x
= —u(n% =)yl p517%?). However, their coefficients are
20 aﬁﬁgm\/lsin 0| 4\/n*f— ¢)*(2 different. It is important to notice that as the frequency var-
ies, (49) and (50) are proportional to~ %72, while (48) is
1 proportional to~ w~ Y2 with a fixeda. In other words, as the
X M2 M b 4 (48) frequency increases with the flow geometry fixed, the ampli-
1+ — |42 STX X312 tude is guaranteed to exceed the prediction based on the vor-
a§ aSF; tex sheet model. This proportionality is still valid for the

finite thickness mixing layer with the velocity and tempera-
whereX=x—(\/n{ — ¢; /¢)y. Here, since the ray trajec- ture profiles other than-e*Y. Remember that the ray trajec-
tory is symmetric about the turning point, it is assumed thatories are independent of the source frequency so long as the
2|x* —Xin| = [Xou— Xin|- Note when the source is at a large frequency is considered high enough; hence, the only part in
distance from the mixing layerf= 1), the correction for the which the frequency dependence appears is the amplitude
distance from the source to the incident point needs to bexpression near the sour¢46). These theoretical expres-
included[see Eq(59) shown late}t. On the other hand, when sions(48), (49), and (50), are compared with the numerical
the source approaches the lower free-stream region, e.gesults in Sec. IV later.
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IIl. NUMERICAL SIMULATION 06

To compare the analytical formulas with more accurate
solutions, pressure amplitude of refracted arrival waves is
numerically solved based on geometrical acoustics. The pro-
cedures are to simply integrate the eikonal equation and to -
apply the ray-tube theory, which are described in this section.

To solve ray trajectories, the O.D.E. system of the eiko- .42
nal equation(11)—(15), was numerically integrated using the
standard fourth-order Runge—Kutta scheme. The initial con-
ditions are as follows:

x(0)=0, (51) A
y(0)=n, (52
18
0 cos#, 53 °
$x(0)= as+Mcos6;’ o . .
FIG. 6. Turning-point trajectories for different source locations. The lower
sin 6, free-stream velocity isM _=0.8, and the temperature is constant every-
¢y(o) = —', (54) where. Symbols were computed by numerical integration:n=2; O, 7
astMgcoso; =1; A, »=0; *, »=—0.5; and+, »=—1. Lines were calculated using
(35) corresponding tay=2, 1, 0~0.5, and—1 from the top.
#(0)=0, (55)

where the initial grazing angleds is given by tards  consistent with the analytic expression. Thus, pressure am-
=a,sin6/(Ms+ascos#). For simplicity, the velocity profile  plitude of refracted arrival waves was numerically calculated
was set to be based on the ray-tube theory.

M _
M(y)= —-[1-tanh2y)]  (M_>0). (56)  |v. RESULTS AND DISCUSSION

This formula providesM(y)—M_—M_e¥ asy——w, A Tuming point trajectory

which is consistent witi(16) (M, =0., AM=M_, and« First, to observe the accuracy of the analytical expres-
=4.). In addition, this velocity profile yields the vorticity sjon, turning-point trajectories were calculated using both
thickness of 6=AM/(dM/dy)ma=1. Similarly, the tem-  analytical expressiori35) and numerical integratioill)—

perature profile was set to be (15), and the results are compared. Here, the incident loca-
1-a2 tions in (35) were approximated by the following form:
a’(y)= —5—[1-tanh2y)]+a?. (57) .
Xin=— —— (59

tand;’

where 0% e[ — 7/2,0) is defined by47).
Figure 6 represents the dependence of the turning-point

It also yieldsa®(y)—1—(1—a2)e® asy——w. If a
<1, the flow corresponds to a hot jet, while af >1, it
corresponds to a cold jdtin this caseM _ must be reason-

ably(l)arge S?hthap‘ IS aI;xva_ys tno_n-negatwe. See E@ts)o.l] h trajectories on the source location. It shows that as the source
nce € ray lrajectories were computed, €ocation becomes lowecloser to the higher velocity sifle

Bl_okhmtzev mvanant(lO) was “S_ed to obtain pressure am- y, . trajectories shift downward. Wheye — 0.5, the theoret-
plitude by calculating cross sections between adjacent raYal predictions agree with the numerical solutions fairly

Pe.ﬁf“”‘%’ (n,¥n) to be a_certam grid point of theth ray, the well. But, when the source location approaches the lower
infinitesimal cross section of theth ray was computed by free-stream f=— 1. casg the theoretical prediction devi-

the following midpoint rule: ates far lower than the numerical solution. Remember that

(dX dY) the formula(35) assumes the incident points of the rays to be
(X417 Xn-1,Yn+17"Yn-1) X dtdt, N identical; hence, when the source approaches the lower free-
dS~ , (58 stream region, this expression tends to fail. Nonetheless, the

2 (H)T()zju(a%)z analytical expression approximates the ray trajectories fairly
n /n well when the source is above or close to the center line of

wheredx/dt anddy/dt were given by(11) and(12), respec- the mixing layer.
tively. A total of 100 rays was issued with the interval of Figure 7 represents the dependence of the ray trajecto-
A 6;=0.005° from the angle of the limiting ray. The time ries on the lower free-stream veloci}Although M _ actu-
step was taken to bdt=0.025 (X 6/a_). The ratio of the ally yields the Mach number of the lower free-stream, the
infinitesimal cross section at the grid closest from the sourcéerm “free-stream velocity” is used instead of “free-stream
to that at the grid right abovg=2 (almost uniform floy =~ Mach number” to emphasize thi (y) denotes the velocity
was used to calculate amplitude. In addition, the amplitudenormalized bya_ as opposed to the local Mach number.
near the source point was calculated usidg), which is  This figure indicates that the analytical expression covers a
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FIG. 7. Turning-point trajectories for different lower free-stream velocities.
The source location iy=2, and the temperature is constant everywhere.
Symbols were computed by numerical integratiéh; M_=0.3; O, M _
=0.8; and¢®, M_=1.5. Lines were calculated usiitg5) corresponding to
M_=0.3,0.8, and 1.5 from the top. Two caséd (=0.8 and 1.5 almost
overlap.
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wide velocity range. Thus, one can expect that the analytic
expression provides a good approximation to the ray trajec-
tories as long as the source is above or close to the center
line of the mixing layer.

--
T

Pressure amplitude: |1, |

B. Pressure amplitude distribution

To validate the analytical expression for various lower 0
free-stream velocities and source locations, pressure ampli-
tude of refracted arrival waves was calculated us#®), and 3
it is compared with the numerical integration usifid) and
(11)—(15).

Figures 8a)—(c) represent the amplitude profiles in the
direction for different lower free-stream velocities and
source locations. As seen in Fig. 7, the theoretical predictions
and the numerical results agree very well when the source is
n=—0.5. Hence, one can expect that this expression can be
used to estimate the noise generated inside the mixing layer
and propagating in the zone of silence. Since the analytical
formula (48) assumes a far-field asymptote, the theory and
the numerical result agree bettersncreases in all cases.
Each figure shows that as the source approaches the lower
free stream § decreases the amplitude increases; in par- o : : : ‘
ticular, when the source is beloy=0, the amplitude seems X
tp be fairly s_en;itive to the Sourc-e location. This series OfFIG. 8. Comparison of pressure amplitude between the finite thickness mix-
figures also indicates that the noise fr(_)r_n nearly the low_e|rng layer model and the numerical integration. The amplitudes=a2 are
free stream tends to be strongly amplified as the velocityotted. The lower free-stream velocity @@ M _=0.3; (b) M_=0.8; and

increases. (c) M_=1.5. The temperature is constant everywhere. Symbols were com-
puted by numerical integratiof®, »=2; A, »=0; and *, = —0.5. Lines
were calculated using48) corresponding top=2,0, and 0.5 from the
bottom.
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Pressure amplitude: |T1, |

C. Comparison between the finite thickness mixing
layer model and the vortex sheet model

Next, two analytical models, the finite thickness mixing
layer and the vortex sheet models, are compared. Remembent lower free-stream velocities. Both models show that the
that the finite thickness mixing layer moddl8) corresponds amplitude increases as the source approaches the lower free
to the high-frequency limit, while the vortex sheet modelsstream. Moreover, all these cases show that as the frequency
(49) and(50), correspond to the low-frequency limit. Figures increases, the amplitude of the finite thickness model ex-
9(a)—(c) represent the comparison of these models at differceeds that of both vortex sheet models, as mentioned before.
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refracted arrival waves was mapped onto Me anda,
P 8 1 12 n 6 plane. Figures 1&)—(c) represent the pressure amplitude
f=w/(2m) contours calculated by the finite thickness mog@s). The
regions where contour lines are missiftige left top corner

FIG. 9. Comparison between the finite thickness mixing layer model and th¢nqicate that refracted amva| Waves do not or barely exist
vortex sheet models in different lower free-stream velocities. The pressure

amplitudes above the mixing layer are plotted. The lower free-stream veloctinder such Condltlonsn d’x approaches zero i48).
ity is (@ M_=0.3; () M_=0.8, and(c) M_=1.5. The temperature is Hence, there are no rays which initially propagate downward
;Oé‘;;??;é)av’;%:mz.'-i”es ILZF:YSVSiteh”t ag.fo”owﬁ)'rt‘;‘(“:hg:tc';‘ss:l and get refracted upward. This series of figures demonstrates
with the source Zbov'e the’mixing Iay7é73¢9);’and—-'—, the source below the features observed in Flgs(aB—(c): AS the source ap- .
the mixing layer(50). proaches the lower free stream, the amplitude tends to in-
crease over the whole range; particularly, this tendency be-
comes striking when the source is below the center line of
This tendency is particularly striking in lower subsonic the mixing layer ¢y=< —0.5). Figure 11 also reveals that the
flows. Figure 9a) clearly demonstrates that the vortex sheetamplitude becomes more sensitive to the lower free-stream
model far underestimates the amplitude of refracted arrivajelocity as#» decreases. They also show that as the jet be-
waves in a wide range on the higher-frequency side. Rementomes hotter 4. decreasesthe amplitude increases in the
ber that as the frequency increases, the finite thickness modelipersonic rangeM _=1) in all cases. On the other hand, in
decays as- % while the vortex sheet model asw ™ *%  |ow subsonic flows the amplitude becomes fairly large when
Figures 1061) and (b) show the comparison of these the jet becomes colder( increases In this region, the
models at different speeds of sound. Hel@, represents a critical angled?; defined by(47) becomes considerably shal-
hot jet and(b) a cold jet, and the constant temperature casgow so that wide angles of the rays are captured within the
corresponds to Fig.(8). They show that in the vortex sheet mixing layer, and the distinction between direct waves and
model, the temperature variation hardly affects the pressurgfracted arrival waves becomes ambiguous.
amplitude. In contrast, in the finite thickness model, the am- For reference, Fig_ 12 represents the amp|itude contours
plitude strongly increases as the source approaches the lowgsiculated using the vortex sheet models for the sotae
free stream in cold jets; however, it barely changes in hotibove andb) below the mixing layer, respectively. Note that
jets. Notice that due to the definition of the source termthe direct comparison of the magnitude between Figs. 11 and
(fI”+[n§— K211~ 8(y— n)/aﬁ, refers to(Al) shown in the 12 may not be meaningful, since the amplitude ratio between
Appendi¥, the amplitude may even decrease as the sourcihem depends on the ratio ef w. Figures 11b) and 12a) as
approaches the core of hot jets though the distance betweevell as Figs. 14c) and 12Zb) show some qualitative similari-
the adjacent rays become narrower. These tendencies will hs. However, when the source is below the mixing layer,
summarized in the next figures. the vortex sheet model indicates that the amplitude substan-
Finally, to observe the dependence on the lower freetially increases as the velocity increases.
stream velocity and the speed of sound, the amplitude of It is important to notice that the solution for refracted

o

Pressure amp.:

©
»
>
o
-
-
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FIG. 12. Pressure amplitude contours in the plane of the lower free-stream
velocity and the speed of sound based on the vortex sheet model. The
conditions and notations are the same as Fig. 11. The source locat®n is
above the mixing laye(49), and(b) below the mixing layef50).

layer have a similar feature of Mach waves studied in some
previous works!~13 However, it is worthwhile to observe
that supersonic phase velocity can be obtained not only by
sources supersonically convected: Waves issued from an up-
stream source and refracted near the lower free stream have
phase velocity ofi_+a_ (whereu_ denotes the jet veloc-
ity); hence, they can propagate in the zone of silence al-
though the intensity of refracted arrival waves tends to be
fairly small, as Figs. 11 and 12 indicate.

It should also be emphasized that the present analysis is
based on a parallel mixing layer. Of course, when the jet is

FIG. 11. Pressure amplitude contours in the plane of the lower free-strean%preadmgl' the turning points shift closer to the core; as a

velocity and the speed of sound based on the finite thickness mixing layei€SUlt, refracted arrival waves become “more like direct
model. The pressure amplitudes of the finite thickness m¢d®l are  waves” and their amplitude is enhancééfer to Ref. 15 for

shown.w/2m=4 andX=20. The source is set to He) 7=2; (b) »=0;  calculation in a more realistic flow geometryHence, the

and(c) »=—0.5. The thicker dashed line denotes the isoenthalpy line. high-frequency sound in the zone of silence measured in ex-
periments might be caused mainly by direct waves from the

arrival waves belongs to the same family as Mach wave-typend of the potential cor®.To estimate the mixing layer

sound! From a one-dimensional point of view, namely the spreading effect on the sound radiation field, the pressure

linear analysis based dA1), this family satisfies the bound- amplitude was numerically calculated at different spreading

ary conditions of exponential decay toward the lower siderates. The velocity profile was set to be

(high speetl and oscillation toward the upper sidéow

speeq, and changes its nature at the turning point. In this M(x,y)= M{ltan?‘(

sense, refracted arrival waves from a finite thickness mixing 2

60
1+8'x (€0
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x10° limit. These formulas show that the amplitude at high fre-

‘ ' ’ quencies is proportional te ~ 2, while that at low frequen-
cies is proportional taw %2, @ being the source angular
frequency. This indicates that the existing low-frequency
formula?® namely the vortex sheet model, tends to underes-
timate the sound-pressure level in the zone of silence as the
frequency increases. It also implies that the previous high-
frequency theo¥ignoring refracted arrival waves does not
correctly represent the sound radiation pattern in the zone of
silence.

This high-frequency formula of refracted arrival waves
has significant implications for the application to jet noise. In
most previous studies, general plane-wave-type radiation has
been considered only for supersonic jet flofnesferred to as
0 10 20 %0 10 50 80 Mach waveg However, this study indicates that even in sub-

X sonic mixing layers, general plane-wave-type sound can

FIG. 13. Comparison of pressure _am_plitude profile of different_ Spr_eadingmiesorg;:ﬁlljlé pi?p:)?atetlr&ﬂ:e Zbone of I§I|eglce.t|n taartlﬁylﬁt’
rates. The lower free-stream velocityM_=0.8, the source location ig pected to be applicable 1o the hig
=0, and the temperature is constant everywhere. Symbols were computdgequency noise mainly generated near the nozzle lip of the
by numerical integrationO, §'=0; O, 6'=0.05; *, §'=0.10; and+, jet exit. Therefore, it should be used to estimate the sound-
6'=0.20. A solid line was calculated using the finite thickness mixing Iayerpressure level in the zone of silence at high frequencies.
model (48). However, at present the existence of such waves in real flows
. is uncertain, and as noted below, some extensions of the
where the free-stream velocity was set toMe =0.8 and  resent theory are required for quantitative prediction.
the temperature to be constant everywhere. Here, the source gq, example, one may need to more rigorously analyze
was placed at the origin. The results are plotted in Fig. 13ome additional effects of real flows: As the mixing layer
and compared with the parallel mixing layer model at highgpreads, more rays are trapped inside of it and the distinction
frequencies. Figure 13 clearly shows that esér 0.1 0fthe  petween refracted arrival waves and direct waves becomes
spreading rate yields several times as large pressure amplimpiguous. In fact, this study shows that a slight increase in
tude as that in the parallel mixing layer case. Note that preghe spreading rate of the mixing layer drastically enhances
vious experimental and numerical studiesimmarized in  the amplitude of refracted arrival waves. Other examples
Ref. 16 have indicated that the spreading rate can be up tQhich are not studied here are effects of unsteady flow dis-
6'~0.2 as the jet Mach number decreases. Therefore, tg,rhances, source models for turbulent mixing noise, and so
compare these theoreti_cal exp_ressions with actual experf, Nonetheless, it is important to note this study demon-
ments, one needs the information about the mean flow agyates that sound radiation pattern in the zone of silence is
well as rigorous source models and their distribution. fundamentally different from the region in which direct
Furthermore, in terms of the frequency range, the mos{yayes propagate and the amplitude of refracted arrival waves

unstable mode of instability waves is likely to be somewhergg giterent several times over between the low- and high-
in between the low- and high-frequency limits. The h'gh'frequency limits.

frequency formula derived here focuses on noise due to

rather finer scale turbulence. As obs_erved_ by. eXpe.rm?entSACKNOWLEDGMENTS
the high-frequency component of the jet noise is mainly gen-
erated near the nozzle lip, in which large-scale vortical dis- The authors would like to thank Professor Brian J.
turbances have not yet significantly grown. In addition, aCantwell and Professor Joseph B. Keller for many useful
numerical study by SuzuKi shows that this high-frequency suggestions. We gratefully acknowledge the financial support
formula for refracted arrival waves is applicable when theby NASA Ames Research CentéBrant No. NAG 2-1373
ratio of the acoustic wavelength to the vorticity thickness

becomes unity or less. Therefore, the analysis in this study isppeNDIX: Derivation for the low-frequency limit

expected to be useful for noise generated near the jet exit.

However, once instability waves have developed into large- To rederive the formulas of refracted arrival waves in
scale vortical structures downstream, such as at the end §te low-frequency limit, derivative matchifigs used here.
the potential core, the current analysis would no longer b&irst, take a Fourier transform ¢f) in time and the flow
valid. Other issues associated with jet noise, such as the mulirection, and set a delta function wt 7,

|Hm+|

Pressure amplitude:

tipole and moving sources, are also discussed in Ref. 17. IM
7 [ g2 + ZkW 2711 + kM)2—a2k?]11
V. CONCLUSION 7y a oy akm a 7y [(w )2—a%k?]
Through this study, refracted arrival waves propagating S(v— Al
in the zone of silence are formulated in the high-frequency y=m, (AD)

limit and compared with the formula in the low-frequency where
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. 1 (= (= _ —iyn% —K2(y- 1)
(w,ky)= 2f f I(t,x,y)e @t dt dx. ﬁ+=ef—+creivn2rk2y, (AB)
(2m)°) oo ) == i2a2 \n? —k?

(A2)

When the wavelength is much longer than the vorticity thick-  [T_=C,e™" VnZ =Ky (A7)
ness, the third term dfAl) becomes much smaller than the ) o
first two terms. Therefore, in the low-frequency linfal) ~ Here,C, andC; (e C) are the reflection and transmission

can be approximated by coefficients, respectively. Note that the “resonance
- mode”>!8is not taken into account here for simplicity. Sub-

d a’(y) oIl o(y—mn) stituting (A6) and (A7) into (A4) and (A5), transmitted
ay (0—kM(y))? ay = (0—KkM(y))?’ (A3) " \vaves can be obtained as follows:

Hence, the quantityfa?(y)/(w—kM(y))?]dll/dy is con- . el Vn? —K2ng-iyn” —KPy

stant across the vortex sheet. Subsequently, assuming = NN (A8)

|aT1/ay| is finite, it can be shown thall is continuous iaini( —— )

across the vortex sheet. Although the pressure itself is con- ny n-

y taking an inverse Fourier transform ¢A8), the two-

tinuous across the vortex sheet, the first derivative has a diE—
imensional formula can be derived as

continuity. Thus, the jump conditions across the vortex shee

become
A A f 2 2 _ 2 12 G
f.(y=0,)=1_(y=0.), B 1 o a):i_f”e'm S G L
A~ ~ IR} 27T| —co 5 \/ni_kz \/ng_kz
i(?H+ _i(?H, A5 asn;g > + 5
nZ ay _n2 ay ’ ( ) n+ n-
" y=0, '~ y=0- (A9)

wheren.=(w—kM.)/a., which is equivalent tavn. [n To evaluate(A9), assumen<r andr>1, and use the sta-

is defined after(41) and (42)]. Likewise,k is equal tow¢,  tionary phase method. Defining the phase part togkk)

used in the high-frequency limit. =k cosf—(n*> —K)sinb, ¢'(k)=0 gives the stationary
To derive the formulas for refracted arrival waves, firstpoint, which becomes

put the source above the vortex shegt0). In the trans-

verse direction, incident and reflected waves propagate on &= = @ M+ cosd A10
the upper side, and transmitted waves on the lower side. N 1-M2 - 1-M2sirt o/ (A10)

Knowing that the second term ¢Al) vanishes in the uni-
form flow region, the forms of the solution on the upper andAs a result,(A9) can be approximated in the far field as
lower sides can be expressed as follows: follows:

w2 Ir sing| e \/ni—kznei[—M,cos&-h/l—ME sir? 0/1— M2 ] wr — (3/4)7)
V2732 (1- M2 sintg)34 , o[ Vni—K? nZ—K?
asns —+ 5
n< n<

wherek andn.. are evaluated at the stationary po(AtL0). n2 —k2 _ S
The solution for refracted arrival waves must match with I, (w,X,y)~A,| x— — Y gl (kY —k%y)
(A11) across the mixing layer. To apply the derivative match- (A13)

ing (Ab5), differentiate(A11) with respect toy and sety=0

Similarly, differentiate(A13) with respect toy and evaluate

oIl — YNNG —K?n gi(kx—(314m) aty=0 retaining the lowest order of (namely, theA’. term
— ~ ) (A12) is eliminated
W 1o V27x®? a2 \n? —K?
: : ot ~inZ —K2A, (x)e'x (A14)
Here, the stationary point is(6=0)=w/(1+M_). Wy |, + + :
On the other hand, refracted arrival waves on the upper -
side should be expressed in the form of general plane waves;
hence, they can be written by Substituting(A12) and (A14) into (A5), it yields as follows:
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