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Results from Chapter 4 - Classical Dynamics

Equation of motion

Break into an autonomous system

Corresponding first order PDE
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Characteristic equation

Integrate

is called the Hamiltonian

Energy is conserved. 
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Dynamical systems that conserve energy follow a path in 
phase space that corresponds to an extremum in a certain 
integral of the coordinates and velocities called the 
action integral.

There is a very general approach to problems of this 
type called Lagrangian dynamics.

Usually the extremum is a minimum and this theory is 
often called the principle of least action.

The kernel of the integral is called the Lagrangian. 
Typically,

L = T −V
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Apply a small variation in the coodinates and velocities.

Consider
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At an extremum in S the first variation vanishes.

Using

Integrate by parts.

At the end points the variation is zero and in between 
the variation is arbitrary.
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The Lagrangian satisfies the Euler-Lagrange 
equations.

Spring mass system

The Euler-Lagrange equations generate
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The two body problem
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±
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!x = e2ax
!y = e2ay
!z = e2az
!t = e3at
!m = m

Dilation 
group
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H = 1

2
m !r2 + r !θ( )2( )− γ

r
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Group
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15.1.1 Transformation of Integrals
Let the Lagrangian of a differential function be

We want to establish the conditions under which the action integral

is invariant under the extended group

where for any order p
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15.1.2 Transformation of the differential volume

Now the transformation of the differential volume becomes

Retain only terms of order s.
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Expand the Lagrangian in a Lie series.

Where the group operator is.

The action integral becomes
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15.1.3  Invariance condition for integrals

The integral is invariant if and only if

A slightly more general condition is

O(s2)

where
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It is convenient to recast the problem in terms of the characteristic function

The infinitesimals of the extended transformation become
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Now

or
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Introduce the Euler operator
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Integrate by parts

where
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Finally the transformation of the action integral becomes
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Noether's theorem

26



27



γ = Gm1m2
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Γ j = Lξ j + η i − yα
i ξα( ) ∂L∂yji

Conserved vector in y[x] notation

Multi-parameter group

In this problem yi → xi

x→ t
One independent and three 

dependent variables

Γ = Lξ + η i − xt
iξ( ) ∂L∂xti 29



Conservation law connected to
invariance under time translation

ξ1 = 1      η1 = 0      η2 = 0      η3 = 0

X1 = ∂
∂t

Γ = Lξ + η i − xt
iξ( ) ∂L∂xti = L + −xt

i( ) ∂L∂xti

Γ→ −E The energy is a conserved “vector”
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Conservation law connected to
invariance under rotation

Γ = Lξ + η i − xt
iξ( ) ∂L∂xti =η

i ∂L
∂xt

i

yi → xi

x→ t

Γ→ M i

32
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𝜂$ = 𝑥!



Conservation law connected to
invariance under rotation

Γ = Lξ + η i − xt
iξ( ) ∂L∂xti =η

i ∂L
∂xt

i

yi → xi

x→ t

Γ→ M i
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𝐷𝑀!

𝐷𝑡
= 0Check

𝐷𝑀"
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Is there a conservation law connected to
invariance under dilation?

Γ = Lξ + η i − xt
iξ( ) ∂L∂xti =

3
2
tL + x1 − 3

2
txt
1⎛
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2
m xt
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⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
+
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2
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2
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3⎛

⎝⎜
⎞
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4
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2( )2 + xt
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∂x2
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+ 3
2
t ∂
∂t

Γ→ R

15.52( )

R = − 3
2
Et + P ⋅ x 15.53( )

Is this a constant of the motion? 35



Take the divergence of R

R = − 3
2
Et + P ⋅ x = − 3

2
Et +m xixt

i( )
 

DR
Dt

= − 3
2
E +m xt

i( )2
+m xixtt

i( ) = − 3
2
E +m xt

i( )2
+ xi −γ x

i
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⎛
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⎞
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− 3
2
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2
1
2
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r
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1
2

1
2
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r
⎛
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⎞
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1
2
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2
E ≠ 0

Since DR/Dt is not zero, R is not a conserved “vector”.

The dilation group X5 is not a variational symmetry of the 
Kepler system 36
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A = p × L − mkr̂

The Laplace vector 

A =Q = p × L −mkr̂ = u ×M −γ x
r

γ = Gm1m2

m = m1m2

m1 +m2

k = G m1 +m2( )
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Problem 15.3



Problem 15.3
L = 1

2
m xt

1( )2 + xt
2( )2 + xt

3( )2( ) + γ

x1( )2 + x2( )2 + x3( )2( )
mxtt

i + 2γ xi

r4
= 0

Dilation group  !xi = eaxi      !t = ebt

 
m!xtt

i + 2γ
!xi

!r 4
= ea−2bmxtt

i + e−3a2γ xi

r4
= 0⇒ b = 2a

 

!xi = eaxi      !t = e2at

η i = xi         ξ = 2t
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Γ = 𝐿𝜉 + 𝜂" − 𝑥#"𝜉
𝜕𝐿
𝜕𝑥#"

= −2𝑡𝐸 + 4𝑃 6 �̅�

L = 1
2
m xt

1( )2 + xt
2( )2 + xt

3( )2( ) + γ

x1( )2 + x2( )2 + x3( )2( )

 

!xi = eaxi      !t = e2at

η i = xi         ξ = 2t

Is there a conservation law connected to invariance 
under dilation for the potential  𝑉 = −𝛾/𝑟$ ?

𝑋 = 𝑥"
𝜕
𝜕𝑥" + 𝑥

! 𝜕
𝜕𝑥! + 𝑥

$ 𝜕
𝜕𝑥$ + 2𝑡

𝜕
𝜕𝑥

R = −2𝑡𝐸 + 4𝑃 6 �̅�Γ→ R

Show



r2 = r0
2 + 2R

m
t + 2E

m
t 2

Γ = mr2 dθ
dt

dθ
dt

= Γ

m r0
2 + 2R

m
t + 2E

m
t 2⎛

⎝⎜
⎞
⎠⎟

Problem 15.3 constants of the motion

E = 1
2
mv2 − γ

r2

R = −2tE + P ⋅ x = −2tE + m
2
dr2

dt

Γ = mr2 dθ
dt

45

Solve

Depending on the sign 
of E the mass spirals 
inward or outward.



Problem 15.3

If
dr2

dt t=0

= 0 then R=0 If
dr2

dt t=0

= 0 and E=0

1
2
mv2 = γ

r2

R = 0
dr2

dt
= 0

r2 = r0
2 = const

Γ = mr0
2 dθ
dt

dθ
dt

= Γ
mr0

2 = const

Γ = mr0
2 dθ
dt t=0

The mass follows a 
metastable circular orbit
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m
t

r2 = r0
2 + 2E

m
t 2
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= Γ
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m
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m
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Hammer impact at point 1
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Hammer impact at point 2
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In dimensioned form the equation is

Take the origin of coordinates at the center of the rod. Even solutions are of the form

and odd solutions are

Solutions

∂2 y
∂τ 2

+ EI
ρA

⎛
⎝⎜

⎞
⎠⎟
∂4 y
∂χ 4 = 0

where
I  - Moment of inertia about the neutral axis of bending
A - Area of the cross section of the beam

y χ,τ[ ] = eiωτ ACosh kχ[ ]+ BCos kχ[ ]( )

y χ,τ[ ] = eiωτ CSinh kχ[ ]+ DSin kχ[ ]( )
50

[𝐼] = 𝐿7

[𝐸] = 𝑀/𝐿𝑇8E – Young's modulus
𝜌 – material density



thus

and the wave speed is

The waves are highly dispersive with short wavelengths traveling much faster than long waves.

c = ω
k
= EI

ρA
⎛
⎝⎜

⎞
⎠⎟

1/2

k

−ω 2 + EI
ρA

k 4
⎛
⎝⎜

⎞
⎠⎟
y χ,t[ ] = 0

ω 2 = EI
ρA

k 4
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The frequency and wave number cannot be selected independently. They are related by



Nondimensionalize using the characteristic wave number and frequency

In dimensionless variables the equation becomes

where

k0 =
1
I

⎛
⎝⎜

⎞
⎠⎟
1/4

ω 0 =
E
ρA

⎛
⎝⎜

⎞
⎠⎟

1/2

x = k0χ             t =ω 0τ

ytt + yxxxx = 0
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We wish to solve

Combine invariance under translation in time and invariance 
under dilation of the dependent variable

To form the group operator

With characteristic equations

Solution by separation of variables

ytt + yxxxx = 0

Xa = ∂
∂t

Xb = y ∂
∂y

X = 1
λ
Xa + Xb = 1

λ
∂
∂t

+ y ∂
∂y

dx
0

= λdt = dy
y

and invariants
ψ 1 = x ψ 2 = y / eλt

We can expect a solution of the form

y = eλtG x[ ] 53



The solution is of the form

We are seeking time-periodic solutions of the equation. Let

The fourth order ODE

has the general solution

G(x) = Aeω
1/2x + Be−ω

1/2x +CSin ω 1/2x( ) + DCos ω 1/2x( )

λ = iω

y x,t[ ] = eiωtG x[ ]

ytt + yxxxx = e
iωt Gxxxx −ω

2G( )

Gxxxx −ω
2G = 0

Substitute
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Even and odd solutions are

where

Superposition of solutions for various frequencies and associated 
wave numbers can be used to match the boundary conditions for a 
given problem. 

y x,t[ ] = eiωt ACosh kx[ ]+ BCos kx[ ]( )
y x,t[ ] = eiωt CSinh kx[ ]+ DSin kx[ ]( )

ω 2 = k 4

55



The equation governing flexural waves in a beam is

Substitute the Lagrangian into the Euler-Lagrange equations

Solutions of this equation minimize the action integral

ie, solutions minimize the volume integral of the difference between kinetic 
and potential energy. The equation can be generated from the Lagrangian

The result is

The Lagrangian

ytt + yxxxx = 0

S = − 1
2
yt
2 + 1
2
yxx
2⎛

⎝⎜
⎞
⎠⎟∫ dtdx

L = − 1
2
yt
2 + 1
2
yxx
2

∂L
∂y

− Dt
∂L
∂yt

⎛
⎝⎜

⎞
⎠⎟
− Dx

∂L
∂yx

⎛
⎝⎜

⎞
⎠⎟
+ Dtt

∂L
∂ytt

⎛
⎝⎜

⎞
⎠⎟
+ Dtx

∂L
∂ytx

⎛
⎝⎜

⎞
⎠⎟
+ Dxx

∂L
∂yxx

⎛
⎝⎜

⎞
⎠⎟
= 0

−Dt
∂L
∂yt

⎛
⎝⎜

⎞
⎠⎟
+ Dxx

∂L
∂yxx

⎛
⎝⎜

⎞
⎠⎟
= 0

−Dt −yt( ) + Dxx yxx( ) = 0
ytt + yxxxx = 0 56



The equation is invariant under a four parameter group of translations and dilations 
plus the infinite-dimensional  group corresponding to linear superposition of solutions.

Symmetries

X1 = ∂
∂t

      X2 = ∂
∂x

       X3 = t ∂
∂t

+ x
2

∂
∂x

      X4 = y ∂
∂y

      X5 = φ t, x[ ] ∂
∂y

where φ t, x[ ] is a solution of

φtt +φxxxx = 0
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The relations used to generate components of the conserved vectors 
corresponding to variational symmetries of this equation are:

where the characteristic function is

Conservation laws from symmetries

θ t = µ ∂L
∂yt

− Dt
∂L
∂ytt

⎛
⎝⎜

⎞
⎠⎟
− Dx

∂L
∂ytx

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
+ Dtµ

∂L
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⎛
⎝⎜

⎞
⎠⎟
+ Dxµ

∂L
∂ytx

⎛
⎝⎜

⎞
⎠⎟

θ x = µ ∂L
∂yx

− Dt
∂L
∂yxt

⎛
⎝⎜

⎞
⎠⎟
− Dx

∂L
∂yxx

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
+ Dtµ

∂L
∂yxt

⎛
⎝⎜

⎞
⎠⎟
+ Dxµ

∂L
∂yxx

⎛
⎝⎜

⎞
⎠⎟

Γ t = Lτ + µ ∂L
∂yt

− Dt
∂L
∂ytt

⎛
⎝⎜

⎞
⎠⎟
− Dx

∂L
∂ytx

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
+ Dtµ

∂L
∂ytt

⎛
⎝⎜

⎞
⎠⎟
+ Dxµ

∂L
∂ytx

⎛
⎝⎜

⎞
⎠⎟

Γ x = Lξ + µ ∂L
∂yx

− Dt
∂L
∂yxt

⎛
⎝⎜

⎞
⎠⎟
− Dx

∂L
∂yxx

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
+ Dtµ

∂L
∂yxt

⎛
⎝⎜

⎞
⎠⎟
+ Dxµ

∂L
∂yxx

⎛
⎝⎜

⎞
⎠⎟

µ =η −τ yt −ξyx
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Infinitesimals

Characteristic function

Conserved vector

Check to see if this vector is indeed conserved!

Invariance under translation in time
τ = 1
ξ = 0
η = 0

µ = −yt

θ t = −yt( ) −yt( ) = yt2
θ x = −yt( ) −yxxx( )− yxt yxx = yt yxxx − yxt yxx
Γ t = Lτ +θ t = − 1

2
yt
2 + 1
2
yxx
2⎛

⎝⎜
⎞
⎠⎟ + yt

2 = 1
2
yt
2 + 1
2
yxx
2

Γ x = Lξ +θ x = yt yxxx − yxt yxx

DtΓ
t + DxΓ

x = Dt
1
2
yt
2 + 1
2
yxx
2⎛

⎝⎜
⎞
⎠⎟ + Dx yt yxxx − yxt yxx( ) =

yt ytt + yxxyxxt + yxt yxxx + yt yxxxx − yxxt yxx − yxt yxxx =
yt ytt + yt yxxxx = −µ ytt + yxxxx( ) = 0

59



The quantity

is the energy per unit length of the rod: kinetic energy + strain energy

Note that

E = 1
2
yt
2 + 1
2
yxx

2

DtΓ
t + DxΓ

x( )dx = d
dt0

L

∫
1
2
yt
2 + 1
2
yxx

2⎛
⎝⎜

⎞
⎠⎟0

L

∫ dx + Γ x t,L( )− Γ x t,0( )( ) = 0

Γ x = yt yxxx − yxt yxx

If the bending moment (      ) and shear force (      ) vanish or if     
at the ends of the beam, then the total energy of the beam is 
conserved.

yxx yxxx yt = 0
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Invariance under translation in space

Infinitesimals

Characteristic function

Conserved vector

Check to see if this vector is indeed conserved!

τ = 0      ξ = 1      η = 0

µ = −yx

θ t = −yx( ) −yt( ) = yxyt
θ x = −yx( ) −yxxx( ) + −yxx( ) −yxx( ) = yxyxxx − yxx2

Γ t = Lτ +θ t = yxyt

Γ x = Lξ +θ x = − 1
2
yt
2 + yxyxxx −

1
2
yxx

2

DtΓ
t + DxΓ

x = Dt yxyt( ) + Dx − 1
2
yt
2 + yxyxxx −

1
2
yxx

2⎛
⎝⎜

⎞
⎠⎟ =

ytt yx + yt yxt − yt ytx + yxxyxxx + yxyxxxx − yxxyxxx =
ytt yx + yxyxxxx = yx ytt + yxxxx( ) = 0

61



The quantity

can be regarded as the effective “momentum per unit length” of the rod.

Note that

P = yt yx

DtΓ
t + DxΓ

x( )dx = d
dt0

L

∫ yt yx( )
0

L

∫ dx + Γ x t,L( )− Γ x t,0( )( ) = 0

Γ x = − 1
2
yt
2 + yxyxxx −

1
2
yxx

2

If the velocity, bending moment and shear force vanish at the ends 
of the beam, ie the time, second and third spatial derivatives are 
zero, then the total momentum is conserved.
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Invariance under translation in y[x,t]

Infinitesimals

Characteristic function

Conserved vector

Check to see if this vector is indeed conserved.

τ = 0      ξ = 0      η = 1

µ = 1

θ t = −yt
θ x = −yxxx

Γ t = Lτ +θ t = −yt
Γ x = Lξ +θ x = −yxxx

DtΓ
t + DxΓ

x = Dt −yt( ) + Dx −yxxx( ) =
−ytt − yxxxx = 0
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The quantity

can be regarded as the effective “mass per unit length” of the rod.

Note that

If the shear force vanishes at the ends of the beam, ie the third 
spatial derivative is zero, then the total mass is conserved.

m = −yt

DtΓ
t + DxΓ

x( )dx = d
dt0

L

∫ −yt( )
0

L

∫ dx + Γ x t,L( )− Γ x t,0( )( ) = 0

Γ x = −yxxx
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Invariance under dilation

Infinitesimals

Characteristic function

Conserved vector

Check to see if this vector is indeed conserved!

τ = 4t       ξ = 2x      η = y

µ = y − 4tyt − 2xyx

θ t = −yyt + 4tyt
2 + 2xyxyt

θ x = y − 4tyt − 2xyx( ) −yxxx( ) + yx − 4tytx − 2yx − 2xyxx( ) yxx( )
Γ t = 2tyxx

2 − yyt + 2tyt
2 + 2xyxyt

Γ x = −xyt
2 − yyxxx + 4tyt yxxx + 2xyxyxxx − 4tytxyxx − yxyxx − xyxx

2

DtΓ
t + DxΓ

x = −yytt + 4tyt ytt + 2xyxytt +
−yyxxxx + 4tyt yxxxx + 2xyxyxxxx =
−y + 4tyt + 2xyx( ) ytt + yxxxx( ) =
µ ytt + yxxxx( ) = 0
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Γ t = 2tyxx
2 − yyt + 2tyt

2 + 2xyxyt = 4t
1
2
yt
2 + 1
2
yxx

2⎛
⎝⎜

⎞
⎠⎟ + y −yt( ) + 2x yxyt( )

Γ t = my + 2Px + 4tE

The quantity

Γ x = −xyt
2 − yyxxx + 4tyt yxxx + 2xyxyxxx − 4tytxyxx − yxyxx − xyxx

2

DtΓ
t + DxΓ

x( )dx = d
dt0

L

∫ my + 2Px + 4tE( )
0

L

∫ dx + Γ x t,L( )− Γ x t,0( )( ) = 0

If the velocity, bending moment and shear force vanish at the ends 
of the beam, ie the time, second and third spatial derivatives are 
zero, then the integral below is conserved.

d
dt

my t, x[ ]+ 2Px + 4tE( )
0

L

∫ dx = 0

is conserved.

Integrate along the beam.
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