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STANFORD 9.1 Control volume, integral conservation laws
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Eulerian-Lagrangian control volume

Assume the time averaged flow is stationary. Note that the fan generates an
unsteady, periodic flow. If we average flow variables over many full cycles of
the fan rotation then the unsteady term in the conservations equations can
be dropped. The time mean is said to be stationary, that is, independent of

the averaging interval.
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Conservation of mass

j pU eiidA = ijUZdA- [ pyUdA + ij-ﬁdA+ | pUerdA = 0
A1) A, A A Af(1)

w

Total mass added to the control volume

JpU efidA = —6m.
AW

No mass is added through the fan surface. The integrated form of the law of mass
conservation is

JpZUZdA— J-pIUIdA = .
A2 AI

10/25/20 3



TSTANFORD 9.1.2 Conservation of x-momentum
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J'(pUU + P&- 7) e idA
A

X

I(PzUzUz + Py T,5)dA - J(”I ViUt Pr=tapdds gy

A A
2 1 0

+ j (pU(U//UA) + P6-7) eiidA

Ag(1)

J(pﬁU+P3—%)-ﬁdA =0
AW

X X

The added mass may carry x-momentum
U.,o0m

The fan exerts a force on the flow.

j(p(‘]"ﬁ + PS—7%) e fidA
A

X

A2 Al

J(P:6—:r) efidA| —U_ &m+8F =0

A

w

X
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Where the force by the flow on the fan is.

5F = J' (P5-7) o idA
A (1)
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TSTANFORD 9.1.3 Conservation of energy
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I(ph,z—/_% eU+D)oidA =
s

J(chtzUz‘Txszz + 0,)dA - J-(chq U=t U+ QpdA +
A, A

J- (ph,U-TeU + Q) e 7idA +
A

w

0
j (p(e+k)(l_]—}/A()+Pl_]—Ec0(_])0ﬁdA =0
A1)

The injected mass carries its staanation enthalpy with it.

j(phtU—%-‘U + Q) endA = ~8Q-h, 6m.
A

w

The last term in the energy equation is the work done by the flow on the fan.

SW = J(PU-—%OU)OﬁdA

A 4(1)
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The integrated energy conservation equation is

I(chthz“Txszz + Q))dA - I(chzl Up-TUp+ @)dA =
A, A

1
5Q + h, &n — SW
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9.2 Area averaged flow

Average the flow across the channel.

p(x) = X(%jp(x, v, 2)dydz.

Define
T(x) = A—(IB:T(x, y, 2)dydz
P(x) = ﬁ..P(x, y, z)dydz
50) = 5[50 3, v
U(x) = X(]-;S;U(x, y, 2)dydz
T (x) = ﬁ:rxx(x, y, z)dydz
0. (x) = A—(I;‘):Qx("’ y, 2)dydz




B};{QELEQ&Q Every variable in the flow can be written as a mean plus a fluctuation.

p(x,y,2) = P(x) + p'(x,, 2)

T(x,y,z) = T(x) + T'(x,y,2)

o y- Py = P(x) + P'(x,y,2)
., s(x,y,2) = 3(x) +5'(x,y,2)

— P U Uy = U+ U,y 2)

Txx(x) y’ Z) = %xx(x) + Txx'(x’ y’ Z)

Q. (x,y2) = 0yx)+Q/(x,,2)

~¢

Express the mass flux integral in terms of means and fluctuations.
ijdA = J(f) + p WU + U)dA = JﬁffdA + Jp’U'dA =
A A A A
P(x)U(D)A(x) + pUA(x)

As long as nonlinear correlations are small, the mean is an accurate approximation.
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In terms of area averaged variables, the integral equations of motion are as follows.

A A A

J.(P:6— ?) eiidA| —U_ S+ SF, = 0
A

w X

(PoHL U7, Us + 00)A,— (P H U -7, U+ ODA; =
6Q + h, Om— oW

10
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9.2.1 The traction vector

he pressure-stress integral on the wall.

Pn —T n —-T n —-7T_n
X xxx xXyy xz712

-

The traction vector

Pn - Txxnx - Txyny — sznz

——’t‘n+Pn—Tn—Tn

Xy X y yy'y y<

—sznz—‘czyny + PnZ - Tzznz

.

Z
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Imagine the length of the control volume made very small.

J' (P6-7) eiidA| = J. (Pn -t n —T.n -7, n)dA=

A A

w X w

P,+P T .., 17 D,+ D
] 2 XX ] XX2 1 2
( )(AI —AZ)—( 3 )(AI—AZ) + Twit(——————)Ax

2 2
where |
Jndi = (A;-A))
AW
and

D, +D,
'[ (Txyny + sznz)dA E—Twﬂ( 3 )Ax.
AW

12
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Introduce the hydraulic diameter

172
D = (4_'4) |
T .

The integrated equations of motion now take the form

prU,A,-p U A, = 6

(P U Uy + Py—1, A, —(p U Uy + Pr—7, )A ) -

P,+P T T 7T D,+ D
1752 xXx] XX 1 2 _
( 5 )(AZ—A1)+( 5 )(AZ—A]) +rwn‘( 2 )Ax =

U, 8~ 6F

(Poh Uy=T 0 oUsy + O 0)A, = (pyhy U7, U + O, DA, =
6Q + h, oOm— oW

where the “hat” has been dropped. 5



T STANFORD
AERONAUTICS & Let the length of the control volume go to zero.

p,U,A,—p,U;A; = d(pUA)

' 2 2 2
p,UA,—p,U;A; = d(pU A)
- PA,-PA; = d(PA)

X
(Pp+ P,
2

(Txx1 + %
\ 2

D1+D2
rwk( 3 )Ax = rwnDdx
poUsh A, —pIU]htIA = d(pUhA)

T x2A2 - TxxIA] = d( TxxA)

)(AZ—AI) = PdA

xz)(Az—A]) = 1, dA

UA UIA = d(7,UA)

xx]

Qu2Ar-04; = d(Q,4)

xx2
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TSTANFORD

AERONAUTICS &
ASTRONAUTICS

10/25/20

The integrated equations are now expressed in terms of differentials.

d(pUA) = &m

d(pU°A) + d(PA) —d(1_A) —PdA + T_dA =
| -7, mDdx + Uxm(Sn’z— 6Fx

d(pUh,A) + (-d(7_UA)) + d(Q A) = 8Q +h, & — W

Use continuity to simplify the momentum and energy equations.

Udm + pUAdU + AdP - Adt_, = -1, nDdx + U, 6m— OF

) C Tx e Tex Qx ) Qx _
h,6m + pUAdh, — —'[—)—ém - pUAd(—;)—-) + Z)—(—]5m + pUAd(ﬁ]) =
00 + htm5m — oW
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The 1-D (area averaged) equations of motion.

d(pUA) = &m

ﬂDdx) + (Uxm - U)om _ 6Fx
A A A

d(P-1.)+pUdU = ——’L'W(

- e b )

Introduce the friction coefficient.

T

_ w
Cf—ZUZ
2P~

and the heat and work per unit mass flow

_ 00 . _
%0 = SUA g o= U4

16
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Finally the area averaged equations of motion take the concise form

(U. —-U)om ©OF

AP = Ty) + UL = —épU2(4cf%c)+ A
T, — - Tox | s )) 7
d(ht——;—"*'b—l—]) = Bq—6w+(htm—(ht— Py +pU pUA

10/25/20
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ASTRONAUTICS 9.2.2 Steady, gravity-free, adiabatic flow of a compressible fluid in a channel

For this case the energy equation takes the form of a perfect differential.

T 0
d(h oy x) _ 0.
p pU

For most flow situations (outside of shock waves) the stress and heat conduction
terms can be neglected. Thus

hyy = hyp.

10/25/20 18



TSTAN FORD 9.3 Normal shock waves
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shock

The equations of motion reduce to a set of perfect differentials.

d(pU) = 0
d(P-t, +pU’) = 0

Each equation generates a conserved quantity.

pU = constantl )

2
P-t +pU = constant2

ht— —— + — = constant3
10/25/20 J
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Equate conditions at states 1 and 2.

and
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Now assume uniform flow at stations 1 and 2. That is assume that the velocity and
temperature gradients are zero ahead of and behind the shock wave.

The classical shock jump conditions are:

p1U1 = paUs

P+ p1Ui? = Py + paUs?

ht1 = hyo

21



TSTANFORD 9.3.1 The Rankine Hugoniot relations
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The jump conditions can be combined to produce a relationship between pressure and density in

which the velocity does not appear.

Note that this relationship makes no assumption about the
material in which the shock is propagating. It could be a gas, it

Combine mass and momentum. could be water, it could be rock or some other continuous
P2 _ Pl material.
UUz =

P2 — P1
The energy jump condition for a calorically perfect gas is

_U? = U
(7—1) o2 (7—1) 2

Combine mass and energy

U Uy — ( 27y ) Prp1 — P1po
v—=1) (p2—p1) (p2 + p1)

Equate

The Rankine-Hugoniot equation.

Y+1 [ p2\ 1
12 _ y-1\m
P g (P_z)
10/25/20 Y P1 22




TSTANFORD 9.3.2 Shock property ratios in a calorically perfect gas
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The velocity ratio

Define a reference flow state where the flow velocity equals the speed of sound.

1 ’7—|—1 2
CpTy + =Ur* = ————a*
ST
1 ’}/—I—l 2
CpTy + =Us® = —/————a*
R I T
Use the ideal gas law to write the last pair of relations as
gl 1 _ oyt e
- 1P1 + 2,02U2U1 = 2(7_ 1),01a
1 +1 )
7Z1PQ+§’J1U2U1:2(77—1)”@2
Subtract
L(PZ—Pl)_l(P2—P1)U1U2: thuk a*? (p2 — p1)
v—1 2 2(y—1)
U1U2:P2_P1
p2 — p1

10/25/20
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The velocity ratio (continued)

Replace the pressure and cancel the density. The result is the Prandtl relation.

U1U2=CL*2
Now.
1 v+1
C,Th + =U;? = U,U
ler2 1 27 —1) 1U2
Or
o ()« (25)
Ul_’}/‘|—1 U12 v+ 1
Finally
v—1 2
U, 1 7 ) M p1

With this result, all of the
important properties of a
shock wave can be
expressed in terms of the
upstream Mach number.

24
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v, 1+
Uy (
Shock strength
P,
P
Temperature jump

2
() (7
Ty Py P2

Downstream Mach number

M\ 2
My
10/25/20
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The downstream Mach number

lim M, = J(y-1)/(2Y)

M;— oo

26
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Stagnation pressure ratio

= y+1 2 y=1
Pa (3 VT ()M
Py %Mﬁ —1 1+ (7—1> M;2

At high Mach numbers

lim I)_tz = y+1
M, — Py 2 M2
I YM

1
|~
~

Entropy change

27
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Problem 10 - The figure below shows supersonic flow of air over a model of a re-
entry body at a free stream Mach number, M; = 2.

The temperature of the free stream is 300°K and the pressure is one atmosphere.

1) Determine the stagnation temperature and pressure of a fluid element located at stations 1
(free stream), 2 (just behind the shock) and 3 (at the stagnation point on the body). State the
assumptions used to solve the problem. Express your answer in °K and atmospheres.
Solution - The stagnation temperature of the free stream is determined from
T -
ML (Y—’)Aﬁ = 1+02x4 = 18 (1 point)
T, 2
Therefore
T,, = 1.8x300 = 540°K (1 point)

If we assume the flow up to the stagnation point is adiabatic and the heat capacities are constant
then the stagnation temperature is the same at stations 1,2 and 3,

T,;, = T,, = T,;.(1point)

The stagnation pressure is derived from
7

P _ (T _
P T,

|
~
Co
]

7.824 (1 point)

28
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The freestream stagnation pressure is P,; = 7.824 atmospheres .

Across the shock the stagnation pressure drops according to

I 7

P 7 M

12 | _r=1 = 0721 (1 point)
P, 2y ..,2 Yy-1,,2
: 2Y p2 g 1+ 1y
y—1 2 1

The stagnation pressure behind the shock is
P, = 0721 x7.824 = 5.64 atmospheres . (1 point)

It is reasonable to assume that the flow from 2 to 3 is adiabatic and isentropic and so one may
expect

P,; = P,, = 5.64 atmospheres (1 point)

2) What can you say about the state of the gas at point 4?7

Solution - The flow near the back of the re-entry body is at a low pressure and nearly zero veloc-
ity. The path from state 1 to state 4 involves large thermal and velocity gradients leading to an
entropy increase and loss of stagnation pressure and very likely a drop in stagnation enthalpy.
So we would expect both the pressure and temperature at station 4 to be lower than the free
stream stagnation values. (2 points)

29
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3) Refer the stagnation temperatures at 1, 2 and 3 to an observer at rest with respect to the
upstream gas. To such an observer the body is moving to the left at a Mach number of 2.0.
Solution - In a frame of reference fixed with respect to the upstream gas, the gas velocity in

region 1 is zero, U;' = 0 and the stagnation temperature is

T,/ = 300°K.(1 point)

The velocity of the body in this frame is
Upoay = —M; X JYRT; = -2 x 14 x287 x300 = —694.4 M/sec

body

In the rest frame of the shock the velocity ratio across the shock is determined from

-1 2
1+ Z——-—-——M
U, 2 1
—_— T —_— = 0375
U, y+ 1N, 2
M
2 1

The gas velocity behind the shock is
U, = 0375 x6944 = 2604 Misec . (1 point)

The gas velocity at station 2 referred to the rest frame of the upstream gas is

Uy = —694.4 + 260.4 = —434 M/sec

The temperature ratio across the shock is

T2 _ 16875
T,

The stagnation temperature at station 2 referred to the rest frame of the upstream gas is

w3)? _ (439)? _
20, 1.6875x%300+ <1005 = 600K

Ttlz = TZ +

and the stagnation temperature at station 3 referred to the rest frame of the upstream gas is

(U3$)? (694.4)?
= 540 + ———— = 779.9K
2C, 2x1005

30
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9.3.4 Example - stagnation at a leading edge in supersonic flow

The figure below shows a supersonic flow of Helium (atomic weight equals 4) over the
leading edge of a thick flat plate at a free stream Mach number M; = 2.0.

The temperature of the free stream is 300 K and the pressure is one atmosphere.

Figure 9.7: Supersonic flow of helium over a leading edge.

1) Determine the energy per unit mass of a fluid element located at points 1 (free stream), 2
(just behind the shock) and 3 (at the stagnation point on the body). State the assumptions
used to solve the problem. Express your answer in Joules/kg.

Solution

The energy per unit mass of a flowing gas is the sum of internal energy and kinetic energy
per unit mass, e + k .

a) Assume the gas is calorically perfect - constant heat capacities.
b) Assume the flow is adiabatic from station 1 to station 3.
c¢) Assume the body is adiabatic.

For Helium the number of degrees of freedom equals 3 and at the conditions of the free
stream we have the following values.

31
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Figure 9.7 Helium at Mach 2.0

32
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14.472
R= % = 2078.62m?%/sec’ — K

C, = gR =3117.93m?/sec’ — K

2
Cp= 3LR = 5196.55m?/sec? — K

v=5/3

a=+/YRT =4/ —2078 62 (300) = 1019.46 m? /sec?

Uy = 2(1019.46) = 2038.92m /sec

1
e1+ k1 = CTi + 5Ur” = 3117.93(300) + 0.5(2038.92)° = 935379 + 2078507

e1 + k1 = 3013976 J/kg

The stagnation temperature of the free stream is determined from
T;
—=1 M2
T +<2)

Thus

Ty = 300 <1+ g) =T00K

Across a normal shock at Mach 2 the temperature ratio is

n_ (1 () ) aa- ()

Ty (73_1)2%2
which gives
T, _(1+3)G@W-G) _ (G E) _7/19)_
LT @@ () 4 (1) =20

(9.70)

(9.71)

(9.72)

(9.73)

(9.74)
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Assume the flow is adiabatic from the free stream to the stagnation point.

1o 1o 1.9
h1+2U1 —h2+2U2 ~h3+2U3

We can rewrite this equation as follows.

RTi + (e1 + k1) = RT5 + (eg + ko) = RT3 + (e3 + k3)
The temperatures at stations 1, 2 and 3 are respectively
Ty =300K
T = 2.078 (300) = 623.44 K
T3 =T =700 K.

Now

e1 + k1 = 3.014 x 10% J /kg

(e2 4+ ko) = (e1 + k1) — R(Tp — T1) = 3.014 x 10° — 2078.62 (623.44 — 300)
= 3.014 x 10 — 0.6723 x 10° = 2.3417 x 10° J/kg

(e3 4+ k3) = (e1 + k1) — R(T3 — T}) = 3.014 x 10° — 2078.62 (700 — 300)
= 3.014 x 10° — 0.8314 x 10° = 2.1826 x 10° J/kg.

(9.75)

(9.76)

(9.77)

(9.78)

The energy of a fluid element decreases considerably across the shock and then decreases

further to the stagnation point.
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2) Describe the mechanism by which the energy of the fluid element changes as it moves
from station 1 to station 3.

The work done by the pressure and viscous normal force field on the fluid element is the
mechanism by which the energy decreases in moving from station 1 to station 3. The flow
energy decreases across the shock wave through a combination of pressure and viscous
normal stress forces of roughly equal magnitude that act to compress the fluid element
increasing its internal energy while decelerating it and reducing its kinetic energy. The loss
of kinetic energy dominates the increase in internal energy.

Between stations 2 and 3 the flow further decelerates as the pressure increases toward the
stagnation point. Viscous normal forces also act in region 2 to 3 but because the streamwise
velocity gradients are small (compared to the shock) viscous forces are generally much
smaller than the pressure forces.
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9.4 Shock wave thickness
control volume shock
\r __________ —‘
_ ' |
e e
|- 5—>|

Transport equation for the entropy

d _ ok o r+®
‘—i; I deV + J. (pUS - -]—_,VT) e ndA = I ( T )dV
V(t) A(t) V(r)

For a Newtonian heat conducting fluid

1 1.
P = Zﬂ(sij - §6ijSkk)(Sij - §5ij5kk) + 14,0855 1)

and

Y = .’f(_a_T_ﬂ)
T 3xj8xj

36



T STANFORD The stress tensor

AERONAUTICS &
ASTRONAUTICS

Tij = ZIJS - ((2/73)u - I—l) Skk

Within the shock wave

‘ dU _
0
(3” H )dx 0
dU
T.. = —_—

ij 0 ( 3Ii U )dx 0
2 dU
0 0 (—3;1 + uv)—&;

Modified rate-of-strain tensor

2dU
3dx 0 0

- 5 S _1dU
kk = 0 3dx 0

1dU

0 0 _§ '2";—

10/25/20



R;E%Eﬂi?&% Kinetic energy dissipation within the shock

ASTRONAUTICS
dU
@ = (u+”)(dx)

Temperature “dissipation”
2
Y = E(ﬁl_T_) .
T dxj

Now integrate the entropy equation.

(pUA—EgA) ——(pU A-'—“-’ZA [f “d’ ]
Td 0

The areas cancel on both sides and the temperature gradients at 1 and 2 are zero.
fu+u
3 vIfdUN?2 Kk (dT\?
pUls=sp) = fj — (&) ;z(z;) -

10/25/20 38
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Now let’ s define a simple model of the flow. Let

dUzUz‘UI

ar 11,

dx ) d dx

o

; T
=~
’

2+ T,

2

Evaluate the viscosity and thermal conductivity at the mean temperature. Now the

entropy balance is

pU(s,—s;)(T, + T,)é
2

which can be expressed as

(
4
51+ m)

pU(s,—5;)6 =

- [(;u N /,Lv)((UZ—— Uy +2x

(T,-T,)
(T2 + TI)
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Shock Reynolds number

40
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Prandtl number

Entropy jump
IR
C, T,
Finally




Tﬁ%ﬁggﬁg The right hand side can be written in terms of the upstream Mach number using the

ASTRO TICS . .
e shock jump relations.

p  (y-DMi+2 T, (yMi-(y-D)(y-DM;+2)

P2 el T (r+ 1°M;
Thus
Ué 2
5 = F(My, 7, P, /)
200} Y =14
P, =1
pUd
T 150
100+t
50}
2 3 4 5

10/25/20 42
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The thickness can also be related to the mean free path in the gas

pUd

pa/l F(M]’ 'J’, Pr) .UV/U)

Let

0 (32wl Y )

Now
5 FIMLTLP, uv/u)(( JT ) {p, D
2 L+l =+1
a- M, T, P>
200¢ Yy = 14
5 P =1
)

150+

100}

50+t

43
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Problem 11 - The photo below shows the flow of Helium gas past a sphere at a

Mach number of 1.05. The pressure is one atmosphere (/.01325 x 105N / m2) and the tem-
perature is 300°K. The viscosity of Helium at that temperature is

My = 198 x 10_5 kg/m-Sec . Consider a fluid element that passes through the shock on
the flow centerline.

Estimate the acceleration of the fluid element as it traverses the shock wave. Express your
. 2
answer in m/Sec” .

SOLUTION
The acceleration can be estimated as the velocity change of the fluid element over the time
required to traverse the shock.

2 2
u,-Uu Uu,+U u,-U C
AU Y27 Yr 278N (Y271 by .
= =(U2‘U1)(T) = (—{ 5 ] = _5'(T1‘T2) (5 points)

At T At
The weak shock relations can be used in this case.

4 .
U2—U1 E —msal (2 points)

The result from HW#3 is

RUS (4 e) 4 4200} (5 po
B _3[3+“ + 3 8(3p0|nts)

r

Let (U; +U,)/2=M,a,.Now

éA—[—!J 5(—;—3—7£a,)(M1a/)E-‘f—] ! (2 points)
_ﬂh&%ﬁkﬁl
3 u P, £
Simplify the above
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22
AU ~(_P1U1J M

At T
u, _

Use the ideal gas law to replace the density

2 2
AU~( ?’PzUzJ 4M,a,€

At T\ W, yRT i, B
177 3y + 1)(@ N }I) +4(ZP I)J

r

Cancel the speed of sound

2
AU ~[_7P1U1] 4M €

ATy 4 My 4y-1)
3(y + 1)[(5 + E) +

At T
Pl‘

The flow speed is

/ R 5(8314)
u
UI = M]aymTl = 1.05’\3—4—300 = 10704 m/Sec

Now substitute the numbers.
AU _{ 1.66(1.01325 x105)1070.4] 4(1.05)(0.05)2
At T -5
! 1.98 x 10 3(2.66)(1.33 + ‘.’..(_Q_.f‘_g_))

067

The acceleration is estimated at

‘%Lt—j =227 X 109 m/Secz
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130
120

TYPICAL SPACE SHUTTLE

110 REENTRY PROFILE

100

Altitude

90 lMaximum heating

801 Velocity

70
60

(4]

50

ALTITUDE (kilometres)

Altitude

40
30

M, =0.402

VELOCITY (km/sec)

20+

"Entry Interface"

10

o = N W B

—_—

Time Before Touchdown (minutes)

%:1+7'_1Mj:8.930

|
|
1
30 25 20 15 10 | 5 0
|
|
|

8 minutes to touchdown V4

Altitude 40km P (vl 2yt _ 35 _
Speed 2000m/sec P —(1"‘ > M. ) =8.930°" =2128.41

Across the normal shock

P.=277.522 Pa
p_ =0.003851 kg / m’ AR s Py =

T =251050 K Fo | 7=l 2 - ~0.02416
a.=317.633 m/sec e ;_ylez—l 1+y2_1Mm2

M_=6297 P =590.680 Pa

Assume y =14 P, =14,270 Pa

10/25/20 T.=224187K
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ALTITUDE (kilometres)

Space shuttle re-entry
ignore heat capacity changes and real gas effects

130
120
110
100
90
80
70
60
50
40
30

20+

10

TYPICAL SPACE SHUTTLE

REENTRY PROFILE
Altitude

©

Maximum heating
Velocity

o o ~N

VELOCITY (km/sec)

Altitude

"Entry Interface"
= N W B

—_—

30 25 I 20 15 10 5 0
Time élefore Touchdown (minutes)

1| 22 minutes to touchdown
Altitude 70km
Speed 7000m/sec

P.=4.63422 Pa

p.. =0.000074243 kg / m’
T.=21745K
a_=295.614 m/sec
M_=23.679

Assume Yy =14

At such a high Mach number the flow is in fact totally
dominated by real gas effects including dissociation. The
temperatures reached are much lower, and the pressure
behind the shock tends to be higher that predicted here.

e
NG

S

M,=0379
M_=23.679
Lo c1e 7y 2211314
T. 2
N
%: (1+7’T_1Mj)7_1 =113.14* =1.54048 x 10’

Across the normal shock
i y

y+1 oyl s YA
b y -1
P, 2_7/1\/[W2 -1 .
y -1
P_=7.13893%x10" Pa
P, =3347.81 Pa

=4.68951%x107°

9 ST =246023K
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9.5 Problems

Problem 1 - Heat in the amount of 70° Joules/Kg 1s added to a compressible
flow of helium in a diverging channel. The heat is distributed so that the area
averaged velocities at stations 1 and 2 are the same.

qw 2

The temperature at station 1 is 7000K and the area ratiois A,/A; = 2. Deter-

mine T7,/T,, p,/p;, P,/P;,and (s2—s1)/Cp.
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Problem 2 - Recall Problem 5.3. Consider steady flow in one dimension

where U = (U(x), 0, 0) and all velocity gradients are zero except

U

A = = (8.102)

Work out the components of the Newtonian viscous stress tensor 7; i Note the

role of the bulk viscosity. Inside a normal shock wave the velocity gradient

can be as high as / 0]0sec_] . Using values for Air at 300K and one atmosphere

estimate the magnitude of the viscous normal stress inside a shock wave.
Express your answer in atmospheres.
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Problem 3 - Consider a normal shock wave in helium with Mach number
M, = 3. The temperature of the upstream gas is 300K and the pressure is

10° Nim” .

1) Determine the stagnation temperature in region 2 as measured by an
observer at rest with respect to the upstream gas. This is an observer that sees
the shock wave propagating to the left at Mach 3.

2) Determine the stagnation pressure in region 2 as measured by an observer
at rest with respect to the upstream gas.
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Problem 4 - The figure below shows supersonic flow of Carbon Dioxide,
Y = 4/3, past a cylindrical bullet at a free stream Mach number,
M; =277.

See Van Dyke page 163.

The temperature of the free stream is 300°K and the pressure is one
atmosphere.

a) Determine the temperature, pressure and Mach number of the gas on the
centerline just downstream of the shock wave.

b) Estimate the temperature and pressure at the stagnation point on the
upstream face of the cylinder.

¢) Determine the entropy increase across the shock wave.
d) Estimate the thickness of the shock wave.

e) Estimate the acceleration of the fluid element as it traverses the shock wave.

. 2
Express your answer in m/Sec™ .
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Problem 5 - Estimate the thickness of the shock wave in Helium discussed in
Section 8.3 .4.

Problem 6 - The sketch below shows supersonic flow of air, (y = 1.4), past
a sphere at a free stream Mach number, M, = 1.53. (cf.Van Dyke page 164)

a) Compare each of the following properties of the gas; stagnation enthalpy,
h,, stagnation pressure, P, and entropy per unit mass, s at locations 1,2 and

3 identified in the figure. State the assumptions needed to make your
comparisons.

b) What can you say about the same properties of the gas at station 4?7 How
certain is your answer? Why?

¢) Determine the Mach number at station 2.

d) Is the energy per unit mass (internal plus kinetic) of a gas particle at 1 and
2 the same? Prove your answer.
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Problem 7 - We often encounter practical situations involving weak shock waves where
the Mach number upstream of the wave is very close to one.

1 2

——
Ml=1+s

Figure 9.15: Weak normal shock

Let the Mach number ahead of the wave be M; = 1 + € where € < 1. Derive the weak
shock jump relations M2 = 1 — € and

Uy, —U; ~ 4 .
ai N ¥+ 1
-1 ~9
T
(9.103)
P, — P a0
P '

Po—PFPa,., 16 ~v 4

o S S
Py 3 (y+ 1)2

The last result in (9.103) is extremely important in that it shows that the stagnation loss
across a weak shock is extremely small indeed. This fact is exploited in the design of
supersonic inlets. Note that first and second order terms in € have cancelled. I suggest you
use symbol manipulation software such as Mathematica to derive this result.
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Problem 8 - The photo below shows a rifle bullet moving in air at a Mach
number of 1.1. The air temperature is 300°K. On the centerline the flow from
the left passes through a normal shock wave and then stagnates on the nose of
the bullet.

a) Determine the temperature, pressure and density change across the wave.

b) Compare the temperature, pressure and density of the gas at the nose of the
bullet to values in the freestream.

c) Evaluate the entropy change.

d) State any assumptions used.
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Problem 9 - Use the weak shock theory developed in problem 7 to estimate
the thickness of the shock wave depicted in Problem 8. Develop an expression

for estimating the thickness of a weak shock wave & in terms of € and 7.

Problem 10 - The figure below shows supersonic flow of air over a model of a re-

entry body at a free stream Mach number, M; = 2.

The temperature of the free stream is 300°K and the pressure is one atmosphere.
1) Determine the stagnation temperature and pressure of a fluid element located
at stations 1 (free stream), 2 (just behind the shock) and 3 (at the stagnation point
on the body). State the assumptions used to solve the problem. Express your
answers in °K and atmospheres.

2) What can you say about the state of the gas at point 4?

3) Refer the stagnation temperatures at 1, 2 and 3 to an observer at rest with

respect to the upstream gas. To such an observer the body is moving to the left at
a Mach number of 2.0.
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Problem 11 - The photo below shows the flow of Helium gas past a sphere at
a Mach number of 1.05. The opressure is one atmosphere

(1.01325 x105N/m2) and the temperature is 300°K. The viscosity of

Helium at that temperature is u;, = 1.98 X1 0—5 kg/m-Sec . Consider a fluid

element that passes through the shock on the flow centerline.

\A

Estimate the acceleration of the fluid element as it traverses the shock wave.

. 2
Express your answer in m/Sec .
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Uy = U,+U

2 = 2604 — 6944 = —434 M/sec . (1 point)

body

The heat capacity of the gas is C p = 1005 M2 / sec2 — °K . The static temperature of the gas

at station 2 is determined by the temperature jump across the shock.

_ -1, 2

}'M? B },_2-Z o (Z_Z—)MJ
= = 1.6875
T, v+l (y+ 1) M
2 2 ]

T,

and the temperature at station 2 is
T, = 1.6875x300 = 50625 °K (1 point)

The stagnation temperature at station 2 in the rest frame of the upstream gas is

2

) 2
1U; 434 .
172 _ sp625+ % _ 600 °k (1 point
27, * 3% 1005 (1 point)

T, =T

) +

2

At station 3 the gas speed is equal to the speed of the body to the left. The stagnation temperature
at station 3 in the rest frame of the upstream gas is
2
v, 2
T . =T, +123 = 540+ 924 _ 780 °k (1 point)

13 3 2¢C, B 2 x 1005

Note that in this frame of reference the stagnation temperatures at 2 and 3 are not equal and are
considerably larger that the stagnation temperature in the rest frame of the shock.
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