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What is a dimension?

2.1   Introduction
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Figure 2.1   Elliptical orbit of a planet about the Sun

Newtonian law of gravitation

2.2   The Two-Body Problem in a Gravitational Field

(2.1)
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and

(2.4)

(2.5)

(2.6)

(2.3)

Parameters of the problem

There are six parameters and three fundamental dimensions. So we can 
expect the solution to depend on three dimensionless numbers

These variables must be related by a dimensionless function of the form
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or

(2.7)

(2.8)

The mean radius is defined as

Theory tells us that
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Table 2.1  The planets and their orbits

The mass of the Earth is and the mean diameter is

The eccentricity of a planet’s orbit is

(2.2)

kg km
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Figure 2.2    Kepler’s third law for the Solar System.
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Figure 2.3   Viscous flow past a sphere

(2.10)

(2.9)

Dimensions of the governing parameters

The parameters of the problem are related to one another through a 
function of the form

2.3   The Drag on a Sphere
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The fact that the parameters have dimensions highly restricts the 
kind of drag functions that are possible. For example, suppose we 
guess that the drag law has the form

(2.11a)

(2.11b)

If we introduce the dimensions of each parameter the expression 
has the form 

Suppose the units of mass are changed from kilograms to grams. 
Then the number for the drag will increase by a factor of a 
thousand. But the expression in parentheses will not increase by 
this factor and the equality will not be satisfied. In effect the drag 
of the sphere will seem to depend on the choice of units and this 
is impossible. The conclusion is that (2.11a) can not possibly 
describe the drag of a sphere. 
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Step1

The drag expression must be invariant under a three parameter dilation group.

(2.12)

Scale the units of mass using the one-parameter group

(2.13)

(2.14)

(2.15)

We can derive the required drag expression as follows.

The drag expression must be independent of the scaling parameter m and 
therefore must be of the form.

The effect is to transform the parameters as follows.
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(2.16)

(2.17)

(2.18)

The dimensions of the variables remaining are

Let the units of length be scaled according to

Step 2

The effect of this group on the new variables is

The drag relation must be independent of the scaling parameter l.

A functional form that accomplishes this is

(2.19)

2 would make more sense 114/22/20



The dimensions of these variables are

(2.20)

Finally scale the units of time
Step 3

(2.21)

(2.22)

The effect of this group on the remaining variables is

The drag relation must be independent of the scaling parameter t. Finally

(2.23)

where

(2.24)
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Measurements of circular cylinder drag versus Reynolds number 
taken by a variety of investigators.

The data shows a huge amount of scatter - why?
Figure 2.4   Experimental measurements of the drag of a circular cylinder

The drag of a sphere or a cylinder depends on a wide variety of length 
and velocity scales that we have ignored!

(2.31)
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In the limit of vanishing Reynolds number the drag of a sphere is given by

If we insert the expressions for the Drag coefficient and Reynolds 
number into Equation (2.25) the drag law becomes 

(2.25)

(2.26)

Note that at low Reynolds number the drag of a sphere is independent of the 
density of the surrounding fluid. In this limit there is only one dimensionless 
parameter in the problem proportional to the product CD x Re.
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One might conjecture that the same kind of law applies to the low 
Reynolds number flow past a circular cylinder. In this case the drag 
force is replaced by the drag force per unit span with units

(2.27)

with drag coefficient

(2.28)

Assume that in the limit of vanishing Reynolds number the drag coefficient 
of a circular cylinder follows the same law as for the sphere.

(2.29)

If we restore the dimensioned variables in (2.29) the result is

(2.30)

This is a completely incorrect result! 164/22/20



Figure 2.5   High speed flow past a sphere

2.4   The Drag on a Sphere in High Speed Flow

The dimensions of the new variables are

(2.32)
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There are now two additional dimensionless variables related to the 
fact that the sphere motion significantly changes the temperature of 
the oncoming gas.

(2.33)

The drag relation is now a function of four 
dimensionless variables.

(2.34)

The Mach number is used in (2.34).

(2.35)
where

(2.36)

Without loss of generality we can write

(2.37)
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Miller and Bailey, (JFM 93, 1979) found that the best measurements of 
sphere drag at supersonic Mach numbers were the cannonball 
measurements of Francis Bashforth taken for the British Royal Navy. 
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Miller and 
Bailey, JFM 
93, 1979
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As the Mach number increases the drag coefficient tends to become independent 
of both Reynolds number and Mach number with

(2.38)
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2.4   The Buckingham Pi Theorem
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It is important to recognize that the dimensionless parameters generated 
by the algorithm just described are not unique. For example in the case of 
the sphere we could have wound up with the following, equally correct, 
result.

(2.41)

(2.42)

In this form the drag law has a finite value in the limit of vanishing 
Reynolds number.
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Parameters
R̂ = L

r̂ = L

F̂ = ML /T 2

Ê = M / LT 2 Young’s modulus

R rF F

Sometimes two dimensions drop out in a single step

Elastic spheres pressed together
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Let the units of mass be scaled according to

The effect of this group on the parameters is

The force relation must be independent of the scaling parameter m.

A functional form that accomplishes this is

 !M = emM  !L = L  !T = T

 !R = R  !r = r  !F = emF  !E = emE

ψ 0 = Ψ1 R,r, F
E

⎡
⎣⎢

⎤
⎦⎥

Note that both mass and time have been eliminated. Eliminate length

ψ 0 = Ψ2
r
R
, F
Er2

⎡
⎣⎢

⎤
⎦⎥
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R rF F

Exact solution
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Poisson’s ratio

G – shear modulus 284/22/20



2.6   Concluding Remarks

2.7   Exercises
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Speed of racing shells
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Speed of racing shells - dimensional analysis

N – number of 
oarsmen

W – weight per 
oarsmen

P – power per 
oarsmen

Fundamental dimensions  
Mass

Length
Time

Oarsman

a

b

hg

ρ

U

µ
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Dimensions of the governing parameters

a

b

hg

ρ

U

µ

Fundamental dimensions

Number of oarsman - N̂ =O

Weight per oarsman - Ŵ = ML /OT 2

Power per oarsman - P̂ = ML2 /OT 3

Acceleration of gravity - ĝ = L /T 2

Boat velocity - Û = L /T
Water density - ρ̂ = M / L3

Water viscosity - µ̂ = M / LT
Boat length - â = L

Boat width - b̂ = L

Why is h not 
a governing 
parameter ?

M      Mass
L       Length
T       Time
O      Oarsmen

9 parameters,
4 fundamental 
dimensions
Expect 5 
dimensionless 
variables
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Step 1 – Use the number of oarsman to 
eliminate O, reduce from 9 to 8 parameters.

 

NW! = ML /T 2

NP" = ML2 /T 3

ĝ = L /T 2

Û = L /T
ρ̂ = M / L3

µ̂ = M / LT
â = L

b̂ = L
4/22/20 39



Step 2 – Use the density to eliminate M, 
reduce from 8 to 7 parameters.

 

NW
ρ

!
= L4 /T 2

NP
ρ

!
= L5 /T 3

ĝ = L /T 2

U" = L /T

µ
ρ

"
= L2 /T

â = L

b̂ = L
4/22/20 40



Step 3 – Use the boat velocity to eliminate T, 
reduce from 7 to 6 parameters.

 

NW
ρU 2

!
= L2

NP
ρU 3

!
= L2

g
U 2

"
= 1/ L

µ
ρU

!
= L

â = L

b̂ = L
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Step 4 – Use the boat length to eliminate L, 
reduce from 6 to 5 dimensionless parameters.

 

NW
ρU 2a2
!

= 1

NP
ρU 3a2
!

= 1

ga
U 2

"
= 1

µ
ρUa

!
= 1

b
a

#
= 1
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Reynolds 
number

Froude 
number

ψ = Ψ NW
ρU 2a2

, NP
ρU 3a2

, ρUa
µ
, U
ga
, b
a

⎛

⎝⎜
⎞

⎠⎟

There must exist a dimensionless function of the form

Aspect 
ratio

that governs the problem.

Weight 
number

Power 
number
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ψ = Ψ NW
ρU 2Aw

, NP
ρU 3Aw

, ρUAw
1/2

µ
, U
g1/2Aw

1/4 ,
b
a

⎛
⎝⎜

⎞
⎠⎟

Aw = abh( )2/3

Since all racing shells are assumed to be similar in shape use 
the wetted area as the length scale instead of the boat length.

An equally valid alternative function is.

φ = Φ NW
ρgAw

3/2 ,
NP

ρU 3Aw
,Re,Fr ,

b
a

⎛
⎝⎜

⎞
⎠⎟

where the Froude number has been combined with the weight 
number.4/22/20 44



Use Archimedes’ principle

NW = C1ρg abh( ) = C1ρgAw3/2
b

hg

ρ
φ = Φ C1,

NP
ρU 3Aw

, ρUAw
1/2

µ
, U
g1/2Aw

1/4 ,
b
a

⎛
⎝⎜

⎞
⎠⎟

Equate power to drag NP = τ wAwU τ w =  wall shear stress

Cf =
τ w
1
2
ρU 2

NP
ρU 3Aw

=
Cf

2

φ = Φ C1,
Cf

2
,Re,Fr ,

b
a

⎛
⎝⎜

⎞
⎠⎟



C1 =
NW

ρgAw
3/2

Cf

2
= NP
ρU 3Aw

NP =
Cf

2
ρU 3 N 2/3W 2/3

ρ2/3g2/3C1
2/3

⎛
⎝⎜

⎞
⎠⎟

Eliminate the wetted area

21/3C1
2/9

Cf
1/3 = ρ1/9W 2/9U

P1/3g2/9N1/9

Velocity is proportional to the 1/9th power of the 
number of oarsman.



θ =Θ ρ1/9W 2/9U
P1/3g2/9N1/9 ,

ρUAw
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µ
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g1/2Aw

1/4 ,
b
a

⎛
⎝⎜

⎞
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P1/3g2/9N1/9 = f ρUAw

1/2

µ
, U
g1/2Aw
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a

⎛
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⎞
⎠⎟

U = P1/3g2/9

ρ1/9W 2/9

⎛
⎝⎜

⎞
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N1/9 f Re,Fr ,

b
a

⎛
⎝⎜

⎞
⎠⎟

More generally the velocity is proportional to the 1/9th power of the 
number of oarsman times a function of the Reynolds number, Froude 
number and aspect ratio.

Missing from all this is the effect of the 
aerodynamic drag of the rowers on 
boat speed.



Seoul Barcelona Atlanta Sydney Athens Bejing London Rio de Janeiro
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U m/sec

Number of oarsman

8
4
2
1

I collected data from the last eight olympics



Seoul Barcelona Atlanta Sydney Athens Bejing London Rio de Janeiro
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𝜌 = 1000 𝑘𝑔/𝑚!

𝑃 = 540 𝐽/𝑠𝑒𝑐

𝑊
𝑔
= 102 𝑘𝑔

� � � � �

�

�

�

�

The 1/9th power law scaling seems to work pretty well.

For an 8 man shell, the wetted area is about 20	x	(2/3)	=	13	𝑚! and the Froude number would be about 

Fr	=	6/(9.8"/!x13.0"/$)=1.01.

Assuming a drag coefficient of 1 and a frontal area normal to the boat direction of 1 𝑚!, the aerodynamic drag at 6 ⁄% &'(
would be about 

D	=	Cd	x	(1/2)	x	(1)	x	6! x	(1)	=	18	N.

The force generated by the oarsmen to push the shell through the water is about

T	=	8	x	540	/6	=	720	N.
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