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ABSTRACT
The problem of a one-dimensional (1D) cylindrically or spherically symmetric shock wave converging into an inviscid, ideal gas was first
investigated by Guderley[Starke kugelige und zylinrische verdichtungsstosse in der nahe des kugelmitterpunktes bzw. Der zylinderachse,”
Luftfahrtforschung 19, 302 (1942)]. In the time since, many authors have discussed the practical notion of how Guderley-like flows might be
generated. One candidate is a constant velocity, converging “cylindrical or spherical piston,” giving rise to a converging shock wave in the spirit
of its classical, planar counterpart. A limitation of pre-existing analyses along these lines is the restriction to flows in materials described by
an ideal gas equation of state (EOS) constitutive law. This choice is of course necessary for the direct comparison with the classical Guderley
solution, which also features an ideal gas EOS. However, the ideal gas EOS is limited in its utility in describing a wide variety of physical
phenomena and, in particular, the shock compression of solid materials. This work is thus intended to provide an extension of previous work
to a nonideal EOS. The stiff gas EOS is chosen as a logical starting point due to not only its close resemblance to the ideal gas law but also its
relevance to the shock compression of various liquid and solid materials. Using this choice of EOS, the solution of a 1D planar piston problem
is constructed and subsequently used as the lowest order term in a quasi-self-similar series expansion intended to capture both curvilinear and
nonideal EOS effects. The solution associated with this procedure provides correction terms to the 1D planar solution so that the expected
accelerating shock trajectory and nontrivially varying state variable profiles can be obtained. This solution is further examined in the limit as
the converging shock wave approaches the 1D curvilinear origin. Given the stiff gas EOS is not otherwise expected to admit a Guderley-like
solution when coupled to the inviscid Euler equations, this work thus provides the semianalytical limiting behavior of a flow that cannot be
otherwise captured using self-similar analysis.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5109097., s

I. INTRODUCTION

The problem of a one-dimensional (1D) cylindrically or spher-
ically symmetric shock wave converging into an inviscid, perfect
gas was first investigated by Guderley1 in 1942 and independently
by Landau and Stanyukovich2 in 1944. The problem has been fre-
quently revisited in the time since, including by Butler,3 Lazarus,4

and Chisnell.5 The problem’s numerous applications can be found
in the laser fusion community,6–9 astrophysical contexts,10 and veri-
fication activities for inviscid compressible flow (Euler) codes.11

Using symmetry analysis techniques, it can be shown that the
Guderley problem falls within the same family of scale-invariant,
self-similar flows as the Noh constant-velocity implosion,12 and

Sedov-von Neumann-Taylor blast wave13,14 (or “Sedov problem,”
for simplicity). While at a high level, these solutions are a conse-
quence of scaling groups of the inviscid Euler equations, they are
distinguished from one another by different initial conditions (and
thus potentially different scaling subgroups). These differences also
manifest in the categorization of the problems into Barenblatt’s15,16

first and second-type self-similar solutions: while the Noh and Sedov
solutions fall into the first class, the Guderley problem is an archety-
pal example of the second. The interplay between this notion, ini-
tial conditions, and other relevant concepts is discussed at length
by Barenblatt,15,16 Waxman and Shvarts,17 and Boyd et al.18 A key
point of these developments is that while the Noh and Sedov prob-
lems are generated by discrete initial events, the Guderley solution
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instead results “from an infinitely weak state, at infinity, infinitely
long ago.”19

This concept notwithstanding, many authors discuss the prac-
tical notion of how a Guderley-like flow might be generated. Two
obvious candidates are a “cylindrical or spherical shock tube” and
a “cylindrical or spherical piston,” in each case giving rise to a con-
verging shock wave in the spirit of their classical, planar counterparts
(see, for example, the work of Landau and Lifshitz20 or Zel’dovich
and Raizer21). The former concept is investigated by Hornung et al.22

and Ramsey and Lilieholm23 The latter was first investigated by Van
Dyke and Guttmann24 (see also Sachdev25,26) and forms the basis of
the current work.

An important outcome of Van Dyke and Guttmann’s work is
the establishment of a quantitative connection between their con-
verging curvilinear piston-driven flow and the Guderley converg-
ing shock wave. In particular, Van Dyke and Guttmann demon-
strate that their piston-driven converging shock wave asymptoti-
cally approaches the corresponding Guderley solution and that there
exists a possibility that other piston motions may do likewise.

Despite its utility, one of the limitations of Van Dyke and
Guttmann’s work is its restriction to flows in materials described by
an ideal gas equation of state (EOS) constitutive law. This choice
is of course necessary for the direct comparison with the Guder-
ley solution, which also features an ideal gas EOS. However, as has
been noted by numerous authors, the ideal gas EOS is limited in its
utility to describing flows in noninteracting gases. As a result, some
recent studies have been devoted to extending the ideal gas Guderley
solution to more broadly applicable classes of EOS.18,27,28

The current work is thus intended to provide in parallel the
extension of Van Dyke and Guttmann’s formalism to a nonideal
EOS. The stiff gas EOS as described by Harlow and Amsden29 and
Burnett et al.30 is chosen as a logical starting point due to not only
its close resemblance to the ideal gas law but also its relevance to
the shock compression of various liquid and solid materials. More-
over, following from the analysis of Boyd et al.,27 the stiff gas EOS
is not expected to admit a Guderley-like solution when coupled to
the inviscid Euler equations. Therefore, the analysis to follow will
provide the semianalytical limiting behavior of a flow that cannot be
otherwise captured using self-similar analysis.

In support of the goals described above, the remainder of this
article is laid out as follows: more details surrounding the definition
of the cylindrical/spherical piston problem are provided in Sec. II,
along with the attendant mathematical model. A solution of the con-
verging curvilinear piston problem for a stiff gas (in the spirit of Van
Dyke and Guttmann’s work24) is provided in Sec. III. Conclusions
and recommendations for future study appear in Sec. IV.

II. THE PISTON PROBLEM
The principal interest of this work is the problem of a 1D cylin-

drical or spherical (curvilinear) piston initially located at position
Rp,0 suddenly moving inward with a constant velocity −V, driving
a shock wave into the constant density (ρ = ρ0), quiescent (u = 0),
zero pressure (P = 0) fluid it encapsulates (see Fig. 1). The objective
of the problem is to determine both the trajectory of the converging
shock wave Rs(t) and the functional form of the flow field between
the piston and the shock wave.

FIG. 1. The constant velocity converging curvilinear piston problem.

The 1D planar analog of this problem is fundamental in the
field of gas dynamics and is discussed by Landau and Lifshitz20 and
Sachdev25,26 among many other authors. For the case of an ideal gas
EOS, the 1D planar piston problem has a closed-form solution for
the shock trajectory and fluid state between the piston and shock.
More broadly, the 1D planar piston problem is a member of the
larger class of Riemann solutions of the 1D inviscid Euler equa-
tions, as discussed by Bethe,31 Menikoff and Plohr,32 and Kamm.33

These references also include discussions surrounding the extension
of the relevant Riemann solutions to flows featuring arbitrary convex
EOS.

Unlike their 1D planar counterparts, 1D curvilinear piston-
driven flows (be they converging or otherwise) generally have no
known self-similar solutions, even for the ideal gas EOS. This phe-
nomenon owes partially to the loss of scaling symmetries resulting
from the inclusion of initial and/or boundary condition data featur-
ing inherent dimensional scales (e.g., ρ0 and V in the current case).
Under these conditions, the remaining “universal” scaling group can
only give rise to shock waves that propagate with constant velocity.
However, as curvilinear shock waves typically decelerate or acceler-
ate, the constant velocity solutions are discarded, leaving no avail-
able self-similar phenomenology. For a more detailed mathematical
treatment of this topic, see the work of Boyd et al. and references
therein.18,27

Accordingly, Van Dyke and Guttmann24 treat their analysis of
the ideal gas, constant velocity, converging curvilinear piston prob-
lem (henceforth referred to as the “piston problem” for brevity)
in a quasisimilar fashion, employing series expansion techniques
to semianalytically model the flow. The pedigree for this type of
analysis was previously established by McFadden,34 Sakurai,35–37

Sedov,14 and Friedman38 (see also Sachdev25,26) in a variety of other
(but closely related) contexts. The key feature of these analyses is
the inclusion of a formally self-similar solution as the lowest-order
term in the series expansion. Higher-order terms thus represent
corrections to ideal self-similarity.
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An extension of Van Dyke and Guttmann’s24 work involving a
nonideal material is performed by Arora and Sharma,39 who inves-
tigate flows featuring the Van der Waals EOS. The current study
features the stiff gas EOS, which is relevant to the shock compression
of crystalline solids.

A. Flow equations
Consistent with previous treatments on the subject, the piston

problem will be investigated in terms of the 1D inviscid compressible
flow (Euler) equations

∂ρ
∂t

+ u
∂ρ
∂r

+ ρ(∂u
∂r

+
ju
r
) = 0, (1)

∂u
∂t

+ u
∂u
∂r

+
1
ρ
∂P
∂r
= 0, (2)

∂P
∂t

+ u
∂P
∂r

+ KS(
∂u
∂r

+
ju
r
) = 0, (3)

where r and t denote the independent space and time coordinates, ρ,
u, and P denote the fluid mass density, radial velocity, and pressure, j
is the space index (j = 0, 1, or 2 for 1D planar, cylindrical, or spherical
symmetries), and KS is the fluid adiabatic bulk modulus, defined by

(4)

where is the (incomplete) EOS constitutive law charac-
terizing the material into which the piston is moving, and e is the
fluid specific internal energy (energy per unit mass). Given either
the adiabatic bulk modulus or EOS intrinsic properties of the mate-
rial, Eqs. (1)–(3) are closed in ρ, u, and P. Equations (1)–(3) are the
same as those used by Ovsiannikov40 and Cantwell41 in the sym-
metry analysis context; derivations are provided by, for example,
Axford,42 Ramsey et al.,28 and Boyd et al.18,27

B. Stiff gas
A simple but useful generalization of the ideal gas EOS,

P = (γ − 1)ρe, (5)

is the stiff gas EOS as given by Harlow and Amsden29

P = c2
0(ρ − ρ0) + (γ − 1)ρe, (6)

where ρ0 > 0 and c0 ≥ 0 are material-specific reference quantities
with units of density and velocity, respectively, and γ > 1 is the
material-specific (dimensionless) adiabatic index. As noted by Bur-
nett et al.,30 the stiff gas EOS may also be viewed as a linearization
of the Mie-Gruneisen EOS often employed to characterize the shock
compression of crystalline solids. As such, the parameters ρ0, c0, and
γ appearing in Eq. (6) may be obtained (for example) from empirical
shock velocity-particle velocity (us-up) relations of the form

us = c0 + sup, (7)

where γ = 2s, and ρ0 is the ambient density of the material in ques-
tion (see, for example, Meyers43 or Cooper44). Alternate us-up rela-
tions also exist and may result in alternate forms of both the Mie-
Gruneisen EOS and Eq. (6). However, Eq. (6) has been found to

be appropriate to model the shock compression of various metals,
water, and other nonideal substances. The stiff gas EOS also allows
for tension processes as well as compression.

Moreover, with Eq. (6), Eq. (4) may be used to compute the
adiabatic bulk modulus for the stiff gas EOS

KS = ρ0c2
0 + γP, (8)

which remains nonzero even as P→ 0, unlike the ideal gas EOS. This
behavior is characteristic of many liquid or solid materials.

Finally, with Eq. (8), Eq. (3) becomes

∂P
∂t

+ u
∂P
∂r

+ (ρ0c2
0 + γP)(∂u

∂r
+
ju
r
) = 0, (9)

which, with Eqs. (1) and (2), is closed in ρ, u, and P.

C. Shock jump conditions
The inviscid Euler equations admit discontinuous solutions

some of which may be interpreted as flows featuring shock waves.
The inviscid Euler equations themselves do not hold at the exact
position of a shock, but when cast in conservation form, they may
be used to derive conservation relations connecting the flow states
immediately to either side. These expressions are known as the
Rankine-Hugoniot jump conditions and express conservation of
mass, momentum, and total energy across the shock. They are given
by (see, for example, the work of Zel’dovich and Raizer21)

(u2 − Ṙs)ρ2 = (u1 − Ṙs)ρ1, (10)

P2 + (u1 − Ṙs)ρ1u2 = P1 + (u1 − Ṙs)ρ1u1, (11)

e2 +
P2

ρ2
+
(u2 − Ṙs)

2

2
= e1 +

P1

ρ1
+
(u1 − Ṙs)

2

2
, (12)

where the subscripts “1” and “2” denote the unperturbed and per-
turbed states, respectively, and the overdot applied to the shock
position Rs denotes time differentiation.

For the stiff gas EOS, Eq. (6) may be used to eliminate e from
Eq. (12) to yield

γP2

(γ − 1)ρ2
+
(u2 − Ṙs)

2

2
− c2

0(ρ2 − ρ0)
(γ − 1)ρ2

= γP1

(γ − 1)ρ1
+
(u1 − Ṙs)

2

2
− c2

0(ρ1 − ρ0)
(γ − 1)ρ1

, (13)

where it has been assumed that the unshocked density of the gas is
the same as the stiff gas reference density ρ0. Indeed, for the piston
problem described in Sec. II, the unshocked state of the gas is pre-
scribed so that ρ1 = ρ0, u1 = 0, and P1 = 0. With these conditions,
Eqs. (10), (11), and (13) become, respectively,

ρ2 = ρ0
(γ + 1)Ṙ2

s

2c2
0 + (γ − 1)Ṙ2

s
, (14)

u2 =
2

γ + 1
(Ṙs −

c2
0

Ṙs
), (15)

P2 =
2

γ + 1
ρ0(Ṙ2

s − c2
0), (16)
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which is an underdetermined system for ρ2, u2, P2, and Ṙs. Equa-
tions (14)–(16) indicate ∣Ṙs∣ > c0 for the shock wave to be compres-
sive (i.e., P2 > 0 or ρ2 > ρ0).

In any event, Eqs. (14)–(16) are underdetermined because
insufficient information has been provided for the shocked state of
the gas. From the piston problem definition, the only unused condi-
tion is u = −V at the position of the piston Rp(t); no information is
provided at the location of the shock wave, immediately adjacent to
which states 1 and 2 are defined. However, in the case of 1D planar
geometry (j = 0), curvilinear effects are absent so that

u = −V when Rs < r ≤ Rp, (17)

thus implying u2 = −V. In this case, the solution of Eqs. (14)–(16)
for ρ2, P2, and Ṙs is given by

ρ2 = ρ0
4c2

0 + (γ + 1)V2 + V
√

16c2
0 + (γ + 1)2V2

4c2
0 + 2(γ − 1)V2 , (18)

P2 =
ρ0

4
[(γ + 1)V2 + V

√
16c2

0 + (γ + 1)2V2], (19)

Ṙs = −
1
4
[(γ + 1)V +

√
16c2

0 + (γ + 1)2V2]. (20)

In the ideal gas limit (i.e., c0 → 0), the positive solution branch of
Eqs. (18)–(20) recovers the ideal gas planar piston result given by
Van Dyke and Guttmann24 or Landau and Lifshitz.20

Otherwise, Eqs. (18)–(20) are valid only for 1D planar geome-
try (j = 0). For 1D cylindrical or spherical geometry, Eq. (17) does
not hold, in general, and u = −V only at r = Rp(t). This result is
intuitive in that Eq. (20) predicts a constant shock velocity; for the
case of curvilinear geometry, the shock wave is expected to accelerate
toward the axis or point of symmetry, thus contradicting Eq. (20). In
this scenario, Eqs. (14)–(16) must instead be used.

D. Dimensionless interpretation
As written, Eqs. (1), (2), (9), and (14)–(16) may be rendered

dimensionless through a change to the dimensionless variables

r̃ → r/Rp,0,

t̃ → tV/RP,0,

ρ̃→ ρ/ρ0,

ũ→ u/V ,

P̃ → P/ρ0V2,

c̃0 → c0/V ,

˙̃Rs → Ṙs/V ,

under which Eqs. (1), (2), and (9) become, respectively,

∂ρ̃
∂ t̃

+ ũ
∂ρ̃
∂ r̃

+ ρ̃(∂ũ
∂ r̃

+
jũ
r̃
) = 0, (21)

∂ũ
∂ t̃

+ ũ
∂ũ
∂ r̃

+
1
ρ̃
∂P̃
∂ r̃
= 0, (22)

∂P̃
∂ t̃

+ ũ
∂P̃
∂ r̃

+ (c̃2
0 + γP̃)(∂ũ

∂ r̃
+
jũ
r̃
) = 0, (23)

and Eqs. (14)–(16) become, respectively,

ρ̃2 =
(γ + 1) ˙̃R2

s

2c̃2
0 + (γ − 1) ˙̃R2

s

, (24)

ũ2 =
2

γ + 1
( ˙̃Rs −

c̃2
0

˙̃Rs
), (25)

P̃2 =
2

γ + 1
( ˙̃R2

s − c̃2
0). (26)

This change of variables follows from the invariance of the invis-
cid Euler equations under a three-parameter scaling group (in the
current case represented by the parameters R0, V, and ρ0). How-
ever, unlike the cases treated by Boyd et al.,27 these transforma-
tions include a rescaling by V of the material-specific parameter c0.
This nondimensionalization is an example of a dynamic similarity
transformation (as opposed to an even more specific self-similarity
transformation) as discussed by Sedov14 and Zel’dovich and Raizer21

and, in the current case, enables “material scaling” in addition to
the usual geometric Euler scaling processes. This type of scaling is
analogous to material surrogacy phenomena often encountered in
the context of scale modeling of flow experiments. Further conse-
quences of this interpretation will be discussed during the course of
the developments to follow.

Throughout Sec. III, the tildes will be dropped from Eqs. (21)–
(26), with the assumption that all variables, parameters, and quanti-
ties will be considered as dimensionless unless otherwise indicated.

III. QUASISIMILAR SOLUTION
As noted in Sec. II, the piston problem has no known

self-similar solution (in curvilinear geometry). Van Dyke and
Guttmann’s24 approach to solving the problem relies on a quasisim-
ilar analysis, where the 1D planar solution [Eqs. (18)–(20) in the
current case] is taken as the lowest order term in a series solution.
The higher order terms in the expansion thus represent curvilinear
effects.

In the dimensionless formulation, a new independent variable
is given by

ξ = λ(1 − r
t
− 1). (27)

As defined, this variable assumes the value ξ = 0 at the position
r = 1 − t of the piston [corresponding to dimensional position Rp(t)
= Rp,0 − Vt]. The value of the constant λ is selected so that ξ = 1 at
the position r = 1 − X1t of a hypothetical planar shock wave driven
by the piston [with dimensional position Rs(t) = Rp,0 − X1Vt]. With
this assumption, Eq. (27) yields

λ = 1
X1 − 1

. (28)

Given that the piston problem configuration described in Sec. II
always results in a constant-velocity shock in 1D planar geometry,
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Eq. (28) is a general result (assuming the dimensionless planar shock
velocity X1 can be computed analytically, which depends on the
form of the EOS being employed).

The quasisimilar analysis then proceeds by introducing the
expansions

Rs = 1 −
∞

∑
n=1

Xntn, (29)

ρ = D1 +
∞

∑
n=2

Dn(ξ)tn−1, (30)

u = −1 +
∞

∑
n=2

Un(ξ)tn−1, (31)

P = Π1 +
∞

∑
n=2

Πn(ξ)tn−1, (32)

where as t→ 0, the solution approaches the corresponding 1D planar
result; in other words,X1,D1,U1 =−1, andΠ1 follow from a solution
of the piston problem under the assumption of 1D planar geometry
[i.e., as in Eqs. (17)–(20) of Sec. II C].

Furthermore, the higher order expansion functions inD,U, and
Π are assumed to follow:

Dn(ξ) =
n

∑
k=1

Dnkξ
k−1, (33)

Un(ξ) =
n

∑
k=2

Unkξ
k−1, (34)

Πn(ξ) =
n

∑
k=1

Πnkξ
k−1. (35)

Equations (30)–(32) with Eqs. (33)–(35) are then substituted into the
inviscid Euler equations given by Eqs. (21)–(23), and the shock jump
conditions given by Eqs. (24)–(26). To accomplish this, all deriva-
tives appearing in Eqs. (21)–(23) must be represented in terms of
the various expansion functions

∂ρ
∂t
=
∞

∑
n=2
[∂ξ
∂t

dDn

dξ
+
(n − 1)Dn

t
]tn−1, (36)

∂ρ
∂r
=
∞

∑
n=2
[∂ξ
∂r

dDn

dξ
]tn−1, (37)

∂u
∂t
=
∞

∑
n=2
[∂ξ
∂t

dUn

dξ
+
(n − 1)Un

t
]tn−1, (38)

∂u
∂r
=
∞

∑
n=2
[∂ξ
∂r

dUn

dξ
]tn−1, (39)

∂P
∂t
=
∞

∑
n=2
[∂ξ
∂t

dΠn

dξ
+
(n − 1)Πn

t
]tn−1, (40)

∂P
∂r
=
∞

∑
n=2
[∂ξ
∂r

dΠn

dξ
]tn−1, (41)

Ṙs = −
∞

∑
n=1

nXntn−1, (42)

where the derivatives of the quasisimilarity variable ξ are given by,
with Eq. (27),

∂ξ
∂t
= −(ξ + λ)

t
, (43)

∂ξ
∂r
= −λ

t
, (44)

and the derivatives of the expansion functions Dn, Un, and Πn are,
with Eqs. (33)–(35),

dDn

dξ
=

n

∑
k=1
(k − 1)Dnkξ

k−2, (45)

dUn

dξ
=

n

∑
k=2
(k − 1)Unkξ

k−2, (46)

dΠn

dξ
=

n

∑
k=1
(k − 1)Πnkξ

k−2. (47)

With Eqs. (30)–(46), Eqs. (21)–(23) become, respectively,

[λ − t(ξ + λ)]
∞

∑
n=2
[−(ξ + λ)

n

∑
k=1
(k − 1)Dnkξ

k−2 + (n − 1)
n

∑
k=1

Dnkξ
k−1]tn−2 − λ[λ − t(ξ + λ)][−1 +

∞

∑
n=2

n

∑
k=2

Unkξ
k−1tn−1]

×
∞

∑
n=2

n

∑
k=1
(k − 1)Dnkξ

k−2tn−2 + (D1 +
∞

∑
n=2

n

∑
k=1

Dnkξ
k−1tn−1){−λ[λ − t(ξ + λ)]

∞

∑
n=2

n

∑
k=2
(k − 1)Unkξ

k−2tn−2

+ jλ[−1 +
∞

∑
n=2

n

∑
k=2

Unkξ
k−1tn−1]} = 0, (48)

(D1 +
∞

∑
n=2

n

∑
k=1

Dnkξ
k−1tn−1)

∞

∑
n=2
[−(ξ + λ)

n

∑
k=2
(k − 1)Unkξ

k−2 + (n − 1)
n

∑
k=2

Unkξ
k−1]tn−2 − λ(D1 +

∞

∑
n=2

n

∑
k=1

Dnkξ
k−1tn−1)

× [−1 +
∞

∑
n=2

n

∑
k=2

Unkξ
k−1tn−1]

∞

∑
n=2

n

∑
k=2
(k − 1)Unkξ

k−2tn−2 − λ
∞

∑
n=2

n

∑
k=1
(k − 1)Πnkξ

k−2tn−2 = 0, (49)
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[λ − t(ξ + λ)]
∞

∑
n=2
[−(ξ + λ)

n

∑
k=1
(k − 1)Πnkξ

k−2 + (n − 1)
n

∑
k=1

Πnkξ
k−1]tn−2 − λ[λ − t(ξ + λ)][−1 +

∞

∑
n=2

n

∑
k=2

Unkξ
k−1tn−1]

×
∞

∑
n=2

n

∑
k=1
(k − 1)Πnkξ

k−2tn−2 + [c2
0 + γ(Π1 +

∞

∑
n=2

n

∑
k=1

Πnkξ
k−1tn−1)]{−λ[λ − t(ξ + λ)]

∞

∑
n=2

n

∑
k=2
(k − 1)Unkξ

k−2tn−2

+ jλ[−1 +
∞

∑
n=2

n

∑
k=2

Unkξ
k−1tn−1]} = 0. (50)

In addition to Eqs. (21)–(23), Eqs. (24)–(26) must also be similarly
transformed, yielding, respectively,

(D1 +
∞

∑
n=2

n

∑
k=1

Dnkξ
k−1
s tn−1)

⎡⎢⎢⎢⎢⎣
2c2

0 + (γ − 1)(
∞

∑
n=1

nXntn−1)
2⎤⎥⎥⎥⎥⎦

− (γ + 1)(
∞

∑
n=1

nXntn−1)
2

= 0, (51)

(−1 +
∞

∑
n=2

n

∑
k=2

Unkξ
k−1
s tn−1)

∞

∑
n=1

nXntn−1

− 2
γ + 1

⎡⎢⎢⎢⎢⎣
c2

0 − (
∞

∑
n=1

nXntn−1)
2⎤⎥⎥⎥⎥⎦
= 0, (52)

Π1 +
∞

∑
n=2

n

∑
k=1

Πnkξ
k−1
s tn−1 − 2

γ + 1

⎡⎢⎢⎢⎢⎣
(
∞

∑
n=1

nXntn−1)
2

− c2
0

⎤⎥⎥⎥⎥⎦
= 0. (53)

As indicated, Eqs. (51)–(53) are valid only at ξ = ξs, the ξ-position
of the curvilinear shock wave (and not ξ = 1, the position of the
hypothetical planar shock wave). With Eqs. (27)–(29), this position
is given by

ξs = ξ(r = Rs)

= 1 +
1

X1 − 1

∞

∑
n=2

Xntn−1. (54)

Equations (48)–(53) are approximately solved by collecting in pow-
ers of time and setting each coefficient of those powers to zero. For
example, if each series in n appearing in the previous developments
is truncated at N = 2, Eqs. (48)–(53) yield, respectively,

[λ − t(ξ + λ)](−λD22 + D21) − λ[λ − t(ξ + λ)](−1 + U22ξt)D22

+ (D1 + D21t + D22ξt){−λ[λ − t(ξ + λ)]U22

+ jλ(−1 + U22ξt)} = 0, (55)

−λU22(D1 + D21t + D22ξt) − λ(D1 + D21t + D22ξt)(−1 + U22ξt)U22

− λΠ22 = 0, (56)

[λ − t(ξ + λ)](−λΠ22 + Π21) − λ[λ − t(ξ + λ)](−1 + U22ξt)Π22

+ [c2
0 + γ(Π1 + Π21t + Π22ξt)]{−λ[λ − t(ξ + λ)]U22

+ jλ(−1 + U22ξt)} = 0, (57)

(D1 + D21t + D22ξst)[2c2
0 + (γ − 1)(X1 + 2X2t)2]

− (γ + 1)(X1 + 2X2t)2 = 0, (58)

(−1 + U22ξst)(X1 + 2X2t) −
2

γ + 1
[c2

0 − (X1 + 2X2t)2] = 0, (59)

Π1 + Π21t + Π22ξst −
2

γ + 1
[(X1 + 2X2t)2 − c2

0] = 0, (60)

where, from Eq. (54),

ξs = 1 +
X2t

X1 − 1
. (61)

The t0 powers of Eqs. (55)–(60) are, respectively,

D21 −D1(λU22 + j) = 0, (62)

λΠ22 = 0, (63)

Π21 − (c2
0 + γΠ1)(λU22 + j) = 0, (64)

D1[2c2
0 + (γ − 1)X2

1] − (γ + 1)X2
1 = 0, (65)

X1 +
2

γ + 1
(c2

0 − X2
1) = 0, (66)

Π1 −
2

γ + 1
(X2

1 − c2
0) = 0. (67)

Equations (65)–(67) may be solved independently of Eqs. (62)–(64)
to yield the dimensionless form of Eqs. (18)–(20)

D1 =
4c2

0 + (γ + 1) +
√

16c2
0 + (γ + 1)2

4c2
0 + 2(γ − 1) , (68)

Π1 =
1
4
[(γ + 1) +

√
16c2

0 + (γ + 1)2], (69)

X1 =
1
4
[(γ + 1) +

√
16c2

0 + (γ + 1)2]. (70)

However, even with these expressions, Eqs. (62)–(64) are not a
closed system for D21, U22, Π21, and Π22. This system is closed by
adding the t1 powers of Eqs. (58)–(60)

4(γ − 1)(D1 − 1)X1X2 + (D21 + D22)[2c2
0 + (γ − 1)X2

1] = 0, (71)
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− 2X2 + U22X1 +
8

γ + 1
X1X2 = 0, (72)

Π21 + Π22 −
8

γ + 1
X1X2 = 0. (73)

Equations (62)–(64) and (71)–(73) are a closed system for D21, D22,
U22, Π21, Π22, and X2, the solution of which is given by

D21 =
4jD1X2

1

4X2
1 + λ[4X1 − (γ + 1)](c2

0 + γΠ1)
, (74)

D22 = −
2jX2

1{c2
0[(3 + γ2)D1 − (γ + 1)2] + γ(γ + 1)[(γ − 1)D1 − (γ + 1)]Π1 + 2(γ − 1)D1X2

1}
[2c2

0 + (γ − 1)X2
1]{4X2

1 + λ[4X1 − (γ + 1)](c2
0 + γΠ1)}

, (75)

U22 =
j(c2

0 + γΠ1)[(γ + 1) − 4X1]
4X2

1 + λ[4X1 − (γ + 1)](c2
0 + γΠ1)

, (76)

Π21 =
4jX2

1(c2
0 + γΠ1)

4X2
1 + λ[4X1 − (γ + 1)](c2

0 + γΠ1)
, (77)

Π22 = 0, (78)

X2 =
j(γ + 1)X1(c2

0 + γΠ1)
2{4X2

1 + λ[4X1 − (γ + 1)](c2
0 + γΠ1)}

. (79)

With Eqs. (68)–(70) for D1, Π1, and X1 and Eq. (28) for λ,
Eqs. (74)–(79) fully determine the n = 2 correction to the 1D pla-
nar piston problem as given in Eqs. (29)–(32). In the limit c0 → 0,
Eqs. (68)–(70) and (28) become, respectively,

D1 =
γ + 1
γ − 1

, (80)

Π1 =
γ + 1

2
, (81)

X1 =
γ + 1

2
, (82)

λ = 2
γ − 1

, (83)

and Eqs. (74)–(79) collapse to

D21 =
j(γ + 1)
2γ − 1

, (84)

D22 = −
j(γ + 1)
2γ − 1

, (85)

U22 = −
jγ(γ − 1)
2(2γ − 1) , (86)

Π21 =
jγ(γ + 1)(γ − 1)

2(2γ − 1) , (87)

Π22 = 0, (88)

X2 =
jγ(γ + 1)(γ − 1)

8(2γ − 1) , (89)

which is identical to the result for an ideal gas given by Van Dyke
and Guttmann.24

Following this procedure for arbitrary N, the quasisimilar anal-
ysis results in a system of 3N algebraic equations for the expansion
coefficients Dnk, Unk, Πnk, and Xn. Each such system depends on
all lower order approximations (e.g., the D3, U3, Π3, and X3 coef-
ficients depend on the D1, D2, U1, U2, Π1, Π2, X1, and X2 coeffi-
cients); although as was the case for N = 2, these systems may be
solved sequentially. While the results of this exercise rapidly become
algebraically cumbersome for N > 2, they are easily obtained via a
symbolic algebra package.

A. Numerical example for copper
The quasisimilar procedure illustrated in Sec. III may be

numerically evaluated to high order when the various material,
geometry, and expansion parameters prescribed therein are spec-
ified. As an example, copper (Cu) is well-characterized by linear
us-up data of the form given by Eq. (7); these data may in turn be
used to infer a stiff gas EOS. The parameterization for Cu given by
Cooper44 is

ρ0 = 8.930 g/cm3,

c0 = 3.940 km/s,

s = γ/2 = 1.489.

Moreover, it will be further assumed that

j = 2,

N = 6,

corresponding to 1D spherical symmetry and six quasisimilar
expansion terms, respectively.

Furthermore, as noted in Sec. II D, all developments and results
appearing in Sec. III are dimensionless. In addition to the unshocked
density ρ0, the initial piston radius Rp,0 and piston velocity V must
also be prescribed to enable conversion back to physical variables.
However, while ρ0 and Rp,0 appear in Sec. II D only as renormal-
ization constants in converting between dimensionless and dimen-
sional variables, V appears more directly throughout the results
appearing in Sec. III as

c̃0 =
c0

V
. (90)
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Much like the adiabatic index γ, this parameter appears explicitly in
Eqs. (74)–(79) (for example). This phenomenon indicates that while
the dimensionless results of the quasisimilar analysis may ostensi-
bly be evaluated for any c̃0, Eq. (90) must hold in the subsequent
transformation back to physical variables. Accordingly,

● If c̃0 and c0 are specified, Eqs. (74)–(79) are only valid for one
value of V.

● If c̃0 and V are specified, Eqs. (74)–(79) are only valid for one
value of c0.

Similar behavior appears in previous work featuring the ideal gas
EOS [e.g., Eqs. (84)–(89)], in which the resulting equations must be
repeatedly evaluated for each value of γ (i.e., there is no scaling with
respect to this parameter). In Sec. III, the additional parameter c0
behaves in same way. As such, when c0 assumes a nonzero value, V
is removed from the list of scaling parameters that may assume any
value (i.e., leaving only ρ0 andRp,0), and instead must satisfy Eq. (90).
This outcome is a direct result of the presence of the intrinsic dimen-
sional constant c0 appearing in the stiff gas EOS; the presence of this
constant reduces the rank of the admitted scaling group correspond-
ing to Eqs. (1)–(3), as discussed in detail by Ovsiannikov,40 Ramsey
and Baty,45 and Boyd et al.18,27

Despite these notions, Eq. (90) enables “material scaling” pro-
cesses. For example, the quasisimilar analysis outlined in Sec. III may
be numerically evaluated for any choice of γ, c̃0, and j. In the subse-
quent transformation back to physical variables, Eq. (90) must be
enforced. This constraint does not require a unique (c0, V) pair in
that it may be satisfied for any pair (ac0, aV), where a is an arbitrary
constant. As a result, any scaling in the piston velocity V must be
accompanied by an identical scaling in c0 (but not γ), thus selecting
a new or modified material.

In any event, for the purposes of the numerical example,

c̃0 = 1.0,

thus enabling either a quasisimilar solution for the single value of
V = 3.940 km/s if the value c0 = 3.940 km/s for Cu is employed or
a family of solutions satisfying Eq. (90) if no data for either c0 or
V is prescribed. The results of these calculations for the converging
shock wave trajectory are provided in Table I; with these results, the
trajectory may be reconstructed using Eq. (29).

Figure 2 depicts both the piston trajectory and the N = 1 and N
= 6 converging shock wave trajectories reconstructed using Table I.
Figure 2 shows that high-order terms are most influential near times,
where the converging shock wave reaches r = 0, and allow for
the shock to accelerate (as is typical of converging shock waves in
curvilinear geometries and demonstrated by the nontrivial curvature

TABLE I. Xn values for Cu example.

n Xn tc from Eq. (29) α from Eq. (92)

1 2.405 0.4158 . . .
2 1.397 0.3462 0.5978
3 2.461 0.3217 0.2998
4 5.318 0.3095 0.3248
5 13.02 0.3023 0.2994
6 34.50 0.2975 0.2702

FIG. 2. Piston trajectory and converging shock wave trajectory estimates for Cu
example.

of the N = 2 and N = 6 trajectories appearing in Fig. 2). The time tc
at which the shock converges to r = 0 can be estimated from a root
extraction of Eq. (29) and is also provided in Table I. Following Van
Dyke and Guttmann24 (see also Sachdev25,26), and under Guderley’s1

assumption that the shock trajectory has the t → tc limit given by

Rs → Rp,0(1 − t
tc
)
α
, (91)

the constant α may be estimated as

α ∼ (1 − Xn

Xn−1
tc)n − 1, (92)

and constructed from the Xn and tc information appearing in
Table I. These values of α are interpreted as increasingly accurate
(with increasing n) approximations to the Guderley similarity expo-
nent appearing in the works of Guderley,1 Lazarus,4 and Ramsey
et al.11 among many others. However, in this case, the similarity
exponent corresponds to a converging shock wave in a stiff gas,
as opposed to an ideal gas. These results thus correspond to the

TABLE II. Dnk values for Cu example.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

n = 2 1.417 −0.8249 . . . . . . . . . . . .
n = 3 3.427 0.2845 −2.154 . . . . . . . . .
n = 4 7.073 −1.962 11.11 −9.687 . . . . . .
n = 5 14.05 −3.179 5.021 35.51 −28.30 . . .
n = 6 28.13 −7.256 29.35 −51.25 163.8 −94.77
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TABLE III. Unk values for Cu example.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

n = 2 0.0 1.6471 . . . . . . . . . . . .
n = 3 0.0 −1.853 4.287 . . . . . . . . .
n = 4 0.0 −8.417 3.657 6.573 . . . . . .
n = 5 0.0 −19.88 −6.194 5.567 14.10 . . .
n = 6 0.0 −42.56 −32.15 −5.480 4.390 32.19

TABLE IV. Πnk values for Cu example.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

n = 2 6.754 0.0 . . . . . . . . . . . .
n = 3 21.87 0.0 −0.094 . . . . . . . . .
n = 4 61.96 0.0 25.39 −14.99 . . . . . .
n = 5 165.4 0.0 113.4 −7.401 −32.13 . . .
n = 6 425.8 0.0 361.2 122.2 −69.20 −64.06

limiting behavior of a converging shock wave problem that does not
otherwise have a self-similar representation (for reasons set forth by
Ramsey and Baty,45 Ramsey et al.,28 and Boyd et al.18,27).

The sequence of approximate α calculations shown in Table I is
also connected to the convergence behavior of the quasisimilar solu-
tion. Equation (92) itself—arising from Van Dyke and Guttmann’s
original implementation of the Domb and Sykes method24—is akin
to the well-known ratio test for determining the convergence prop-
erties of a series; that α < 1 for all values of N considered lends
credence to the notion that the quasisimilar approximation is con-
vergent for t ≤ tc. For the case of an ideal gas, Van Dyke and
Guttmann24 further verified this behavior up to N = 40; while
the results for a stiff gas are expected to behave similarly to high
order, for the purposes of this work, the results appearing in
Table I are sufficient to demonstrate that this trend is likely to
hold.

In addition to the converging shock wave trajectory, the qua-
sisimilar methodology also provides approximate state variable pro-
files as functions of space and time. The coefficients Dnk, Unk,
and Πnk needed to construct these profiles via Eqs. (30)–(35) are

FIG. 3. Density profiles at various times
for Cu example. In each plot, the right-
most limit in r represents the location of
the piston at the indicated time.
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provided in Tables II–IV. Using these results, spatial density, veloc-
ity, and pressure profiles at various times are provided for N = 1,
N = 2, and N = 6 in Figs. 3–5.

Figures 3–5 show that the N = 1 solution to the piston prob-
lem does not vary with r, consistent with the interpretation of this
solution as corresponding the 1D planar piston problem. Curvilinear
effects appear in all flow variables beginning with the N = 2 solu-
tion; in the case of density and velocity, the N = 2 solution features
linear curvature in r, while the pressure solution remains spatially
constant but enhanced in magnitude with respect to its N = 1 value.
The N = 6 solution manifests significant nonlinear curvature in all
flow variables, which otherwise begin to assume some canonical fea-
tures associated with the Guderley converging shock solution (see,
for example, the work of Stanyukovich,2 Zel’dovich and Raizer,21 or
Ramsey et al.11):

● The density increases with increasing r for all times,
● The pressure features a maximum in r > Rs(t),
● The velocity and pressure at r = Rs(t) increase without limit

as t → tc.

These features become more pronounced as t→ tc and are con-
sistent with Guderley’s1 limiting assumption as given by Eq. (91).
However, unlike the classical Guderley solution, the N = 6 solu-
tion depicted in Figs. 3–5 features some non-self-similar phenom-
ena. For example, the velocity field always obeys u(r = Rp(t))
= −V, as expected from the definition of the piston problem given in
Sec. II.

Consistent with Fig. 2, Figs. 3–5 show that for a given time, the
computed shock location moves closer to r = 0 with increasing N.
Also consistent with this phenomenon, for a given time, the com-
puted densities, velocities, and pressures are all larger with increas-
ing N. This behavior results from the higher-order expansions in
N capturing the acceleration of the converging shock wave with
increasing precision.

Moreover, Fig. 3 shows that the shock density ratio (i.e., the
value of ρ/ρ0 at the position of the shock) is not constant through
time. While Eq. (24) indicates that this behavior is expected for the
stiff gas EOS, it also indicates that the shock density ratio should
approach a constant value as the shock wave approaches the origin

FIG. 4. Velocity profiles at various times
for Cu example. In each plot, the right-
most limit in r represents the location of
the piston at the indicated time.
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FIG. 5. Pressure profiles at various times
for Cu example. In each plot, the right-
most limit in r represents the location of
the piston at the indicated time.

(and begins to accelerate without limit). The t = 0.28Rp,0/V member
of Fig. 3 does not reflect this phenomenology, which is indicative of
the limitations of even the N = 6 quasisimilar solution at relatively
late times. This feature is also exhibited in the c0 = 0 limit and thus
manifests in the ideal gas solution (as disseminated by Van Dyke and
Guttmann24).

Indeed, either quasisimilar solution truncated at any finite
order N is only an approximation to the true solution extended to
infinite terms. The behavior of the shock density ratio represents one
possible metric through which the accuracy of any given approxi-
mate solution may be assessed; in the current example, the N = 6
solution has clearly lost physical fidelity between t = 0.21Rp,0/V and
t = 0.28Rp,0/V. For any desired accuracy and a given approximate
solution, an evaluation of Eq. (24) can be compared to its expected
behavior on physical grounds to establish limits on the validity of the
approximate solution. Other metrics may also exist for accomplish-
ing this goal, such as evaluation of Eqs. (25) and (26), or a calculation
of the shock velocity itself. In any event, it is perhaps intuitively obvi-
ous that an increasing number of quasisimilar terms are necessary to
accurately capture the behavior of the flow in increasing proximity

to the origin; the above methodologies reflect one possible set for
quantifying this necessity for any given scenario.

IV. CONCLUSIONS
This work has explored the extension beyond the ideal gas con-

stitutive law of Van Dyke and Guttmann’s24 quasisimilar analysis
for piston driven, curvilinear, converging shock waves. Of particular
interest in this work is the stiff gas EOS, which is itself a lineariza-
tion of the Mie-Gruneisen EOS that is suitable for characterizing the
material response of shock compressed crystalline solids. When cou-
pled to flows in 1D curvilinear geometries, even the relatively simple
stiff gas EOS does not admit a full self-similar solution associated
with a converging shock wave.

In this case, the converging shock trajectory and all state vari-
ables may instead be expanded in power series so as to enable a
quasisimilar solution. The solution to the associated 1D planar pis-
ton problem is taken as the lowest-order expansion term in its qua-
sisimilar counterpart, where curvilinear effects are captured by the
inclusion of all higher-order terms. In the case of the stiff gas EOS,
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the nonideal EOS effects are represented in all orders of the series
expansion methodology.

The solution resulting from this procedure is algebraically cum-
bersome for more than two expansion terms but otherwise easily
constructed using a symbolic algebra package. Given that the ideal
and stiff gas EOS classes are directly relatable to one another via
Eqs. (5) and (6), an important property of the solutions derived
herein are their limits as c0 → 0. When this condition is met, the
results of Secs. III and IV collapse to the existing results previously
disseminated by Van Dyke and Guttmann.24

The quasisimilar equations studied in this work are dimension-
less, and their numerical solution highlights an important aspect of
coupling to a nonideal EOS. Unlike Van Dyke and Guttmann’s24

study featuring the ideal gas EOS, the quasisimilar solutions con-
structed in this work are not invariant with respect the constant
piston velocity V. Instead, due to the presence of the stiffening term
in the stiff gas EOS, the quantity c0/V appears throughout the result-
ing quasisimilar equations. As is more typically seen to be the case
with the dimensionless adiabatic index γ, the quasisimilar equations
must therefore be repeatedly solved for each value of c0/V appear-
ing therein. When a material-specific value c0 is also specified, the
resulting solution is valid for only one value of the piston veloc-
ity V. However, when the ratio c0/V is specified—but not c0 or
V individually—the obtained quasisimilar solution may be scaled
across families of materials and piston velocities.

Otherwise, the quasisimilar solutions derived in this work bear
in certain respects close resemblance to the classical Guderley con-
verging shock solution. While quasisimilar solutions are by defi-
nition not self-similar, many qualitative features of closely associ-
ated self-similar flows may be contained within them, as depicted
in Figs. 2–5. In this work, it has been found that these features
become more pronounced as the number of expansion terms is
increased and as the converging shock wave approaches the 1D
curvilinear origin. While this limit is decidedly non-self-similar,
Guderley’s1 original approximation as given by Eq. (91) appears to
capture many of the gross features of the flow near convergence
time.

A. Recommendations for future work
The preceding work may be extended in a variety of ways.

Perhaps the most obvious is to move beyond the stiff gas EOS to
closure models with increasing realism. The Mie-Gruneisen EOS as
discussed by Harlow and Amsden29 and Ramsey et al.28 is perhaps
the most logical starting choice, but others could be dictated by the
desired applications of the corresponding results. In any event, given
that the quasisimilar methods employed in this work require that
the shock trajectory and all state variables be expressible in terms of
power series, it is likely that any future developments along these
lines will be confined to EOS classes that vary smoothly as func-
tions of their arguments. Even so, the examination in this context
of more theoretically exotic (but physically relevant) nonconvex or
discontinuous EOS surfaces remains an additional avenue for future
study.

Moreover, the preceding work focuses exclusively on con-
stant velocity piston motions. The quasisimilar formalism should
be extensible to piston motions that vary through time in a
more complicated manner. Some work along these lines has been

conducted for 1D planar piston problems: as noted by Sachdev,26

Nakamura46 investigated quadratic-in-time piston motion, while
Kozmanov47 assumed an even more general form. However, when
moving to 1D curvilinear geometries, piston motions expressible in
terms of a power series in time may prove most easily amenable to
quasi-similar analysis in the style of this work.

The combination of these two extensions will ultimately rep-
resent a significant generalization of this and previous work. The
use of a generalized EOS in conjunction with a generalized piston
motion will likely represent the limit of quasisimilar analysis in this
context but has the potential to be greatly relevant to and informative
of not only large-scale numerical simulations of implosion processes
but also physical or experimental scenarios interrogated by the same
underlying physics as employed in the theoretical analysis.
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