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2.1 Introduction

What is a dimension?

Definition 2.1. A dimension is a measurable property of a physical system
that can be varied by a dilational transformation of the units of measurement.
The value of each variable of the system is proportional to a power monomial
function of the fundamental dimensions.
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2.2 The Two-Body Problem in a Gravitational Field

e

2b

Figure 2.1 Elliptical orbit of a planet about the Sun

Newtonian law of gravitation

Mm

F=-6G—7, (2.1)
r

G =6.670 x 107! N-m? /kg?
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a

Parameters of the problem

R . R . L°
— L, b=L, M=M, m=M, T =T, G = v (23)
M = mass, L = length, and 7 = time
There are six parameters and three fundamental dimensions. So we can
expect the solution to depend on three dimensionless numbers
m b
= =~ (2.4)
and
GMT?
II:; — '____fi___‘ (2.5)
a:

These variables must be related by a dimensionless function of the form

Yy = W(I1y, Iy, I13) (2.6)
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or

GMT? _F m
(}"mean)3 — Ma e (27)

The mean radius is defined as Fpean = vV ab

Theory tells us that

FlZ,e) = an? : )
M’e - (1 4+m/M)(1 — e?)3/4 (2.8)

4/22/20
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Table 2.1. The planets and their orbits.

Heavenly Mass Diameter Mean orbit Orbital period
body (Earth masses) (Earth diameters) Radius (10° km) Eccentricity (years)
Sun 332,488.0 109.15 — — —
Mercury 0.0543 0.38 57.9 0.2056 0.241
Venus 0.8136 0.967 108.1 0.0068 0.615
Earth 1.0000 1.000 149.5 0.0167 1.000
Mars 0.1069 0.523 227.8 0.0934 1.881
Jupiter 318.35 10.97 777.8 0.0484 11.862
Saturn 95.3 9.03 1426.1 0.0557 29.458
Uranus 14.58 3.72 2869.1 0.0472 84.015
Neptune 17.26 3.38 4495.6 0.0086 164.788
Pluto <0.1 0.45 5898.9 0.2485 247.697

Table 2.1 The planets and their orbits

The mass of the Earth is 5.975 x 10**kg and the mean diameter is 12742.46 km

The eccentricity of a planet’s orbit is

e=.,1-—

b 2

a

(2.2)
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For all the planets m /M < 1, and for all but Mercury and Pluto e is very small.
In the limits m/M — 0 and e — O the right-hand side of (2.8) approaches the

finite limit 4772 = 39.4784.

39.67¢
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Figure 2.2 Kepler’s third law for the Solar System.
4/22/20
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2.3 The Drag on a Sphere

“’p U @
— —» D

Figure 2.3 Viscous flow past a sphere

The parameters of the problem are related to one another through a
function of the form

Vo = YolD, u, p,U, r] (2.9)

Dimensions of the governing parameters

~ L
510 U'—_—a
L3 T

. ML = M M
l) = — lL = — ’) =

, (2.10)
T2’ LT

~
I
=

4/22/20
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The fact that the parameters have dimensions highly restricts the
kind of drag functions that are possible. For example, suppose we
guess that the drag law has the form

O0=D—-—(Wu+p+U+r), (2.11a)

If we introduce the dimensions of each parameter the expression
has the form
ML M M L
0=— =+ +=+L). (2.11b)
T? LT L T

Suppose the units of mass are changed from kilograms to grams.
Then the number for the drag will increase by a factor of a
thousand. But the expression in parentheses will not increase by
this factor and the equality will not be satisfied. In effect the drag
of the sphere will seem to depend on the choice of units and this
is impossible. The conclusion is that (2.11a) can not possibly
describe the drag of a sphere.
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The drag expression must be invariant under a three parameter dilation group.

M=e"M, L=¢L, T =¢T, (2.12)

We can derive the required drag expression as follows.
Stepl

Scale the units of mass using the one-parameter group

~

M=e"M, L=1L, T=T.

The effect 1s to transform the parameters as follows.

~ ~

D =¢"D, a=e"u, p=e"p, U=U, F=r.

The drag expression must be independent of the scaling parameter m and
therefore must be of the form.

D p
W():\Ill[_s T U’r]
p’

(2.13)

(2.14)

(2.15)

10
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The dimensions of the variables remaining are

A

D L* p T 7 L s
—_— = 0, - = —, = —, r = .
0 T2 i L2 T
Step 2
Let the units of length be scaled according to
L=,L, T=T.
The effect of this group on the new variables is
D D b N
— =¥ = @:e"yﬁ, U=¢uU, F=er.
p Y MU M

The drag relation must be independent of the scaling parameter /.
A functional form that accomplishes this is

Yo = U D_pU’ r
0 /3 U T

2 would make more sense

(2.16)

(2.17)

(2.18)

(2.19)

11
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The dimensions of these variables are

D =1 bUz = 1 r T 2.20
2513r2i>2 - ’ [1 — 7,, iy, - . ( . )
Step 3
Finally scale the units of time
T =¢'T. (2.21)

The effect of this group on the remaining variables is

~

~ 772 2 = -
b __ D U _ U T _ s
bU2,':2 ,0U2r2 n W U U
The drag relation must be independent of the scaling parameter ¢. Finally
VYo = VY[Cp, Re] (2.23)
where
D UQ2r

Cp = 7 : Re = 2220, (2.24)

U (r?) z

4/22/20
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10"

10°
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L

Schiller-Schmiedel [14]
Liebster [14]

Allen [14]

Wieselberger [14]
Voloshuk-Sedunow [15]
Roos-Willmarth [16]
Brown-Lawler [17]

10’

Re

10?

10° 10* 10°
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Measurements of circular cylinder drag versus Reynolds number
taken by a variety of investigators.

1.5F .
1.0
Cq

0.5F

0

103 10 10° 106
Re
Figure 2 4 Experimental measurements of the drag of a circular cylinder

The data shows a huge amount of scatter - why?

9 ’

D _pUr v va Mk | (2.31)
oU%r2” n U U ror

w=W[

The drag of a sphere or a cylinder depends on a wide variety of length
and velocity scales that we have ignored!

14
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In the limit of vanishing Reynolds number the drag of a sphere is given by

C 24
D=— . (2.25)

Re
If we insert the expressions for the Drag coefficient and Reynolds
number into Equation (2.25) the drag law becomes

D
— 671. (2.26)
uUr

Note that at low Reynolds number the drag of a sphere 1s independent of the
density of the surrounding fluid. In this limit there is only one dimensionless
parameter in the problem proportional to the product Cp x Re.

15
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Reynolds number flow past a circular cylinder. In this case the drag
force 1s replaced by the drag force per unit span with units

A M
Dcylinder — T (2.27)
T
with drag coefficient
Dcylinder 578
Dc inder - ¢ .
e =15 U(2r) (2:28)

Assume that in the limit of vanishing Reynolds number the drag coefficient
of a circular cylinder follows the same law as for the sphere.

14

Dcylinder — —1_3; . (2.29)
If we restore the dimensioned variables in (2.29) the result is
Dcylinder
WU =, (2.30)

This is a completely incorrect result!
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2.4 The Drag on a Sphere in High Speed Flow

/'loo’poo
T, C, C

Shock wave

Figure 2.5 High speed flow past a sphere

The dimensions of the new variables are

(2.32)

17
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fact that the sphere motion significantly changes the temperature of
the oncoming gas.

U? C,

I 2= —

= CoTo’ C,’ (2.33)

The drag relation is now a function of four
dimensionless variables.

w = \I'I[CD’ Rea MOO? )/]

(2.34)
The Mach number is used in (2.34).
U
Ao '
where
2
as, =Y RTw. (2.36)

Without loss of generality we can write

Cp = F[Re, Mw, ¥1. (2.37)
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AERONAUTICS & Miller and Bailey, (JFM 93, 1979) found that the best measurements of
ASTRONAUTICS sphere drag at supersonic Mach numbers were the cannonball
measurements of Francis Bashforth taken for the British Royal Navy.

4/22/20

BASHFORTH’S CHRONOGRAPH, 1864-1873 o D— :

Based at the Royal Military Academy,
Woolwich, the applied mathematician
Francis Bashforth devises a
chronograph sensitive enough to
detect small variations in ballistic
trajectory.

He uses the resulting data to analyse
the effects of air resistance and
atmospheric conditions upon
trajectories, and spends the next 20
years preparing comprehensive ready
reckoner tables for Royal Navy
gunnery officers [see 1886].

Mt gt et nnabattfpin

19
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1-0p
) 08
Miller and o
Bailey, JFM > L
| =
93, 1979 E
S 06—
&
a 74 mm diameter
i from figure 3.
04} ©O
DR
N OO o
0.2 —
L. O
0 i l 1 l 1 1 L l i l 1 l 1
0-6 0-8 1-0 12 1-4 146 1-8

Mach number, M.,

F16cure 2. Variation of drag with Mach number for 74 mm diameter
hollow sphere calculated from Bashforth (1870).

4/22/20
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0-8

0-8

Drag coefficient, Cp

0-6

0-4

Mach

number,
M.
20
L - —— 25
—————— ‘“\Z -------- 30
Extrapolation
(a)
e AR A R
J/k— s v 4
‘ g N , , -1
,———""EZ§7——_'ﬁ5/ so! 100/ 200/
- —1-0
— 1 "
Spherical shot diameter (mm)
fired at atmospheric pressure
Mach number, M..
(b) 0-3
04 108 108 107

Reynolds number, Re.q

F1GURE 4. Summary of sphere drag measurements at high Reynolds numbers: (a) 2:0 < M, < 3-0,
and (b) 0-2 < M_ < 1-8 (curve is in two parts because Cp reaches a maximum between M, = 1-6

and 1-8).

As the Mach number increases the drag coefficient tends to become independent
of both Reynolds number and Mach number with

4/22/20

Cp~1,

(2.38)

21



TSTANFORD

AERONAUTICS &
ASTRONAUTICS

4/22/20

2.4 The Buckingham P1 Theorem

Dimensional analysis makes use of a simple, purely algorithmic procedure
thatis extremely general and can be applied to practically any physical problem.
The various steps are as follows.

(1) Identify the physical variables relevant to the problem (a;, as, . .., aq).

(2) Determine the fundamental dimensions of each physical variable. The
total number of dimensions is (dy, da, ..., dg) (B < «). Each variable is a
power monomial function of its dimensions,

a =di'dy - dy . (2.39)

where ki, ks, ..., kg are usually but not always integers.
(3) Buckingham’s Pi Theorem — A relationship between physical variables
v = flay, ay, ..., a,] must be expressible in a form that is invariant under

a B-parameter dilation group applied to the fundamental dimensions:

Jl :€8| dl, Ciz 2682 dz,..., jﬂ =e‘sf’dﬂ. (240)

22
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(4) The algorithm for accomplishing step 3 is to apply a one-parameter dilation

group to each dimension in succession. New variables are created at each
step, which are independent of the dimension being varied. This process
1s continued until all the dimensions are exhausted. In the final result, the
physical problem can only depend on dimensionless variables via a func-
tion of the form ¢ = W[II, I», ..., II, ]. Usually y =a — . Occasionally
the dimensions of the variables are such that two or more dimensions may
be eliminated in a single step. In this case the number of dimensionless
variables is larger than o — B. See Exercise 2.9 for an example. This notion
can be quantified by forming the 8 x o matrix of exponents of the dimen-
sions of the physical variables. The actual count of dimensionless variables
is  minus the rank of this matrix. If the rank is less than 8 then two or
more dimensions can be combined.

23
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It 1s important to recognize that the dimensionless parameters generated
by the algorithm just described are not unique. For example in the case of
the sphere we could have wound up with the following, equally correct,
result.

D pUr ]
(2.41)

— — CD ’
(b (I)[CD Re, Re] I:/,LUI‘ "

In this form the drag law has a finite value in the limit of vanishing
Reynolds number.

D Ur
Iim & P

, = 0. (2.42)
Re—»0 | nUr u

24
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10° |
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10°

LI IUIITI

10°

| Il"lﬂl

O % <& » 0O o +

Schiller-Schmiedel [14)
Liebster [14]

Allen [14]

Wieselberger [14]
Voloshuk-Sedunow [15]
Roos-Willmarth [16)
Brown-Lawler [17]
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Sometimes two dimensions drop out in a single step

Elastic spheres pressed together

Parameters R
R=L
r=1L
F=ML/T
E=M/LT’

Young’ s modulus

26
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Let the units of mass be scaled according to

~ ~

M=e"M L=L T=T

The effect of this group on the parameters is

~

R=R r=r F=¢"F E=¢"E
The force relation must be independent of the scaling parameter m.

A functional form that accomplishes this is

F
v, =Y, [R””E}

Note that both mass and time have been eliminated.  Eliminate length

r F
= g

27
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- 1/3 9 1/6 -2\ F /3
(Ej = (Ej [( E ]r_z) Poisson’s ratio
E
Al —
4/22/20 R \/E E r’ G — shear modulus

28
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2.6 Concluding Remarks

2.7 Exercises

2.1 Under the influence of surface tension, a liquid rises to a height H in

a glass tube of diameter D (Figure 2.8). How does H depend on the
parameters of the problem?

Fig. 2.8.

2.2 Estimate the time of oscillation of a small drop of liquid under its own
surface tension.

29
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2.3

When a drop of water strikes a surface at sufficiently low speed, surface
tension keeps it round, so it makes a circular spot. As the impact speed
is increased, dynamic forces overcome the smoothing effect of surface
tension, and the drop becomes unstable and forms a spiky shape as shown
in Figure 2.9. (Thanks to Milton Van Dyke for this problem [2.8].) How
does the speed at which the impact becomes unstable depend on the

properties of the drop? Retain only the essential properties, so that your
result involves only a single unknown constant that could be determined
from an experiment. Thus you may wish to assume that viscosity is
negligible, the properties of the surrounding air are unimportant, etc.
See if your result makes sense. For example, does the critical speed
depend on the surface tension in the way you would expect?

Fig. 2.9.

30
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2.4

2.5

Estimate the velocity of fall of a small heavy sphere in a viscous fluid
of lower density than the sphere under the influence of gravity. Compare
your result with the exact solution. How long does it take the sphere to
reach its terminal velocity when dropped from rest?

Liquid in an open container flows through a long horizontal pipe into
a second container as shown in Figure 2.10. How does the time for
the liquid level to reach equilibrium depend on the parameters of the
problem?

Fig. 2.10.

31
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2.6

Use dimensional analysis to find how the rowing speed depends on
the number of oarsmen for racing shells. This problem is discussed by
McMahon [2.9] and Barenblatt [2.4]. Use the following asssumptions.

Table 2.2. Rowing times for 1-, 2-, 4-, and 8-man shells
from three previous Olympics. The distance traveled
in each case is 2000 m.

Time (s)
Olympics 1 oarsman 2 oarsmen 4 oarsmen 8 oarsmen
Atlanta 404.85 376.98 356.93 342.74
Barcelona 411.40 377.32 355.04 329.53
Seoul 409.86 381.13 363.11 —

(1) The boats are geometrically similar.
(ii) The boat weight W per oarsman is constant.
(ii1) Each oarsman contributes the same power, P.
(iv) The only hindering force is skin friction, and the friction coefficient
is constant over the wetted area. The friction coefficient is defined
as ¢y = Twan/( %pU 2), where Ty is the wall shear stress.

Hint.  Find how the volume of the displaced water varies with the num-
ber of oarsman and the length of the boat. Equate the expenditure of
energy on skin friction to the power supplied by the oarsman. Data for
men’s rowing over a 2-km course from three recent Olympic summer
games are presented in Table 2.2. Plot the data in logarithmic coordi-
nates and compare with your prediction. Notice that in the context of
this problem the number of oarsmen is a fundamental dimension.

32
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2.7

2.8

2.9

Critique the assumptions in Exercise 2.6 — particularly (i), which seems

to suggest that the shells get wider as they get longer to accommodate
more rowers.

(1) How does the problem work out if the width of the shell is assumed
to be constant?

(ii) Suppose the drag is primarily due to the generation of waves and
skin friction can be neglected. How will the speed depend on the
number of oarsman? Do these results shake your confidence in the
solution developed in Exercise 2.6?

(iii) Work the case where the race is carried out by fleas on a lake of
honey.

What is the speed of the wave in a row of falling dominos on a table?
Add whatever simplifying assumptions you feel are reasonable, such

as perfectly rigid dominos, constant coefficient of friction between the
dominos and the table, etc. This problem is the subject of a pair of journal
papers by Stronge [2.10] and Stronge and Shu [2.11] as well as a note in
the SIAM Review Problems and Solutions. The problem was proposed

by Daykin [2.12] and solved by McLachlan et al. [2.13].

Show that if two equal-size elastic spheres are pressed together, the radius
of the circle of contact varies as the one-third power of the force between

them. How does it vary with the radius of the spheres?

33
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2.10 One of the well-known observations in blood flow is that the viscous

2.11

shear stress at the wall of an artery is approximately independent of
the diameter of the artery. Consider a bifurcation where the flow in one
large artery splits into two smaller adjoining arteries of equal size. How
are the diameters of the smaller arteries related to the diameter of the large
artery?

Use dimensional analysis to deduce how the weight a man can lift de-
pends on his own weight. Assume that the strength of a muscle varies
as its cross-sectional area. See if your result correlates the data in
Table 2.3, taken from the 1969 World Almanac for the 1968 Senior
National AAU weightlifting championships. How much did the heavy-
weight lifter weigh?

Table 2.3. Total weight lifted for
different classes.

Body weight  Lifted weight

Class (pounds) (pounds)
Bantam 123.5 740
Featherweight 132.25 795
Lightweight 148.75 820
Light-heavy 181.75 1025
Middle-heavy 198.25 1055
Heavyweight ? 1280

34
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2.12 There is continuing interest in pushing measurements of circular cylinder
drag to the highest possible Reynolds numbers. One scheme that has been
proposed is to tow a submerged, high-aspect-ratio cylinder behind two
nuclear-powered aircraft carriers pulling lines attached to each end of the
cylinder. The kinematic viscosity of water is small, the cylinder diameter
can be made quite large, and thus high Reynolds numbers ought to be
achievable. Assuming only cylinders of a given aspect ratio, say L/r =
60, are used, how does the required towing force vary with the Reynolds

number based on cylinder diameter? What force would be required to
reach a Reynolds number that exceeds the highest available data (Re =
10%, C; = 0.6)? The maximum towing force available is about 108 N.

35
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Speed of racing shells

Sculling Boats

Single (1x): Approximately 26 feet long, 11 inches wide,
and about 30 Ibs. Rowed by one person using two oars.

Double (2x): Approximately 32 feet long, 13 inches wide,
and about 60 Ibs. Rowed by two people using two oars each.

Quad(4x): Approximately 42 feet long and about
115 Ibs. Rowed by four people using two oars each.

Sweep Boats

Pair (2-): Approximately 32 feet long, 13 inches wide and
about 60 |bs. Rowed by two people using one oar each.

Four (4+): Approximately 42 feet long, 21 inches wide and
about 112 Ibs. Rowed by four people using one oar each.
Coxwsain can be in the bow or the stem.

A Straight Four (4-) is a similar boat but without a coxswain.

Eight (8): Approximately 60 feet long,
26 inches wide and about 210 Ibs.
Rowed by eight people using one oar
each. Coxwsain sits in the stern.

U.S. Patent

Jan. 18, 1994

Sheet 2 of 9

5,279,239

36
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Speed of racing shells - dimensional analysis

N — number of
oarsmen

Fundamental dimensions W — weight per

Mass oarsmen
Length
Time P — power per
Oarsman oarsmen

i

4/22/20



FSTANFORD Dimensions of the governing parameters

AERONAUTICS &
ASTRONAUTICS

Number of oarsman - N = O

Fundamental dimensions ~ Weight per oarsman - W =ML /OT? 9 parameters,
R 4 fundamental
M  Mass Power per oarsman - P = ML’ / OT’ dimensions
. : A 2 Expect 5
L Lf:ngth Acceleration of gravity - g=L/T dimensionless
r Time Boat velocity - U =L/T variables
O  Oarsmen

Water density - p=M / I’
Water viscosity - (t=M / LT

A Why is h not
Boat length-a=L a governing
Boat width - b =L parameter ?

€ U

4/22/20
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STANFORD Step 1 — Use the number of oarsman to

ASTRONAUTICS eliminate O, reduce from 9 to 8 parameters.

NW = ML /T’
NP=MIL*/T?
L/T?
LIT

ML
M /LT
L

L

8
U

Q> T O
|

S
||



TSTANFORD Step 2 — Use the density to eliminate M,

AERONAUTICS &
ASTRONAUTICS reduce from 8 to 7 parameters.

ﬂ:L“/T2
o,

NP

N—=L5/T3
o,

g=L/T">

U=L/T

T

o,

a=1L

b=L

40
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ASTRONAUTICS reduce from 7 to 6 parameters.
AW
pU*
NP
pU>
5%:1/L
o,
pU

41
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ASTRONAUTICS reduce from 6 to 5 dimensionless parameters.

NW
pU’a’
NP
pU’a’

=1

=1
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There must exist a dimensionless function of the form

pU’a’ pU’a®" u ’«/ga ‘a

S,/ 1 N

Weight Power Reynolds Froude Aspect
number number number number  ratio

1//—‘1’( NW NP pUa U Q]

that governs the problem.

43
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Since all racing shells are assumed to be similar in shape use
the wetted area as the length scale instead of the boat length.

AW _ (abh)ZB

1//:\1’[ NW NP pUA™ U bj

pU214W ’pU3AW ? ,LL ’gl/ZAW1/4 ’a

An equally valid alternative function is.

NW NP b
(p:(I) 3/2 3 ’Re’Fra_
pgA," pPUA, a

where the Froude number has been combined with the weight
number.

44
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AERONAUTICS & M
NW =C,pg(abh)=C,pgA,’>"* g| Ih
5= (D( c NP puA” U gj l

ASTRONAUTICS
1° 3 ’ 1/2 1/4 2
pU'A,  u  g7A" a

Equate power to drag NP=1 AU T, = wall shear stress
NP  C, ¢ =~ T,
pUA, 2 S PU?

C b
¢ — (I)(Cla_faRe 7E» 9_j
2 a
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NW C, NP

C — =
1 pgAW3/2 2 pU3AW

Eliminate the wetted area

C 213717 2/3
NP:_pr3( ]2\/73 2‘2/ 2/3)
2 pg ¢,

Velocity is proportional to the 1/9t power of the
number of oarsman.

21/3C 2/9 p1/9W 2/9U
1 =
Cf1/3 P1/3g2/9N1/9




Tflfo‘ﬁlégg[g More generally the velocity is proportional to the 1/9t power of the

ASTRONAUTICS . .
number of oarsman times a function of the Reynolds number, Froude
number and aspect ratio.

p1/9W2/9U pUAwl/z U b
6=0 P1/3g2/9N1/9 ’ I ’g1/2AW1/4 >

p1/9W2/9U ~ (pUAWm U bj
a

1/3 2/9 n71/9 — S 12 4 1/4 0
PN uog"A

P1/3gz/9 1/9 b Missing from all this is the effect of the
U = N f Re ,F; ,— aerodynamic drag of the rowers on
a

p1/9W 2/9 boat speed.
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Seoul Barcelona Atlanta Sydney Athens Bejing London Rio de Janeiro Number of oarsman
® 4 < 4
[ ) o o o ® ® ® @ <« 2
U m/sec P PY . P ® o ° o < 1

4
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For an 8 man shell, the wetted area is about 20 x (2/3) = 13 m? and the Froude number would be about

8 * Fr = 6/(9.8Y/2x13.0/4)=1.01.

Assuming a drag coefficient of 1 and a frontal area normal to the boat direction of 1 m?, the aerodynamic drag at 6 ™/sec
would be about

D=Cdx(1/2)x (1) x62x (1) = 18 N.

6 | The force generated by the oarsmen to push the shell through the water is about

T=8x540 /6 =720 N.

p1/9W 2/9U

P1/3g2/9N1/9 Seoul Barcelona Atlanta Sydney Athens Bejing London Rio de Janeiro

4

p = 1000 kg/m? ~ ¢ e o A v ~ A
P =540]/sec

w_ 102 kg 2

g ,
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