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Construction of invariant compact finite-difference schemes
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In this paper we propose a method, which is based on equivariant moving frames, for development of
high-order accurate invariant compact finite-difference schemes that preserve Lie symmetries of underlying
partial differential equations. In this method, variable transformations that are obtained from the extended
symmetry groups of partial differential equations (PDEs) are used to transform independent and dependent
variables and derivative terms of compact finite-difference schemes (constructed for these PDEs) such that
the resulting schemes are invariant under the chosen symmetry groups. The unknown symmetry parameters
that arise from the application of these transformations are determined through selection of convenient moving
frames. In some cases, owing to selection of convenient moving frames, numerical representation of invariant
(or symmetry-preserving) compact numerical schemes is found to be notably simpler than that of standard,
noninvariant compact numerical schemes. Further, the accuracy of these invariant compact schemes can be
arbitrarily set to a desired order by considering suitable compact finite-difference algorithms. Application of the
proposed method is demonstrated through construction of invariant compact finite-difference schemes for some
common linear and nonlinear PDEs (including the linear advection-diffusion equation in one or two dimensions,
the inviscid Burgers’ equation in one dimension, viscous Burgers’ equation in one or two dimensions, spherical
Burgers’ equation in one dimension, and shallow water equations in two dimensions). Results obtained from
our numerical simulations indicate that invariant compact finite-difference schemes not only inherit selected
symmetry properties of underlying PDEs, but are also comparably more accurate than the standard, noninvariant
base numerical schemes considered here.
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I. INTRODUCTION

Compact finite differencing based on Padé approximants is
a commonly used high-order numerical method that is well
documented in the literature [1–10]. An important objective
of this method is to achieve high-order accuracy with a rela-
tively small number of stencil points by relating a weighted
sum of functions (or dependent variables) to a weighted
sum of derivatives, evaluated at grid points. Hence, numer-
ical solutions based on compact schemes are found to have
good, spectral-like resolutions, solutions that exponentially
converge with increasing resolution, especially in the case of
short waves [1]. In this regard, Hirsh [1] presented a detailed
application of compact finite differencing which included
development and application of fourth-order accurate compact
schemes to three test problems, namely, viscous Burgers’
equation, Howarth’s retarded boundary layer flow, and the in-
compressible driven cavity problem. The author also provided
a brief discussion of how to treat boundary conditions when
developing compact finite-difference schemes, which could be
problematic in some cases. In another work, Lele [2] extended
the earlier works on compact finite differencing by presenting
finite-difference schemes that provide a better representation
of shorter length scales for use on problems with a range of
spatial scales. In addition, the author provided a detailed dis-
cussion on how to obtain compact finite-difference schemes
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of various orders (up to tenth order) and treat the relevant
boundary conditions. In a more recent work, Shukla et al. [7]
presented a family of high-order compact schemes that are
built on nonuniform grids with spatial orders of accuracy
ranging from fourth to 20th. These compact schemes are
constructed such that they maintain high-order accuracy not
only in the interior of a domain, but also at its boundaries.
The authors demonstrated the application of these compact
schemes to the linear wave equation and two-dimensional
(2D) incompressible Navier-Stokes equations, and verified
the achievement of high-order accuracy for these problems.
They further showed (via comparisons with benchmark so-
lutions for the 2D driven cavity flow, thermal convection in
a square box, and flow past an impulsively started cylinder)
that these high-order compact schemes are stable and produce
highly accurate results on stretched grids with more points
clustered at boundaries. Although compact finite differencing
is an efficient method for construction of high-order accurate
numerical schemes, these schemes often ignore geometric
properties of underlying differential equations as the focus
is usually on the accuracy when developing these schemes.
Schemes that preserve certain geometric properties (such as
energy, momentum, symplecticity, Hamiltonian, and Poisson
structures of equations) are usually considered as geometric
integrators. It is well documented in literature that geometric
integrators, which account for certain geometric properties
of underlying differential equations, are likely to perform
better than standard schemes that ignore such properties
[11–18].
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Lie symmetry groups of differential equations are also
geometric properties that could be preserved in numerical
schemes. Numerous researchers have proposed methods for
construction of numerical schemes that preserve symmetry
groups of underlying differential equations [19–43]. Most of
these works can be categorized into two major groups. In
the first group [20–24], invariants of difference equations are
determined through Lie’s infinitesimal approach, and then a
set of these invariants are used to construct invariant schemes
that converge to the original differential equations in the con-
tinuous limit. In the other group [33–43], point transforma-
tions based on symmetry groups of differential equations are
applied to some base (noninvariant) numerical schemes, and
the unknown symmetry parameters of these transformations
are determined through moving frames that are based on
Cartan’s method of normalization [44].

In this paper, we extend our earlier works on symmetry
preservation in numerical schemes [41,42] and propose a
mathematical approach for construction of high-order accu-
rate compact finite-difference schemes that retain Lie symme-
try groups of underlying differential equations. One aspect of
the proposed method, which is based on equivariant moving
frames, is the use of extended symmetry groups of partial dif-
ferential equations to obtain point transformations not only for
independent and dependent variables of differential equations,
but also for their derivative terms. Once point transformations
for derivatives of differential equations are determined, then
these transformations are applied to some (noninvariant) base
compact finite-difference schemes (of a desired order of accu-
racy) to obtain final invariant (or symmetry-preserving) forms
of these schemes. Here we note that the unknown symmetry
parameters that appear in these point transformations are
determined by choosing convenient moving frames for which
numerical representations of base schemes simplify notably,
and their accuracy improves. The proposed method is applied
to some commonly used linear and nonlinear problems, and
for all the test problems, the resulting invariant schemes are
found to perform significantly better than selected noninvari-
ant base compact schemes in terms of numerical accuracy,
verifying the potential advantages of symmetry preservation.
We demonstrate the implementation of the proposed method
by considering fourth-order accurate invariant compact finite-
difference schemes for one-dimensional (1D) and 2D linear
advection-diffusion equations, Burgers’ equations (i.e., invis-
cid, viscous, spherical), and shallow water equations. For nu-
merical simplicity, we use forward differencing to discretize
temporal derivatives and fourth-order compact schemes based
on central differencing to discretize spatial derivatives. Note
that the proposed construction of invariant schemes can also
be extended to arbitrarily high-order temporal and spatial
discretizations. Results obtained from the proposed invariant
compact schemes developed for these test problems sug-
gest that symmetry preservation can lead to significant im-
provements in numerical accuracy, besides storing important
geometric information (regarding the underlying differential
equations) in associated numerical schemes.

This paper is organized as follows. In Sec. II the formula-
tion for the fourth-order accurate compact schemes along with
a detailed discussion on Lie symmetry analysis and invarianti-

zation of compact schemes are provided. The step by step
development of invariant compact schemes for some linear
and nonlinear problems are noted in Sec. III. Performance
of the constructed invariant compact schemes along with a
detailed discussion of the results obtained from these schemes
are presented in Sec. IV. Finally, concluding remarks and a
brief summary of the work are given in Sec. V.

II. MATHEMATICAL FORMULATION

In this section, the procedure (that is based on equivari-
ant moving frames) for construction of invariant compact
schemes is presented in detail. Brief discussions of Lie sym-
metry analysis and compact schemes are also included.

A. Construction of compact schemes

Compact finite-difference methods are widely used for
high-order computations and in some cases are favored over
standard finite-difference methods, due to their ability to
achieve high-order accuracy over smaller stencils. For in-
stance, while a standard central difference approximation of
the first derivative of a function on a three-point stencil is
second-order accurate, an approximation based on a compact
scheme (that is also derived through central differencing) of
the same derivative could be of higher orders. The imple-
mentation of compact schemes is rather simple. To illustrate
construction of compact schemes through an example, let
us develop fourth-order accurate compact finite-difference
schemes for the first and second derivatives of a function U .
Consider the following Taylor series expansion of the function
U at grid points (i ± 1):

U i±1 = U i ± hU i
x + h2

2
U i

xx ± h3

6
U i

xxx + h4

24
U i

(IV) ± O(h5),

(1)

where h is the discrete spatial step and the symbol (·)x denotes
derivative with respect to variable x. Similarly, the first and
second derivatives of U can be expanded in a Taylor series as

U i±1
x = U i

x ± hU i
xx + h2

2
U i

xxx ± h3

6
U i

(IV) + h4

24
U i

(V) ± O(h5),

(2)

U i±1
xx =U i

xx ± hU i
xxx + h2

2
U i

(IV) ± h3

6
U i

(V) + h4

24
U i

(VI) ± O(h5).

(3)

In order to eliminate the higher-order derivatives (i.e.,
Uxx,Uxxx,U(IV), and U(V)) and obtain an implicit relationship
between the first derivative Ux and the function U at nodes
i ± 1, one can multiply Eq. (1) with constant a at point i + 1,
and with constant b at point i − 1, and multiply Eq. (2) with
quantity c×h at point i + 1, and with quantity d×h at point
i − 1, and sum up these resulting quantities to obtain the
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following equation:

aU i+1 + bU i−1 + chU i+1
x + dhU i−1

x = (a + b)U i + (a − b+ c + d )hU i
x + (a + b+ 2c − 2d )

h2

2
U i

xx + (a − b + 3c + 3d )
h3

6
U i

xxx

+ (a + b + 4c − 4d )
h4

24
U i

(IV) + (c + d )
h5

24
U i

(IV) + O(h5). (4)

The arbitrary constants a, b, c, and d can be obtained
via elimination of high-order derivatives as {a, b, c, d} =
{ 3

4 ,− 3
4 ,− 1

4 ,− 1
4 }. Hence, the final form of Eq. (4) is

1

6
U i+1

x + 2

3
U i

x + 1

6
U i−1

x = U i+1 − U i−1

2h
+ O(h4), (5)

which relates the function U to its first derivative and provides
a fourth-order accurate implicit approximation for the first
derivative of U . Through similar algebraic manipulations,
one can obtain the following fourth-order accurate implicit
approximation for the second derivative of the function U as
well:

1

12
U i+1

xx + 5

6
U i

xx + 1

12
U i−1

xx = U i+1 − 2U i + U i−1

h2
+ O(h4).

(6)

Both Eqs. (5) and (6) yield tridiagonal matrices that can
easily be solved to accurately approximate the first and second
derivatives of U at all grid points. More information on
compact schemes along with compact algorithms for deriva-
tives with higher orders of accuracy and a discussion on the
treatment of boundary conditions in this approach can be
found in the literature [1,2].

B. Lie symmetry analysis

A differential equation is said to possess a symmetry
property if one can transform every variable in the equation
according to some transformations, such that the resulting
output reads exactly the same as the original differential
equation in new (transformed) variables. Further, a Lie point
symmetry group is an algebraic structure that consists of a
set of objects which correspond to continuous symmetries (or
coordinate transformations) that map a system to itself with
a binary operation that satisfies the following group axioms:
(1) closure, (2) existence of identity element, (3) existence
of inverse element, and (4) associativity. The procedure for
determination of Lie point symmetries of equations is straight-
forward and well documented in the literature [45–49].

In this context, consider a surface L(x, u, p) = 0 to be a
partial differential equation, and let the following be a one-
parameter (kth-extended) Lie group G:

x̃ j = x̃ j (x, u, s),

ũi = ũi(x, u, s),

ũi
j1 = ũi

j1 (x, u, u1, s), (7)

...

ũi
j1 j2... jk = ũi

j1 j2... jk (x, u, p, s),

where the arbitrary constant s is the symmetry (or group)
parameter, and p = (u1, u2, . . . , uk ). Here the vectors x =
(x1, x2, . . . , xm) and u = (u1, u2, . . . , un) denote the inde-
pendent and dependent variables, respectively, and uk rep-
resents the vector of all possible kth-order derivatives of u
with respect to the independent variables. Also, the operator
(·) j1 j2··· jk represents the partial derivative ∂k (·)

∂x j1 ∂x j2 ···∂x jk
. The

smooth transformation functions (x̃ j , ũi, . . . ũi
j1 j2..., jk ) given in

group G can be further expanded in a Taylor series about
the point s = 0 to determine the infinitesimal form of the
one-parameter Lie group G as

x̃ j = x j + s [ξ j (x, u)] + O(s2), ξ j ≡
[
∂ x̃ j

∂s

]
s=0

,

ũi = ui + s [ηi(x, u)] + O(s2), ηi ≡
[
∂ ũi

∂s

]
s=0

,

ũi
j1 = ui

j1 + s
[
ηi

[ j1](x, u, u1)
] + O(s2),

ηi
[ j1] ≡

[
∂ ũi

j1

∂s

]
s=0

, (8)

...

ũi
j1 j2... jk = ui

j1 j2... jk + s
[
ηi

[ j1... jk ](x, u, p)
] + O(s2),

ηi
[ j1... jk ] ≡

[
∂ ũi

j1 j2... jk

∂s

]
s=0

,

where ξ j and ηi are known as the coordinate functions (or
the group infinitesimals), which define the transformation of
the coordinate variables under the action of the group G.
Similarly, ηi

[ j1··· jk ] is the kth-extended group infinitesimal that
defines how the kth derivative is transformed under the action
of G and is given by the following relation:

ηi
[ j1... jk ] = Djk η

i
[ j1... jk−1] − ui

j1... jk−1rD jk ξ
r, (9)

where Djk is the total derivative operator [46].
The surface L(x, u, p) = 0 is said to be invariant under the

action of the group G if the equation reads the same in new
variables:

L(x, u, p) = 0 ⇔ L(x̃, ũ, p̃) = 0. (10)

In order to determine the Lie point symmetry group G that will
leave the surface L(x, u, p) = 0 invariant (or unchanged), the
following invariance condition is applied:

X[k] L(x, u, p) = 0, (mod L = 0), (11)

where X[k] is the k-extended group operator that is of the form

X[k] = ξ j ∂

∂x j
+ ηi ∂

∂ui
+ · · · + ηi

[ j1... jk ]
∂

∂ui
j1 j2... jk

. (12)
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Solution of the invariance condition given in Eq. (11) through
determination of the coordinate functions yields the Lie point
symmetry group G associated with the surface L(x, u, p) = 0.
A more detailed discussion on Lie symmetry analysis, partic-
ularly regarding how to solve the invariance condition, can be
found in Ref. [46].

C. Invariantization of compact schemes

In this work, a compact finite-difference scheme [corre-
sponding to a surface L(z) = 0] is considered as an invari-
ant compact scheme if its form remains unchanged under
the action of a point symmetry group G associated with
the surface L(z) = 0. In this context, let Ñc(z) = 0 be an
invariant compact finite-difference scheme, and φ̃c(z) = 0 be
a stencil equation for the surface L(z) = 0 where z = (x, u, p)
is the vector of the independent and dependent variables
(x = {x1, . . . , xr}, u = {u1, . . . , us}) and derivatives (p =
{∂u1/∂x1, . . . , ∂u1/∂xr ; . . . ; ∂us/∂x1, . . . , ∂us/∂xr}), respec-
tively. Here z is defined on a manifold M that is a subset of the
Euclidean space, M ∈ Rr×s. The compact scheme Ñc(z) = 0
and the stencil equation φ̃c(z) = 0 are said to be invariant
under the action of the group element g (where g ∈ G) if the
following condition is satisfied [33,35]:

Ñc(ρ(z)· z) = 0 ⇔ Ñc(z) = 0,

φ̃c(ρ(z)· z) = 0 ⇔ φ̃c(z) = 0, (13)

where ρ(z) represents a right moving frame defined on M
such that it is a topological map (ρ : M → G) that satisfies
the following condition [33]:

ρ(g · z) = ρ(z) g−1

for ∀ g ∈ G. Here, we note that Ñ : M�n → R, where M�n

denotes a joint product manifold which is the off-diagonal part
of the Cartesian product M×n (corresponding to an n-point
stencil).

For any given noninvariant compact finite-difference
scheme Nc(z) = 0, an invariant form of this scheme Ñc(z) = 0
can be obtained by simply transforming every coordinate vari-
able and derivative of the base (noninvariant) compact scheme
according to the symmetry group G as Ñc(z) = Nc(g · z) for
all g ∈ G. The unknown group parameters (that appear when
the action of a particular group element g on the coordinate
variables and derivatives is evaluated) can be determined via
Cartan’s method of normalization. A more detailed discussion
on Cartan’s method of normalization and equivariant moving
frames can be found in the literature [33–35,44].

III. CONSTRUCTION OF INVARIANT
NUMERICAL SCHEMES

In this section, the invariantization of compact finite-
difference schemes is illustrated through examples. In par-
ticular, fourth-order accurate invariant compact schemes are
constructed for some linear and nonlinear problems.

A. Inviscid Burgers’ equation

As our first test problem, we consider the inviscid Burgers’
equation (IBE), which is a model that describes nonlinear

wave propagation and is of the form

ut + u ux = 0. (14)

A noninvariant compact scheme can be constructed for the
IBE using the compact algorithms developed for the spatial
first, Eq. (5), and second, Eq. (6), derivatives. As for the time
derivative, for simplicity, a classical first-order forward differ-
encing technique can be considered. The order of accuracy
can be improved from first to second order via truncation
error analysis or defect correction. Hence the final form of the
compact scheme for the inviscid Burgers’ equation, at (xi, t n),
can be expressed as

Nc(z) = u(i,n+1) − u(i,n)

τ
+ u(i,n)u(i,n)

x + dc = 0. (15)

Here dc represents the defect correction terms (obtained from
truncation error analysis) that are added to the scheme to
improve accuracy and is given by

dc = −τ

2

[(
u(i,n)

)2
u(i,n)

xx + 2 u(i,n)
(
u(i,n)

x

)2] + O(τ 2, h4), (16)

where τ and h denote the discrete time and space steps, re-
spectively. Also, the terms u(i,n)

x and u(i,n)
xx denote the numerical

representations for the first and second derivatives, at (xi, t n),
based on the compact schemes given in Eqs. (5) and (6).

Further, the symmetry group G associated with the inviscid
Burgers’ equation can be found (via Lie symmetry analysis)
as

X1 = t2 ∂

∂ t
+ x t

∂

∂ x
+ (x − t u)

∂

∂ u
,

X2 = t x
∂

∂ t
+ x2 ∂

∂ x
+ u (x − t u)

∂

∂ u
,

X3 = 2 t
∂

∂ t
+ x

∂

∂ x
− u

∂

∂ u
,

X4 = x
∂

∂ t
− u2 ∂

∂ u
, (17)

X5 = t
∂

∂ x
+ ∂

∂ u
,

X6 = ∂

∂ t
,

X7 = ∂

∂ x
,

where Xr=1,...,7, is the group operator that corresponds to
that particular subgroup. The point transformations, z̃ =
(t̃, x̃, ũ, p̃), associated with a particular subgroup can be found
using Lie series expansion as follows:

z̃i = e(s j Xj ) zi = zi + s j (Xj zi ) + s2
j

2!
Xj (Xj zi)

+ s3
j

3!
Xj[Xj (Xj zi)] + · · · . (18)

Here we note that in order to find the extended point transfor-
mations p̃ = (ũx̃, ũx̃x̃ ), one should extend the group operators
given in Eq. (17) such that it accounts for all the derivative
terms before these groups are used in the Lie series given
in Eq. (18). Alternatively, one can use the chain rule to
find the extended point transformations. For instance, the
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transformation expression for the spatial first derivative can
be found using

∂ ũ

∂ x̃
= ∂ ũ

∂x

∂x

∂ x̃
+ ∂ ũ

∂t

∂t

∂ x̃

once the point transformations for the independent and depen-
dent variables are found. Similarly, point transformations as-
sociated with a multiple number of subgroups can be obtained
by substituting each subgroup into Eq. (18) in an arbitrary
order. Although it is desirable to obtain point transforma-
tions based on all the Lie groups associated with a partial
differential equation (PDE), such an approach could lead to
cumbersome numerical representations [42]. In view of this
difficulty, it is sometimes reasonable to only consider selected
subgroups without significant loss of accuracy. Hence, in the
context of the current example problem, we only choose the
subgroups X1, X3, X6, and X7 for preservation in the associated
(noninvariant) compact scheme given in Eq. (15). The global
transformations obtained from these particular subgroups are
found via Eq. (18) as

t̃ = e2s3
(t + s6)

λ
,

x̃ = es3
x + s7

λ
,

ũ = e−s3 [λu + s1(x + s7)], (19)

ũx̃ = e−2s3 (λ2ux + s1λ),

ũx̃x̃ = e−3s3λ3uxx,

where λ = 1 − s1(t + s6). The compact scheme constructed
for the inviscid Burgers’ equation, Eq. (15), can be invari-
antized by transforming every coordinate variable and deriva-
tive according to the above transformations:

Ñc(z) = Nc(g · z) = ũ(i,n+1) − ũ(i,n)

τ̃
+ ũ(i,n)ũ(i,n)

x̃

− τ̃

2

[(
ũ(i,n)

)2
ũ(i,n)

x̃x̃ + 2 ũ(i,n)
(
ũ(i,n)

x̃

)2] = 0. (20)

Based on the point transformations given in Eq. (19), it
appears that the symmetry parameter s3 does not appear in the
transformed scheme given in Eq. (20). All the other symmetry
parameters can be determined through Cartan’s method of
normalization. First, we consider convenient normalization
conditions that lead to simple stencils. For instance, nor-
malization conditions t̃ (i,n) = 0 and x̃(i,n) = 0, among infinite
possibilities, yield a simple stencil where the symmetry pa-
rameters s6 and s7 are −t (i,n) and −x(i,n), respectively. Second,
we choose normalization conditions that remove terms from
the truncation error of compact schemes under consideration
and hence lead to a considerable improvement in numerical
accuracy, besides simplifying their numerical representations
[42]. In this context, the normalization condition ũ(i,n)

x̃ = 0 can
be used to determine the symmetry parameter s1,

ũ(i,n)
x̃ = 0 ⇒ u(i,n)

x + s1 = 0 ⇒ s1 = −u(i,n)
x , (21)

as this particular normalization condition removes all the
terms that include the spatial first derivative from the compact

scheme given in Eq. (20) in the transformed space as shown
in the following:

Ñc(z) = Nc(g · z) = ũ(i,n+1) − ũ(i,n)

τ̃

− τ̃

2

(
ũ(i,n)

)2
ũ(i,n)

x̃x̃ + O(τ̃ 2, h̃4) = 0. (22)

The compact scheme given in Eq. (22) is invariant under
the symmetry groups X1, X3, X6, and X7 and can also be
expressed in original variables:

u(i,n+1) = 1

λn+1

[
u(i,n) + τ 2

2λ2
n+1

(
u(i,n)

)2
u(i,n)

xx

]
, (23)

where λn+1 = 1 − s1τ and u(i,n)
xx represents the fourth-order

compact approximation of the second derivative given in
Eq. (6). Note that for most of the test problems considered
in this work, we use a time-space orthogonal mesh, t (i+1,n) −
t (i,n) = 0 and x(i,n+1) − x(i,n) = 0, and hence, for simplicity,
we will replace t (i,n) with t n, and x(i,n) with xi in the following
examples. Invariance of the compact scheme constructed for
the inviscid Burgers’ equation, Eq. (23), can be verified by
transforming every variable in this scheme according to the
transformations given in Eq. (19),

ũ(i,n+1) = 1

λ̃n+1

[
ũ(i,n) + τ̃ 2

2λ̃2
n+1

(
ũ(i,n)

)2
ũ(i,n)

x̃x̃

]
,

and the resulting transformed scheme should be identical to
Eq. (23) as demonstrated below:

λ̃n+1 = 1 − ũx̃ τ̃ = 1,

τ̃ = e2s3
τ

λn+1
,

ũ(i,n+1) = e−s3
[
λn+1u(i,n+1) + s1

(
x(i,n+1) − x(i,n)

)]
= e−s3λn+1u(i,n+1),

ũ(i,n) = e−s3
[
u(i,n) + s1

(
x(i,n) − x(i,n)

)] = e−s3 u(i,n),

ũ(i,n)
x̃x̃ = e−3s3 u(i,n)

xx .

Substitution of the above relations into the transformed form
of Eq. (23) does in fact result in Eq. (23) and hence veri-
fies the invariance of Eq. (23) under the selected symmetry
groups.

Here we also note that for this particular problem, for
simplicity, we considered first-order forward differencing for
the time derivative and used the method of modified equations
to improve the accuracy of the approximation from first to
second order. However, one could also use higher-order ap-
proximations or other discretization techniques (i.e., Runge-
Kutta methods) for the time derivative if desired. A particu-
larly interesting case occurs when a TVD-RK2 discretization
scheme (from Ref. [50]) is used for the time derivative in
Eq. (15). In this case, the final form of the invariant compact
scheme constructed using the transformations and moving
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frames considered for the IBE would be identical to the
invariant compact scheme given in Eq. (23).

B. Linear advection-diffusion equation in one dimension

As our second test problem, we choose the 1D linear
advection-diffusion equation of the form

ut + α ux = ν uxx, (24)

which describes the evolution of a quantity u due to linear ad-
vection and diffusion processes. The symbols α and ν denote
the constant characteristic speed and diffusion coefficient,
respectively. A noninvariant compact numerical scheme can
be developed for Eq. (24) as

u(i,n+1) − u(i,n)

τ
+ α u(i,n)

x = ν u(i,n)
xx , (25)

where forward differencing is considered for the time deriva-
tive, and the spatial first and second derivatives are approxi-
mated according to Eqs. (5) and (6), respectively. The sym-
metry group G associated with the 1D advection-diffusion
equation is

X1 = 2 t2 ∂

∂ t
+ 2 x t

∂

∂ x
− u

(
t + (x − α t )2

2 ν

)
∂

∂ u
,

X2 = 4 t
∂

∂ t
+ 2 (x + α t )

∂

∂ x
,

X3 = t
∂

∂ x
− u

(x − α t )

2 ν

∂

∂ u
,

X4 = u
∂

∂ u
, (26)

X5 = ∂

∂ t
,

X6 = ∂

∂ x
,

X∞ = α(t, x)
∂

∂u
,

where X∞ represents an infinite dimensional symmetry group
and α(t, x) is a solution of Eq. (24). Considering the sub-
groups X1, X5, and X6, the following point transformations can
be obtained:

t̃ = t + s5

λ
, x̃ = x + s6

λ
,

ũ = λ
1
2 u exp

(
− s1 γ 2

2λν

)
,

ũx̃ = λ
1
2 ν−1(s1γ u + λνux ) exp

(
− s1 γ 2

2λν

)
, (27)

ũx̃x̃ = λ
1
2 ν−2(s2

1γ
2u − s1λνu − 2s1λγ νux + λ2ν2uxx

)
× exp

(
− s1 γ 2

2λν

)
,

where λ = 1 − 2 s1 (t + s5) and γ = x + s6 − α (t + s5). The
other subgroups are neglected as their inclusion leads to point
transformations of cumbersome structures that are difficult to
implement. The normalization conditions t̃ n = 0 and x̃i = 0
can be used to determine the symmetry parameters s5 and

s6, respectively. The symmetry parameter s1 (corresponding
to the projection group X1) can be found by considering the
normalization condition:

ũ(i,n)
x̃x̃ = 0 ⇒ s1 = ν

u(i,n)
u(i,n)

xx . (28)

As all the unknown symmetry parameters are defined, the
point transformations given in Eq. (27) can be implemented
to the base compact numerical scheme, Eq. (25). This imple-
mentation reduces the scheme to a form of linear advection
equation in the transformed space:

ũ(i,n+1) − ũ(i,n)

τ̃
+ α ũ(i,n)

x̃ = 0, (29)

where the spatial second derivative is removed from the
scheme owing to the normalization condition given in
Eq. (28). Hence, the transformed compact scheme given in
Eq. (29) that is constructed for the 1D linear advection-
diffusion equation and is invariant under the subgroups X1,
X5, and X6 can be expressed in the original discrete variables
as

u(i,n+1) = λ
− 3

2
n+1

(
λn+1u(i,n) − τ α u(i,n)

x

)
exp

(
s1α

2τ 2

2νλn+1

)
, (30)

where λn+1 = 1 − 2s1τ . Note that in Eq. (30), the derivative
u(i,n)

x is obtained using the compact representation given in
Eq. (5) and associated matrix solutions.

While stability analysis of traditional (noninvariant) linear
compact schemes is a straightforward procedure [2], similar
stability analysis of invariant compact schemes [as in Eq. (30)]
is not so straightforward. The difficulty in stability analysis
with invariant schemes is due to the choice of the local moving
frames and the associated parameters and variables (i.e., s1),
which could bring in additional nonlinearities. Although we
observed qualitatively similar behavior for both noninvariant
compact schemes and their invariant counterparts, more rig-
orous analysis (outside the scope of this paper) is needed for
accurately quantifying stability criteria of our proposed invari-
ant schemes. Further, for invariant compact schemes, it can be
shown that the results of modified wavenumber analysis are
identical to that of corresponding base noninvariant compact
schemes.

C. Viscous Burgers’ equation in one dimension

As our third test problem, let us consider the viscous
Burgers’ equation that is of the form

ut + u ux = ν uxx (31)

and develop an invariant compact numerical scheme for this
particular PDE. Similar to the 1D linear advection-diffusion
equation, we consider forward differencing for the time
derivative and use Eqs. (5) and (6) for the spatial derivatives
to construct the noninvariant base compact scheme for the
solution of this PDE as

u(i,n+1) − u(i,n)

τ
+ u(i,n)u(i,n)

x = νu(i,n)
xx . (32)
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The symmetry group G associated with the viscous Burgers’
equation is

X1 = t2 ∂

∂ t
+ x t

∂

∂ x
+ (x − t u)

∂

∂ u
,

X2 = t
∂

∂ x
+ ∂

∂ u

X3 = 2t
∂

∂ t
+ x

∂

∂ x
− u

∂

∂ u
, (33)

X4 = ∂

∂ t
,

X5 = ∂

∂ x
.

The point transformations that account for the projection
group X1, Galilean transformation group X2, scaling group X3,
and translation groups X4 and X5 can be found as

t̃ = e2s3
(t + s4)

λ
,

x̃ = es3
x + s5 + s2(t + s4)

λ
,

ũ = e−s3 (λu + s1(x + s5) + s2), (34)

ũx̃ = e−2s3 (λ2ux + s1λ),

ũx̃x̃ = e−3s3λ3uxx,

where λ = 1 − s1(t + s4). As similar to the inviscid Burgers’
equation, the scaling symmetry parameter s3 does not occur
when these transformations are implemented to the compact
scheme given in Eq. (32). The symmetry parameters associ-
ated with the translation groups X4 and X5 can be found by
considering the same normalization conditions used for the
previous problems. The Galilean parameter s2 can be found by
using the normalization condition ũ(i,n) = 0. And, finally, the
projection parameter s1 can be found by choosing a moving
frame for which the approximation for the first derivative goes
to zero in the transformed space:

ũ(i,n)
x̃ = 0 ⇒ s1 = −u(i,n)

x . (35)

The above normalization condition indicates that all terms
in the base (noninvariant) compact scheme, Eq. (32), that
include the spatial first derivative will be removed from the
compact scheme in the transformed space leading to the
following reduced form:

ũ(i,n+1) = ν τ̃ ũ(i,n)
x̃x̃ , (36)

where τ̃ = t̃ (i,n+1). The transformed compact numerical
scheme, Eq. (36), that is invariant under all the symmetry
groups of the viscous Burgers’ equation can also be expressed
in original variables as

u(i,n+1) = 1

λn+1

[
u(i,n) − s1

(
x(i,n+1) − x(i,n)

) + τν

λn+1
u(i,n)

xx

]
,

(37)

where λn+1 = 1 − s1τ .

D. Advection-diffusion equation in two dimensions

As our fourth test problem, we choose the 2D linear
advection-diffusion equation that is of the form

ut + α ux + β uy = ν (uxx + uyy) (38)

to demonstrate the applicability of the proposed method to
a multidimensional problem. Here α and β denote constant
characteristic wave speeds along x and y coordinates, re-
spectively. For this particular PDE, two different compact
numerical schemes that are invariant under the same sym-
metry groups, but are constructed using different moving
frames, are developed. Similar to the previous problems, the
base (noninvariant) compact numerical scheme considered for
this PDE is also developed considering forward differencing
for the temporal derivative and fourth-order compact finite-
difference algorithms, given in Eqs. (5) and (6), for the spatial
derivatives:

u(i, j,n+1) − u(i, j,n)

τ
+ α u(i, j,n)

x + β u(i, j,n)
y

= ν
(
u(i, j,n)

xx + u(i, j,n)
yy

)
. (39)

Considering the symmetry group associated with the 2D linear
advection-diffusion equation,

X1 = 4 ν t2 ∂

∂ t
+ 4 ν x t

∂

∂ x
+ 4 ν y t

∂

∂ y

− u [(x − α t )2 + (y − β t )2 + 4νt]
∂

∂ u
,

X2 = 2 ν t
∂

∂ x
+ 2 ν t

∂

∂ y
− u (x − α t + y − β t )

∂

∂ u
,

X3 = 2 ν y
∂

∂ x
− 2 ν x

∂

∂ y
− u (β x − α y)

∂

∂ u
,

X4 = 4 ν t
∂

∂ t
+ 2ν x

∂

∂ x
+ 2ν y

∂

∂ y

+ u[α(x − α t ) + β(y − βt )]
∂

∂u
,

X5 = u
∂

∂ u
,

X6 = ∂

∂ t
,

X7 = ∂

∂ x
,

X8 = ∂

∂ y
, (40)

the following point transformations that are based on the
subgroups X1, X6, X7, and X8, are found:

t̃ = t + s6

λ
, x̃ = x + s7

λ
, ỹ = y + s8

λ
,

ũ = λ u exp

[
− s1 (γ 2 + θ2)

λ

]
ũx̃ = (2 λ γ s1 u + λ2 ux ) exp

[
− s1 (γ 2 + θ2)

λ

]
,

ũỹ = (2 λ θ s1 u + λ2 uy) exp

[
− s1 (γ 2 + θ2)

λ

]
,
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ũx̃x̃ = (
4 λ γ 2 s2

1 u − 2 λ2 s1 u + 4 λ2 γ s1 ux + λ3 uxx
)

× exp

[
− s1 (γ 2 + θ2)

λ

]
,

ũỹỹ = (
4 λ θ2 s2

1 u − 2 λ2 s1 u + 4 λ2 θ s1 uy + λ3 uyy
)

× exp

[
− s1 (γ 2 + θ2)

λ

]
, (41)

where
λ = 1 − 4 ν s1 (t + s6),

γ = x + s7 − α (t + s6),

θ = y + s8 − β (t + s6).

The base compact scheme given in Eq. (39) can be trans-
formed according to the above transformations as follows:

ũ(i, j,n+1) − ũ(i, j,n)

τ̃
+ α ũ(i, j,n)

x̃ + β ũ(i, j,n)
ỹ

= ν
(
ũ(i, j,n)

x̃x̃ + ũ(i, j,n)
ỹỹ

)
. (42)

Here we note that, for simplicity, we ignore the Galilean (X2

and X3) and scaling (X4 and X5) groups and do not consider
them for determination of the point transformations as their
inclusion (besides the other symmetry groups) result in trans-
formations that are laborious to implement. The symmetry
parameters s6, s7, and s8 can be determined by considering the
normalization conditions t̃ n = 0, x̃i = 0, and ỹ j = 0, respec-
tively. As for the determination of the symmetry parameter s1,
we consider two different normalization conditions to evaluate
the effect of these selections on the numerical accuracy of the
resulting invariant schemes. We choose

ũ(i, j,n)
x̃x̃ = 0 ⇒ s1 = u(i, j,n)

xx

2 u(i, j,n)
(43)

as the first normalization condition and construct an invariant
compact scheme (referred to as SYM-1) as

ũ(i, j,n+1) − ũ(i, j,n)

τ̃
+ αũ(i, j,n)

x̃ + βũ(i, j,n)
ỹ = νũ(i, j,n)

ỹỹ . (44)

In the second case, we consider the normalization condition

ũ(i, j,n)
x̃x̃ + ũ(i, j,n)

ỹỹ = 0 ⇒ s1 = u(i, j,n)
xx + u(i, j,n)

yy

4 u(i, j,n)
(45)

and construct another invariant compact scheme (referred to
as SYM-2) as

ũ(i, j,n+1) − ũ(i, j,n)

τ̃
+ αũ(i, j,n)

x̃ + βũ(i, j,n)
ỹ = 0. (46)

Here we note that both Eqs. (44) and (46) can also be
expressed in the original variables by implementing the trans-
formations given in Eq. (41).

E. Viscous Burgers’ equation in two dimensions

As our fifth test problem, we consider the 2D viscous
Burgers’ equation of the form

ut + u ux + v uy = ν (uxx + uyy), (47)

vt + u vx + v vy = ν (vxx + vyy), (48)

where u and v represent velocity components in x and y co-
ordinates, respectively. A noninvariant base compact scheme
selected for this problem has the following form:

u(i, j,n+1) − u(i, j,n)

τ
+ u(i, j,n) u(i, j,n)

x + v(i, j,n) u(i, j,n)
y

= ν
(
u(i, j,n)

xx + u(i, j,n)
yy

)
, (49)

v(i, j,n+1) − v(i, j,n)

τ
+ u(i, j,n) v(i, j,n)

x + v(i, j,n) v(i, j,n)
y

= ν
(
v(i, j,n)

xx + v(i, j,n)
yy

)
, (50)

where the temporal derivative is approximated via forward
differencing, and the spatial derivatives are approximated via
the fourth-order compact algorithms given in Eqs. (5) and (6).

Similar to the previous problems, the first step in the
invariantization procedure is to determine the symmetries of
the PDE under consideration. In this case, the 2D viscous
Burgers’ equation admits the following eight-parameter Lie
group:

X1 = t2 ∂

∂ t
+ x t

∂

∂ x
+ y t

∂

∂ y

+ (x − t u)
∂

∂ u
+ (y − t v)

∂

∂ v
,

X2 = 2t
∂

∂ t
+ x

∂

∂ x
+ y

∂

∂ y
− u

∂

∂ u
− v

∂

∂ v
,

X3 = y
∂

∂ x
− x

∂

∂ y
+ v

∂

∂ u
− u

∂

∂ v
,

X4 = t
∂

∂ x
+ ∂

∂ u
, (51)

X5 = t
∂

∂ y
+ ∂

∂ v
,

X6 = ∂

∂ x
,

X7 = ∂

∂ y
,

X8 = ∂

∂ t
.

The extended point transformation group associated with
group operators X1, X2, X4, X5, X6, X7, and X8 is as follows:

t̃ = e2s2
(t + s8)

1 − s1 (t + s8)
,

x̃ = es2
x + s6 + s4(t + s8)

1 − s1 (t + s8)
,

ỹ = es2
y + s7 + s5(t + s8)

1 − s1 (t + s8)
,

ũ = e−s2{[1 − s1 (t + s8)]u + s1(x + s6) + s4},
ṽ = e−s2{[1 − s1 (t + s8)]v + s1(y + s7) + s5},

ũx̃ = e−2s2{[1 − s1 (t + s8)]2ux + s1[1 − s1 (t + s8)]},
ũỹ = e−2s2{[1 − s1 (t + s8)]2uy},

ũx̃x̃ = e−3s2{[1 − s1 (t + s8)]3uxx},
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ũỹỹ = e−3s2{[1 − s1 (t + s8)]3uyy},
ṽx̃ = e−2s2{[1 − s1 (t + s8)]2vx},
ṽỹ = e−2s2{[1 − s1 (t + s8)]2vy + s1[1 − s1 (t + s8)]},

ṽx̃x̃ = e−3s2{[1 − s1 (t + s8)]3vxx},
ṽỹỹ = e−3s2{[1 − s1 (t + s8)]3vyy}, (52)

where the rotation group X3 is ignored for the sake of sim-
plicity. The next step is to determine the unknown symmetry
parameters (i.e., s1, s3, s4, s5, s6, s7, and s8) via Cartan’s
method of normalization. Similar to the previous problems,
to determine the symmetry parameters s6, s7 and s8, we use
the normalization conditions that lead to simple stencils (i.e.,
x̃n

i = 0, ỹn
j = 0 and t̃ n = 0). The scaling symmetry param-

eter s2 does not appear in the transformed base compact
scheme. The Galilean parameters s4 and s5 are ignored for this
problem for the sake of simplicity. Note that we previously
demonstrated the preservation of such groups in the case of
the 1D viscous Burgers’ equation in Sec. III C. However, if
one desires to preserve these symmetry groups as well, they
can simply consider convenient normalization conditions to
determine the relevant symmetry parameters and take it from
there. Here we note that inclusion of these symmetry groups
will lead to a cumbersome numerical representation and will
require use of a nonorthogonal stencil as was the case for the
1D viscous Burgers’ equation. As for the projection symme-
try parameter s1, we can choose two different (convenient)
normalization conditions: (1) one that removes the nonlinear
transport terms in Eq. (49) and (2) one that removes the
nonlinear transport terms in Eq. (50):

ũ(i, j,n) ũ(i, j,n)
x̃ + ṽ(i, j,n) ũ(i, j,n)

ỹ = 0

⇔ ŝ1 = −u(i, j,n)
x − v(i, j,n)

u(i, j,n)
u(i, j,n)

y , (53)

ũ(i, j,n) ṽ
(i, j,n)
x̃ + ṽ(i, j,n) ṽ

(i, j,n)
ỹ = 0

⇔ s1 = −v(i, j,n)
y − u(i, j,n)

v(i, j,n)
v(i, j,n)

x . (54)

Based on these symmetry parameters, the final form of the
fourth-order accurate invariant compact scheme that is con-
structed for the 2D viscous Burgers’ equation is found as
follows:

û(i, j,n+1) − û(i, j,n)

τ̂
= ν

(̂
u(i, j,n)

x̂̂x + û(i, j,n)
ŷ̂y

)
, (55)

v(i, j,n+1) − v(i, j,n)

τ
= ν

(
v

(i, j,n)
x x + v

(i, j,n)
y y

)
, (56)

where the symbols (̂·) and (·) represent different transfor-
mations corresponding to s1 definitions given in Eqs. (53)
and (54), respectively.

F. Spherical Burgers’ equation in one dimension

To further evaluate the performance of the proposed invari-
ant schemes in the case of nonlinear problems, we demon-
strate the implementation of the method to the spherical

Burgers’ equation that is of the form

ut + u

t
+ uux + uxx = 0 (57)

and develop a fourth-order accurate invariant compact scheme
for this problem as well. The symmetry properties of this PDE
along with a constructed invariant finite-difference scheme
(developed for this PDE) are also presented in Ref. [51].
In this work, we approach this problem from a compact
finite differencing point of view and construct a fourth-order
accurate invariant compact scheme for this PDE. The point
transformations obtained from the full Lie symmetry group
associated with this PDE can be found as

x̃ = es1 (x + s2 ln t ) + s3,

t̃ = e2s1t,

ũ = e−s1

(
u + s2

t

)
, (58)

ũx̃ = e−2s1 ux,

ũx̃x̃ = e−3s1 uxx.

Considering the same normalization conditions described in
Ref. [51],

x̃(i,n) = 0,

t̃ (i,n) = 1,

ũ(i,n) = 0,

x̃(i,n+1) − x̃(i,n) = 0, (59)

we can obtain the final form of the fourth-order accurate
invariant compact scheme for this PDE as

u(i,n+1) = u(i,n) t n

t n+1
− τu(i,n)

xx , (60)

where the solution stencil is nonorthogonal and given by the
following relation:

x(i,n+1) − x(i,n) = t nu(i,n) ln

(
t n+1

t n

)
.

Performance of the invariant scheme, given in Eq. (60), that
preserves the full Lie symmetry group associated with the 1D
spherical Burger’s equation is evaluated in Sec. IV.

G. Shallow water equations in two dimensions

As our next test case, to show the implementation of the
proposed method to multidimensional nonlinear problems, we
consider the 2D shallow water equations given as

ut + uux + vuy + ghx = 0, (61)

vt + uvx + vvy + ghy = 0, (62)

ht + (uh)x + (vh)y = 0, (63)

and construct a fourth-order accurate invariant compact
scheme for this PDE as well. The symmetry group associated
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with this PDE is given in Ref. [52] as

X1 = t2 ∂

∂ t
+ x t

∂

∂ x
+ y t

∂

∂ y
+ (x − t u)

∂

∂ u

+ (y − t v)
∂

∂ v
− 2ht

∂

∂ h
,

X2 = x
∂

∂ x
+ y

∂

∂ y
+ u

∂

∂ u
+ v

∂

∂ v
+ 2h

∂

∂ h
,

X3 = 2t
∂

∂ t
+ x

∂

∂ x
+ y

∂

∂ y
− u

∂

∂ u
− v

∂

∂ v
− 2h

∂

∂ h
,

X4 = y
∂

∂ x
− x

∂

∂ y
+ v

∂

∂ u
− u

∂

∂ v
,

X5 = t
∂

∂ x
+ ∂

∂ u
,

X6 = t
∂

∂ y
+ ∂

∂ v
,

X7 = ∂

∂ x
,

X8 = ∂

∂ y
,

X9 = ∂

∂ t
, (64)

where the groups X2 and X3 can be combined to obtain a more
general scaling group as follows:

Xg = 3

2
X2 − 1

2
X3 = −t

∂

∂ t
+ x

∂

∂ x
+ y

∂

∂ y
+ 2u

∂

∂ u

+ 2v
∂

∂ v
+ 4h

∂

∂ h
.

Considering the subgroups X1, X7, X8, X9, and Xs, we can
determine the relevant point transformations for this problem
as

t̃ = e−sg
(t + s9)

λ
,

x̃ = esg
x + s7

λ
,

ỹ = esg
y + s8

λ
,

ũ = e2sg[λu + s1(x + s7)],

ṽ = e2sg[λv + s1(y + s8)],

h̃ = e4sg[λ2h],

ũx̃ = esg[λ2ux + s1λ],

ũỹ = esg[λ2uy],

ṽx̃ = esg[λ2vx],

ṽỹ = esg[λ2vy + s1λ],

h̃x̃ = e3sg[λ3hx],

h̃ỹ = e3sg[λ3hy], (65)

where λ = 1 − s1 (t + s9). The symmetry parameters s7, s8,
and s9 can be determined via normalization conditions
x̃(i, j,n) = 0, ỹ(i, j,n) = 0 and t̃ (i, j,n) = 0. And as for the symme-
try parameter s1, similar to the 2D viscous Burgers’ equation
case, we can select different definitions for each PDE in
Eqs. (61)–(63). For instance, for these equations, we can
respectively select the normalization conditions ũ(i, j,n)

x̃ = 0,
ṽ

(i, j,n)
ỹ = 0 and ũ(i, j,n)

x̃ + ṽ
(i, j,n)
ỹ = 0, which correspond to

ŝ1 = −u(i, j,n)
x ,

s̄1 = −v(i, j,n)
y ,

s̈1 = − 1
2

(
u(i, j,n)

x + v(i, j,n)
y

)
,

where the symbols (̂·), ¯(·) and ¨(·) represent transformations
based on different definitions of symmetry parameter s1 in
Eq. (65). Based on these transformations, the final form of
the fourth-order accurate invariant compact scheme for this
problem can be found as

û(i, j,n+1) = û(i, j,n) − τ̂
[̂
v(i, j,n)û(i, j,n)

ŷ + ĝh(i, j,n)
x̂

]
,

v̄(i, j,n+1) = v̄(i, j,n) − τ̄
[
ū(i, j,n)v̄

(i, j,n)
x̄ + gh̄(i, j,n)

ȳ

]
, (66)

ḧ(i, j,n+1) = ḧ(i, j,n) − τ̈
[
ü(i, j,n)ḧ(i, j,n)

ẍ + v̈(i, j,n)ḧ(i, j,n)
ÿ

]
.

Performance of these invariant compact schemes is evaluated
in the following section.

IV. RESULTS

In this section, performance of the proposed invariant
compact finite-difference schemes developed for the inviscid
Burgers’ equation, linear advection-diffusion equation (in one
and two dimensions), and viscous Burgers’ equation (in one
and two dimensions) is evaluated. Results obtained from the
invariant schemes are compared with the standard schemes for
numerical accuracy.

We first evaluate the performance of the invariant com-
pact scheme constructed for the inviscid Burgers’ equa-
tion, Eq. (23), by comparing the results with the high-order

TABLE I. Root-mean-square error (RMSE) and L∞ error associated with numerical solutions of IBE given in Fig. 1.

t Error UPW FTCS LaxW MacC OV [42] COMP SYM

0.25 L∞ 5.03×10−2 1.40×10−2 1.90×10−2 1.95×10−2 1.11×10−2 6.78×10−3 7.23×10−4

RMSE 1.44×10−2 4.08×10−3 5.18×10−3 5.28×10−3 3.37×10−3 1.63×10−3 1.61×10−4

0.50 L∞ 1.11×10−1 4.31×10−2 5.88×10−2 5.92×10−2 4.01×10−2 2.06×10−2 4.69×10−3

RMSE 2.84×10−2 1.14×10−2 1.25×10−2 1.26×10−2 9.28×10−3 4.12×10−3 1.06×10−3
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(a) (b)

(c) (d)

FIG. 1. Inviscid Burgers’ equation in one dimension. Comparison of velocity profiles, for t = (0.25 and 0.5), obtained from the analytical
solution (Exact) and numerical solutions, based on standard forward in time and upwind (UPW) or central in space (FTCS) schemes,
Lax-Wendroff scheme (LaxW), MacCormack scheme (MacC), the symmetry-preserving scheme proposed in Ozbenli and Vedula (OV [42]),
standard compact scheme (COMP), and the proposed invariant compact scheme (SYM) is shown in the left plots (a), (c). Spatial distribution
of numerical errors for these schemes is displayed in the right plots (b), (d). Parameter settings: h = 0.2, τ = 0.0208, and σ = 0.5.

numerical solution obtained from the implicit relation

u(t, x) = 1√
2 π σ 2

exp

{
− [x − u(t, x) t]2

2 σ 2

}
(67)

over the spatial domain �(x), where x ∈ [−3, 3]. The initial
and boundary conditions are also noted from this implicit
solution.

70 100 150 200 250
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FIG. 2. Inviscid Burgers’ equation. Comparison of L∞ errors
associated with various numerical schemes (FTCS, COM, SYM) as
a function of number of grid points.

Snapshots of the propagating wave, for t = 0.25 and 0.5,
that are obtained from the exact solution, the proposed invari-
ant compact scheme (SYM), the standard fourth-order accu-
rate compact scheme (COMP), and other selected schemes are
shown in Figs. 1(a) and 1(c). The associated numerical errors
of these schemes, which are estimated as Nexact − Nnumeric, are
also given in Figs. 1(b) and 1(d). It appears that the results
obtained from the proposed invariant compact scheme (SYM)
are significantly more accurate than those obtained from the
standard schemes [based on upwind differencing (UPW), cen-
tral differencing (FTCS), Lax-Wendroff (LaxW), and Mac-
Cormack (MacC) methods] and are slightly better than those
obtained from the standard compact finite-difference scheme
(COMP) and the symmetry-preserving scheme proposed by
Ozbenli and Vedula (OV [42]). Further, the root-mean-square
error (RMSE), estimated as

√∑
(ua − un)2/N , and L∞ error,

estimated as max(|ua − un|), of these numerical schemes, for
the parameter settings presented in Fig. 1, are given in Table I.
According to this error analysis, for t = 0.25, the L∞ errors
obtained from the proposed invariant compact scheme, the
standard (noninvariant) compact scheme (COMP), and the
standard scheme based on central differencing (FTCS) are
7.23×10−4, 6.78×10−3, and 1.04×10−2, respectively, where
other schemes have higher errors. Similarly, the RMSEs for
these numerical schemes are measured as 1.61×10−4 (for
SYM), 1.63×10−3 (for COMP), and 4.08×10−3 (for FTCS).
A similar trend is observed in L∞ and RMSEs for t = 0.5.
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FIG. 3. Linear advection-diffusion equation in one dimension. Snapshots of wave profiles, for t = 1.0, obtained from the analytical solution
(Exact), the classical forward in time central in space scheme (FTCS), the standard compact scheme (COMP), and the proposed invariant
compact scheme (SYM) are displayed in (a). Spatial distribution of errors is displayed in (b). Parameter settings: h = 0.2, τ = 0.001, ν = 1/60.

Results indicate that the proposed invariant scheme (SYM)
has significantly less error compared to the standard FTCS
and compact schemes.

The variation of L∞ errors (obtained from the standard
FTCS scheme, standard compact finite-difference scheme,
and the invariant scheme) with respect to the number of spatial
grid points is demonstrated in Fig. 2. The proposed invariant
scheme (SYM) appears to be two orders more accurate than
the standard second-order FTCS scheme and is at the same
order as the standard compact finite-difference scheme, which
is known to be fourth-order accurate. Here we note that a
sufficiently small time step is considered for this simulation
as the fourth-order compact algorithms [given in Eqs. (5)
and (6)] are considered only for the spatial derivatives.

Further, we evaluated the performance of the proposed
method by developing a fourth-order accurate invariant com-
pact finite-difference scheme for the 1D linear advection-
diffusion equation given in Eq. (29). The analytical solution

u(t, x) = 1√
4 π (L2 + ν t )

exp

[
− (x − α t )2

4 (L2 + ν t )

]
(68)

is considered over the spatial domain �[−2, 4], where the ini-
tial and boundary conditions are obtained from this solution.
Here L is the characteristic width of the kernel and assumed
to be equal to 0.4 for all test cases. For this particular prob-
lem, evolution of the profile u(t, x) (from a given Gaussian
initial profile) obtained from the proposed invariant scheme
(SYM), standard FTCS scheme, and compact finite-difference
(COMP) scheme is depicted in Fig. 3(a). The spatial distribu-
tion of errors obtained from these numerical solutions is also
shown in Fig. 3(b). The invariant compact scheme appears

TABLE II. Root-mean-square error (RMSE) and L∞ error as-
sociated with numerical solutions for 1D linear advection-diffusion
equation.

Error FTCS COMP SYM

L∞ 2.9×10−2 1.2×10−3 4.6×10−4

RMSE 1.2×10−2 3.7×10−4 2.1×10−4

to capture the wave propagation significantly better than the
FTCS scheme and slightly better than the compact scheme.
Additionally, L∞ error and RMSE measures corresponding to
the proposed invariant compact scheme, FTCS scheme and
standard compact finite-difference scheme are presented in
Table II. It appears that the invariant compact scheme is two
orders of magnitude more accurate than the FTCS scheme and
is one order of magnitude more accurate than the standard
compact finite-difference scheme.

Further, Fig. 4 shows the variation of L∞ errors associated
to the invariant compact scheme, FTCS scheme, and standard
noninvariant compact scheme with respect to the number of
spatial grid points. The invariant scheme appears to be two
orders more accurate than the standard second-order FTCS
scheme. Moreover, although both the invariant and standard
noninvariant compact schemes are fourth-order accurate, the
invariant scheme appears to have slightly less numerical error.

In our next test case, we considered 1D viscous Burg-
ers’ equation and developed a fourth-order accurate invariant
compact scheme that preserves the whole symmetry group
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10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

FTCS
COM
SYM

FIG. 4. Linear advection-diffusion equation in one dimension.
Comparison of L∞ errors associated with various numerical schemes
(FTCS, COM, and SYM) as a function of number of grid points.
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FIG. 5. Viscous Burgers’ equation in one dimension. Snapshots of shock formation profiles, for t = 0.25, obtained from the analytical
solution (Exact), the standard forward in time central in space scheme (FTCS), the standard compact scheme (COMP), the symmetry-
preserving schemes presented in Chhay and Hamdouni (CH [38]) and Ozbenli and Vedula (OV [42]), and the proposed invariant compact
scheme (SYM) are shown in (a). Spatial distribution of errors for these numerical schemes is displayed in (b). Parameter settings: h = 0.01π ,
τ = 10−6, ν = 1/12.

associated with this PDE. The analytical solution

u(t, x) = −2ν

φ

∂φ

∂x
+ 4,

φ = exp

[
− (x − 4t )2

4ν(t + 1)

]
+ exp

[
− (x − 4t − 2π )2

4ν(t + 1)

]
(69)

is considered over the spatial domain �[0, 2π ], where the
initial and boundary conditions are determined from this
solution.

Snapshots of the propagating shock, for t = 0.25, along
with the spatial distribution of numerical errors, obtained from
the proposed invariant compact scheme (SYM), the standard
second-order FTCS scheme, the standard noninvariant com-
pact scheme (COMP) and the symmetry-preserving schemes
presented in Chhay and Hamdouni (CH [38]) and Ozbenli and
Vedula (OV [42]) are shown in Fig. 5. Although a coarse grid
with 201 nodes is used for this particular simulation, it appears
that the proposed invariant scheme (SYM) performs well
and captures the shock propagation better than the standard
schemes, particularly near the shock front. Further, L∞ error
and RMSE analysis given in Table III also confirms that
the invariant compact scheme (SYM) performs significantly
better than the standard FTCS scheme and the symmetry-
preserving scheme CH [38] and performs slightly better than
the standard compact scheme (COMP) and the symmetry-
preserving scheme OV [42]. Here we note that the symmetry-
preserving scheme given in Chhay and Hamdouni (CH [38]) is
constructed using second-order approximations for the spatial
derivatives and hence are expected to perform with higher

TABLE III. Root-mean-square error (RMSE) and L∞ error asso-
ciated with numerical solutions of (1D) VBE given in Fig. 5.

Error FTCS CH [38] OV [42] COMP SYM

L∞ 2.2×10−1 2.1×10−1 4.3×10−2 5.5×10−3 5.7×10−3

RMSE 2.5×10−2 2.5×10−2 6.0×10−3 6.0×10−4 5.9×10−4

errors compared to the compact schemes. It is important
to remember that this scheme preserves the symmetries of
the viscous Burgers’ equation and has other advantages over
the standard schemes. Similarly, the symmetry-preserving
scheme given in Ozbenli and Vedula (OV [42]) has significant
advantages over the standard schemes as well. Therefore, the
reader is referred to the relevant references for further details
on these schemes.

Further, the variation of L∞ errors with respect to number
of spatial grid points that is obtained from standard FTCS
and compact (COM) schemes and the proposed invariant
scheme (SYM) is shown in Fig. 6. As expected, the results
obtained from the invariant scheme are indeed fourth-order
accurate and are two orders more accurate than the standard
FTCS scheme, which is known to be a second-order accurate
scheme. Also, both the invariant scheme and the standard
fourth-order compact scheme yield results of comparable
order of accuracy with negligible differences.

Furthermore, as the proposed invariant compact scheme
given in Eq. (37) preserves all the symmetry groups associated
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100
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FIG. 6. Viscous Burgers’ equation in one dimension. Compari-
son of L∞ errors associated with various numerical schemes (FTCS,
COM, and SYM) as a function of number of grid points.
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FIG. 7. Viscous Burgers’ equation in one dimension. Snapshots of numerical solutions, obtained from the analytical solution (Exact),
standard forward in time central in space scheme (FTCS), standard compact scheme (COMP), and proposed invariant compact scheme
(SYM), evolving from various initial profiles for different values of the Galilean parameter c. (a) h = 0.1, τ = 0.0001, ν = 0.05, (b) h = 0.02,
τ = 0.0005, ν = 0.01.

with the 1D viscous Burgers’ equation, under transformations
based on these symmetry groups, the invariant scheme is
expected to perform significantly better than the standard
schemes that ignore these symmetry groups. For instance,
under a Galilean transformation of the form

x̂ = x + c t, t̂ = t, û = u + c, (70)

the proposed invariant scheme (SYM) is likely to capture the
evolution of the velocity profile significantly better than both
the standard FTCS and compact schemes. This is expected
as the invariant scheme preserves the Galilean transformation
group X2 given in Eq. (33), which is ignored in standard
schemes. To test this particular advantage of the invariant
scheme, we applied the Galilean transformation given in
Eq. (70) to selected numerical schemes (i.e., FTCS, COMP,
and SYM) and presented the results obtained from these
schemes, based on two different initial profiles, in Fig. 7.
Additionally, RMSEs and L∞ errors associated with these
numerical solutions are given in Tables IV and V. The details
regarding the analytical solutions considered for the left and
right plots in Fig. 7 can be found in Ref. [38]. Based on Fig. 7
and relevant error tables, it appears that when the Galilean
parameter c is equal to zero, all the numerical schemes
capture the evolution of the solution well, which is expected.

TABLE IV. Variation of RMSE and L∞ errors associated with
numerical solutions presented in Fig. 7 (left) with respect to the
Galilean parameter c.

c Error FTCS COMP SYM

0 L∞ 0.1157 0.0100 0.0120
RMSE 0.0213 0.0023 0.0022

0.5 L∞ 0.5543 0.5131 0.0120
RMSE 0.2424 0.2417 0.0022

1.0 L∞ 0.9033 0.9166 0.0120
RMSE 0.3232 0.3206 0.0022

However, for the cases when the Galilean parameter c is
nonzero, both the standard FTCS scheme and compact finite-
difference scheme appear to overpredict the solution leading
to a significant lag in the solution, particularly for large values
of c. On the other hand, the invariant scheme, as it preserves
the Galilean symmetry group, captures the evolution of the
solution well even for nonzero values of the Galilean param-
eter c. In fact, in the case of a numerical precision considered
in Tables IV and V, the results obtained from the invariant
scheme for nonzero values of c are found to be identical to the
results of the case where c = 0. The latter indicates that the
Galilean invariance property of the viscous Burgers’ equation
is indeed preserved in the relevant difference equation. This
property of symmetry preservation in numerical schemes can
be particularly useful when differential equations associated
to more complex symmetries are solved through difference
equations.

As our fourth test case, we considered the 2D linear
advection-diffusion equation and constructed two different
fourth-order accurate invariant compact scheme (SYM-1 and
SYM-2) for this PDE. The main difference between the
constructed invariant schemes are that both are developed
via selections of different moving frames, and the details of
these selections are given in Sec. III D. The objective is to

TABLE V. Variation of RMSE and L∞ errors associated with
numerical solutions presented in Fig. 7 (right) with respect to the
Galilean parameter c.

c Error FTCS COMP SYM

0 L∞ 0.2384 0.0269 0.0217
RMSE 0.0339 0.0041 0.0034

0.3 L∞ 2.1117 2.0058 0.0217
RMSE 0.7521 0.7451 0.0034

0.75 L∞ 2.2750 2.0118 0.0217
RMSE 1.2066 1.2027 0.0034
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FIG. 8. Linear advection-diffusion equation in two dimensions. Spatial distribution of numerical errors, for t = 0.1, obtained from the
classical base scheme (a) and the proposed invariant scheme (b). Parameter settings: hx = 0.16, hy = 0.16, τ = 0.0001, α = 1.0, β = 1.0,
ν = 1/60.

investigate the effect of these selections on the accuracy of the
resulting invariant schemes. The analytical solution

u(t, x, y) = 1√
4 π (L2 + ν t )

exp

[
− (x − α t )2 + (y − β t )2

4 (L2 + ν t )

]
(71)

is used to evaluate the quality of results obtained from the
invariant schemes SYM-1 and SYM-2.

Spatial distribution of numerical errors corresponding
to the proposed invariant compact finite-difference scheme
(SYM-2) and standard noninvariant FTCS scheme is given
in Fig. 8. Based on this figure, it appears that the invariant
scheme has significantly less numerical error compared to
the standard noninvariant FTCS scheme in this case as well.
This improvement in numerical accuracy is also verified by
the error analysis given in Table VI, where both invariant
schemes (SYM-1 and SYM-2) perform better than the stan-
dard schemes. L∞ errors obtained from the invariant schemes
SYM-1 and SYM-2, FTCS scheme and standard nonin-
variant compact scheme are noted as 3.4×10−5, 3.3×10−5,
2.4×10−3, and 3.8×10−5, respectively. It appears that the
invariant schemes are at least two orders of magnitude more
accurate than the standard FTCS scheme. RMSE measures of
these numerical schemes also yield similar results, which are
3.3×10−6 and 3.1×10−6 for the invariant schemes SYM-1
and SYM-2, 2.7×10−4 for the FTCS scheme, and 3.4×10−6

for the noninvariant compact finite-difference scheme. The
variation of L∞ errors (obtained from the proposed invariant
schemes, standard FTCS scheme, and noninvariant compact

TABLE VI. Root-mean-square error (RMSE) and L∞ error as-
sociated with numerical solutions for 2D linear advection-diffusion
equation.

Error FTCS COMP SYM-1 SYM-2

L∞ 2.4×10−3 3.8×10−5 3.4×10−5 3.3×10−5

RMSE 2.7×10−4 3.4×10−6 3.3×10−6 3.1×10−6

scheme) with respect to the number of spatial grid points
is presented in Fig. 9. As expected, both proposed invariant
compact schemes constructed for the 2D linear advection-
diffusion equation are indeed fourth-order accurate and per-
form significantly better than the second-order standard for-
ward in time central in space finite-difference scheme (FTCS).
Moreover, these invariant schemes also perform with slightly
less error compared to the noninvariant compact scheme,
which is known to be a fourth-order accurate scheme. Further,
the invariant scheme SYM-2 appears to be slightly more
accurate than the invariant scheme SYM-1, which indicates
that the selection of moving frames could affect the accuracy
of resulting invariant schemes. Although for this particular
problem, the differences in the results obtained from the
invariant schemes appear to be minor, in general the moving
frames must be chosen carefully.
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FIG. 9. Linear advection-diffusion equation in two dimensions.
Comparison of L∞ errors associated with various numerical schemes
(FTCS, COM, SYM-1, and SYM-2) as a function of number of grid
points.
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FIG. 10. Viscous Burgers’ equation in two dimensions. Spatial distribution of numerical errors, based on velocity components u (left plots)
and v (right plots), obtained from the standard FTCS scheme (a), (b), standard compact scheme (c), (d), and the proposed invariant scheme
(e), (f) is shown. Parameter settings: hx = 0.1, hy = 0.1, τ = 0.00005, and ν = 1/12.

And as our fifth test problem, we considered the 2D viscous
Burgers’ equation and constructed a fourth-order accurate in-
variant compact scheme for this problem as well. The analytic
solution considered for this case is

u(x, y, t ) = 3

4
− 1

4{1 + exp[(−4x + 4y − t )/(32ν)]} ,

v(x, y, t ) = 3

4
+ 1

4{1 + exp[(−4x + 4y − t )/(32ν)]} , (72)

where the initial and boundary conditions are noted from
this solution. And based this analytical solution, numerical
simulations are performed considering the spatial domain
�(x, y), where x = [0, 1] and y = [0, 1].

Spatial distribution of numerical errors, for t = 0.25, ob-
tained from the standard forward in time central in space
scheme (a), (b), standard fourth-order compact scheme
(c), (d), and proposed invariant compact scheme (e), (f) is
shown in Fig. 10, where the left and right plots represent
measurements based on the velocity components u and v,
respectively. L∞ error and RMSE error measurements associ-
ated with these numerical schemes, for this particular simula-
tion, are presented in Table VII. According to these results, it
appears that the invariant scheme performs significantly better

than the standard FTCS scheme and is slightly more accurate
than the noninvariant compact scheme.

In addition, Fig. 11 shows the variation of the L∞ errors
(obtained from the invariant compact scheme, standard non-
invariant compact scheme, and the forward in time central
in space scheme) with respect to number of grid points for
sufficiently small time steps at t = 0.25. As expected the
proposed invariant compact scheme is indeed fourth-order
accurate. Comparison with the standard schemes shows that
the invariant scheme is significantly more accurate than the
FTCS scheme, which is known to be a second-order scheme
and is also slightly more accurate than the standard fourth-
order compact scheme.

TABLE VII. Root-mean-square error (RMSE) and L∞ error as-
sociated with numerical solutions of (2D) VBE given in Fig. 10.

Error FTCS COMP SYM

u L∞ 1.1×10−5 7.0×10−7 6.9×10−7

RMSE 5.5×10−6 2.3×10−7 2.3×10−7

v L∞ 1.1×10−5 7.0×10−7 7.0×10−7

RMSE 5.5×10−6 2.3×10−7 2.3×10−7
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FIG. 11. Viscous Burgers’ equation in two dimensions. Compar-
ison of L∞ errors associated with various numerical schemes (FTCS,
COM, SYM) as a function of number of grid points.

As our next test problem, we considered the 1D spherical
Burgers’ equation and constructed a fourth-order accurate
invariant compact scheme, on a nonorthogonal mesh, that
preserves the full symmetry groups associated with this PDE.
The following analytical solution is used [51]:

u(t, x) = x

t[1 + ln(t )]
, (73)

where the initial condition at t = 1 (to avoid division by zero)
and the boundary conditions are noted from this equation.

Spatial distribution of numerical errors and associated
root-mean-square and L∞ error measures obtained from so-
lutions based on the standard FTCS scheme, fourth-order
compact scheme, and proposed invariant scheme, at t = 1.3,
are given in Fig. 12 and Table VIII, respectively. The L∞
errors associated with these numerical schemes are noted as
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FIG. 12. Spherical Burgers’ equation in one dimension. Spatial
distribution of numerical errors, obtained from the standard FTCS
scheme, standard fourth-order compact scheme (COMP), and the
proposed invariant scheme (SYM) are shown. Parameter settings:
h = 0.57 and τ = 6×10−4.

TABLE VIII. Root-mean-square error (RMSE) and L∞ error
associated with numerical solutions for 1D spherical Burgers’
equation.

Error FTCS COMP SYM

L∞ 4.1×10−3 2.8×10−3 6.7×10−15

RMSE 1.6×10−3 1.2×10−3 2.9×10−15

5.9×10−3 for the standard FTCS scheme, 5.7×10−3 for the
standard fourth-order accurate compact scheme (COMP), and
9.8×10−15 for the proposed invariant scheme (SYM). Simi-
larly, the RMSEs for these schemes are found as 2.6×10−3

(FTCS), 5.7×10−3 (COMP) and 9.8×10−15 (SYM), respec-
tively. Based on these results, it appears that the symmetry-
preserving compact scheme is significantly more accu-
rate (by about 11 orders of magnitude) than the standard
FTCS and fourth-order accurate compact finite-difference
schemes for this particular choice of analytical solution.
Although it is reasonable to expect that preservation of sym-
metries in numerical schemes could lead to significant im-
provements in accuracy, we observe that such improvements
are not always guaranteed. For instance, while our proposed
symmetry based schemes for spherical Burgers’ equation case
showed considerable improvements in accuracy (by 11 orders
of magnitude), a similar degree of improvement in accuracy
was not observed in other cases (e.g., 2D viscous Burgers’
equations, shallow water equations). We believe that there are
important open research questions regarding the conditions
under which we can definitively expect significant improve-
ments in accuracy. Based on our experience, we believe
that the selection of moving frames has a significant effect
on the accuracy of our proposed symmetry-based numerical
schemes. We observe that moving frames that result in re-
moval of leading-order terms of the truncation error often
result in considerable improvement in accuracy.

To further show the implementation of the proposed
method to multidimensional problems, as our last test case,
we considered the 2D, nonlinear shallow water equations
and developed a fourth-order accurate symmetry-preserving
compact scheme. Numerical simulations are performed over
the domain x, y ∈ [−5×104, 5×104]2 where solutions evolve
from the following Gaussian initial profile:

u(t = 0, x, y) = 0, v(t = 0, x, y) = 0,

h(t = 0, x, y) = A exp

[−(x − μx )2 − (y − μy)2

2σ 2

]
.

For this particular simulation, we assume that walls are
present at boundaries and hence use reflective boundary con-
ditions where the flow in the direction of outward normal

TABLE IX. Root-mean-square error (RMSE) and L∞ error asso-
ciated with numerical solutions for 2D shallow water equations.

Error LF COMP SYM

L∞ 7.0×10−3 6.0×10−3 5.8×10−3

RMSE 1.6×10−3 1.3×10−3 1.2×10−3
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FIG. 13. Shallow water equations in two dimensions. Snapshots of numerical solutions at t = 1 along with spatial distribution of numerical
errors, obtained from a high-resolution numerical solution (HRS), Lax-Friedrich scheme (LF), standard fourth-order accurate compact scheme
(COMP), and proposed invariant scheme (SYM), evolving from a Gaussian initial profile (Initial) are shown. Parameter settings: �x = 0.005,
�t = 0.001, A = 0.2, σ 2 = 0.0005, μx = −0.25, μy = −0.25.

is reflected back into the domain and the flow tangential to
the boundaries remains the same. We compared the results
with a high-resolution numerical solution to evaluate the
performance of the proposed invariant compact numerical
scheme. The snapshots of numerical solutions obtained from
a high-resolution reference solution (HRS), Lax-Friedrichs
scheme (LF), standard fourth-order accurate compact scheme
(COMP), and the proposed invariant scheme (SYM) are given
in Fig. 13. The spatial distribution of numerical errors, mea-
sured as ε = hnumeric − hHRS, associated with these numerical
solutions are also given in this figure. Further, L∞ and RMSE
measures shown in Table IX. Based on these results, it appears
that the symmetry-preserving numerical scheme performs
slightly better than the standard schemes in this case as well.

V. CONCLUSION

Compact finite-difference schemes are preferred over stan-
dard finite-difference schemes as these schemes enable high-
order accuracy on stencils with comparably small number

of grid points and have good, spectral-like resolution. In
this paper, we presented a method, that is based on moving
frames, for construction of invariant compact finite-difference
schemes that preserve Lie symmetry groups of underlying
partial differential equations. In this method, we first de-
termine the extended symmetry groups of PDEs and then
obtain point transformations based on these symmetry groups.
These transformations are then applied to some (noninvari-
ant) base compact finite-difference schemes such that all the
system variables (i.e., independent and dependent variables)
and derivatives of these compact schemes are transformed. We
then determine the unknown symmetry parameters that exist
in these symmetry-based point transformations by considering
convenient moving frames that are obtained through Cartan’s
method of normalization. In most cases, such convenient
moving frames not only result in significant improvement
in numerical accuracy but also notably simplify the numer-
ical representations of the resulting invariant schemes, and
eventually make them easier to program. Performance of the
proposed method was evaluated via construction of high-order
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accurate invariant compact finite-difference schemes (built on
simple three-point stencils) for some linear and nonlinear
PDEs. Based on our evaluations, we concluded that sym-
metry preservation has the potential to significantly improve
numerical accuracy of compact schemes, besides embedding
important geometric properties of underlying PDEs.

As our first test case, we considered the inviscid Burg-
ers’ equation and constructed a high-order accurate invariant
compact finite-difference scheme for this PDE. Although the
order of accuracy of compact schemes can be arbitrarily set
by considering suitable compact finite-difference algorithms,
for this particular problem, we chose fourth-order accurate
compact algorithms to approximate the spatial derivatives and
constructed an invariant scheme based on these algorithms. In
all the test problems, the temporal derivatives were handled
through standard forward differencing. For this particular
PDE, in order to improve the numerical accuracy from first
to second order in time, the base scheme was modified using
defect correction techniques. The results obtained from this
fourth-order accurate invariant compact scheme were found to
be slightly better than the results obtained from the standard
compact scheme and were notably better than those of the
standard FTCS scheme. For all the test cases, the computation
times required to run a simulation with a numerical error
of comparable order were found to be similar for both the
proposed invariant scheme and standard compact scheme, and
the differences were negligible.

As our next test problem, we considered the 1D linear
advection-diffusion equation and developed a fourth-order
accurate invariant compact scheme for this problem as well.
For this particular problem, through the use of convenient
moving frames (i.e., ũ(i,n)

x̃x̃ = 0), the numerical representation
of the base scheme were reduced to a form of the linear
advection equation, ũ(i,n)

t̃ + αũ(i,n)
x̃ = 0, in the transformed

space. Similar to the previous problem, the quality of results
obtained from this invariant compact scheme (in terms of
numerical accuracy) was found to be better than that of the
standard FTCS and compact schemes.

Next we constructed a fourth-order accurate invariant
compact finite-difference scheme for the viscous Burgers’
equation (which is of the form of a linear heat equation,
ũ(i,n)

t̃ = νũ(i,n)
x̃x̃ , in the transformed space for the normalization

condition ũ(i,n)
x̃ = 0) that preserves all the symmetries of the

Burgers’ equation, and compared our results with the stan-
dard schemes. As expected, the proposed invariant compact
scheme developed for this problem yielded more accurate
results than standard schemes in this case as well. In partic-
ular, the performance of the proposed invariant scheme was
significantly better than that of the standard schemes when
a Galilean transformation is applied to these schemes (see
Fig. 7 and Tables IV–V) to test how these schemes are affected
by such transformations that are based on symmetries of the
underlying differential equation. This is due to the fact that the
invariant scheme preserves the Galilean symmetry group of
the viscous Burgers’ equation, whereas the standard schemes
do not.

In order to demonstrate the implementation of the pro-
posed method to a multidimensional problem, we considered
the 2D linear advection-diffusion equation and constructed a

couple of fourth-order accurate invariant compact schemes
for this problem, where different moving frames are used in
the construction of each invariant scheme to evaluate how
this action effects the accuracy of the resulting schemes. For
the first invariant scheme SYM-1, a normalization condition
of the form ũ(i, j,n)

x̃x̃ = 0 is used to determine the projection
group parameter s1, whereas for the other invariant scheme
(SYM-2), this particular parameter was determined using the
normalization condition ũ(i, j,n)

x̃x̃ + ũ(i, j,n)
ỹỹ = 0. Although both

normalization conditions simplify the base compact scheme
considered for this PDE notably, the latter condition reduces
the base scheme to the form of a 2D linear advection equation,
ũ(i, j,n)

t̃ + αũ(i, j,n)
x̃ + βũ(i, j,n)

ỹ = 0, in the transformed space. As
for the results obtained from these invariant schemes, SYM-2
appears to be slightly more accurate than SYM-1 where both
schemes are notably more accurate than standard schemes.
Although for this particular problem, selection of different
moving frames in the construction of invariant schemes did
not affect the accuracy of these schemes significantly, this
may not be the case for other problems as there are usually
infinitely many applicable moving frames, and not all of them
will result in accurate invariant schemes.

In addition, to show the implementation of the proposed
method to other nonlinear problems, we constructed fourth-
order accurate invariant compact schemes for the 1D spherical
Burgers’ equation, 2D viscous Burgers’ equation, and 2D
shallow water equations as well. Similar to the previous prob-
lems, we considered convenient moving frames, which lead to
considerable improvements in accuracy and simplifications in
numerical representation, for these problems as well.

While the proposed method could be effectively used for
construction of invariant compact finite-difference schemes
with desired order of accuracy, there are a few issues that need
to be addressed in more detail. Further research is required
to understand how the performance of invariant compact
schemes (constructed through the proposed method) is af-
fected by the choice of subgroups (considered for preservation
in the difference equation), choice of moving frames among
infinite number of possibilities, and the nature of initial and
boundary conditions and their compatibility with the selected
subgroups. Based on our simulations, we observed that al-
though it is possible to consider the whole symmetry group of
a PDE for preservation in difference equations, this often leads
to cumbersome numerical representations without notably
enhancing numerical accuracy. For instance, in the case of
the viscous Burgers’ equation, the whole symmetry group of
the PDE is preserved in the related difference equation. How-
ever, the advantages owing to the inclusion of the Galilean
subgroup become significant only when the invariant scheme
is actually transformed under a Galilean transformation as
demonstrated in Fig. 7. Further, the choice of moving frames
which are used to determine the unknown group parameters
could affect the accuracy of resulting invariant schemes. To
our knowledge, there is no systematic approach to select the
best moving frame and one must consider all the pros and
cons of a particular moving frame before making a selection.
Based on our observations, we found that a moving frame
that removes the leading-order terms from truncation error
of a difference equation is usually a good choice as such
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a moving frame also simplifies the base scheme (in the
transformed space) and makes it easier to program. Moreover,
the performance of the constructed invariant schemes might
be affected by the chosen initial and boundary conditions,
especially if these conditions are not compatible with the
chosen subgroups. This might be due to the fact that some of
the limitations of base difference equations carry over to the
constructed invariant schemes. For instance, for cases where
discontinuities develop in solutions, the performance of the

constructed invariant schemes will undoubtedly depend on
the chosen base numerical schemes. This obstacle could be
avoided by selecting base schemes that are better suited to
handle such discontinuities.
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