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Fundamentals of Compressible Flow

Chapter 9 - Quasi-one-dimensional flow
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9.1 Control volume, integral conservation laws

Eulerian-Lagrangian control volume

Assume the time averaged flow is stationary. Note that the fan generates an 
unsteady, periodic flow. If we average flow variables over many full cycles of 
the fan rotation then the unsteady term in the conservations equations can 
be dropped. The time mean is said to be stationary, that is, independent of 
the averaging interval.
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Total mass added to the control volume

No mass is added through the fan surface. The integrated form of the law of mass 
conservation is 

9.1.1 Conservation of mass
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9.1.2 Conservation of x-momentum

The added mass may carry x-momentum

The fan exerts a force on the flow.
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Where the force by the flow on the fan is.
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9.1.3 Conservation of energy

The injected mass carries its stagnation enthalpy with it.

The last term in the energy equation is the work done by the flow on the fan.
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The integrated energy conservation equation is

10/25/20 7



9.2 Area averaged flow

Average the flow across the channel.

Define
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Every variable in the flow can be written as a mean plus a fluctuation.

Express the mass flux integral in terms of means and fluctuations.

As long as nonlinear correlations are small, the mean is an accurate approximation.
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In terms of area averaged variables, the integral equations of motion are as follows. 
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The pressure-stress integral on the wall.

The traction vector

9.2.1 The traction vector
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Imagine the length of the control volume made very small.

where

and
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Introduce the hydraulic diameter

The integrated equations of motion now take the form

where the “hat” has been dropped.
10/25/20 13



Let the length of the control volume go to zero.
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The integrated equations are now expressed in terms of differentials. 

Use continuity to simplify the momentum and energy equations.
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The 1-D (area averaged) equations of motion.

Introduce the friction coefficient.

and the heat and work per unit mass flow
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Finally the area averaged equations of motion take the concise form
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9.2.2 Steady, gravity-free, adiabatic flow of a compressible fluid in a channel

For this case the energy equation takes the form of a perfect differential.

For most flow situations (outside of shock waves) the stress and heat conduction 
terms can be neglected. Thus
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9.3 Normal shock waves

The equations of motion reduce to a set of perfect differentials.

Each equation generates a conserved quantity.
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Equate conditions at states 1 and 2.

For a Newtonian fluid

and
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Now assume uniform flow at stations 1 and 2. That is assume that the velocity and 
temperature gradients are zero ahead of and behind the shock wave.

The classical shock jump conditions are:
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9.3.1 The Rankine Hugoniot relations

The jump conditions can be combined to produce a relationship between pressure and density in 
which the velocity does not appear. 

The Rankine-Hugoniot equation.

Combine mass and momentum.

The energy jump condition for a calorically perfect gas is

Combine mass and energy

Equate

Note that this relationship makes no assumption about the 
material in which the shock is propagating. It could be a gas, it 
could be water, it could be rock or some other continuous 
material.
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Define a reference flow state where the flow velocity equals the speed of sound.

The velocity ratio

Use the ideal gas law to write the last pair of relations as

Subtract

9.3.2 Shock property ratios in a calorically perfect gas
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The velocity ratio (continued)

Replace the pressure and cancel the density. The result is the Prandtl relation.

Now.

Or

Finally

With this result, all of the 
important properties of a 
shock wave can be 
expressed in terms of the 
upstream Mach number. 
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Shock strength

Temperature jump

Velocity ratio

Downstream Mach number



The downstream Mach number
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Stagnation pressure ratio

At high Mach numbers

Entropy change
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𝑈!" = −694.4 + 260.4 = −434 𝑀/𝑠𝑒𝑐

The stagnation temperature at station 2 referred to the rest frame of the upstream gas is 

𝑇#!" = 𝑇! +
(%!")!

!'#
= 1.6875×300+ (()()!

!×+,,- = 600𝐾

The temperature ratio across the shock is 

𝑇!
𝑇+
= 1.6875

and the stagnation temperature at station 3 referred to the rest frame of the upstream gas is 

𝑇#)" = 𝑇) +
(𝑈)")!

2𝐶.
= 540 +

(694.4)!

2×1005
= 779.9𝐾
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Figure 9.7 Helium at Mach 2.0
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9.4 Shock wave thickness

Transport equation for the entropy

For a Newtonian heat conducting fluid

and
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The stress tensor

Within the shock wave

Modified rate-of-strain tensor
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Kinetic energy dissipation within the shock

Temperature “dissipation”

Now integrate the entropy equation.

The areas cancel on both sides and the temperature gradients at 1 and 2 are zero.
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Now let’s define a simple model of the flow. Let

Evaluate the viscosity and thermal conductivity at the mean temperature. Now the 
entropy balance is

which can be expressed as
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Shock Reynolds number
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Prandtl number

Entropy jump

Finally
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The right hand side can be written in terms of the upstream Mach number using the 
shock jump relations.

Thus
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The thickness can also be related to the mean free path in the gas

Let

Now
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Problem 11
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8 minutes to touchdown
Altitude 40km

Speed 2000m/sec

M∞ = 6.3

P∞ = 277.522 Pa
ρ∞ = 0.003851 kg /m3

T∞ = 251.050 K
a∞ = 317.633 m / sec
M∞ = 6.297
Assume γ = 1.4
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Pt∞ = 590,680 Pa
Pt2 = 14,270 Pa

Tt∞ = 2241.87 K

Space shuttle re-entry
ignore heat capacity changes and real gas effects

M 2 = 0.402
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22 minutes to touchdown
Altitude 70km

Speed 7000m/sec

M∞ = 23.679

P∞ = 4.63422 Pa
ρ∞ = 0.000074243 kg /m3

T∞ = 217.45 K
a∞ = 295.614 m / sec
M∞ = 23.679
Assume γ = 1.4

Tt∞
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= 1+ γ −1
2
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2 = 113.14

Pt∞
P∞

= 1+ γ −1
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= 113.143.5 = 1.54048 ×107

Across the normal  shock
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Pt∞ = 7.13893×107  Pa
Pt2 = 3347.81 Pa

Tt∞ = 24602.3 K

Space shuttle re-entry
ignore heat capacity changes and real gas effects

At such a high Mach number the flow is in fact totally 
dominated by real gas effects including dissociation. The 
temperatures reached are much lower, and the pressure 
behind the shock tends to be higher that predicted here. ?

M 2 = 0.379
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9.5 Problems
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