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An anomaly is said to occur when a symmetry that is valid classically becomes broken as a result
of quantization. Although most manifestations of this phenomenon are in the context of quantum
field theory, there are at least two cases in quantum mechanics—the two-dimensional delta function
interaction and the 1/r 2 potential. The former has been treated in this journal; in this article we
discuss the physics of the latter together with experimental consequences. ©2002 American

Association of Physics Teachers.
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I. INTRODUCTION

The use of symmetry to enhance our understanding of
physical systems is well known. An important manifestation
of this simplification is No¨ther’s theorem, which guarantees
the correspondence between symmetries and conservation
laws.1 Examples of the consequences of this theorem include

~a! translation invariance↔ momentum conservation,
~b! time translation invariance↔ energy conservation,
~c! rotational invariance↔ angular momentum conserva-

tion.

These particular symmetries and conservation laws are ex-
act. Far more common are cases for which the invariance is
only approximate and is broken in some fashion. Neverthe-
less, the symmetry still represents a useful way of analyzing
the system, and it is important to understand the mechanisms
by which this symmetry breaking can take place. Despite the
many physical situations involving symmetry violation, there
exist just three mechanisms by which this violation can take
place.

~i! Explicit symmetry breaking, wherein the breaking oc-
curs explicitly in the Lagrangian. Familiar examples include
particle physics, where the heavier mass of the strange quark
compared to its up, down counterparts violates the underly-
ing SU~3! invariance;2 nuclear physics, where the up–down
quark mass difference together with electromagnetic effects
are responsible for small deviations from isotopic spin
invariance;3 gravitational physics, where general relativity
together with small perturbations from the outer planets lead
to deviations from the underlying O~4! invariance associated
with a pure 1/r interaction and hence to the precession of
Mercury’s perihelion.4

~ii ! Spontaneous~or hidden! symmetry breaking, wherein
the Lagrangian remains invariant, but the symmetry is not
present in the ground state. Familiar examples include con-
densed matter physics, where the spontaneous violation of
rotational invariance by the creation of spin-correlated do-
mains in materials such as iron leads to the phenomenon of
ferromagnetism,5 and the spontaneous violation of local
gauge invariance by the condensation of spin- and
momentum-correlated electron pairs in low temperature sys-
tems leads to superconductivity;6 classical physics, where~as

first studied by Jacobi! the rapid rotation of a gravitationally
bound sphere leads to a lowest energy state not possessing
the expected axial invariance.7

~iii ! Anomalous ~or quantum mechanical! symmetry
breaking, wherein the symmetry is present at the classical
level, but is broken by quantization.8 Examples include el-
ementary particle physics, where the two photon decay of the
neutral pion verifies the anomalous breaking of axial SU~2!
invariance,9 and in elementary particle physics, where the
so-called trace anomaly leads to a substantial component of
the nucleon mass being due to its gluon substructure.9

Although these manifestations of explicit and spontaneous
symmetry breaking are textbook examples and are well
known and available to most physicists, the realization of
anomalous symmetry breaking is generally presented only
within the context of quantum field theory and is subse-
quently somewhat inaccessible to all but the experts. Yet this
inaccessibility need not be the case. Indeed in previous con-
tributions to this journal, it has been shown that the anomaly
is manifested in ordinary quantum mechanics in two spatial
dimensions with a delta function interaction.10 However, this
example is not realized in nature. In this note we point out
that an additional example of anomalous symmetry breaking
occurs in the real world of three spatial dimensions in the
presence of a 1/r 2 potential and that the resultant predictions
have been experimentally verified in atomic physics. The
discussion is at the level appropriate for a graduate quantum
mechanics course.

After a brief review of the previously mentioned two-
dimensional delta function potential, we show in Sec. II how
the 1/r 2 interaction can be analyzed using either cutoff regu-
larization in both the bound state and scattering regimes. In
Sec. III we demonstrate how this situation can be realized
experimentally and discuss the confrontation of theory with
recent experiments. Our results are summarized in Sec. IV.

II. ANOMALIES IN QUANTUM MECHANICS

To understand how an anomaly is realized in quantum
mechanics, we first review the partial wave formalism, in
which the solution to the time-independent Schro¨dinger
equation is expanded in Legendre polynomials,
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c~r!5(
l

al Pl~cosu!
1

r
Rl~r ! . ~1!

The radial functionsRl(r ) obey the differential equation
~henceforth we employ\5c51)

F2
1

2m

d2

dr2 1
l ~ l 11!

2mr2 1V~r !GRl~r !5ERl~r !. ~2!

A. Free particle

For a free particle,V(r )50 andE[k2/2m, and we have
the plane wave solution

c~r!5exp~ ikz!5(
l

~2l 11!i l j l~kr !Pl~cosu!, ~3!

that is, al5 i l(2l 11)/k, Rl(r )5kr j l(kr) in the notation of
Eq. ~1!. By using the asymptotic behavior

j l~kr ! →
r→` 1

kr
sinS kr2 l

p

2 D , ~4!

we can write Eq.~3! in the form

exp~ ikz! →
r→` 1

2ikr (
l

~2l 11!Pl~cosu!~eikr2e2 i (kr2 lp)!.

~5!

Equation~5! is a linear combination of incoming,e2 ikr , and
outgoing, eikr , spherical waves with a phase shiftlp be-
tween them in the channel having angular momentuml , due
to the centrifugal potential term,l ( l 11)/2mr2 in Eq. ~2!.
The existence of thisenergy-independentphase between in-
coming and outgoing spherical wave components can be un-
derstood from the invariance of Eq.~2! under the scale trans-
formation r→mr , k→k/m, which requires that the solution
be a function of the productkr, which is scale invariant.11

This condition is obviously satisfied by the spherical Bessel
functions j l(kr), and would be violated by the existence of
an energy-dependent phase.

In the presence of a potential, the asymptotic form of the
scattering solutions to the Schro¨dinger equation becomes

c (1)~r! →
r→` 1

2ikr (
l

~2l 11!

3Pl~cosu!@ei (kr12d l (k))2e2 i (kr2 lp)#

5eikz1
eikr

r
f ~u!, ~6!

where

f ~u!5(
l

~2l 11!
ei2d l (k)21

2ik
Pl~cosu! ~7!

is the scattering amplitude, andd l(k) is the scattering phase
shift introduced by the potential. Because the presence of the
potential breaks the scale invariance, the appearance of an
energy-dependent phase is permitted.

B. d2
„r… potential

Now consider what happens in two spatial dimensions, for
which the asymptotic form of the scattering solution is12

c (1)~r! →
r→`

eikx1
ei (kr1 p/4)

Ar
f ~u! ~8!

with

f ~u!52 i (
n52`

`
ei2dn(k)21

A2pk
einu . ~9!

In this case if we include the potential energy

V~r!5ld2~r!, ~10!

the scale invariance is maintained—indeed, at the classical
level, there is no scattering because no particles are de-
flected. However, the absence of scattering no longer holds
once the theory is quantized. Actually this anomalous behav-
ior should be expected because of the wave-like nature of the
particles—an incident beam even with zero impact parameter
can sense the presence of the potential spike atr50. Of
course, this scattering will occur only in then50 channel,
because wave functions withnÞ0 must vanish at the origin.

To see how the scattering arises, we examine a scattering
solution. In momentum space the Schro¨dinger equation be-
comes

1

2m
~p22k2!f (1)~p!52lc (1)~r50!, ~11!

where

f (1)~p!5E d2re2 i r"pc (1)~r! ~12!

is the Fourier transform of the scattering wave function. The
solution to Eq.~11! is

f (1)~p!5~2p!2d2~p2k!2
2mlc (1)~r50!

p22k22 i e
. ~13!

For consistency, we require

c (1)~r50!5E d2p

~2p!2 f (1)~p!

5122mlc (1)~r50!
1

4p
log2

L2

k2 , ~14!

where we have regulated the otherwise divergent momentum
space integration by introducing a cutoff parameterL. Then

c (1)~r50!5
1

11~lm/2p!~ logL2/k21 ip!
. ~15!

We can obtain the scattering amplitude by taking the inverse
Fourier transform and find

c (1)~r!5eikx22ml c (1)~r50!
i

4
H0

(1)~kr !, ~16!

where

i

4
H0

(1)~kr !5E d2p

~2p!2 eip"r
1

p22k22 i e

→
r→` 1

2A2pkr
ei (kr1p/4) ~17!
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is the two-dimensional Green’s function. If we compare Eq.
~16! with the asymptotic form Eq.~8!, we identify the scat-
tering amplitude as

f ~u!52
1

A2pk

1

1

ml
1

1

2p
log~L2/k2!1 i /2

. ~18!

To eliminate the dependence on the cutoff, we note that the
scattering amplitude has a pole at

Ebs52
L2

2m
e2p/lm, ~19!

indicating the presence of a~single! bound state. Using this
binding energy as a parameter, we can rewrite Eq.~18! as

f ~u!5A 2

pk

p

logS k2

22mEbs
D2 ip

, ~20!

which is now expressed only in terms of experimental quan-
tities. Equivalently, we can characterize the scattering ampli-
tude in terms of a phase shift

dn~k!5dn,0 cot21S 1

p D logS k2

22mEbs
D , ~21!

or in terms of the differential scattering cross section

ds

dV
5

2

pk

1

11p22log2S k2

22mEbs
D . ~22!

The existence of this energy-dependent phase in then50
channel or of the fixed energy bound state is clear evidence
of anomalous symmetry breaking.

The manifestation of anomalous symmetry breaking in
quantum mechanics for the two-dimensional delta function
interaction has been explored previously10 and was reviewed
to set the context for our primary topic—the 1/r 2 potential.
As we shall see, there is an anomaly in this case also, and
although there are similarities to thed2(r) case, there are
also important differences, one of which is the fact that there
are experimental consequences.

C. 1Õr 2 potential

Consider the potential

V~r !5
l

r 2 ~23!

in three spatial dimensions. We define the partial wave am-
plitude Rl(r )[ul(r )/r and find

F2
d2

dr2 1
l ~ l 11!12ml

r 2 2k2GRl~r !50, ~24!

so that invariance under the scale transformationr→mr ,
k→k/m again holds. It is clear that the solutions to Eq.~24!
can be written in terms of Bessel functions

ul~r !;AkrJr11/2~kr !, AkrNr11/2~kr !, ~25!

where we have defined

r~r11![ l ~ l 11!12ml. ~26!

Becauser is defined via a quadratic equation, it is apparent
that the character of the solutions must change when the
discriminant

Dl5~ l 1 1
2!

212ml ~27!

becomes negative. For repulsive interactions,l.0, there is
nothing unusual. In general, the orders of the Bessel func-
tions become irrational, but the problem can be solved as
usual. Because the wave function must be regular at the ori-
gin, we must have

ul~r !/r}
1

Akr
Jr11/2~kr ! →

r→` 1

kr
sinS kr2r

p

2 D , ~28!

and the scattering phase shift can be read off as

d l5S l 1
1

2
2AS l 1

1

2D 2

12ml D p

2
. ~29!

Becaused l is independent ofk, this result is consistent with
the expected scale invariance.

Now consider the case of an attractive potential,l,0. As
long as the discriminant is positive, things go through as
before. However, onceDl,0, the potential has overcome the
centrifugal barrier, and the orderr of the Bessel function
becomes imaginary.13 First consider the case of a bound
state, in which case the boundary condition asr→` de-
mands that the solution be constructed in terms of the Bessel
function KiJ l

(mr ), where we have definedADl[ iJ l and
the binding energy as

Ebs[2
m2

2m
. ~30!

The asymptotic behavior is then

ul~r !}AmrK iJ l
~mr ! →

r→`Ap

2
e2mr . ~31!

The allowed values ofm ~and thereby of the binding energy!
are determined by the boundary condition that the wave
function vanishes at the origin. From the behavior

KiJ l
~mr ! →

r→0

2A p

J l sinh~pJ l !
sinFJ l logS mr

2 D
2arg@G~11 iJ l !#G , ~32!

where arg indicates the phase of the following complex num-
ber, we see that the wave function goes through infinitely
many zeroes asr→0. As a consequence, the spectrum be-
comes continuous and unbounded from below, implying that,
despite its appearance, the Hamiltonian is not self-adjoint.
Similarly, the phase shift of the scattering wave function as
r→0 is undetermined.

One mathematically attractive solution to these problems
is to define a so-called self-adjoint extension of the Hamil-
tonian by specifying a particular boundary condition atr
50.12 For example, each member of the continuum of self-
adjoint extensions of this Hamiltonian can be characterized
by the~energy-independent! scattering phase shift asr→0.14

We briefly discuss self-adjoint extensions in the applications
of the 1/r 2 potential, but this regularization method does not
directly illustrate anomalous symmetry breaking.

515 515Am. J. Phys., Vol. 70, No. 5, May 2002 S. A. Coon and B. R. Holstein



We instead opt for an alternative route and introduce a
short distance cutoffa and demand that the wave function
vanish at this point,ul(r 5a)50, and that the physics be
independent of the choice of cutoff parameter.13 This pre-
scription yields the points

mna52 expS arg@G~11 iJ l !#2np

J l
D . ~33!

In order that mna→0, we require J l!1 and, because
arg@G(11 iJ l)#52gJ l1O(J l)

2, the energy becomes

En,l52
1

2m S 2e2g

a D 2

e22pn/J l. ~34!

In order that the ground state (n51, l 50) energy remains
finite and well-defined asa→0, we requireJgs5Jgs(a)
→01, which demands the scaling behavior

2p

Jgs~a!
522 logS ma

2 D22g. ~35!

This relation does not predict the value ofm, but rather de-
fines the scaling ofJgs(a) asa→0 in terms of theexperi-
mental value of m5A2mEgs. The corresponding ground
state wave function is

Cgs~r !5
m

A2pr
K0~mr ! . ~36!

The very existence of a bound state implies the presence of
an energy scale and the breaking of scale invariance as a
result of quantization, just as in the case of the two-
dimensional delta function—a quantum mechanical example
of an anomaly!

Another similarity with the two-dimensional delta func-
tion potential is that there is but a single bound state. This
similarity can be seen from the fact that becauseJgs→01

andDl.D0 , the discriminant in any but thes-wave channel
must be positive so that no anomaly~and no bound state! can
occur. Similarly in thel 50 case but withn.1, we see from
Eq. ~34! that such states cannot have nonzero binding ener-
gies, because

En,0

E1,0
5e22p(n21)/Jgs →

Jgs→01

0. ~37!

We summarize this discussion with the observation that from
Eq. ~27! and the following, there exists a critical value of the
coupling constant, 2ml52 1

4, below which there exists a
single bound state and above which there are no bound
states.

We can also consider scattering in the presence of an
anomaly. In this case the solutions of the partial wave equa-
tion must be linear combinations ofHr

(1)(kr) andHr
(2)(kr):

ul~r !/Ar 5A1Hr
(1)~kr !1A2Hr

(2)~kr !. ~38!

From the asymptotic dependence

ul~r !/Ar →
r→`A 2

pkr
~A1ei (kr2~1/2!rp2p/4)

1A2e2 i (kr2~1/2!rp2p/4)!, ~39!

then for thes-wave channel in whichJ0→01, we identify
the scattering phase shift via

A1

A2
5ei (2d02p/2). ~40!

On the other hand, for small values ofr, we find

u0~r !/Ar 5A1~JiJ0
~kr !1 iNiJ0

~kr !!

1A2~JiJ0
~kr !2 iNiJ0

~kr !!

→
r→0

A1S ~ 1
2kr ! iJ0

G~11 iJ0! S 11
coshpJ0

sinhpJ0
D

2
1

sinhpJ0

~ 1
2kr !2 iJ0

G~12 iJ0!
D

1A2S ~ 1
2kr ! iJ0

G~11 iJ0! S 12
coshpJ0

sinhpJ0
D

1
1

sinhpJ0

~ 1
2kr !2 iJ0

G~12 iJ0!
D . ~41!

The requirement thatu0(r 5a)50 yields

A1

A2
5

eis~11 i j!e2pJ02e2 is~12 i j!

eis~11 i j!epJ02e2 is~12 i j!

5
j1tans1 i tanh1

2pJ0~12j tans!

j1tans2 i tanh1
2pJ0~12j tans!

, ~42!

where we have defined

i j5
G~12 iJ0!2G~11 iJ0!

G~12 iJ0!1G~11 iJ0!
,

~43!
eis5~ 1

2 ka! iJ05exp~ iJ0 log 1
2 ka!.

If we compare Eq.~43! with Eq. ~40!, we can identify

d0~k!2
p

4
5tan21

tanh1
2pJ0~12j tans!

j1tans
. ~44!

In the limit thatJ0→01, we then have

tanS d0~k!2
p

4 D'
1

2
pJ0

12gJ0 log 1
2ka

gJ01tanJ0 log 1
2ka

. ~45!

Using the scaling behavior

J0~a!5
2p

log 1
2ma

1g, ~46!

we find that

tanS d0~k!2
p

4 D5
12cotd0~k!

11cotd0~k!
'

p

logk2/m2
, ~47!

which yields the partial wave amplitude

ka0~k!5
1

cotd0~k!2 i
5

1

S log
k2

m2 2p

log
k2

m2 1p
D 2 i

. ~48!
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As a check we verify that that Eq.~48! has a pole at the
bound state energyk252mEbs522mm2.

Because

J l5A~ l 1 1
2!

222mulu.J05A1
4 22mulu→0, ~49!

we see that there is no anomaly in the non-s-wave states so
that the scattering phase shift is given by its nonanomalous
value given in Eq.~29!. The form of the scattering amplitude
is

f ~u!5
1

k (
l 51

`

~2l 11!i l exp~ id l sind l !Pl~cosu!

1
1

k

1

S log
k2

m2 2pY log
k2

m2 1p D 2 i
, ~50!

whered l is given by Eq.~29!.

D. An aside

Before proceeding to applications of this formalism, it is
interesting~but unrelated to considerations of the anomaly!
that there is another curious feature of the 1/r 2 interaction, as
previously pointed out by Kayser.15 If one solves for the
classical scattering angle for motion in the presence of such a
potential, the result is

ucl5pS 12
L

AL212ml
D , ~51!

whereL is the angular momentum. Taking the interaction to
be repulsive (l.0) and solving for the cross section, we
find

dscl

dV
5

1

p2

L

sinu UdL

duU5 l

2pE

12x

x2~22x!2 sinpx
, ~52!

wherep5A2mE is the incoming momentum, and we have
definedx5u/p. Thus the cross section islinear in the cou-
pling constant, in apparent violation of the simple Born ap-
proximation result when the potential becomes weak. In Ref.
15 it is shown that the same cross section results from a
quantum mechanical evaluation. The resolution of the appar-
ent paradox lies in the fact that the classical scattering con-
dition in Eq. ~51! can be satisfied only when 2ml@1. This
condition can be seen from the resultLu@1 which implies
that

2ml@
1

p2

22x

x~12x!2 . ~53!

Thus the classical result corresponds to the strong coupling
regime, where the Born approximation is not appropriate.

III. APPLICATIONS

A remarkable feature of the above analysis of the 1/r 2

potential is that this interaction is realized in nature. As has
recently been emphasized, one such application is to that of a
charge interacting with a point dipole.16 Because the poten-
tial outside an electric dipolep is given by

f~r!5
p"r

4pr 3
, ~54!

the potential energy for a chargee in the vicinity is given by

V~r!5
ep"r

4pr 3
5

s cosu

r 2 , ~55!

which has the desired 1/r 2 dependence. Point dipoles are not
physical, but a good approximation is provided by a polar
molecule such as water and the point charge can be taken to
be a nearby electron. To analyze this system by means of the
formalism developed in Sec. II, we write the bound state
solution as in Ref. 16:

c~r!5
1

r
u~r !Q~u!. ~56!

Then the equations determining the radial and angular de-
pendence are given by

S 2
1

2m

d2

dr2 1
g

2mr2Du~r !5Eu~r !, ~57!

~ L̂212ms cosu!Q~u!5gQ~u! , ~58!

and the separation constantg is related to the actual coupling
s of the point-dipole potential by Eq.~58!. If we use the
normalized Legendre polynomials

A~2l 11!

2
Pl~cosu!, ~59!

as a basis, Eq.~58b! can be written as a matrix equation

Mll 8Q l 850, ~60!

with

Mll 85d l l 8( l ~ l 11!2g)12msF l

A~2l 21!~2l 11!
d l 21,l 8

1
l 11

A~2l 11!~2l 13!
d l 11,l 8G . ~61!

Equation~61! is an eigenvalue equation, for which the exis-
tence of a solution requires that

detMll 85detU 2g
2ms

A3
0 . . .

2ms

A3
22g

4ms

A15
. . .

0
4ms

A15
. . .

. . . . . . . . . . . .

U50. ~62!

Equation~62! can be easily solved numerically by succes-
sively evaluating then3n determinant, which converges ex-
tremely rapidly:
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n52: ~2ms!2523g~22g!,
~63!

n53: ~2ms!2523g~22g!S 1

12
4g

5~62g!
D .

From our study of the 1/r 2 potential in Sec. II C, we know
that there exists a critical value of the coupling constant,
2ml52 1

4, below which there exists a bound state and
above which there does not. Hence from Eq.~62!, we ob-
serve that there must exist a critical value of the dipole mo-
ments* , defined via

detMll 8~g52 1
4,2ms* !50, ~64!

such that a bound electron-polar molecule state, an anion,
can ~cannot! exist for values of the dipole moment larger
~smaller! than this critical value. From Eq.~63!, we find
2ms* 51.279 . . . , that is,

p* 5
4p

e
s* 50.640ea0 , ~65!

wherea051/ma is the Bohr radius.
This prediction can be checked experimentally, and studies

have been conducted attempting to measure the binding en-
ergies of anion systems.17 It has indeed been found that a
minimum dipole moment exists, as shown in Fig. 1; there
does seem to exist a minimum dipole momentpexp*
.0.86ea0 , as would be expected from the above consider-
ations. Note that there is a bit of a subtlety here in that a real
molecule isnot a point dipole. Rather the potential for a
finite dipole can be written as

V~r!5
qe

4p S 1

R1
2

1

R2
D5

epcosu

4pr 2 1Ubr~r!, ~66!

which is the superposition of a pure point dipole interaction
with a scale symmetry-breaking interactionUbr(r). Because
experimentally such an explicitly symmetry breaking term
cannot be eliminated, the observed critical moment is due to
a combination of the anomalous and explicit symmetry

breaking effects. It is clear that the presence of explicit
breaking does not affect the existence of a critical moment,
as expected from the quantum mechanical anomaly. How-
ever, the size ofp* is affected, as can be seen from the
comparison of experimental and theoretical sizes of the criti-
cal moment. This difference is perhaps not surprising, be-
cause in QCD, the combination of explicit and anomalous
symmetry breaking results in a value for thep0→gg decay
rate very near that predicted by the anomaly.9

It is interesting that a second application of the 1/r 2 po-
tential has recently been discussed. In this case it involves
the interpretation of an experiment involving the interaction
of a neutral but polarizable atom with a charged wire.18 Be-
cause the electric field generated by the wire falls off linearly
with distance, the induced electric dipole moment has the
form

p54paEE}
aE

r
, ~67!

where aE is the electric polarizability. The corresponding
interaction potential is

U~r !52
1

2
p"E}2

aE

r 2 , ~68!

and falls off as 1/r 2. The issue here is not the experimental
appearance of a critical value of the coupling constant be-
cause the attractive 1/r 2 potential is always critical in this
cylindrical two-dimensionalproblem,13 no matter what the
strength of the electric field produced by the charged wire.
The intriguing aspect of this experiment is that the atoms are
observed to disappear from the system with an absorption
cross section which can be fitted by a classical argument.18

An analogous treatment of the two-dimensional 1/r 2 poten-
tial, regularized and renormalized as done here, would have
only bound state and elastic scattering solutions, and no ab-
sorption. Bawin and Coon utilized a method suggested by
Radin19 to sum over the infinite number of elastic scattering
solutions of the self-adjoint extensions of the 1/r 2 interaction
to obtain a quantum mechanical expression that displayed
absorption.20 As the parameters of this initial experiment cor-
responded to the classical limit established by Kayser,15 the
classical limit of their quantum mechanical treatment recov-
ered the experimental situation. However, further discussion
is beyond the scope of this paper.

IV. CONCLUSIONS

The phenomenon of symmetry breaking is universal in
physics, but although explicit and spontaneous violations are
well known and are generally treated in introductory courses,
the same cannot be said of quantum mechanical or anoma-
lous symmetry breaking, where a symmetry is valid at the
classical level but is violated due to quantization of the
theory. This omission is presumably due to the fact that most
familiar manifestations of the anomaly, for example, the two-
photon decay of the neutral pion, occur in the context of
quantum field theory and belong in the realm of elementary
particle physics. However, this need not be the case. We have
argued here that one can present this subject within the realm
of ordinary quantum mechanics by studying the violation of
scale symmetry,r→mr , k→k/m. In earlier papers in this
journal, the case of a two-dimensional delta function was
examined.10 However, this case is purely an intellectual ex-

Fig. 1. Shown are data reported in Ref. 17 on experimental anion binding
energies. Note that there seems to exist a limiting valuepcrit.2D, where
D51 debye[1310218 esu cm. Becauseea0.2.4 D, we have pcrit

.0.86ea0 .
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ercise and has no experimental consequences. In this paper,
we have examined the 1/r 2 potential, which is anomalous
and whichdoeshave experimental ramifications in the exis-
tence of a critical dipole moment allowing the binding of
anions in atomic physics17 and in the recent study of the
interaction of a polarizable atom with a charged wire.18

Finally, it has long been known that the main features of
the quantum mechanical three-body bound state and some
striking aspects of nuclear three-body scattering are due to an
effective 1/r 2 potential, built from the relative distances be-
tween the particles, including mass factors where
appropriate.21 This effective potential is displayed most
clearly in recent effective field theory discussions of three-
body systems, where it also exhibits scale invariance
violation,22 but this discussion is clearly beyond the level of
our paper. In any case we believe that the above discussion is
at a level that is appropriate in an advanced quantum me-
chanics course, and it is hoped that this paper will encourage
the introduction of this fascinating topic into such a venue.
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