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Reynolds number
invariance

(b)

Fig. 13.1.  Effects of Reynolds number on a plane mixing layer between helium (upper
stream) and nitrogen (lower stream) from Brown and Roshko [13.1] and Roshko[13.2].
The Reynolds number in (a) is approximately 1.3 x 10* centimeter~'. The thickness of
the layer at the right side of the picture is approximately 2 cm. The speed of the lower
stream is 10 m/s. Test-section pressures in atmospheres are: (a) 2, (b) 4, (¢) 8. Dynamic
pressures in the upper and lower streams are the same: pu? = pyu3.
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Image above: The above photograph shows the turbulence field behind the Horns Rev
offshore wind turbines. Horns Rev is located in the North Sea, 14 kilometers west of
Denmark. Photographer Christian Steiness. From (hitp://wattsupwiththat.com/2011/04/28/the-

wind-turbine-albedo-effect/).
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Image above: 8/11/11 simulation of radioactive seawater dispersed from Fukushima nears
Hawaii. From (http://www.xydo.com/toolbar/27327691-asr_ltd_-
_fukushima_radioactive_seawater_plume_dispersal_simulation). Note - users can zoom and
rotate orientation of simulation.
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The Reynolds averaged Navier-Stokes equations

u=u+u, p=p+p, (13.1)
om'
oxi
on 0 10p 1ot _ o5 (132
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Rate-of-strain 5 2<8x1 + 8x’) (13.3)
W —
— = —u"u'J. (134)
0
Away from a wall — —yiyri > 2959 (13.5)

For free shear flows the viscous stresses are often neglected

compared to the Reynolds stresses.
o’
. - (13.6)
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Integral length and velocity scales

uo = integral velocity scale characterizing the overall motion,
d = integral length scale characterizing the overall motion.

W = \/ ui + “;22 s (13.7)
u'ox ug, (13.8)
e = 2usisit, (13.9)
i 1 /0u" Ou’
s = (4 o (13.10)

Dissipation scales with production
=i

eoc wini 2 (13.11)
ox/

gox -2, (13.12)
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Invariant group of the Euler equations

.fi — esxi, 7 — es/kt, L—"t'i =es(1_1/k)ﬁi,
fzj — es(2—2/k)l,ij’ ﬁ — €S(2_2/k)ﬁ,
~1 ~ ~ij
ou N 0 =) =i op B 0T
ot  0xJ oxt  0x/

i’  _..., dp otY
:( ~ 4 Zaigi 4 222

(13.13)

. - )e*172/0 = 0. (13.14)
dt dx/ dx! dx/
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Stationary plane jet. The integral momentum flux J/p is approximately
constant at any streamwise position:

J 0 0
= / itdy = ea<3—2/’<>/ u*dy. (13.16)
P —00 —00

The integral is invariant under dilation only for k = %

Vortex ring. 'The hydrodynamic impulse, 7/ p, is the conserved integral for

this flow (cf. Chapter 11, Section 11.5.1):
1 3

3
- Efadx d¥y dz :e“(4_1/k)§/udx dydz.  (13.17)
o,

I

In this case the integral is invariant for k =
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— =k— = — = = —  (13.18)
X! t k—1) u 2k —2) p 2k —2 ) TV
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X : u' p . TV

= Ul = , P = , T = . (13.19
s S[t] uol?] uo[t]? uo[t]? ( )

The time-dependent length and velocity scales in (13.19) are

S[t]oc MY™(t — to)F, uolt]loc MY™(t — t)F1, (13.20)

where 1 1s the effective origin in time. The group parameter k is determined by
the units of the governing parameter M:

k=n/m. (13.21)

— Ui =, —pP|—| =T =—1. (13.22)
uolt] S[¢] uolt]? S5[t] up[t]? S[¢]

10



TﬁTAN FORD

AERONAUTICS &
ASTRONAUTICS

Reduced equations

When the similarity variables (13.22) are substituted into the Reynolds equa-
tions (13.2), the result is that time drops out of the equations and the number
of independent variables is reduced from four to three:

oU/
—— =0,
QE ]

ou'  19P 1 9 ..

-4+ —— — ———(TY)=0. (13.23)
0§/ pdg§  pd§/
This is the same equation encountered in Chapter 11, Section 11.5 [cf. Equation
(11.86)] where we analyzed the round jet with k = % The equations for particle

paths,

k — DHU' + (U’ — k&)

i (13.24)
=Uu ’ ’ .
dt
transform to the autonomous system
d&! : :
S Ui — ke, (13.25)
dt

In these one-parameter flows all lengths scale with the same power of time.
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Frames of reference

If an observer is selected to convect with a particular feature of the flow, then
the observer will have to translate nonuniformly according to the power of time
appropriate to the flow. Such a transformation is defined by

F=x— oMY — 1),

13.2
i =i — kol MY — 1), (13:20)

P =P+ xTk(k — Dl MY™(t — 15)2,

where the o determine the relative rates of motion of the observer in the
three directions. We already know from the discussion in Chapter 11, Section
11.2, that the Navier—Stokes and Euler equations are invariant under the group
(13.26). The Reynolds equations with the viscous term removed, (13.6), are as
well. In terms of similarity variables, (13.26) becomes a simple translation,

gi _ si — o

T=r,

~. . . (13.27)
U' =U"—kd',

P=P+alelkk —1).

In similarity coordinates, the equations for particle paths transform as fol-
lows:

dE'  dE'
dz  dt’
U'[€] — k&' = U'[€] — k&'.

(13.28)
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(x — x0)oc MY™(1t — 1p)F.

S x (x — xp), upox MYn(x — xp)l—1/k,

Spatial similarity rules - wakes

— =Cp| UL, J(@R").
0 2

D
— oc/U(Uoo—U)dA,
P A

D
— X /(UOO—U)dA.
PUso A

(x — x0) = Uso(t — 1p).

(13.29)

(13.30)

(13.31)

(13.32)

(13.33)

(13.34)

80<M1/mUO_ok(x — xo)¥, uooch/mUolo_k(x — xo)¢ 1.

(13.35)
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Reynolds number scaling

Uy M?>m

Rs = X (r — to)zk_l.
V

(13.36)

(13.37)

(13.38)

(13.39)
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Table 13.1. Various one-parameter shear flows and the units of the
associated governing parameter.

Flow Invariant M Units k
Jetlike flows
Plane mixing layer Velocity difference Uy LT™! 1
Plane jet 2-D momentum flux Ugs L’r=2 2
Round jet 3-D momentum flux usr  Lirt? 1
Radial jet 3-D momentum flux vt Lt 4
Vortex pair 2-D impulse Ups? LT 3
Vortex ring 3-D impulse Ups®>  L*T7' 1
Plane plume 2-D buoyancy flux U} L’T3 1
Round plume 3-D buoyancy flux U3s L‘r= 2
Plane thermal 2-D buoyancy Uzs L’r2 2
Round thermal 3-D buoyancy us? LT 4
Line vortex Circulation ) L?’T! A
Diverging channel Area flux Uy L’r-t
Vortex-sheet rollup Apexa;n=1/Q2 —a/m) Us*™ L>"T7! 1/3—n)
Wakelike flows
Plane wake (2-D drag)/ Uy, Uy I
Round wake (3-D drag)/ U, Ups> L’7T7' 3
Plane jet in cross flow (2-D mom. flux)/ U, Uy L’r-t 2
Round jet in cross flow (3-D mom. flux)/ Uy, Ups> L’7T7' 3
Plane plume in cross flow  (2-D buoy. flux)/ U U? L’T%2 1
Round plume in cross flow (3-D buoy. flux)/ Uy U3s L’r— 2
Grid turb. initial decay Saffman invariant us LT 2
Grid turb. initial decay Loitsianski invariant us  L'T? 2

15
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Scaling of a turbulent vortex ring

T

jet

Fig. 13.3. Vortex-ring apparatus with experimental parameters. The sketch in the upper
part of the figure defines parameters used to determine the effective origin of the ring.
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High and Low Reynolds number vortex rings

(b)

Fig. 13.2. Turbulent and laminar vortex rings produced by an impulsive force, from
the paper by Glezer and Coles [13.17]. Initial Reynolds number I'y/v is (a) 27,000,
(b) 7,500.
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TﬁTAN FORD Integral of the motion - the hydrodynamic impulse

N W

t 1
f udxdydz = / / —I—(S[x]S[y](S[z](S[t] dxdydzdt = —,
1% o Jv P p

8t oc (I/p)' /4t — t0)'/*,  wolt] o (I/p)4(t — 10)™3/4,

U’ _ G[ X — X ]
I /p)4 —to)=3* — LU /p) A4 — 1)/ |

_ X — Xgo . y
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Streamlines
and
Particle Paths
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Fig. 13.4. Experimental results from [13.17]: (a) streamline pattern of the ensem-
ble mean velocity field referred to an observer translating to the right with the ring,
(b) particle paths of the ensemble mean velocity field.
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Recall that the incompressible Navier-Stokes equations are invariant
under a group of arbitrary translations in space.

# = xI + allt],

f=t,
~i i+dai
= U —_—,
" dt
d%a’
i)' = p—x] +g[t]

dt?
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Fig. 11.1.  Velocity vector field in the wake of a circular cylinder from Reference [11.6]
as viewed by two observers: (a) frame of reference moving downstream at 0.755U.,,

(b) frame of reference fixed with respect to the cylinder. The dashed contour roughly
corresponds to the instantaneous boundary of turbulence.
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Reduced equations
oU/
— =0,
a&J
aU' 13P 1 3

— i J_kEN— 4 " (T =
k= DU+ U — k) gz + - o = — =@ =0

Particle paths
_dii — i[ t
dt =u x, ],
g’ _ i
e U'[€] — k&'.

Frames of reference

¥ =x' =o' MYt — 1),

I __ kalMl/m(t _ to)k-—l,

Ny 1
|l
by |

p=p+x'k(k — o/ M/™(t — t5)*2
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Particle paths in similarity coordinates do not depend on the observer

Slz z__az’
T =r,
l~]’=U’—ka’,

P=P+alEkk—1).

dE _ de’
- di  dt’

U'[€] — kE' = U'[€] — k&'
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Fig. 13.4. Experimental results from [13.17]: (a) streamline pattern of the ensem-
ble mean velocity field referred to an observer translating to the right with the ring,
(b) particle paths of the ensemble mean velocity field.

The particle path plot
shown how the
vortex ring entrains
fluid as it grows.
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What about fine scales?

25
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The turbulent kinetic energy equation

Momentum and continuity equations

ou’

—.:0

ox'

M, 9 [y + 250 _oygi | =0
ot Jdx’ P

Slj—l %4_%
“2lox oy

Kinetic energy equation - project the momentum equation onto the velocity vector

u' 85; +u' aaj (uiuj + P i 2VSU] =0
X p
3 u'u'
y u' 2
ot ot
ou'n’ i a_”i_,_ win % —uiy %
ox/ ox’ ox’ ox’
0 wu u’ . . .
( 2 j ;s ou' uuou . ou
dx’ dx’ 2 dx’ dx’

Kinetic energy dissipation

ou' .
2v—-yY =
ox’

oy 1 a_ui_i_auj +l aui_au'j S
20 ox/  9x’ 2{ ox/  ox' -

2v(s’7 + a)ij)s” =2vss?

a[uzuzj

2 L . -

+ a. uu u’+£u’—2\/u’s” +2va—u.s”=0
ox’
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Aa[
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u'u"
+
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Decompose the flow into a mean and fluctuating part.

Wi j

u"u"u D u’p

!

ot

2 2 5 o p —ZV(LT’?U+u‘is'ij)}+2v(§’7§if'+s'Us'U)=()

—i—i Wi
u'u' _. u . — _
+ ( u + w +u"u"u' + +u’' —+

Project the mean momentum equation onto the mean velocity vector

-=0

_,o0u' _._.ou  _,ou'w’ 9 pu; _, 057
u'—+u'u’ —+u — + —— —2vu
ot ox’ ox’ I’ p ox’
05 0 o L
et/ —,(ﬁ’f”)—f’-’f’f

dx’  dx’

2 ) 2 ouu’ g’ o L
ALY, — 7 et a.(p” j—2vij(ﬁ’§”)+2v5”5”:0
X X

ot x' o dx’\ p
a(ﬁlzﬁ ) pi o
—_— u. — .
B —5—+5 (”2” i+ U, + pf ~2virs, j — a% +2v5,5, =0

Subtract B from A .
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Turbulent kinetic
energy production

/l' ,i i
uu
J ———

P AN i —2v( & ”’) +u’'u a—+2v( 70 ”’):0
ot ox’| 2 2 p ox’
The important . . T .
el e ol Tk Consider stationary homogeneous shear flow Turbulent kinetic
is that the dissipation energy dissipation

term is comparable
to all the other terms
in the kinetic ener —
balance despite thgey 4 u = (ky,0,0)
fact thatis is
multiplied by the
kinematic viscosity

— All gradients of correlations are zero
Conclusion: )
fluctuating rates of 37
strain are very large! ZV(S’US’U) iy e=2vs' ¢
ox’

Dissipation of TKE equals production of TKE 28
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Fine scale motions

Using the scaling relation (13.11) that comes from the turbulent kinetic energy
equation, we can write

£ — (13.40)

which can be rearranged to read
VTS o —Lgo (—L;Ov ) (13.41)

We now define a new length scale, A, called the Taylor microscale, that, when
associated with u(, can account for turbulent kinetic energy dissipation [13.11],
[13.13]:

uy
eocv| 7). (13.42)

Combining (13.42) with (13.40) leads to the following estimates for the Taylor
microscale:

1

FRRTAE Lo (vt — 1)) /2. (13.43)

According to this estimate, there is always some eddying motion in the flow
which has a characteristic length that varies like «/v¢ and is independent of the
governing parameter M. In a similar vein note that the velocity gradients of the
large-scale motion vary according to

Uuo

— X
) t—1

(t > 1), (13.44)

which is also independent of M. In a sense the large-scale gradients constitute
a clock that can be used to date the evolution of the flow just as in the case of
the laminar round jet.

29



Now let’s define new length and velocity scales that can account for dissipa-

STANFORD . .
ALRONAUTICS & tion of TKE. These are the velocity and length scales defined by Kolmogorov
ASTRONAUTICS [13.14]. See also the discussion of Kolmogorov theory in References [13.15]
and [13.16]. The Kolmogorov scales can be regarded as motions that constitute

the lower limit for instability — motions with a characteristic Reynolds number
of order one. Let

2
& o v(v—z) L, (13.45)
2

Equation (13.45) can be used in conjunction with (13.12) to generate the fol-
lowing estimates of the Kolmorgorov velocity and length scales:

g > (R51)3/4’ n o VM — 1) E2 (13.46)
and
VoL oMY — g 2 (13.47)
uo  (Ry)'*
Small scale gradients
2o 2 v MU — 1), (13.48)

A n
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Scaling the inertial subrange

Assume the governing parameter is

M=¢ o uy/é (13.49)
with units ag/éz L?>T 3 and exponent k = %
5 o &2t — t9)*?, ug oc &2t — to)'/? (13.50)

Rs oc (t —1t0)*, Ao (f —tg)'/?, n o (t —1p)°. (13.51)
The wavenumber of an eddy is essentially the inverse of its scale.

Kk oc 1/8. (13.52)
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The TKE per unit wavenumber should scale as

)

E(Kk) o 1”706 o 832t — 1y)°/2, (13.53)

§2/3 =23

I —1 — :
0% 13 & o1/3

(13.54)

E(k) o ™1, (13.55)

This is the scaling of TKE first postulated by Kolmogorov in 1941
and seems to agree with measurements in high Reynolds number flows.

33



STANFORD

AERONAUTICS &
ASTRONAUTICS

Local isotropy in turbulent boundary layers 339

FiGURE 1. An acrial view of the Full-Scale Acrodynamics Facility at NASA Ames Research Center,
showing the intake to the 80 x 120 foot test section. The arrow shows our measurement location in
the attic.

350 S. G. Saddoughi and S. V. Veeravalli
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FIGURE 9. Kolmogorov's universal scaling for one-dimensional longitudinal power spectra. The
present mid-layer spectra for both free-stream velocities are compared with data from other
experiments. This compilation is from Chapman (1979), with later additions. The solid line is from
Pao (1965). R,: [J, 23 boundary layer (Tielman 1967); ¢, 23 wake behind cylinder (Uberoi &
Freymuth 1969); V7, 37 grid turbulence (Comte-Bellot & Corrsin 1971); 7, 53 channel centreline
(Kim & Antonia (DNS) 1991); [3, 72 grid turbulence (Comte-Bellot & Corrsin 1971); O, 130
homogeneous shear flow (Champagne ez al. 1970); [, 170 pipe flow (Laufer 1954); 4, 282 boundary
layer (Tielman 1967); ¢, 308 wake behind cylinder (Uberoi & Freymuth 1969); A, 401 boundary
layer (Sanborn & Marshall 1965); A, 540 grid turbulence (Kistler & Vrebalovich 1966); x, 780
round jet (Gibson 1963); -, 850 boundary layer (Coantic & Favre 1974); +, ~ 2000 tidal channel
(Grant et al. 1962); ©, 3180 return channel (CAHI Moscow 1991); @, 1500 boundary layer (present
data, mid-layer: U, = 50 ms™); M, 600 boundary layer (present data, mid-layer: U, = 10 ms™).
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Figure 10. Image of a three-dimensional Rayleigh—Taylor unstable flame in a Type la
supernova and the computed kinetic energy spectrum (blue curve) exhibiting the classical

k53 decay (red line).
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13.4

Flow past a flat plate of length L is shown in Figure 13.13. Assume an
attached laminar Blasius boundary layer over the length of the plate.
Show that the drag per unit span of the plate is proportional to ULPLV2,
How would you expect the turbulence intensity u’ to depend on U, and
L at a fixed point x in the far wake?

/——//- AU

13.5

Fig. 13.13.

Solve the turbulent counterpart of Exercise 13.4. Assume an attached
turbulent boundary layer over the length of the plate. The local skin
friction coefficient can be taken as Cy = 0.06(Uxox /v)~ 1/5 How would
you expect the turbulence intensity u’ to depend on Uy, and L at a fixed
point x in the far wake?
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