

Introduction to Symmetry Analysis

Chapter 7 - Differential Functions and Notation

Brian Cantwell
Department of Aeronautics and Astronautics
Stanford University

7.1.1 Superscript Notation for Dependent and Independent Variables

$$y = (y^i), i = 1, ..., m,$$
 (7.10)

$$x = (x^j), j = 1, \dots, n.$$
 (7.11)

$$\tilde{x}^{j} = F^{j}[x, y, s], \qquad j = 1, \dots, n,$$
 $\tilde{y}^{i} = G^{i}[x, y, s], \qquad i = 1, \dots, m.$
(7.12)

7.1.2 Subscript Notation for Derivatives

$$y_x \equiv \frac{dy}{dx}, \qquad y_{xx} \equiv \frac{d^2y}{dx^2}, \dots, \qquad y_{(p-1)x} \equiv \frac{d^{p-1}y}{dx^{p-1}}, \qquad y_{px} \equiv \frac{d^py}{dx^p}.$$
 (7.13)

$$\tilde{y}_{\tilde{x}} \equiv \frac{d\tilde{y}}{d\tilde{x}}, \qquad \tilde{y}_{\tilde{x}\tilde{x}} \equiv \frac{d^2\tilde{y}}{d\tilde{x}^2}, \dots, \qquad \tilde{y}_{(p-1)\tilde{x}} \equiv \frac{d^{p-1}\tilde{y}}{d\tilde{x}^{p-1}}, \qquad \tilde{y}_{p\tilde{x}} \equiv \frac{d^p\tilde{y}}{d\tilde{x}^p}.$$

$$(7.14)$$

$$\frac{\partial F}{\partial x} = F_x, \qquad \frac{\partial F}{\partial y} = F_y,$$

$$\frac{\partial G}{\partial x} = G_x, \qquad \frac{\partial G}{\partial y} = G_y$$
(7.15)

$$\frac{\partial^2 F}{\partial x^2} = F_{xx}, \qquad \frac{\partial^2 F}{\partial x \, \partial y} = F_{xy}, \qquad \frac{\partial^2 F}{\partial y^2} = F_{yy},$$

$$\frac{\partial^2 G}{\partial x^2} = G_{xx}, \qquad \frac{\partial^2 G}{\partial x \, \partial y} = G_{xy}, \qquad \frac{\partial^2 G}{\partial y^2} = G_{yy},$$
(7.16)

$$y_1 \equiv \frac{dy}{dx}, \qquad y_2 \equiv \frac{d^2y}{dx^2}, \dots, \qquad y_{p-1} \equiv \frac{d^{p-1}y}{dx^{p-1}}, \qquad y_p \equiv \frac{d^py}{dx^p}$$
 (7.17)

$$y_{j}^{i} \equiv \frac{\partial y^{i}}{\partial x^{j}}, \qquad y_{j_{1}j_{2}}^{i} \equiv \frac{\partial^{2} y^{i}}{\partial x^{j_{1}} \partial x^{j_{2}}}, \qquad y_{j_{1}j_{2}j_{3}}^{i} \equiv \frac{\partial^{3} y^{i}}{\partial x^{j_{1}} \partial x^{j_{2}} \partial x^{j_{3}}}, \dots,$$
$$y_{j_{1}j_{2}j_{3}\cdots j_{p}}^{i} \equiv \frac{\partial^{p} y^{i}}{\partial x^{j_{1}} \partial x^{j_{2}} \partial x^{j_{3}} \cdots \partial x^{j_{p}}}$$
(7.18)

$$\mathbf{y}_{1} \equiv \left(y_{j}^{i}\right) = \left(\frac{\partial y^{1}}{\partial x^{1}}, \dots, \frac{\partial y^{1}}{\partial x^{n}}, \frac{\partial y^{2}}{\partial x^{1}}, \dots, \frac{\partial y^{2}}{\partial x^{n}}, \dots, \frac{\partial y^{m}}{\partial x^{1}}, \dots, \frac{\partial y^{m}}{\partial x^{n}}\right)$$

$$(7.19)$$

$$\mathbf{y}_2 \equiv \left(y_{j_1 j_2}^i\right) = \left(y_{11}^1, y_{12}^1, \dots, y_{nn}^1, \dots, y_{11}^m, y_{12}^m, \dots, y_{nn}^m\right) \tag{7.20}$$

$$\mathbf{y}_3 \equiv \left(y_{j_1 j_2 j_3}^i\right) \tag{7.21}$$

$$\mathbf{y}_{p} \equiv \left(y_{j_{1}j_{2}j_{3}\cdots j_{p}}^{i}\right). \tag{7.22}$$

7.1.3 Curly-Brace Subscript Notation for Functions That Transform Derivatives

$$\tilde{x} = F[x, y, s],$$
 $\tilde{y} = G[x, y, s],$
 $\tilde{y}_{\tilde{x}} = G_{\{1\}}[x, y, y_x, s].$
(7.23)

$$\tilde{x} = x + s\xi[x, y],$$
 $\tilde{y} = y + s\eta[x, y],$
 $\tilde{y}_{\tilde{x}} = y_x + s\eta_{\{1\}}[x, y, y_x].$
(7.24)

$$\tilde{x} = x + s\xi[x, y],
\tilde{y} = y + s\eta[x, y],
\tilde{y}_{\tilde{x}} = y_x + s\eta_{\{1\}}[x, y, y_x],
\tilde{y}_{\tilde{x}\tilde{x}} = y_{xx} + s\eta_{\{2\}}[x, y, y_x, y_{xx}].$$
(7.25)

$$\tilde{x} = x + s\xi[x, y],
\tilde{y} = y + s\eta[x, y],
\tilde{y}_{\tilde{x}} = y_x + s\eta_{\{x\}}[x, y, y_x],
\tilde{y}_{\tilde{x}\tilde{x}} = y_{xx} + s\eta_{\{xx\}}[x, y, y_x, y_{xx}].$$
(7.26)

$$\tilde{y}_{j_1 j_2}^i = G_{\{j_1 j_2\}}^i[\mathbf{x}, \mathbf{y}, \mathbf{y}_1, \mathbf{y}_2, s], \tag{7.27}$$

$$\tilde{y}_{j_1 j_2}^i = y_{j_1 j_2}^i + s \eta_{\{j_1 j_2\}}^i [\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{y}_1, \boldsymbol{y}_2], \tag{7.28}$$

7.1.4 The Total Differentiation Operator

Definition 7.1. The total differentiation operator with respect to the jth independent variable is.

$$\frac{D}{Dx^j} = D_j = \frac{\partial}{\partial x^j} + y_j^i \frac{\partial}{\partial y^i} + y_{j_1j}^i \frac{\partial}{\partial y_{j_1}^i} + \dots + y_{j_1j_2\dots j_pj}^i \frac{\partial}{\partial y_{j_1j_2\dots j_p}^i}.$$
(7.29)

$$D = \frac{D}{Dx} = \frac{\partial}{\partial x} + y_x \frac{\partial}{\partial y} + y_{xx} \frac{\partial}{\partial y_x} + \dots + y_{(p+1)x} \frac{\partial}{\partial y_{px}}.$$
 (7.30)

7.1.5 Definition of a Differential Function

Definition 7.2. Let z denote the infinite sequence of variables and derivatives,

$$z = (x, y, y_1, y_2, \ldots),$$
 (7.31)

and let $\langle z \rangle$ denote any finite subsequence of z. A differential function $\Psi[\langle z \rangle]$ is a locally analytic function of $\langle z \rangle$ (i.e., expandable in a Taylor series about some point $\langle z_0 \rangle$). The space of differential functions is denoted by A.

7.1.6 Total Differentiation of Differential Functions

Definition 7.3. The total differentiation operator acting in the space of differential functions is the infinite operator

$$D_{j} = \frac{\partial}{\partial x^{j}} + y_{j}^{i} \frac{\partial}{\partial y^{i}} + y_{j_{1}j}^{i} \frac{\partial}{\partial y_{j_{1}}^{i}} + y_{j_{1}j_{2}j}^{i} \frac{\partial}{\partial y_{j_{1}j_{2}}^{i}} + \cdots$$
 (7.32)

$$\Psi[\langle z \rangle] = \Psi[x, y, y_x, y_{xx}, y_{xxx}, \dots, y_{px}]. \tag{7.33}$$

10

$$D\Psi = \frac{\partial \Psi}{\partial x} + y_x \frac{\partial \Psi}{\partial y} + y_{xx} \frac{\partial \Psi}{\partial y_x} + y_{xxx} \frac{\partial \Psi}{\partial y_{xx}} + \dots + y_{(p+1)x} \frac{\partial \Psi}{\partial y_{px}}.$$
 (7.34)

$$\Psi[\langle z \rangle] = \Psi[x, y, y_1, y_2, y_3, \dots, y_p]. \tag{7.35}$$

$$D_{j}\Psi = \frac{\partial\Psi}{\partial x^{j}} + y_{j}^{i}\frac{\partial\Psi}{\partial y^{i}} + y_{j_{1}j}^{i}\frac{\partial\Psi}{\partial y_{j_{1}}^{i}} + \dots + y_{j_{1}\dots j_{p}j}^{i}\frac{\partial\Psi}{\partial y_{j_{1}\dots j_{p}}^{i}}.$$
 (7.36)

