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Reynolds number
invariance
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Turbulent kinetic energy spectrum 
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The Reynolds averaged Navier-Stokes equations 

Away from a wall

Rate-of-strain

For free shear flows the viscous stresses are often neglected 
compared to the Reynolds stresses.
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Integral length and velocity scales

Dissipation scales with production
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Invariant group of the Euler equations
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One parameter flows
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Temporal similarity rules
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Reduced equations
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Frames of reference
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Spatial similarity rules - jets

Spatial similarity rules - wakes
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Reynolds number scaling

The idea of an eddy viscosity
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Scaling of a turbulent vortex ring
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High and Low Reynolds number vortex rings
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Integral of the motion - the hydrodynamic impulse
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Streamlines
and

Particle Paths
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Recall that the incompressible Navier-Stokes equations are invariant 
under a group of arbitrary translations in space.
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Instantaneous flow field
in the wake of a 
circular cylinder as 
seen by two observers.
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Reduced equations

Particle paths

Frames of reference
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Particle paths in similarity coordinates do not depend on the observer
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Streamlines
and

Particle Paths

The particle path plot 
shown how the 
vortex ring entrains 
fluid as it grows.
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What about fine scales?
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Momentum and continuity equations 
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Kinetic energy equation - project the momentum equation onto the velocity vector 

The turbulent kinetic energy equation
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Kinetic energy dissipation
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Project the mean momentum equation onto the mean velocity vector 

Decompose the flow into a mean and fluctuating part. 

Subtract B from A .

u i ∂u i

∂t
+ u iu j ∂u i

∂x j
+ u i ∂ ′u i ′u j

∂x j
+ ∂
∂x j

pu j

ρ
⎛
⎝⎜

⎞
⎠⎟
− 2νu i ∂s ij

∂x j
= 0

u i ∂sij
∂x j

= ∂
∂x j

u is ij( )− s ij s ij

∂ u iu i

2
⎛
⎝⎜

⎞
⎠⎟

∂t
+ u j

∂ u iu i

2
⎛
⎝⎜

⎞
⎠⎟

∂x j
+ u i ∂ ′ui ′uj

∂x j
+ ∂
∂x j

pu j

ρ
⎛
⎝⎜

⎞
⎠⎟
− 2ν ∂

∂x j
u is ij( ) + 2νs ij s ij = 0

∂ u iu i

2
⎛
⎝⎜

⎞
⎠⎟

∂t
+ ∂
∂x j

u iu i

2
uj + ′ui ′ujui +

puj

ρ
− 2νuisij

⎛
⎝⎜

⎞
⎠⎟
− ′ui ′uj

∂ui
∂x j

+ 2νsij sij = 0

A

B

∂ u iu i

2
+ u '

i u 'i

2
⎛

⎝⎜
⎞

⎠⎟

∂t
+ ∂
∂x j

u iu i

2
u j + u '

i u 'i

2
u j + u 'i u 'iu i + u '

i u 'i u ' j

2
+ u j p

ρ
+ u '

j p '
ρ

− 2ν u is ij + u 'i s 'ij( )⎛

⎝
⎜

⎞

⎠
⎟ + 2ν s ij s ij + s 'ij s 'ij( ) = 0

27



The turbulent kinetic energy (TKE) transport equation is 

Consider stationary homogeneous shear flow 

u = ky,0,0( )

All gradients of correlations are zero 
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Dissipation of TKE equals production of TKE

Subtract B from A .

The important 
implication of all this 
is that the dissipation 
term is comparable 
to all the other terms 
in the kinetic energy 
balance despite the 
fact that is is 
multiplied by the 
kinematic viscosity 

Turbulent kinetic 
energy dissipation

Turbulent kinetic 
energy production

Conclusion: 
fluctuating rates of 
strain are very large! ε = 2ν s 'ij s 'ij
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Fine scale motions

29



Small scale gradients
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Turbulent kinetic energy spectrum 
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Scaling the inertial subrange

The wavenumber of an eddy is essentially the inverse of its scale. 

Assume the governing parameter is 
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The TKE per unit wavenumber should scale as 

This is the scaling of TKE first postulated by Kolmogorov in 1941
and seems to agree with measurements in high Reynolds number flows. 
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