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WITHE ILITTILE FRICTION*

By H. Blasius
INTRCDUCTION

1. The vortices forming in flowing water behind solid bodies are
not represented correctly by the solution of the potential theory nor
by Helmholtz's Jets. Potential theory is uneble to satisfy the condi-
tion that the water adheres at the wetted bodies, and its solutions of
the fundamentel hydrodynamic equations are at variance with the obser—
vation that the flow Beéparates fram the body at a certain point and
sends forth a highly turbulent boundary layer into the free flow.
Helmholtz's theory attempts to imlitate the latter effect.in such a way
that it Joins two potential flows, Jet and still water, nonanalytical
alons & stream curve. The admissibility of this method is based om
the fact that, at zero pressure, which is to prevall at the cited
stream curve, the commectlion of the fluld, and with it the effect of
ad jacent parts on each other, is canceled. In reality, however, the
pressure at these boundaries ls definitely not zero, but can even be
varied arbitrarily. Besides, Helmholtz's theory with its potentlal
flows does not satisfy the condition of adherence nor explain ths
origin of the vortices, for in all of these problems, the friction
must be taken into account on principle, according to the vortex
theorem.

When a cylinder is dipped into flowing water, for example, the
flow corresponds, qualitatively, to the known potential, but as the
water adheres to the cylinder, & boundary layer forms on the cylinder
wall in which the velocity rises fram zero at ths wall to the value
gliven by the potential flow. In this boundary layer, the friction
plays an essential part because of the marked velocity difference;
on 1t also depends the extent of the velocity—decreasing well effect,
which must be conveyed by shearing forces into the fluid, that is, the

#'Grenzschichten in Fliissigkeiten mit kleiner Relbung.” .
Zeltschrift fiir Mathematik und Physik, Band 56, Heft 1, 1908, pp. 1 — 37.
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thickening of the boundary layer. That the outer flow separates at a
certain place, and that the water, set in viclent rotation at the

boundary, leads into the open, must—be—wexplainable from the processes
in the boundary layer.

The exact treatment of this question was undertaken originally
by Prandtl (Verhandlungen des intern. Math. Kongress, 1904). This
explanation of the separation ls repeated below. Since the integration
of the hydrodynamic equations with friction is & too difficult
problem, he assumed the internal friction as being smell, but retained
the condition of adherence at the boundary surface. In the present
report, several problems, based upon the simplified hydrodynamic
equations resulting fram Prandtl's article, are worked out. They
refer to the formation of boundary layers on solld bodies and the
origin of separation of Jets from these boundary layers suggested by
Prandtl. The writer wishes to thank Prof. L. Prandtl for the sugges—
tion of this article.

2. The constant of the intermal friction is assumed small as in
Prandtl's report. The boundary layers then became correspondingly
thin; the fluid maintains its normal (potentisl) velocity up to
near the boundary surface. Nevertheless, the decrease in velocity
" to value zero, and, as the calculation will show, the separation
in this boundary layer must; naturally, continue, and so the potential
flow is not completely regained, even at arbiltrarlly little friction;
rather the separation and, the transformation of the Flow effected
through it behind the body must—prevail even at arbitrarily small
friction.

The procedure is limited to two-dimensional flow end coordinates
perallel and at right angles to the boundary (arc lsngth and normal
distance). In splte of its curvature, the type of the basic equations
in the narrow space of the boundary does not—differ perceptibly fram
that for rectangulsr coordinates. With € as order of magnitude of
the boundary-layer thickness : T ’
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as the veloclty u over this distance is to increase fran zero to

normel values; u, @, -@l, and -ﬁ have normal value; fram the
ot~ ox 3
equation of continuity follows then %1 ~ 1, and by integration, v ~ ¢-.
- ;

The terms 1n the fundamental equations obtain then the following
order of magnitud.el
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The friction gains influence when it i1s put at k ~ 52 3 this
gives the relationship between boundary—layer thickness and smallness
of friction constant. In the first equation, the term ¥2y/d3x2
cancels out; in the second equation, only 3p/dy ~ ¢ or, when
allowing for the coordinate curvature, ~ 1 remainsl. In both cases ’

laliowence for the curvature of the coordinates produces, as is
apparent when reforming the dlfferential quotients, only in the second
equation a not-to-be-neglected term pu2/r if r is the radius of
curvature. This term is of the order of magnitude, unity.
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the effect of the prezsure on y is to be disregarded since, in the
narrow space of the boundary layer, the integration of Jp/dy can,
at the moet, produce pressure dlfferences of the order of magnitude

€ or 6§, or, in other words, pressure and pressure difference

3p/3x are independent of y, hence, are "impressed"” by the outer
flow on the boundary layer. The velocity of the outer flow next to
the boundary layer is dencted by T &nd is to be regarded solely

as function of— x because the really existing dependence on y, when
coampared with the gubstantiel variatione in the boundary layer iteelf,

can be ignored in the sense of the foregolng omissions; v is accord~—

ingly =~ ¢ = Vk, hence becames zero with k. The remaining fundamental .
equations for the boundary layers are then:

p(— —-—-+vay) {E - v o ) 2

u , ov _
ax oy
Boundary conditiona are
for y = 0: u=20 v=20

for ¥ = 2 u ='u

These equatlions establish, to a certain extent, & basls for =
special mechanice of boundary laysrs, since the outer flow enters only
in "impressed" manner. _ . .

3. The qualitative explanation for ithe separation of flow .
according to Prandtl is as follows: the pressure difference, and
with it the acceleration, 1s, apart fram the friction term, comstant
throughout the boundary layer, but the velocity near the wall is
lower. As a result, the velocity here drops sooner below the value
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zero for pressure rise than ocutside, thus giving rise to return flow
and Jet formation, as Indicated by the velocity profiles in the figure
below. B ’

— =0 for y=0

This explanatlion does not work like the Helmholtz Jet theory with

an ad hoc assumption, but only with the concepts forming the basis

of the present hydrodynamic equations. The stream line, which bounds
the separated part of the flow, departs at a certain angle from the
area of separation since the stream function V¥ develops

around the separation point [x] in the following manner:

¥ = cly3 + co(x — [x] )y2

Ag a less important effect, it is to be foreseen that, as a
consequence of the stagnation of water effected by adhesion, the flow
1s pushed away from the body. Through this and the reformed flow aft
of the body, the flow upstream from the body is, of course, affected
also, so that the assumption of potential flow l1s insufficient for
quantitative accuracy of results and must be replaced by experimental
recording of the pressure distribution.
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I. BOUNDARY ILAYER FOR THE STEADY MOTICN ON A FIAT
PIATE IMMERSED PARALIEL TO THE STREAM IINES
The flow proceeds parallel to the x-axis. The plates starts in
the origin of the coordinates and lies on the positive x—axis.
In this very elementary case, there i1s no pressure differsence;
hence, no separation is expected. However, the calculaiion 1s

carried out to illustrate the mode of calculation to be used later.
The fundamental equations read:

F’Gﬁz& + V§E) = Fu

=T 52
ox dy

The equation of-continuity is integrateﬁ by introducing the stream
function ¥:

oy i
U = o= V = ce me—
oy dx
Boundary conditions are:
for y = 0: u =20, v=0
for y = ot u = U, «—congtant— -

1. According to the principle of mechanical similitude, the )
equations can be 2implified when a similitude tggpgforma@ion converting
differential equations and boundary conditions are known: multi—
plylng x, y, u, v, ¥ by the factors x5, ¥o» Ugs Vgos 8nd VYo resulis

in

ey
0 -
5 Vo =uoyo; W =1
To 0 Yo T Wo¥oi Yo

k
= = —%

VO=

as conditions that the problem and its solubion are transformed, and
that, through the transformation, p, k, W = 1 are created. The four
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equations still leave a degree of freedam in the cholce of the
factors =xg, Yos Ugs Vos 8nd V¥,. The last three equations define

the factors assumed by w, v, and V through the transformation; the
Pirst states that the desired solution of the problem transforms in
itself, provided only that

2
° _ 1
o]

(2
Hl‘d

or in other words, with consideratlion of the factors which wu, v,
and ¢ assume, the conditlion can depend only on

£ 32
k x

By this argument, the number of Independent variables 1s reduced.
Next

g=1/2]/;-'k_g.%

' v={%~ﬁ?.§

are Introduced; { 1s then sole function of & and

u=1/2 uf

v=1/2E%(§C’ _ Y

Insertion in the differential equation gives

6e = — g
Boundary condltions:
for &= 0: ¢ =0 t=0 fram u = 0; v = 0;
for £ =o: ¢ =2 fran w = u-



8 : . NACA TM 1256

2. The integration of these and subsequent—eguations is effected
by expension in series: expansion In powers for £ = 0, asymptotic
approximetions for £ = w. The boundary conditions at both points
being glven, one and two integratlon constants, respectively, occur
in the expansions. They are deflned by the fact that—both expansions
must agree, at-an arbitrary point in the functicon value ¢, to the
first and second differential quotient. The agreefient of all differen—
tial quotlents 1s then assured by the differential equation.

3. Solution of the above equation by expansion in powers
EL" = g
for & =0 with the boundary conditions &t this point
tt =0 t =0
is effected by

o0

: I opaRtl 3n+2
= E- —) =B ___t
; n=0 ( ) (311 +—2)!

which is so chosen that the coefficients c¢p to be defined are
whole positive numbers, which simplifies calculation. The

factor oPtl brings out the nature of entry of the integration
constant; co, which otherwise would occur as such, can then be
put-as co = 1. The recursion formula for c¢, reads

n~l
cn =2 (37 evenaoy
v=0 \ 3V
The first -of the thus camputed coefficients are:
co=1 cy =1 ¢y = 11 c3 = 375 ey = 27,897

c5 = 3,817,137 2cg = 865,874,115 o7 = 298,013,289,795

On account of the convergence, the dencminator (3n + 2)! was used in
the previous equations; {' and " are easily formed.

2The coefficients cg and c7 in the original thesis are
incorrect. This error has no effect until the fourth decimal.

~
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L. There is an additive integration constant for ¢ in the
asymptotic approximation of ¢ because

for & = o Ert =2
* hence,
§ = 2t + comst. = 27

so that 17 appears as new coordinate shifted toward ¢.

To campute a first correction ;l, put
§=2ﬂ+§l

which gives

Qﬂgl" = —51"

wilth the squares of the corrections disregarded, hence by integration:

1 n_2 n_.2 —nZ
cl = 7'JF dq Jf o 1 dn = 77 JF e dn + %e T
-2} [--] (-]
n_ 2 2
_ =T} [ —T]
§'—7fe dn  ¢y" =7e
1 - 1

The general procedure for coamputing the other terms is such
that further minor corrections ¢, are added and its squares dis—

regarded. The result is a set of linear differential equations for §j,

the left, hamogensous side always the same; at the right, the error
appears as "impressed force" which the sum of the preceding approxima—
tions, inserted in the differential equations, leaves.

5. The obJect is reached much quicker by the following argument:
The differential equation for gl

2"] gl“ = _glm
arlses from the original equation

tg =~
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when the roughest approximation ¢ = 25 1s inserted at the left for §.
Obviously, { hes the least effect at this point, and the differential
equation is then integrated as if { were known at this point.

= f ndn f nd.'qe"'fngdﬂ

The three integration constants are contalned in the arbitrary low
limits. Putting § = 2n at—the right gilves §; at the left, but

putting ¢ =2n + § at the right gives

ool

or with consideretion to the boundary conditions

¢ = 2n +7/ d.n/ dne"‘“( / tldn)
=20+ § - 7[11&1]‘[“&119—“12[119_@

Hence, the second asymptotic approximatiqn

T T o M n n_.2
2=_72/d.n/'d.'q~e_n'[dq/dn/endn
-] 00 (-] o

By partial integratlion

2 2 1 2
£, == Z(2n? + 1)o /’ o—an — 1— -2
[=-4
— n 2 2
Eot = ——ne n? / ® an -~ / iﬂ dn + Lo2n
L ” 8

2
2 n_.2 2 n 2 M 2
= - 3%—9"“2 / e N dn — %—'T\ ‘Ko e"'qad.'ﬂ + 2 [ B0,

@ 2 Ve
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6. A general statement about such integrations reads as follows:
According to the formula

n : U
f e"ﬂznnd'q = - ;—“rln_le—ne + n%-l / e—ﬂzqn—edn
. «©

to be gained by partial integration, each integral of this form can be
2 n_.2 '
reduced to the functions e 1 and / e dn mltiplied by powers

@

of mn. After several such integrals are obtained, the inmermost is
transformed, 1f necessary, in the indicated manner. The integral e !

n_,2
or [/’ e dnq mltiplied by powers, appears then below the penultimate
o

integral sign. The former gives no new difficulty; the latter can be

—n2 m_.2
reduced by partial integration t¢ the two functions e gl and / Pyl dn
[- -]

n n n
/ dn f e"‘ﬂed:q =7 f e‘ﬂzdn + é—‘e—ﬂe
- (-] {--]

n 1 o M 2
ndn e—nzdn = 1712 e N dn — L f e"ned'q + Ene™N
2 L n
-] (=]
1 2 2 2
f nedn \/‘qe_nzd-q = 332713 fe—n dn + %'qge_“ + -:-'é'e—n and so forth.
[+o] [ -] - -}

If, as above, the integral can be quadratic in e—ﬂa, four types
mist be dlstingulshed: :

2 2 2 2 2 2
21", e 1 /ﬁ e~ dn, /WI e 1 dny , /"‘1 e dn
(-} (-] (==}

multiplied by powers of 1. The first and fourth types glve nothing
new. Partial integration provides for the second the formula

1 n Yl 2 |2 T 2 n
f e~ %an f e—nzd.-q = f e dny -— / e~ ay / e_nadn
-] -] (- <] ©
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12
or
| o) 1 2
/ T dq / e"’nedn = = / e_ngd'q
2
o0 o o0
and
n _2 [n_> 2 Mo_> n_, 2
ne " dn o dn = — Lo~ oM dn + = | e *Nan
2 o 2 Jeo
oo [~} :
2 2 2 e % 4 pp2
n2e~M%an jﬂ e ay = "'"1 e_'rl dn + - e dn — 2=
o oo ® 8
and so forth.

Likewise for the third type

Y /Mm_o {2 n_,2 (2 _o M
e M dnp dn = q e M an + e e"ﬂzdn - e"e'qzd.n
n
(-] -] (-] - 0
n AN 2 n .o 2 s PN 2
/ / e'ﬂzd.n ndn = %‘q f e N"dn + -;—‘ne_”] / e~ dn
[+-] [+] (-] o
1 2
- %{f e~"%dn } + -é—'e‘ene and so farth.
* )

Since no new types for integrals are introduced by these formulas,

the indicated tables of formulas govern all integrals in which o™
occurs no more than twlce. Any number of successlive integrations
over such functions are possible; the powers of 7 Involved are
unrestricted. The formulas for {, 1n section 5 were obtained by
this method. These integrations will be met again later. With the
type of integration results thus known, the calculations can be made
by utilizing & formula with indeterminant coefficlients.

7. With this differentlal equatlion, it is possible alaso to define
the error that afflicts the present solution as a result of the effected
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omissions. It is easlly verified that 2n, 2q + &y, 27 + & + &

remain below the true velue of {. An upper limit can also be found
by employing the previously given (see Section 5) form, somewhat
modified

y
£ = 2n+7/dnque—ﬂe ®
0 [--}

of camputing a finer fram a rougher approximation:; a rather arbitrarily
chosen upper limit, such as the first term of the semiconvérgent
expansion of §;, for instance, 1s entered for ¢ — 27, thus

{—-2n<

z Rl
L2

and an asymptotically finer upper limit for ¢¢", ', { 1s camputed
fram this assumption. It 1s insured so long as the latter remains
below the assumed one. The calculation gives (according to the gemsral

formulsa)

o 2
f o—P8n Lo v+l [ 2an
nv 2 1 V42

b
'—l

|
o+

- co 2
— 29)a 9:]_=19'
'/:(C. n)an < & =

<o’

1
—f (¢ —-2nldn
e [--]
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eda

Figure 3

The upper limit for oY 1s then found according to the above figure as

= eaO-— 1

ed <1 + o9 a
Jo

where g 18 the highest existing value of ¥, hence corresponds to
the value of the coordinates for which { i1s to be camputesd. It
results in ' '

o

00
§<2n+7fdnf
| y

2
d-qe_Frl2 14+92870 )
8 13

2
2 g21
<2ﬂ+cl+%g'——5
i



NACA TM 1256 15

gimilarly for €' and t":

2 -2
Er>2 +¢, -8
132 ol

—2
1t 1 0’22 e n
C b YT

A more accurate exscution of the integrals affords a more accurate
result.

8. The connection of the two developments and the determination
of the integration constants (a, 7, and 1 — t) is as follows: To
seperate the Integration constant «,

Z=l§: X=Q[6,g
Qy—*

is introduced in the power development (3), which results in

_ _;;_ _ 3n+2
-\2/—- E::( l) (3n + 2)'

az n 3n+l
x - 7 Z( Sl e

oo

2
a7 _ lgw _ n 3n
&2 - %; = E o _x

n=0 (3n)!

&

The displacement of n relative to ¢ 18 expressed by introducing
the integration comstant B

\3/7;1'}=X—]3
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The formulas are completed by lnserting

£ 2n+§l+C2

[}

gt 2 + gl' + C‘E’

gll = gll‘l + §2"

fram the asymptotic approximation (%) and (5). A graph is made for 2
and its differential quotients fram which the following values are
quoted: o o

!
L]

010.8 1.0 1.2 1.4 1.9 (2.0 | 2.05 2.1

N
]

0|l0.317(0.492| 0.701] 0.938 | L.63} 1.79| 1.8561 | 1.94

& _llo| .78 | .961|1.121| 1.257|1.50 | 1.53 | 1.5479 |1.56

ax
4’z _ 1 - - - 639} 34| .28| .2582 1| .23
ax2

c-X23

The terms of the power serles are computed up to

are extrapolated, in part, fram the difference series of the logarlthms
of the coeffilecients. The location of the asymptotew is already guite
apparent in figure L.

3 further terms
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1.67 [~

Figure 4

Since owing to § = 2n asymptotic, Z = '§7§(X — B), rough approximation
o4

values can already be read for o and B: o = 1.30, B = 0.96,
with X = 2.05 as connecting coordinate for 1 = 1.00. The corresponding

2
values of g—g- and t" give for y: 7Y = 0.92. The calculation is
ax _
more rigorous when o, 7, and the connecting coordinate related
to 71 =1 are varled by minor corrections and these then camputed
from linear equations. To Judge the accuracy, 1t is stated that our
calculation for X = 2.05 gave '

Z = 1.8561, % = 1.5479, % = 0.2582, % = -0.479
ax

where the fourth decimal) is no longer certain. Asymptotic approximation

2
for 1 =1 glves (using Markoff's /Fe—t at)
t
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e
i
-
+

0.00012) .o
0- -
Okb54 - +{0.00106 7

0.00076 -

036768 - 7 + 0: 60452} 72

the top numerals in the stemming from Qg, the bottam numerals from

the upper limit defined in (7). (The latter is, as stated before,
rather rough.) The "temporary assumption" about the upper limit of
gives: ¢ <2 + 0.092 7. The upper limite are therefore guaranteed
(reference T). Hence, the result

1

;ll

o = 1.3266, X = 2.040k, ¥ = 0.9227, (B = 0.9508)
It can be safely assumed that o ranges between 1.326 and 1.327.
g. From it, it can be computed, for exsmple, what drag a rlate of _

width b and length 1 1s subJectsd to when dlpped perallel to the
flow lines into a flow moving at velocity 7. The drag per unit of

surface is i

= KW - nl fou 1
ry -2 el (@ 2

Integration over the plate gives

)
b- | X, dx = %\ [kplE3
[o] 4 2

hence, when the water flows at both sides of the plate

drag = 1.327- b \/kplﬁa'



NACA TM 1256

IT. CAICUILATTION OF REGION OF SEPARATION BEHIND

A BODY DIPPED INTO A UNIFORM FLOW

l. The following problem is treated: In an otherwise parallel
flow, a cylindrical body 1s immersed symmstrically to the directiom
of flow. The boundary—layer coordinates are camputed from the point
of division of the flow. The quantity T 1is expanded as function
of x in a power series. For the integratlion of the fundamental

equations

du M _ =ou .k Fu

s +V¥ F-I-E?
ou . ov _
=ty -°

0
z 'l.+l
1=0
the formula
- 141
- 21+
¥ = ZZ_O X, (7))

is used, wlth due regerds to the symmetrical conditions for the
stream function V¥; u and v are cbtained then by differentiation.

19
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Flgure 5

Consistent with the general boundary conditions, the functions Xl(y)
must then satlisfy the boundary conditions

n
(@)

| - =
Xz =0 X‘L =0 for.. y

X'=q_z for y

hence
Xy =T Ty
.ry 1s the constant of integration. Fram insertion in the first

fundamental equation, the differential equations for X are obtained
as:

%(Ek + 1O 5 = XX ") = g (& +1)gyq, 4 + ’-g-xz'"

which for 1 =0 is quadratic, for 1 > O linear in the X; function

to be deflned. This equation can, like the preceeding problem, be

solved by expending y = O 1Iin powers, for y = « approximating

asymptotlically and Jolning both. Subsequently, it is shown that the

asymptotic approximation can be camitted, since the power series already
ldentifies the asymptote and therefore the integration constant with -
gufficlent accuracy. The calculation is restricted to %o and X1
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that is, the first and third powers of x. Because, since the corre—
sponding coefficlents g, and qq in U already indicate & first

increasing, then decreasing velocity — the case, 1n which presumably
geparation occurs, 1ls characterized by a5 > 0, q; < 0 — the type

of pressure dlstribution required in the introduction (3) is already
supplied by the first two powers; hence, 1t is to be expected
that X, and ¥X;, even though not quantitatively exact, already

represent the effect of the separation. In one of the problems
treated in similar manner later on the next approximation was also
camputed; and it substantiated the ad.missibili‘by of the limitation
to the first two powers of =x.

2. The equations for %o apnd ¥ are

X'2 = Xo¥o" = % + B

ty t n ty, 1 ny _ K, m
X "%t = %X 30X Tn %) = ke + X1

The manner of entry of g, q;, k, P can be established by mechanical

gimilarity. Here also, the first two terms indicate universal
significance in scame respects. Hence, writing

= + 3 = x 13
qox qlx v Xox Xl
and introducing the following gquantitles

] a ,pq : 2pg
L _ {e) 2p (o)
4o k 2k © kgo  © , 1 kq_lE -

for X, ¥, Xgs X1 glves
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v oy
qul

3
u =%qz (¢ & £8'83) ete.

(608 £ §183)

;o and {; satisfy, as functions of 1, the differential equations

gole - ;ocor =4 4+ Cotl

BT =388 ~ b1t =16 4+ &1

Boundary conditions

n
2
ve
o
n
)
ue
n
o
[T
'—l
"
o
i_l
n
o

for n

il
L]
ve
It
no
v
[
-
[
o

for 1q

3. For §° the power series

o oM+l
¢ =Z——,—£ﬂ“
p=2 M
is entered.
Insertion in the differential equatlion gives:
bo, arbitrarily = 1, since o already is integration constant
1‘33 = ~4; since, in the formula of the integration constant a,

no allowance was made for the hamogenelty of the equation far ¢{,
o appears again In this equation.

by = O; the curvature of the velocity profile does not change,
at first, since the friction in its effect is two terms ahead of the
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Inertia; starting fram m =.5, it is
23 [1m — 3 -3
bm'—‘ELj_li(p —l) - ( I'bpbm—l—u

The coefficlents of these recurrence formulas can, like all mumbers
canbined this way fram binamial coefficlents, be camputed fram a
diagram similar to Pascal'’s triangle, whose start 1s the following:

g VA 777
; iy A
2 e 26 e X7 77
43 /fo/2 /3X1
8/1A/5/0/5/u)(1/

and in which each term is the sum of those above it. Only the
fremed—in porticn, consistent with the foregolng limlts of sums,
is counted.

The first 13 cocefficlents are

by =1 b,y = ﬁ; by, = O

by =1 b = 2, b = 21:32
bg = -1 by = —h—b3 b1g = —16b 2
by = 27 — 16b33  byp = 181b;  byg = BUOB S

4. Besides a, two more integration constants due to the
asymptotic approximation are involved, which, as in the precedlng
problem, should Join the ccmputed power series. For the present
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purposes (calculation of point—of separation), it—is, however,
sufficlent to know a, and, as stated before, it will be seen that «
can already be computed with sufficient accuracy by means of the
power serles.

dz
Put Zg = %-L-Eo, H =an and plot Eq as function of H from
a2, 4
the power serles. —= 1tsgelf is still dependent on b3 = - —
dH )y
dzZ
shall, for the correct value of a, approach the asymptote -d—I;o- = .2,

For other values of a, it approaches no asymptote at all, as a result
of which as fig. 6 shows, the method for defining o is very
sensitive. The value o = 1.515 is obtained; the last cipher is no
longer certain. . S '
dz
-]
el

-3:)

L 23
1.0 = = 0.86
a2
087 lmepm
0.87——
0.88
0.90
0.5
2
— =\ 1 00
a2

Figure 6

5. The calculation of {; by the above linear equetion and the
boundary conditions is effected in similar manner: power. formula

§l=8 u%g%np'
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c2
ey

Cm

25

1, since & alreddy .is integration comstant; 8&cg = —16;
0; and for m 2 5:

=§[—3(’: _ 2) + h@ _ :3L) - ( w 3) e gy

Here also the coefficlents in these formulas can be camputed
fron a dlagram whose first line (m = 3) consists of the numbers -1,
+4, —3, while the cthers follow by addition:

L /OA////'-‘;/6/7/

A= L S L L L

/1 /3RS L S //

VAN EVES LY~V EA A,

JAEVEVEVEY YV A AN,

3o o '

/=0 /1 /8 /1)(—8%3{//

8 /-1/-1/1/5 /5 Z11~

The Pirast coefficlents are

oy, = 13 8c3=—l6; ey = 03 c5=1k13; c6=6a3c3—8;

o7 = ~32055 cg = 17a%; cg = 300805 — 22ka3;

Ci10 =

C12

Cih

Cc

15

€16

9‘
3~ 2565 cyq = 2011-803 + 29ha” 3

6 6
783m9c3 — 50%2a ; ¢33 = —173920 c3 + 59&8&3;

221952m3c3 - 3l5cn:L2 ~ 1361923

—576a3c

110250 %c,, — 10240000, — 5L86ka” 3

3
9 6
174168 o3 = 221296a.

6. Phe asymptotic approach is again d.:Lsregza.rd.edi the integration

constant B

asymptote o l'

being defined by the conditiom that t’l must have the
= 2, Flgure 7 shows the terms of the power sexrles
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for §,", those free fram c3 end those multiplied by cg, a8
curves A and B, thatis

' =8-A—-16-B

after which El' 1s plotted for different values of 5.

I
£
6.0
5.0
4.0
a.of
5 = 8-%
8. 20
2.0}
1.0} A
B
Iy 1 L 1 id .
0.5 1.0 1.6 1.7 1
Figure 7

This curve indicates that the convergence of the series is rather poor
in spite of the great number of camputed coefficients ¢, even

at n = 1.6. In any event, the terms indicate, when identical powers
of o are cambined, e satisfactory varlation sc that the series are
still practicable. The correct value of & ranges between 8.20

and 8.30. The curve rises, at first, very quickly and approaches

its asymptote fram gbove. This marked influence om U near n =0
campared t0 n =« DPermits u in the case of separation to change
signs at the boundary before it—doss on the outside.

T. Proceeding to the calculation of the point of separation, it
will be remembered from (1) that, quantitatively, the results are not
exact; since only the first and third powers of =x were taken into
consideration. The point of separation [EJ is defined by
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4 " "
Snl ot TR ED e neo

or by (3) and (5)

a3 %5 [§]2 =0
By (4) and (6), respectively, o = 1.515, 5 = 8.25. Thus, in the case

of the lower prefix, the only one of lnterest, the coordinate of the
polnt of separation is

Eﬂ = 0.65

B - o6\ G2

U = QX - qlx3

hence

with

The maximm of the velocity (minimm pressure) lies therefore at

q
1

while zero velocity in the outside flow would not be reached
q
til1 x=1- q_o. Accordingly, the polnt of separation is 12 percent
1
of the total boundary—layer length behind the pressure meximm. The
obtained figures are independent of friction constant, density, and a
proportional Increase of all velocities.

According to Prandtl's diagram (section 3 of Introduction) the stream
line ¥ =0 diverges froam the boundary at a certain angle, which is
camputed asg follows: In the vicinity of the point of separeation, the
development of the expression for ¥ given in (2) reads
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kq 2 ’ " 1
Y B R ) - P - 50 - £ G - [

¥ =0 gives for the divergent stream line

2
n = 335[§] ~ o

e- [ 163 - u[g]

= 11.5

or in the not=reduced coordinates

J = 11.
X - X 2 Pq 2

These formulas are characterized by considerable uncertainty because
only two terms of the development of V¥ were camputed and the higher
differential quotients, which represent more subtle processes, are
always less accurately camputed than the former. _

III. FORMATION OF THE BOUNDARY IAYER AND OF THE ZONE

OF SEPARATION AT SUDDEN START OF MOTION FROM REST

1l. The two preceding problems treated stationary flows. The
problem of the growth of the boundary layer is now treated. Assume
that a cylinder of arblirary cross section is suddenly set in motion
in a fluld at rest and fram t = 0 1s permanently meintained at
constant velocity. At first, the state of potentlal flow 1s reached
under the single action of the pressure distribution. The thickness
of the boundary layer is zero to begin with, so far as the sudden
velocity distributlon can be obtained at all. The boundary layer
develops in the first place under the effect of friction, then
through the convective terms. The result 1s that, after a certain
time, the separation starts at the rear of the body and, from there,
progresses gradually. Since the fundamental equations refer only to
thin boundary layers, they, naturally, represent—only the start of the
separation process, Just as the previous problems dealt with the boundary
layer only as far as the zone of separation.
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2. The equatlons involved here are

du  du . du_-3m . Fu
at+ugx_+vé§—u$:+l€?

Q¥ Qv

N = V = o= o=

oy ox

x substitutes for %.

The potential flow which is set up first gives the boundary
value u &as function of x. Since the process for + = 0 is singular,
the type of development 1s, for the time being, still unknown; it
must be established by successive approximetion. The principal influence
on the changes has (&t small +) the friction, hence, for the first

approximation ug

dug _ Hazuo
3t ay2

The integral of this equatlom

—_ ] 2
= 2u M a
uo —ﬁ— j; [ 1t

n=—I_
2 \kt

satisfles the conditions of supplying a2 vanishing boundary layer

for t =0 and of joining the outside flow ug=u for ¥y = ». The
gubsequent approximation ls obtained by inserting u, in the
canvective terms, while tims and friction terms obtain u = ug + up.

The resultant equation for wu; reads

Bul _ i‘cae'l.:l.:‘_
3t dy2

-du
+ U= (function of 1)
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According to mechanical similarity, this equation 1s satisfied by the
formule

~Ju
u, = by
1=t T
which is also not contradictory to the boundary condition u =

for y=0 and ¥y =

After further considerations, which in particular refer to the
insertion of x, the quantity wu 18 represented in an expansion in
powere of +t, the coefficlents of which are functliona of n, that 1s,
st1ll contain <  These functions are also stlll dependent on X,
but this time x enters the differential equetlons only as parameter.

0

3. The formule for ¥ 18 accordingly

= 2\/-n—t itvxv(xn)

y=0

and hence the differential equations for %

33X Px x =1f ¥ ., Fx, K, I
T oo - o (B S T

V=o

for W = 1, the right-hand side contalns -Jm%—.

As before, the calculation is limited to the first two terms,
that 1is

%o = Tt (n) X, = E'g%l(")
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u =uf

LI t—ﬁﬁc t
ox L
The equations for §° and _Ql read then
3 ] L
£t +2nf) =0

£ 4 ong" —hE = B(E 12— L L " 1)

Boundary condltlons

]
o
e

Uad

I
o

ue

U
(@]

for q

for 7= e C' =1 ¢,' =0

L. The solutions of The above differential equations, which are
to be used in the subsequent problem, are cbtained by quadrature when
the hoamogeneous equations are integrated. The latter integrals were
obtained by the following consideration: The hamogeneous parts of
the equations stem from the time and friction term which together
form the heat conduction equation

2y Pu
ot 2
Of this equetion Integrals of the form

up = 225 (n)

1]=_Z_
i
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exist, according to simllerity considerations, whereby fp
the differential equation

fn" + 2nf,t — !m.fn =0
which the above form possesses. —

Thus, for exmmple (see above)

n_,2
uo=fo’=% fe_ﬂd.q
-]

For 5 =0

1 when t >0

o
]

O when t+ <0

=
(o]
i

NACA TM 1256

satisfiss

For n = 0, hence, for y = 0, w, 1s proportional to +M, hence must
be representable by superposition of solytions u, in the following

form

u, =1 f“uo< g ) . ‘bon—ldto
o 2 (t+ - to)

K 1
=n [ u, L -t b,

since for y =0 it is

t n—1
=n [ t, dt, =t°
(o}

For the evaluation of thls integral, put + — %, = 1

Q
Un = —-D.(/) u°(2—-y—£—> '(t -_— T)D—ld‘l'
+ T
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insert herein

_L..:T]; -ﬁl—=§;
2\/k‘b 2\Jk'r
-1 -~ .
v = T'che’
y
- .
dr = 21:;3 3

and finally obtain

£
= oy, enfni(l_l)n—l f“”zda
me o de\ ) %

Calculation of this integral by the blnamial theorem and the
previocusly clted method of partial integration finally gives

fh = Z (n) I [/:o ne‘ﬂedn

+ Z Z( 1R+, 2v_1<3)

2v—1.172
v=l |u= (2p — 1)...(2p — 2y + 1)

n

The other integral is algebraic and equal to the above factor

m
of f e‘ﬂadn
o0

. n 2
P = L 2n

BT o — 1)..3.1

5. Quantity §, is determined as follows: With the boundary
conditions taken into comnslderation

33
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whence by iIntegration

-1 2 ~MPan 4 Lg=—N=
go ﬁ+n+\ﬁf(ﬂj:"e Tl+§'e

while utlilizing

NACA TM 1256

The second differential equation (of the second order for §l')

aggumes then the form

" " _16 n-ﬂe - 8 —ﬂ]e 16
Ql +2n§l-1;;l'_v_._'_?.£e dn—T;qe +—ﬂ—

2 2 2 2
— o™ Jme—’n an — %6—271 + %e—'ﬂ
o]

The integral of the homogeneous equation for il'

2 n_.2
fl = a,(2q2 +1) +B|ne v + (202 &+ l)f e 1 dn
(-]

2
e dn

2

is by (&)

The integral of the nonhamogenecus equation would then be
obtalnable by quadratures. But it is also true thet, by twice

differentiating, the differential equation flnally beccmes

gum L oontun = function of T



NACA TM 1256 . 35

which is easier to integrate as &n equation of essentially first
order. Hence

i
gnn = g2 (L' eﬂ?'[function of n] dn

2

Since the impressed force of the differential equation contains o 1
2
in each term after twice differentiating, e cancels out, and ("
and then { can be Integrated, because the functions behind the
2

integrals contain, at the most, o | twice, and in additlion, powers
of 1, and must be Integrated several times, which can be accam—
plished by the methods discussed previously (I,6). The result of
the rather voluminous calculation reads

. 2 nn 2 M o 2
k.t = éne_ J‘ e dn + 2(27° — 1) J" e dny + 2g—2N
® © ElS P X

2 |
5 3 o 3

M _.2
+a(292 + 1) +B l:ne"ﬂz + (292 + 1) f e dn]
! o .

2 M2 m_2 |2 2
’;l" = —~ %(2112 ~ 1)e N f o N an + g—n f o Vanp — %qe"e'f1
L -] -]

~L(292 &+ e"'f"2+—§—e""rl2
ﬁ(n 3) * 5

2 N2
+ han + B [26™M 4+ Ly e~ dn

The reason that the equation here could be integrated in closed
form, despite 1lts affinity with the previocusly staticnary problem, 1s
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due to the fact-that %% 1s simpler than u%E, although both have,
X

according to the order of the differential quotient, "heat conduction
character."

The determination of o and £ from the limiting
conditions &' =0 for 5 =0 and 7 = = gives

_ a 4
a=0 ﬁ—%+§:§75'

6. For camputing the zone of separatiom, there is

_au_ 1 T " —aﬁ 1t _
o_g_Q\IE(uco +[t]u§;§l) far 1 =0

Then

C" 2 §t|=_2_+ 8

T —

° ﬁ ‘ 1 ﬁ 3ﬂ3; 2

The condition for the time of separation [t] is

Foi3}

hence, -g-_‘i must be negative. The separation occurs first where =
x ) X

has the greatest m_agﬁitude. Ths resuit_ applles to _c'y_lind.ers of any
cross section; W 1s the corresponding potentlal flow.

IV. DEVELOPMENT OF ZONE OF SEPARATION FROM REST

AT UNIFORMLY ACCEIERATED -MOTTION

1. Against the physical principles of the foregoing problem, the
obJjection may be ralsed that the sudden shock might be accompanied



NACA T™M 1256 _ 37

by an Interruption of the fluid. Hence, let the solution of the
problem assume that, starting fram the time +t = O, the lmmersed
body is subJected to constant acceleration.

In that case

= tW( x)

2. From conslderations similar to those made before, the solution
of the differentlal equation

o Q;,v?m:_ial’ (u
St T ox p ox ayz

is based on the formula

=3
I\

2 V% . thv+lxzv+l(xﬂ)
V=0

thvu axev +1

u =

=3
1

g
2 \/ kt
Insertion in the basic equatlien gives

3x X dx
2A+1 20 +1 2A+L
+ 27 — 4(2n + l)—g-—
Bq3 l on
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Ll oy Popons Forops Fopa

=4 31 3xdy % 32

=0
for A = O, the right-hand side comtains —lw, for A = 1, —}u%.

The calculation of the state 1s again limited to the firest two
terms, while it should be noted that through those two terms, the two
terms of the pressure w + t2w§§ are algo taken Into consideration.
The impressed force of the next equations contains only earlier
development coefficients. For the final equation, however, which
supplies the zone of separation, the coefficient of the next term is
camputed also. For Xy and X3 the relationship of x can be

Introduced in the followlng manner:

X o=vhn), % = w§§g3(n)

The differentisl equations for ¢ are then:

+ én - %
an3 2 on
3 2y 2
3°¢ 3°¢ af 3t \2 ¢
34 2y 3 123 =) 4+ k (——19 . ;
an3 ane on on an
Boundary conditions:
o
for n = 02 §l = O, E%i =0 u=0
N
§3=0, 5 =0 v =0
of o3 _

for N = o 5;- = 1, =—==0 fram u = tw
on
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3. According to the general solutlons of the presemt type of
5 _
differential equations discussed in ITT (L), agl can be written
1

=14
forthwith, since the nonhamogenecus term -4 1s disposed of by -a——l- = 13
' : i

is cbtalned by integration by the repeatedly cited method (16)

Rt | n
s S [e“ﬂa + 29 f e"‘led-q}
e E .

o

<

2. T _p2 ‘
1_ 2 ~1 2 -
=14+ ne +(l+21])fe dn
aTl \l:‘t[ &

¢, =17 + 2 --l+(l+'f]2)e""’i2
1 N

n
+ (30 + 2n3)f e"ned.'q:,

These functions are gquantitatively plotted in figure 8 and given in a
table (see Section 6 following).
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0.‘25 0'.5 1:0

Figure 8
The impressed force on the right—hand side of the secopd equation
is then )

L n '
16 e~ dn + 16 by e_nedn + 29"“12
I o, 3 o

1
+ ;—,6‘ [(—2 + 12210 4 (hn + kn3)e2 f e~Nan

M 2
+ (3 + lml") f e"ﬁedn
o
L. The integration of the second equation, in closed form, agaln

succeeds by the same methods as in IIT (5). For the part of the

2
impressed force guadratic in e " a formula with indeterminats—
coefficients is particularly advisable.
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2
(a + b2 + cqh)e“?'

n
+ (dn + on3 + fn5)e —n2 f ""1 dn

[~}
6 2 (2
+ (g + by +1n + Xn°) e’]dn

This formuls fails when the impressed force contains terms which exceed
2
2 2 N _2 n_.2
n6e_2n s n5e.n f e 1 dn, nh f o N dn (campare ITT (5}). The
e

-]

coefficients are determined fram linear equations. The other

X ¢
portions of -8—3- are easler to campute; §3 and —53- follow by
gl o

integration and differentiation. So, when the integratlion constantse
are carrectly camputed, the final result is

Fy b @ [N
a.n2 : 3‘J— 15x

2’ 3)e—2

+ = + 2

(= n°)e
+(l+2q2+8'q Yo Jme M~an

12
+ (6 + 81]3 + 8115){ fqe_nedn} ]

/5 _ 16 + 36 8nb)en"
+5<6ﬁ h5J_>[( + 3602 + 8n*)e

n
* + (60 + 801]3 + 16115) j_e"‘ned%
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1 2 by —21°
+9ﬁ|:(8+n + 277 )e

1
+ (2ky + 813 + .8715)3_“2‘/) e—nEd'q

(-]

2
p|
+ (-9 + 1892 + 12n* & 81]6) f e""ﬁln} ]

. : ° ' 2
" -l—(-5'— ~ 28 ) {:(3311 + 2893 + 4p2)e™M

n 2
+ (15 + 9002 + 6011)" + 87]6) f e 1 dnj‘

hence, by integration

2 n
§ =—-2"]|eM +2q f e"“zdn‘l
3 3 ﬁ -] -

2 ; n 2
_.%;I}le—’fl +(l+2n2)L/) e~ dﬂ}

+ 1 [(1}911 + 1133 + 101]5)9"2112 + 768 ‘/ﬂe'enedn
315=%n ©
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+ (=537 + 19812 + 6hnh + 1L0~n16)e"'712 Jn

-3

n
e—ﬂzdn

2

[-<]

) n
+ (=3151 + 21093 + 8hy2 + h0n7) Jn e‘ﬂedn

' 2
- — (—5— - 16 ) (2k + 872 + honb’ + hné)e_n
N6 53 .

Tl
+ (1054 + 21093 & 8hn5 + 8n7) dp e‘ﬂqu

-]

128

+ 128 . _ .9
1575yx3  105{3x x

These three functions, plotted in figure 9, rigorously satlsfy

the differential equations and the boundary conditions for the
coefficlient .

5. The condition for the zone of separation hesg the form

o @) -ifEv|Tm, e Zh
dy 2 3 ox an2
=0 =0

Tl2

whence, by the foregoing formulss

Fa_n BG 5 as
M2 VE M2 15f%  225{x3
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The equation for the separation time [t] reads

1 _ _6h 2 ow
1+<%5-2—2-5—ﬂ) [+] L =0

The next term in the separation equation %-;; = 0 would

2%
1% e o
read: —t , and in order to be able to allow for it, too, the
Z\IR dn? )
coefficlent in this separation equation, rather than the total
variation of X552 1s camputed.

1.0¢
0.964

0,138 |-

Figure 9

The development term X5 satisfied the equation

2 M - 2 : o o
a:'sx5 +2Ta X;-'_eoa)%; . 3%, 32X1_ dxy 3 % . ¥ ¥y ¥ 3%,
a3 32 an S Bxdn  dx 32 | O Omdm  9x 2
The entry of x in X angd x3 is known, and calculstion of the

right—hand side confirms that X5 assumes the form
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ow )2 Fw
X5 = “(EE) S5+ "25;2'55@

Since tw cancels out, the conditlon of separatlon reads

2
ot

31'12

o 2 2 2
+ t2§E ° §3 + t)+<aw>2 ii + ’G)"‘kahgx 2 25“ =0

Bx anz BI an2 ane

n=0 n=0 1=0 n=0

o=
6. This leaves the calculation of the coefficients l}-—i
. Jn=0

o=
and 32_5.2
3 =0

For §5, the differentiel equation reads

&

3

s) P o, o R
S B SN B s DY s N St YO
3n3 32 on o1 o o2 2

and the boundary conditions

ot b
(. =0, —2=0 for n=0; a—nzfor 1= w

The impressed force £(n) is given by the previously written

Rt
functions. The desired coefflcients —B_Ez are computed by
n n=0

Green's method as follows:
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w (33 >
fe(a 5 +21;z-2§5_20§2) an = [aa_ci_
(o}

¢
+ fé_i_azﬁ_z_fl_a*_zowsdn
o oM an2 a'q
Then, 1f 3§ Iis made to satisfy the adjunct differential equation
3%s >

.__--2. —-2219 = 0
2 on

and the boundary conditions

9(0) = -1 B8(w) =0

32§5
.___2 = 'Bofodn
on 7=0 o

the result is

f(n) 1s given previously; the influence coefficient 4 (Greents
function) is obtained by integration of his differential equation

a(m = [(2895:1 + 528013 + 23521° + 35277 4 16%°)

o5 \[x

(-]

1
e_n2dq}

The curve of 3 1is shown in figure 10, along with the
product § ¢ fo The area of this last curve gives the desired

coefficients—



NACA TM 1256 . . L7

0.25 0.850 1.0

Figure 10
Y
For campubing — the equations
2
on” fn=0

3¢t Pt 3% [ac a, |, Ft ]
5, oDt — 202 = |k =3 — x| =
Ten 2 n o 3an2 s(n)

2t ' o
= . . d
[_ZBHELO [T

are availeble; 9 . g 1is plotted in figure 10 according to the values
indicated below.
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The camputed values are the following:

NACA TM 1256

Tl o} o] .25 O. 50 1.00 1. 50 ]
€1 0 061 211 | .638 - n — 04376
3t | :
— 0 <450 <720 g3 - 1
on ;
-:-z—gl 2.26 1.396 . 799 201 0.035 0

Y : _

§3 0 «022 .060 <115 -~ .138
3y
—2 0 .137 .150 .020 - 0
on
Fl3 .96k 231 | —.092 | —.156 | —.05 0
3n?
£(n) 0 315 750 457 - 0
'B [ ] g 0 -— Ohl —— 027 . 0003 Land 0

The erea of the two curves is approximately

ﬁ%& = -0.023

51]2

2

n=0

a.ne

I

To The equation of separation therefore reads

LY
Vo

+ [t]

]394

(_1;__

15{%

256

ey

225 Ix

) - [t]“(?-")e . 0,058 — [t]h% . 0.023 = 0
X
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1+ 0.427 . &]2%% — 0.026 . [t]l‘(g-!é)e — 0.0 . [t:ll‘mg-%’ =0

Since the newly added correction term is even negative, the exlistence
of the zero position appears to be certain.

The position end time of seperation is acgcording to the earlier
approximation (without the term camputed last)

20w
[t] S = 2,34

For the case of a cylinder symmstrical to the direction
flow, & = 0 at the rear point where the separation starts, the

newly camputed correction gives

e 2%; = 2,08

equivalent to an error of about 10 percent. From this the quallty of
the approximation made in the other problems, where only the first

powers were taken, can probably be also appraised.

V. APPLICATTON OF THE RESULTS OF THE SEPARATION PROBLEM
TO THE CIRCULAR CYLINDER

l. On the circulsr cylinder

.—--= x
" 2v sj.nR

is called the reduced coordinate X; V is the veloclty at which
he parallel flow flows toward the right, and the cylinder moves

o WK
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toward the left, respectively. In the gteady case, the separation
U ]
starts according to Part II, Section 7 at Xgep, = 0.65 l’-q—o-; the
1

meximum veloclty lies at

wvhere

Figure 11

Taking the ordinery development in powers of sine

Qo = R’ a7 3
- ' = 1°, = . R: - o
Xion. = 1.59 « R, xsep- = 9lE 3 b4 l.41 « R; X 81
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But approximating the sine in the interval O — = .'by +the method of
least squares, gives

= 2L , 0.856 ' =27 . 0.0
95 R 564 q'l R3 93
= 1.97. = o
86D 1.97-R, Xsep. 113
= [ . R = o
x 1.75 . R, X = 0L

. In any case, the point of separation lies, by the present
calculation, at fram 11 percent to 12 percent of the total boundary—
layer length behind the maximum of the velocity. Thils statement makes,
of course, no claim to accuracy, since only the first two powers of x
are taken into conslderation. Besldes, test records of the pressure
difference indicate that the state near the separation is difficultb
to attain by development from sterting point of the boundary layer,
because it 1s too strongly affected by the pressure distridbution of
the turbulent bodies behind the cylinder. The sole purpose of the
present calculations is to indicate that separation is actually
obtained by the hydrodynamic equations. Further development of the
calculating methods, especilally for the more important problems of
sollds of revolution, promises, therefore, success.

2+ If the cylinder with constant ‘veloci'by is suddenly set 1In
motion

U=2VeinX %‘i=%¥cosx

The time of separation [‘b] is, according to ITT (6), glven by
L) .
(l + 3% Eb] S 1

[¢] - 0
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The separation starts for X = n, cos X = —1 at—time

by = 0358

Up to that, the cylinder has travelled a dlstance

S = Vty, = 0.35 « R
All this 1s Independent of veloclty, density, and frictlon coefficlent
(little friction assumed).

3+« At congtant acceleration

U = tw(x) = 2Vt sin %‘

wvhere V 1s then the acceleration of the cylinder in the flow. The
separation time is (IV,7) for the start of separation

[‘b:le—g—;: = ~2.34 Oi‘ = —2.08

respectively, or

&]2 1 =117 R or = -_-l.O)-I-———:-R;-—
V cos X V cos X

respectively. The distance covered by the cylinder 1is

S = ivt2
2

at start of separation (X = =w)

S=0'59.R or 50052'3

respectively.



NACA TM 1256

4. The resistance which the cylinder experiences at constant
acceleration is ccamputed next. The stress components are

ov

Ea A

Owing to the smallness of the friction, %;{- and % cancel with
respect to -g-;}, leaving as foree in direction of the outside flow

4

£
K=2.Bf p cos X + k= sin X).Rdx
| o oF

B is the width of the layer (height of immersed part of cylinder).

The pressure portion is computed as follows;

x %

2
Kpressure = QBR([ p cos XdX = -2BR f — siln XdX
o o Ox

Then

23
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The second term cancels out in the integration; the first glves

Kpressure = 2naBRY

hence, an increase in inertia by twice the amount of displaced fluild.
The friction portion 1s

nf P
Kpriction ™ Siol tw——-gl + R gin X4X
"2yt Uo an2 ox an2

g
where k = k/p. Agein, the second term disappears because 5-1-]2—1-

25
and 5 are mqrely conatanteg, lsaving

Kepiotion = 4\ 7Pkt « BRV

5. To give a plcture of the flow conditlions corresponding to
these formuilas, the flow curves far & speciflc state of motion of the
uniformly accelerated cylinder are represented in & dlagrem. The
persmeters R, V, k are arbltrary; hence, necessitete the introduction
of reduced quantities for x, y, t, ¢, and u, so that R, V, &
disappear. It is accamplished by )

x = RX, tﬂd‘%ﬁ', .y‘-\.ll-/.B%_-z—Y
T o= Q‘/RBRETW, u=JEU |
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by which the formulas (campare IV (2) and V(3))

3/2
¥ = 23/ w<gl + ta_g-wxg3>

u= tw<§£]: + tzg £3.>
on ox ong

M o= i
2\/E
w=2V gin X

R

2
2O o oVES X
ox R cos R

became the following reduced equatlons

¥= yr3/2 ganx . (% + 2T cos X C3)

¢ g
T = 27 sinX.(-g—n-lq-aT?cosx.-::l%

e

The curve ¥ is then plotted ageinst Y = 2T . 5 for a flxed time T
for a number of coordinate values X, and the positlon of the
values ¥ = constent read fram these curves. In figure 12, the

cylinder is shown from X = :t/2 4o X = ne The seperatlon time is
glven by 2]32 cos X = —2.34, that is, the start of the'eeparation
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by T = 1.08. In figure 12 2T° = 5, hence T = 1.58, was chosen.
For this chosen time, the separation point has already progressed up
to beyond 60° at the cylinder; nevertheless the boundary layer still
is falrly thin, the relative sizes correspond to the values R = 10 cm,

2 s
k = 0,018 (vater), V = O.IFQEE, that is, to a very small acceleration.
sec s60
Accordingly, t = 15.8 sec.

Pigure 12 . . = _.
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The picture obtained by the previous reductlion formulas

far V = 10&’% after 1.58 sec. is reprasented in flgure 12. The
sec
thickening of the boundary layer would be dimiwnished in the ratio

of 1 :f10.
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