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Example 1.1 Invariance of a first-order ODE under a Lie group

Figure 1.8 The surface defined by a first order ODE
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Extended translation group

X =x+Ss,
y=y-+s,
dy dy
di  dx

Transform the equation

_ . ay dy 3
—_— a—— —_e
\I![x,y, d)”c] dx

ey
dx

(1.17)

(1.18)
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General solution
Y =Wx,yl =e — ¢, (1.19)
Action of the group on a given solution curve

U =V[E, Jl=e —f = — e =e'(e” — ). (1.20)
The solution curve (1.20) is transformed to

Vo

- = e’ —e’. (1.21)
e
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6.1 Invariant families

Example 6.1 Rotation group in the plane

t X = x cos[s] — ysin[s] 6.1)
T : .
y = x sin[s] + y cos[s]

Group operator

rot 8 8
X == '—')9253;' + x E;;;. ((3.:3)

Group invariant

¢ = ®[x, y] = x* + y? (6.4)

4/22/20
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Y =Wl y] =~ (6.5)

Action of the rotation group on the family of rays

y sin[s] + = cos[s] _ G(X, S) = G, 5). (6.6)
X

V= ¥ cos[s] — 2 sin[s]

Action of the rotation group operator

t d [y Jd [y "\ 2
Xro\llz—y—(—)-l‘x—(_):(;) + 1=y +1. (6.7)

dx \ x

4/22/20 Fig. 6.1. Action of the rotation group on the family of rays.
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Example 6.2 Uniform dilation group

di X =éex
T (6.8)
y=e'y

Group operator

X4 =y — 4 y—. 6.9
X + 5y (6.9)
Group invariant
w=WMﬂ=f (6.10)
~ .. Yy €y
Y =VY[x,y]l=== : == =WV(x,y) =Y. (6.11)
X e’ X X

Action of the dilation group on the family of circles

= D[, 7] =+ =" (7 + y?) = " D[x, y] = G(¢,5). (6.12)
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Action of the dilation group operator on the family of circles

. 0 0
Xl = xauz +y%) + ya(x2 +y3) =2 + y) =2¢4. (6.13)

))

Fig. 6.2. Action of the dilation group on the family of circles.
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Evidently the finite condition for a family ¥ = W[x] to be invariant under a
group F is

= W[E] = U(F[x,s]) = G[V¥[x], s] = G[¥,s] (6.15)

The corresponding infinitesimal condition is

XV = Q[V] (6.16)

We can interpret this condition applied to a family in n dimensions as
equivalent to

XI'=0

where I" is a single surface in n + 1 dimensions.

4/22/20
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To see this, let I be a function of n + 1 variables of the form

Clx!, x2, 23, .. X" T = wx!, 22, %3, ..., x" ] — x" ! (6.17)

Consider the invariance of I" under the transformation

X = FJx', x2, x3, ..., x",s], j=1,2,...,n
(6.18)
)~Cn+l — xn—l—l -I—S,

Which is clearly a Lie group

4/22/20
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The function I' 1s an invariant single surface under the group (6.18) if and only if
GF . 00 oI’ 0
3 5 et Sl (6.19)

dxl

which becomes

XV =1 (6.20)
Thus the family
Wx!, x2, x3, ..., x"] = x"! (6.21)
is an invariant family in (x Lox2, x3, ..., x"), or equivalently an invariant single
surface in (x', x2, x3, ..., x", x"T1).

4/22/20
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Invariance condition for a family - summary

The finite condition for a family of curves to be invariant under a group is
¥ = V[%] = W(F[x, s]) = G[¥[x], s] = G[, s],
and the corresponding infinitesimal condition is
XV = Q[¥].

Without loss of generality we can always choose a once-differentiable
function such that the invariance condition becomes

XV =1.
This simplification can be illustrated as follows
Xo[x] = XTI[W ]]—(XlI')d—H-—SZ[\I’]fl—n——l 6.22)
[x] = XTI[W¥[x]] = Fri v = b (6.

Choose

_ A\
I _f QY] (6.23)

12
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First order ODEs, the Integrating Factor

Consider the first order ordinary differential equation

dy _ Bix,y]
dx  Alx,yl’

which we can write as
—B[x,yldx + Alx, yldy = 0.

The perfect differential of the solution is

A A
dy = — dx + — dy.
. 0x dy
The solution satisfies the first order linear PDE
ow oW

Alx, )’]— + Blx, )’]’“‘; = 0.
Now, suppose the solution family 1is invariant under the group (5 , n)

oW oW
&[x, y]————+n[x y]—y = 1.

13
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X

Fig. 6.3. Transformation of points along characteristics by (A, B), and between char-
acteristics by (&, n). ;

We have two simultaneous equations for the partial derivatives of the solution

ov  —B ov A
dx  An— BE’ dy  An— BE’

The integrating factor is

1
M =
An — B§
and the perfect differential of the solution is
—B A
dyr = dx + dy.
4 An — B¢ An — B¢ Y

14
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The ODE is solved in the form of a quadrature

+ fIyl.

y=constant

—B
wZ/An—BS ax

oV 9 / —B J
dy  dy An — B¢ *

A

)+ %
+ = = ,
y=constant dy A?] — B E

15
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Table 6.1. Some first-order ODEs and their

invariant groups.

Equation § n
yx = F[x] 0 1
vy, = Flax + by] b —a
y + xF[x* + y?]
x = y —X
x —yF[x? +y?]
=F [X:l x y
X
yx = x*1F[y/x*] x ky
xy, = F[xe™”] X 1
yx = yFlye™] 1 y
Yx = (y/x)+ xF[y/x] 1 y/x
xyx =y + F[y/x] x? xy
Yy = ——————y Xy )’2
Y x4+ Fly/x]
y
P = 0
Y x + Fly] Y
xy, =y+ Flx] 0 x
y
XYy = ——— 0
Y= Il + Fiyl *Y
xyx = y(In[y] + F[x]) 0 xy
Y = yF[x] 0 y

16



FSTANFORD

AERONAUTICS &
ASTRONAUTICS

4/22/20

Example 6.4 (Invariance with respect to a dilation group). Find the general
solution of

=7 _ XH[xy], (6.43)
X

where H is an arbitrary function. Rearrange (6.43) as
—yH[xyldx +x dy =0. (6.44)
In the notation adopted above, let
Alx,y] = —x, Blx,y] = —yH|[xy]. (6.45)

As was just pointed out, we need to find a Lie group that leaves (6.43) invariant.
There is really no systematic way to determine such a group. We have to rely
on trial and error to transform (6.43). By inspection we can see that (6.43) is
invariant under the dilation group

S

X=ex, y=e"y. (6.46)

Insert the transformation (6.46) into (6.43):

dy y d d
D olHE = e =@ Hy = 2= LHy.
ax X dx X dx X
(6.47)

The equation reads the same in the new variables — success: we have found a
group that leaves (6.43) invariant. The infinitesimals of (6.46) are

§=x, n=-y, (6.48)

17
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and the integrating factor is

1 1
M = = ) (6.49)
An—B§ xy+xyH[xy]
Therefore the total differential of the solution is
H
gy = ——2HT a dy. (6.50)
xy +xyH[xy] xy +xyH[xy]
Finally, the general solution of (6.43) is the family
H ()
= — da + In[vy]. 6.51
v /) «(1 + H@)) ] (05D

In essence, v 1s simply the constant of integration of (6.43). Let’s demonstrate
that (6.51) is in fact an invariant family of (6.48):

(3 =3 (L sy e+ o)
Yox Yoy o+ Hy “¢ T

H H . 1
_(_ N S =47 652
x( 05(1+H)y>cx=xy y( 01(1+H)x)a=xy/|zy<y> /ljl( )

18
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Example 6.6 (A more complicated case). Find the general solution of

dy _ y
dx  x— flylgly/x]’

which we rewrite as

X dx — (1 _ %g[y/x]) dy = 0.

X

Let

A= (1 - %g[y/x]), B =

= |=

This equation is known to be invariant under the group

Xy y*

= "T o

19
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Integrating factor

X

 y2gly/x]

Perfect differential

|

dyr = —
v yvgly/x]

Exact solution

X
d _
T (yzg[y/x]

|

¢:q1[x,y]:f do —

y2

f[y]> dy

Jlo]

.),-‘

do

o2

20
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(

The solution is an invariant family of the group

/.

Xy 0 y ) / 1
- do
flylax = fly]lady ( y/x a2glo]

_xy(_ 1 l) _yz(_
I\ eglelx /oy Y]

y? f[a])
¥ ]
+f[y]< 2 )., =t

2
y ¢

I 1

a?gla] X

fla] da)

)a:y/x

21
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Canonical coordinates

Any Lie group can be written in terms of new variables called canonical coordinates
such that the transformation is converted to a simple translation in one variable.

The group

- a
X = ’Lx P
§/[x] o)
has the associated characteristic equations

dx! dx? dx3 dx"

Ex]  E[x]  E[x]

with invariants

r' = R'[x], i=1,...,n—1.

that satisfy the invariance condition

ijz§L-== 0, i=1,...,n—1.
ax/

22
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Determine an invariant family such that

. dR"
=1

oxJ

In terms of these variables the group is equivalent to the simple translation,

Fr=rt, i=1, ,n—1,
"=r"+s
with group operator
¥ 0
ar”
The integrals
Ri[x!, %2,..., %" = R'[x!, x%, ..., x"], i=1,...

Rx!, %2, ..., %" = R'[x!, %2, ..., x"] +s.

are the canonical coordinates . Any Lie group can be expressed
as a simple translation using canonical coordinates.

23
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Invariant solutions

Example 6.9 Clairaut’s equation
2
dy dy
X\5=) —y—+m=0,
(dx ydx

This equation is invariant under a one-parameter dilation group.

X =

o
=

y=ey,

The equation can be written in the form

—-(y + (y* — 4mx)1/2) dx +2xdy =0.

24



FSTANFORD

AERONAUTICS &
ASTRONAUTICS

4/22/20

The invariant group generates the integrating factor

1 1

T An—BE  T2x(y2 — dmx) 2

and the general solution

1/2
y 1 2 4m
w T 2x 2 (Z— - __) .

C2x T 2\ x2 X

The solution can be rearranged as follows

2
b2

25
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y

When this result is expanded, the quadratic terms on both
sides cancel leaving the family of straight lines

y=1/fx+m/1ﬁ

The solution transforms as follows

m
= fy=vyeXx+— = y=We )+

— Y ;

.m
v

y2 = 4mx

Fig. 6.4. Solution family of the Clairault equation.

m
Yes

26
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An invariant solution can be found as follows. Let

1)[’inv_"‘:y—"f(-x):'o

The invariance condition is

0 iny 0 iny
id +y v ==2xfy +y=0
0x dy

X 1pinv = 2x

When this equation is solved the result is the invariant solution

y = +2(mx)!/?

27
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6.10 Exercises

6.1  Reconsider the groups studied in Chapter 5, Problem 5.1:

(1) A projective group

X Y

1 —sy’ Y 1 —sy’

X =

(i1) A hyperbolic group

Xy
x+s

.f=x+S, 5)—_—

(ii1) An arbitrary translation

X =ux, y=y+sflx], f(x)arbitrary.

(iv) A helical transformation

(6.147)

(6.148)

(6.149)

X = xcos[s] — ysin[s], J = xsin[s]+ ycos[s], Z = z+ ms.

Determine an invariant family for each group.

(6.150)

28
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6.2

Find an integrating factor for each of the following ODEs, and work out

the general solution:

dy y _0
dx x+sin[x/y]

(3x% +2xy — y2) dx + (x* — 2xy — 3y} dy =0,

dy ye’

dx  y¥+2xe’

d
x—2+y=x2,

dx
dy _ 4

dx x

+ x? sin[y/x-4].

(6.151)

(6.152)

(6.153)

(6.154)

(6.155)

29
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6.3

6.4

6.5

6.6

6.7

Revisit Chapter 1, Exercise 1.3. Find an integrating factor, and solve the

first-order ODE
dy\2 d
A2) +y(Z)+x=0. (6.156)
dx dx

Show by direct substitution that (6.99) leaves the family of ellipses (6.92)
invariant.
Show that the first-order ODE

dy Yy +x’y—y—x
dx  xy?+x3+y-—x

(6.157)

is invariant under the rotation group (£, n) = (—y, x). Sketch the phase
portrait and identify critical points. Identify an invariant solution. Use

the group to find an integrating factor and work out the solution.

Beginning with (R, Q) = (2, —3) on 03+ 24—7R2 = 0, use the chord—
tangent construction to identify an infinite sequence of rational roots.
Can you find a rational root of the equation Q3 + % R? =1?

30
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